10.4.1 双路输出正激变换器[共2页]
正激变换器变压器以及输出电感的简单计算
正激变换器变压器以及输出电感的简单计算首先,我们来讨论变压器的计算。
变压器是利用电磁感应原理工作的电子设备,可以将输入的直流电压变换成输出的交流电压。
变压器由一个原边线圈和一个副边线圈组成,通过改变线圈的匝数比可以实现电压的变换。
变压器的电压变换比由下式给出:Vp/Vs=Np/Ns其中Vp和Vs分别为主线圈(原边)和副线圈(副边)的电压,Np和Ns分别为主线圈和副线圈的匝数。
根据这个公式,我们可以根据所需的输出电压和输入电压来选择变压器的参数。
例如,如果我们需要将输入电压12V转换为输出电压120V,假设变压器的匝数比为10:1,即Np/Ns=10:1、那么我们可以通过求解下面的方程来计算出主线圈和副线圈的匝数:12V/Vs=10/1得到Vs=1.2V。
因此,我们需要选择一个副线圈匝数为1.2的变压器,以实现输入电压到输出电压的变换。
接下来,我们来讨论输出电感的计算。
输出电感通常用于滤波和稳压,它可以减少输出电压中的纹波和噪声。
输出电感的电感值取决于所需的滤波效果和负载电流。
一般来说,输出电感的电感值越大,滤波效果越好。
输出电感的计算可以通过下面的公式给出:L=(Vr*T)/(ΔI*2),其中L为输出电感的电感值,Vr为输出电压的纹波峰峰值,T为一个纹波周期的时间,ΔI为负载电流的纹波值。
例如,如果我们需要输出电压的纹波峰峰值为0.1V,负载电流的纹波值为0.02A,一个纹波周期的时间为10ms。
那么根据上面的公式,输出电感的电感值可以通过计算得到。
L = (0.1V * 10ms) / (0.02A * 2) = 0.25H。
因此,我们需要选择一个电感值为0.25H的输出电感,以实现所需的滤波效果和稳压。
综上所述,正激变换器中变压器和输出电感的计算涉及到输入输出电压之间的变换比、负载电流的变化以及所需的滤波效果。
通过合理地选择变压器参数和输出电感的电感值,可以实现正激变换器的正常工作和所需的电力转换效果。
双开关正激转换器及其应用设计
双开关正激转换器及其应用设计双开关正激转换器及其应用设计单开关(或称单晶体管)正激转换器是一种最基本类型的基于变压器的隔离降压转换器,广泛用于需要大降压比的应用。
这种转换器的优点包括只需单颗接地参考晶体管,及非脉冲输出电流减小输出电容的均方根纹波电流含量等。
但这种转换器的功率能力小于半桥或全桥拓扑结构,且变压器需要磁芯复位,使这种转换器的最大占空比限制在约50%。
此外,金属氧化物半导体场效应管(MOSFET)开关的漏电压变化达输入电压的两倍或更多,使这种拓扑结构较难于用在较高输入电压的应用。
正激转换器中,变压器的磁芯单方向磁化,在每个开关周期都需要采用相应的措施来使磁芯复位到初始值,否则励磁电流会在每个开关周期增大,经历几个周期后会使磁芯饱和,损坏开关器件。
相对而言,如果有磁芯复位,电流就不会在每个开关周期增大,电压会基于励磁电感(Lmag)反相并使磁芯复位。
图1以单开关正激转换器为例,简要对比了无磁芯复位与有磁芯复位的电路图及励磁电感电流波形。
有3种常见的标准磁芯复位技术,分别是三次绕组,电阻、电容、二极管(RCD)钳位和双开关正激。
三次绕组磁芯复位技术的电路示意图参见图1b),这种技术能够提供大于50%的占空比,但开关Q1的峰值电压可能大于输入电压的2倍,而且变压器有三次绕组,使变压器结构更复杂。
RCD钳位磁芯复位技术也能使占空比大于50%,但需要写等式和仿真,以检验复位的正确性,让设计过程更复杂。
RCD钳位技术的成本比三次绕组技术低,但由于复位电路中的钳位电阻消耗能量,影响了电源转换效率。
图1:正激转换器不带磁芯复位与带磁芯复位之对比。
与前两种磁芯复位技术相比,双开关正激更易于实现,而且开关Q1上的峰值电压等于输入电压,降低了开关所承受的电压应力。
这种技术需要额外的MOSFET (Q2)和高端驱动器,且需要2个高压低功率二极管(D3和D4),参见图2。
双开关正激技术的每个开关周期包含3步:第1步,开关Q1、Q2及二极管D1导通,二极管D2、D3及D4关闭;第2步,开关Q1、Q2及二极管D1关闭,而二极管D2、D3及D4导通;第3步,开关Q1、Q2及二极管D1仍然关闭,二极管D2仍然导通,而二极管D3及D4则关闭。
正激式变换器的原理
正激式变换器的原理
正激式变换器是一种电力变换装置,其原理基于断续开关电路的操作方式。
其核心组成部分包括输入电压源、开关器件、功率变压器、输出电路等。
正激式变换器的原理是通过开关器件(通常是晶体管或MOSFET)以高频率进行开关操作,将输入电压源的直流电压通过功率变压器进行翻倍、降压或升压等电压变换,从而实现电力的转换。
开关器件的开关操作是控制性能的关键,通过控制开关器件的导通和关断时间,可以调节输出电压的大小。
正激式变换器的工作周期分为导通和关断两个阶段。
在导通阶段,开关器件处于导通状态,输入电源的电压通过功率变压器传输到输出电路,从而实现能量的传输。
而在关断阶段,开关器件被关闭,并且输出电路中的能量被释放,从而实现能量的转换和控制。
正激式变换器的优点是效率高、功率密度大,并且可以实现较高的电压和电流的变换。
它在电力变换和电力传输领域得到广泛应用,如电力逆变器、电源变换器、电动机驱动器等。
第10章电感设计
n 3.确定绕组匝数
n LImax 104 Bmax Ac
电力电子技术基础
第10章电感器的设计
4.确定导线尺寸
AW
KuWA n
(cm2 )
线径的选择应该满足以上不等式
作为选择的校对,绕组电阻的计算也是十分重要
的,即:
n(MLYT )
R
()
Aw
10.3 多绕组磁性器件设计
K g法还可扩展至多绕组磁性器件的设计,比如 变压器和耦合电感等 在以下场合适用本法:
n1
n2
nk
磁芯
窗口面积WA
每匝磁芯平均 长度( MLT)
导线电导率 ρ
填充因子 Kμ
磁芯结构
均方根 电流 I1
n1:n2
均方根 电流 I2
……
均方根 电流 Ik
:nk
多绕组变压器模型
问题:如何在绕组之间进 行窗口面积WA 的分配?
绕组嵌放关系
{ 绕组1分配 α1WA
{ 绕组2分配 α2WA
总窗口 面积WA
有磁路方程可得:
ni BAc Rg
令 I Imax , B Bmax,则有:
nI max
Bmax Ac Rg
Bmax
lg
0
这是第一个设计约束条件。此时,绕组匝数 n,磁芯
截面积 Ac 和气隙长度 lg 均未知。
限制条件2:电感值
由于电感值是给定的,可以将电感值表示为:
L n2 0 Acn2
B2 max
•
R
•
Ku
K g是一个铁芯几何常数,描述了磁芯的有效电气尺寸,在以下的指定
物理量中应用:
铜损;
最大电流
电感器的技术指标是如何影响磁芯的尺寸的:
正激输出电感设计
多路输出正激式变换器耦合滤波电感的设计1引言近年来高频开关电源在电子产品中得到广泛应用。
正激式DC/DC变换器以其输出纹波小、对开关管的要求较低等优点而适合于低压、大电流、功率较大的场合。
但正激变换器对输出电感的设计有较高要求,特别在多路输出的情况。
本文分析对比正激变换器多路输出滤波电感采用独立方式和耦合方式的不同特点,讨论了耦合电感的设计方法,给出了一个设计实例,并给出仿真及试验结果。
2正激变换器普通多路输出的分析图1所示为180W正激变换器的变压器及输出部分。
两路输出分别采用无耦合的滤波电感。
其一路输出UO1为:UO1=(Uin1-UV1a)D-UV1b(1-D)=Uin1D-UV1b(1) 式(1)中,D为初级开关脉冲的占空比,UV1a、UV1b分别为整流二极管和续流二极管的压降,并假设它们相等。
该电路L的最小值一般由所需维持最小负载电流的要求决定,而电感L中的电流又分连续和不连续两种工作情况。
如果负载电流IO逐步降低,L中的波动电流最小值刚好为0时,即定义为临界情况。
在控制环中,连续状况的传递函数有两个极点,不连续状况只有一个极点。
因而在临界点上下,传递函数是突变的。
图1电路的Uin1,Uin2绕组通常都为紧耦合状态,而每一路LC滤波器的串联谐振频率不相同,这一情况将使控制环在连续状况时传递函数增加新的极点。
在多路输出时,如果辅助输出电压要保持在一定的稳定范围内,则主输出的电感必须一直超过临界值,即一直处于连续状态。
从性能上讲,L过大限制了输出电流的最大变化率,而且带直流电流运行的大电感造价昂贵。
在图1所示的电路中,当UO1保持5V不变时,随着UO2负载上的突然变化,其15.8 V的电压有可能突变4V~5V,且在经过数十至数百毫秒后才能恢复。
图1独立滤波电感两路输出正激变换器图2耦合滤波电感的两路输出正激变换器图3图4 图3电路的归一化电路图5 图4电路的重新排列为了简化设计,通常都使电感电流工作于连续状态。
正激式变换器工作原理
正激式变换器工作原理正激式变换器(Forward Converter)是一种常用的开关电源拓扑结构,可以将直流电压转换为需要的直流电压输出。
它通过周期性地开关和关闭电路中的开关管,实现对电能的传输和转换。
本文将详细介绍正激式变换器的工作原理。
正激式变换器由输入电源、变压器、开关管、输出电路以及控制电路等组成。
其中,变压器是正激式变换器的核心部件,通过变压器的变换作用,实现电能的传输和转换。
正激式变换器的工作原理可以分为两个阶段:导通阶段和关断阶段。
在导通阶段,开关管S导通,输入电压Vin通过变压器的主绕组L1传输给负载。
同时,变压器的副绕组L2和电感器Lm储存能量。
开关管导通后,磁场能量积累在变压器的磁芯中,同时电感器Lm充电。
在此期间,输出电路的电容器C存储能量,以供负载使用。
导通阶段结束后,进入关断阶段。
在关断阶段,开关管S关闭,磁场能量被释放,通过变压器的副绕组L2传输给输出电路。
同时,电感器Lm中的能量继续通过二极管D传输给负载。
在此期间,输出电容器C会释放能量,保持输出电压的稳定。
关断阶段结束后,回到导通阶段,循环工作。
正激式变换器的工作原理可以用以下几个步骤来描述:1. 开关管S导通:当控制信号使开关管导通时,输入电压Vin通过变压器的主绕组L1传输给负载。
同时,变压器的副绕组L2和电感器Lm储存能量。
2. 磁场能量积累:开关管导通后,磁场能量积累在变压器的磁芯中,同时电感器Lm充电。
此时,输出电路的电容器C存储能量,以供负载使用。
3. 开关管S关闭:当控制信号使开关管关闭时,磁场能量被释放,通过变压器的副绕组L2传输给输出电路。
同时,电感器Lm中的能量继续通过二极管D传输给负载。
4. 输出电容器释放能量:在关断阶段,输出电容器C会释放能量,保持输出电压的稳定。
然后,回到导通阶段,循环工作。
正激式变换器的工作原理可以通过控制信号的调节来实现对输出电压的调节。
通过改变开关管的导通时间和关断时间,可以控制变压器的磁场积累和释放过程,从而调节输出电压的大小。
一款有源钳位双路输出正激变换器的设计
一款有源钳位双路输出正激变换器的设计作者:陈瑜来源:《E动时尚·科学工程技术》2019年第06期摘要:本文重点介绍了一款有源钳位双路输出的正激变换器的工作原理,并给出了设计过程和参数计算。
关键词:正激变换器,有源钳位;双路输出ABSTRACT:This paper focuses on the working principle of an active clamp and dual forward converter,the design process and parameter are provide.Keywords:Forward converter,Active Clamp,Dual ouput1.绪论HJDD4811D60型电源模块是为某单位研制的系列产品之一。
该产品是窄范围输入,具有体积小,纹波低的优点。
本文基于正激变换器设计出了输入45~51V,双路输出±11V的60W 电源。
2.正激变换器单端正激变换器的拓扑如图1所示,变压器T起变压和隔离的作用,在输出端加一个电感L,起能量存储及传递作用。
当开关管Q导通时,输出整流管D1正向導通,并通过电感L和电容C将能量提供给负载R,此时输出续流管D2反向截止,输出电感L1储能;当开关管Q关断时,整流二极管D1截止,续流二极管D2导通,电感L1将其储存的能量提供给输出负载,以保持输出电压不变[1]。
3.有源钳位单端正激式拓扑变压器由于工作在磁滞回线的第一象限,因此在关断周期必须进行磁复位,否则变压器会饱和,一旦饱和,电路电流过大会烧毁初级电路。
单端正激式拓扑常用的磁复位方式有RCD磁复位、谐振式磁复位、辅助绕组磁复位和有源箝位四种[2]。
RCD磁复位是利用电阻、电容以及二极管组成去磁电路并接在变压器初级上或开关管漏-源上,该方式电路结构简单,成本低,但是磁芯单向磁化,大部分磁化能量消耗在钳位电阻中,损耗较大。
辅助绕组磁复位是在变压器上再绕制一组辅助线圈,将其与去磁二极管串联并在输入端上,变压器磁芯利用率不高,单向磁化;最大占空比受制于变压器的匝比,不能超过50%;谐振式磁复位是将电容并在开关管漏-源或变压器初级两端,通过谐振电容对变压器进行复位,谐振式磁复位的占空比可以超过50%,该复位方式是利用输入电压给变压器复位,激磁能量和漏感能量回馈到输入侧,基本上没有损耗。
双路输出正激式DC/DC变换器的设计.
双路输出正激式DC/DC变换器的设计双路输出正激式DC/DC变换器的设计类别:电子综合引言开关电源以其高效率、小体积等优点已获得了广泛应用。
而转换器是开关电源中最重要的组成部分,转换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。
在所有的DC/DC隔离变换器中,正激变换器是低电压大电流功率变换器的首选拓扑结构。
由于正激变换器使用无气隙铁心,电感值高,原边和负边峰值电流小,铜损小,所以变压器利用率较高,输出效率也很高;其次,正激变换器中输出电感器和续流二极管的存在,也可以有效衰减纹波电流。
为此,本文介绍了一种采用单端正激式结构设计的双路输出(±6 V,1.5 A)DC/DC变换器的设计过程。
1电路工作原理本变换器的电路原理框图如图1所示。
当直流输入电压经过滤波电路进入辅助电源后,即由辅助电源给控制器供电,然后在控制器作用下,用开关管控制电流的通断以形成高频脉冲电流,再经高频变压器,使其在输人为高(开关管接通)时整流二极管导通,从而使串联电感为充电状态,最后经滤波电路向负载传送能量并输出直流电压;相反,在输入低电平(开关管断开)时,电感为放电状态,电路将通过续流二极管继续向负载释放能量,并输出直流电压。
为了保持电压稳定,两路输出电压经取样、隔离反馈电路送到控制器后将使输出脉冲宽度随输出电压的变化而变化,从而稳定输出电压。
由于变压器原边绕组通过的是单向脉动电流,为避免磁性饱和,确保励磁磁通在每一个开关周期开始时处于初始值,设计时必须使变压器的铁芯磁性复位。
2控制回路的设计传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年来,电流型PWM技术得到了飞速发展,本设计采用电流型控制器UC1843来实现控制回路。
UC1843工作频率可达500 kHz,并它具有大电流推拉式输出,低启动工作电流等特点。
电路中在开关管通断瞬间,必须供给栅极较大电流,并对栅源极间电容进行快速充放电,以使开关管高速工作。
正激变换器工作原理及基本及基本设计
七. 元器件的选择 2.二极管D1, D2, DR
DR所承受的电压为
U DRR
NR NP
Vin(max)
(21)
DR所流过的最大电流为
I DR
iMR(max)
NP NR
iMP
NP NR
Vin DTs LP
(22)
正激变换器
19
第十九页,编辑于星期六:二十二点 五十分。
NR
Vin
Iout Vout
第二十二页,编辑于星期六:二十二点 五十分。
NR
Vin
NP NS D1
Lf
UP
US D2 Cf
Q
Vout
七. 元器件的选择
4. 滤波电感Lf的设计
A, Lf电感量的确定(续)
L f min
(1 D)(VD Vout ) 2Iout fs
(27)
iLf
Lf
1.3L f min
1.3 (1 D)(VD Vout ) 2Iout fs
NR
Vin
NP NS D1
Lf
Vout
七. 元器件的选择
UP
US D2 Cf
4. 滤波电感Lf的设计
Q E. 根据电流大小确定气隙长度lg(续)
二, 基本工作原理(续) [Ton, Tr]
Q turned OFF
复位绕组的电压为: VW 3 Vin
原副边绕组上的电压为:
VW1 K13Vin VW 2 K V 23 in
Where K13 = W1/W3, K23 = W2/W3
正激变换器
5
第五页,编辑于星期六:二十二点 五十分。
二, 基本工作原理(续)[Ton, Tr]
正激式变换器工作原理
正激式变换器工作原理正激式变换器(Forward Converter)是一种常见的开关电源拓扑结构,广泛应用于电力电子领域。
它具有高效率、高稳定性以及较小的尺寸和重量等优点,在各种应用场合中都有着重要的地位。
本文将从工作原理的角度对正激式变换器进行详细介绍。
正激式变换器的工作原理如下:首先,输入电源将直流电压转换为交流电压,并通过变压器的绕组输入到开关管的驱动电路中。
开关管会根据控制信号的输入情况,周期性地打开和关闭,从而控制输入电源的输出。
当开关管打开时,输入电压通过变压器的绕组传递到输出负载上;当开关管关闭时,输出负载上的电流会通过变压器的绕组产生电磁感应,形成反馈信号,再经过滤波电路输出到控制电路,控制电路根据反馈信号调整开关管的状态。
正激式变换器的主要特点是能够实现电源的隔离,通过变压器的绕组可以实现输入电压和输出电压的转换。
具体来说,当开关管打开时,输入电压经过变压器的绕组传递到输出负载上,此时变压器的绕组处于磁场储能阶段;当开关管关闭时,输出负载上的电流会通过变压器的绕组产生电磁感应,形成反馈信号,再经过滤波电路输出到控制电路,控制电路根据反馈信号调整开关管的状态。
通过这种方式,正激式变换器能够实现输入电压和输出电压的隔离,并且能够提供稳定的输出电压。
在正激式变换器的工作过程中,控制电路起着重要的作用。
控制电路可以根据输出电压的变化情况来调整开关管的状态,以保持输出电压的稳定性。
常见的控制方法有脉宽调制(PWM)和脉冲频率调制(PFM)等。
在脉宽调制中,控制电路会根据输出电压的大小来调整开关管的通断时间,以保持输出电压在一定范围内的稳定。
在脉冲频率调制中,控制电路会根据输出电压的变化速率来调整开关管的开关频率,以保持输出电压的稳定。
除了控制电路,正激式变换器还包括驱动电路和保护电路等。
驱动电路用于控制开关管的通断,保证开关管能够按照预定的频率和占空比进行工作。
保护电路用于监测和保护系统的安全性,例如过流保护、过压保护和短路保护等。
双正激DCDC变换器
双正激DC/DC变换器的一种新型拓扑研究摘要: 介绍一种新型的双端正激式DC/DC 变换器电路拓扑,分析其所构成的开关电源主电路及控制、自启动等回路的结构原理,针对其适用于直流高电压输入和高变压器变比场合所必须解决的励磁磁势维持及续流等特殊问题,提出了一种独特的磁通维持续流控制方法。
仿真及实验的结果证实了本方案的正确性与可行性。
关键词: DC/DC 变换; 拓扑; 自启动; PWM引言目前在各种电气设备中应用的各式各样的开关电源,大多数都采用间接式DC/DC 变换电路。
它具有隔离性能好,便于提供多路输出直流电源等优点。
间接式DCPDC 变换电路通常又分为单端电路和双端电路。
一般小容量的开关电源多采用单端正激式或单端反激式DC/DC 变换电路,其高频变压器铁芯中的磁通是单方向脉动的。
单端间接式直流变换电路所存在的主要缺点是高频变压器铁芯中的磁通只工作在磁化曲线的第1 象限,一方面使铁芯不能得到充分利用,另一方面总需要解决磁通复位的问题。
相比之下,双端间接式DC/DC 变换电路比较适用于中大容量的开关电源,其高频变压器铁芯的工作磁通在磁化曲线的第1、3 象限之间对称地交变,铁芯的利用率较高,也不必担心磁通的复位问题。
而且对应于正负半周都可以向输出传递能量,加之高频变压器铁芯的磁通变化线性范围宽,有利于减小变压器的绕组匝数和铁芯体积,提高开关电源的功率密度和工作效率。
因此研究开发完善、可靠的双正激DC/DC 变换拓扑方案一直为国内外有关研究和工程技术人员所关注。
基于上述考虑,我们在科研实践中,提出了一种新型双端正激式DC/DC 变换器的半桥拓扑方案,特别适合于整流器、逆变器等具有高压直流环节的电力电子系统,利用其现成的高压直流环节,为系统的控制、驱动和检测保护提供多路直流电源。
与以往的双端正激式拓扑结构相比较,其特点是可以有效地避免上下两桥臂在高频PWM 开关过程中易于出现的直通短路问题,使开关电源的可靠性大为提高,而且其输入电压可以很高,输出直流电源容量大、组数多,尤其适用于中大功率电力电子系统。
双管正激变换器电路解说
双管正激变换器電路解說
1、电路拓扑图
2、电路原理
其变压器T1起隔离和变压的作用,在输出端要加一个电感器Lo(续流电感)起能量的储存及传递作用,变压器初级无需再有复位绕组,因为D1、D2的导通限制了两个调整管关断时所承受的电压。
输出回路需有一个整流二极管D3和一个续流二极管D4(其中D3、D4均最好选用恢复时间快的整流管)。
输出滤波电容Co应选择低ESR(等效电阻)大容量,有利于降低纹波电压(当然这对于其它拓扑结构的也是这样要求)。
3、工作特点
a、在任何工作条件下,为使两个调整管所承受的电压不会超过Vs+Vd (Vs:输入电压;
Vd:D1、D2的正向压降,),D1、D2必须是快恢复管(当然用恢复时间越短越好,我在实际设计和调试中多使用MUR460)。
b、在与单端正激变换器相比,无需复位电路,有利于简化电路和变压器设计;功率器件
可选择较低的耐压值;功率等级也会很大,据我所知现在很多大功率等级的通信电源及电力操作电源都选用了这种电路。
c、两个调整管工作状态一致,同时处通态或断态。
我个人建议在大功率等级电源中选用
此种电路,主要是调整管好选,比如IRFP460、IRFP460A等调整管即可。
4、变压器计算
在实际设计和调试中,与单管正激变换器变换器中变压器设计方法相同,不过省去了复位绕组。
5、输出电感计算
单端正激、双管正激、半桥、推挽、全桥、BUCK等电路设计方法相同。
我实际设计和调试中一般仅以公式计算值作参考,适当的可以调整匝数以达到最佳状态(我个人认为)。
正激变换器工作原理及几种复位方式PPT课件
RCD复位
t=t0~t1期间,开关管导通变 压器上的磁化电流增加;t=t1 时VM 关断,随后以负载折算 到原边的电流I0/n 给Cs线性充电;
Cs:晶体管输出电容、钳位二极 管结电容、折算到原边的整流 二极管结电容和变压器绕组电 容之和
t=t2时开始磁复位,Cs与Lm谐振使得磁 化电感能量有一部分转移到Cs 中去,剩 余的磁化电感能量和变压器漏感能量消 耗在钳位电阻R中;
显然这和BUCK变换器中开关管Q导通时一样。 变压器原边绕组电流:
4
南京邮电大学
第4页/共26页
正激变换器的不同开关状态
Q关断,变压器原边绕组和副边绕组中都没有电流流过,此 时变压器通过复位绕组进行磁复位,励磁电流iM从复位绕组 W3经过二极管D3回馈到输入电源中去。此时整流管D1关断, 流过电感Lf电流通过续流二极管D2续流,复位绕组电压:
整理得:
8
南京邮电大学
第8页/共26页
正激变换器的不同开关状态
如果W1>W3,则去磁时间小于开通时间
即开关管的工作占空比
。
如果W1<W3 ,则去磁时间大于开通时间
即开关管的工作占空比
。
W小1于> W2 倍3 ,输Q入管电电压压。大 于 2 倍 输 入 电 压 ; W 1 < W 3 , Q 管 电 压
1 南京邮电大学
第1页/共26页
正激变换器的工作原理
W3 -
T
D1
*
+
W1 *
W2
+
u w3
u w1
u w2
+
-
*
-
VIN
D3
Q
Lf
D2
双路输出正激式DC/DC变换器的设计.
双路输出正激式DC/DC变换器的设计双路输出正激式DC/DC变换器的设计类别:电子综合引言开关电源以其高效率、小体积等优点已获得了广泛应用。
而转换器是开关电源中最重要的组成部分,转换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。
在所有的DC/DC隔离变换器中,正激变换器是低电压大电流功率变换器的首选拓扑结构。
由于正激变换器使用无气隙铁心,电感值高,原边和负边峰值电流小,铜损小,所以变压器利用率较高,输出效率也很高;其次,正激变换器中输出电感器和续流二极管的存在,也可以有效衰减纹波电流。
为此,本文介绍了一种采用单端正激式结构设计的双路输出(±6 V,1.5 A)DC/DC变换器的设计过程。
1电路工作原理本变换器的电路原理框图如图1所示。
当直流输入电压经过滤波电路进入辅助电源后,即由辅助电源给控制器供电,然后在控制器作用下,用开关管控制电流的通断以形成高频脉冲电流,再经高频变压器,使其在输人为高(开关管接通)时整流二极管导通,从而使串联电感为充电状态,最后经滤波电路向负载传送能量并输出直流电压;相反,在输入低电平(开关管断开)时,电感为放电状态,电路将通过续流二极管继续向负载释放能量,并输出直流电压。
为了保持电压稳定,两路输出电压经取样、隔离反馈电路送到控制器后将使输出脉冲宽度随输出电压的变化而变化,从而稳定输出电压。
由于变压器原边绕组通过的是单向脉动电流,为避免磁性饱和,确保励磁磁通在每一个开关周期开始时处于初始值,设计时必须使变压器的铁芯磁性复位。
2控制回路的设计传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年来,电流型PWM技术得到了飞速发展,本设计采用电流型控制器UC1843来实现控制回路。
UC1843工作频率可达500 kHz,并它具有大电流推拉式输出,低启动工作电流等特点。
电路中在开关管通断瞬间,必须供给栅极较大电流,并对栅源极间电容进行快速充放电,以使开关管高速工作。
正激式变换器
正激式变换器为了名字上避免和“boost”相混淆,本文所谓的正激式变换器是指图2-8所对应的电路。
正激式变换器的工作原理和反激式变换器完全不同。
请注意变压器上同名端的标法,当变压器原边电压为正时,输出二极管正向偏置,这时开关管处于导通状态。
而在反激式变换器里,开关管关断时,二极管才导通。
所以正激式变换器就不会像反激式变换器那样,将能量存储在原边的电感上。
这里的变压器起到了严格意义上的变压器作用。
当开关关断时,唯一存储能量的是变压器的漏感。
这是为什么MOSFET的漏极电压高于输入电压,并且能够使磁芯复位的原因。
4.1 最小负载正激式变换器是本章开始时提到的几种变换器中的一种,这些变换器需要有一个最小负载,电感必须足够大,才能保证脉动电流的峰值小于最小负载电流。
否则电流就会不连续,并引起输出电压上升。
这就意味着正激式变换器不能工作在空载状态,因为无穷大的电感是不现实的。
实用提示圆环型磁芯,如用金属粉(MPP)制成的磁环用于正激式变换器非常合适。
圆环型磁芯的电感量会随着流过电流的减小而逐渐增大。
在最小负载时,电感量比较大,以利于电流连续。
最大负载时,仍然有一定量的电感量,但其值并不很大。
一般而言,输出电压的纹波可以随着负载电流的增加而增大,因此,没有必要设计对应于维持最轻负载工作时需要的那样大的电感量。
处理最小负载的一个常用的方法是在输出端永久性地接一些电阻(即假负载),并成为变换器的一部分。
这样即使没有外接负载,变换器仍然能够保持电流连续模式工作,因为这些假负载电阻需要消耗能量。
这样做当然会增加整个变换器的损耗。
实用提示当外部负载增加时,把假负载关断。
但是,这样通常会引发振荡,关闭假负载,变换器就进入电流断续模式,这又使得假负载被接通。
接通假负载又使变换器变为连续模式,又会导致假负载关掉,如此循环。
处理这个问题,需要对变换器效率和电感的成本进行选择。
4.2 漏感不像反激式变换器那样用原边电感存储能量,正激式变换器只有漏感存储能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 电感设计 207
5.计算各绕组所占窗口面积的比例
1111tot 2221tot 1tot
=
==k k
k n I αn I n I αn I n I αn I #
(10.56)
6.确定线径
1u A w112u A w 22
αK W A n αK W A n #≤
≤
(10.57) 铜线的线径应小于或等于上式中的计算值。
10.4 应用举例
10.4.1 双路输出正激变换器
下面以图10-12所示用于双路输出正激变换器的耦合电感的设计作为第一个例子,双路输出的次级匝数相同,因此,输出的电压也相同。
双路输出的滤波电感共绕在同一个磁芯上,故相互耦合,其作用是为了消除输出端的开关谐波,耦合电感所等效的磁化电流等于绕组电流之和。
图10-12 双路输出正激变换器模型及磁化电感的波形。