局部CV模型

合集下载

基于区域和边界融合的CV模型研究

基于区域和边界融合的CV模型研究

基于区域和边界融合的CV模型研究孟宇婷;高建瓴【摘要】针对传统CV模型利用全局信息作为拟合项导致不能准确分割灰度不均匀目标边界的问题,提出一种结合区域信息的CV模型.通过在全局拟合能量项中引入区域灰度信息构造新的拟合项,计算拟合曲线附近区域灰度信息的相似性特征来推动曲线的演化,在最终的能量泛函中加入边缘信息,终止曲线的演化.实验表明:改进后的CV模型能够准确分割灰度不均匀图像的目标边界,并对噪声和初始轮廓具有较强的鲁棒性.【期刊名称】《通信技术》【年(卷),期】2018(051)009【总页数】5页(P2087-2091)【关键词】CV模型;区域灰度相似性;边缘检测函数;全局项【作者】孟宇婷;高建瓴【作者单位】贵州大学大数据与信息工程学院,贵州贵阳 550025;贵州大学大数据与信息工程学院,贵州贵阳 550025【正文语种】中文【中图分类】TP391.410 引言图像分割是图像处理中的一个重要环节,目的在于提取图像中含有重要特征或信息的目标区域。

图像分割的精确往往决定后期图像处理与分析的准确度,而针对目前图像处理中目标区域所呈现的目标结构复杂、噪声大、灰度不均匀等特性,传统的图像分割算法如基于边缘检测的分割算法、基于阈值的分割算法等对图像的分割达不到预期效果。

近年来,基于形变模型的分割算法成为当前的研究热点。

该模型的优点在于通过计算能量泛函的最小值,使拟合曲线逐渐趋近于目标边界,最终达到拟合。

基于形变活动轮廓模型一般分为基于边缘模型和基于区域模型两种。

基于边缘模型利用图像的梯度信息来控制曲线的演化,基于区域模型利用区域灰度信息来控制曲线演化。

而基于区域的活动轮廓模型相比于边缘模型来说,更适合分割复杂、噪声较大的图像,原因在于其通过引入水平集函数来表示目标轮廓,从而达到准确分割目标图像的目的。

CV模型、LBF模型和PC模型等,都是基于区域的活动轮廓模型。

2001年,Chan等人提出Chan-Vese模型[1],通过计算目标区域与背景区域的灰度信息来控制曲线的拓扑变化,使得复杂结构的目标得以准确分割且对初始轮廓有较高的鲁棒性。

基于局部区域信息的水平集医学图像分割方法

基于局部区域信息的水平集医学图像分割方法
b s d o h i l e u o d S a a e n te s mp i d M mf r - h h mo e o m a e s g n ai n p o o e y C a — s . c l r g t r p s d b h n Ve eLo a e i n i f r t s r — o m o
C m ue n ier ga d p l ai s o p tr gn ei n A pi t n 计算机工程与应用 E n c o
基 于局部 区域 信息 的水平 集医学 图像 分割方法
郑 伟, 陈彦 江
Z E iC N Y nj n H NG We, HE a -a g i
河 北大学 电子信息工程学院 , 北 保定 0 10 河 70 2
f r t nCo u e n i e rn n piain , 0 0 4 ( 1 : 0 — 1 . o ma i . mp tr E gn e ig a d Ap l t s 2 1 ,6 3 ) 2 92 1 o c o
Ab ta t Be a s me ia i g h s h c aa trsi o itn i ih mo e et ti p p r rsn s n v l e e st sr c : cu e dc l ma e a t e h rceit c f ne s y t n o g n i h s a e p ee t a o e lv l e y,
Co lg f E e t n c a d I f r t n En i e rn He i Un v r i Ba dn He e 7 0 2, h n l e o l cr i n n o ma i g n e i g, be i e st e o o y, o i g, b i 0 1 0 C i a

cv领域语义分割模型

cv领域语义分割模型

cv领域语义分割模型英文回答:Semantic segmentation is a computer vision task that involves assigning a label to each pixel in an image, thereby dividing the image into different regions based on their semantic meaning. It is a crucial step in many computer vision applications, such as autonomous driving, object recognition, and scene understanding.One popular approach for semantic segmentation is the use of convolutional neural networks (CNNs). CNNs are deep learning models that are specifically designed to process visual data. They consist of multiple layers of interconnected nodes, which learn to extract features from the input image. These features are then used to classify each pixel into different semantic categories.One widely used CNN architecture for semantic segmentation is the Fully Convolutional Network (FCN). FCNsreplace the fully connected layers of traditional CNNs with convolutional layers, allowing them to accept input images of any size. This makes FCNs suitable for semantic segmentation tasks, where the output needs to have the same spatial dimensions as the input image.To train a semantic segmentation model, a large dataset of labeled images is required. These images are manually annotated, with each pixel assigned a specific label. The model is then trained to minimize the difference betweenits predicted labels and the ground truth labels. This process is typically done using a loss function such as cross-entropy loss or Dice loss.Once trained, the semantic segmentation model can be used to segment new images by feeding them through the network and obtaining the predicted labels for each pixel. These labels can then be used to extract meaningful information from the image or to perform further analysis or decision-making.中文回答:语义分割是一种计算机视觉任务,它涉及为图像中的每个像素分配一个标签,从而根据它们的语义含义将图像分割为不同的区域。

cv 模型发展史

cv 模型发展史

cv 模型发展史
CV(计算机视觉)模型发展至今已经经历了几个重要的里程碑和发展阶段。

以下是CV模型的发展史(CV模型是指用来处理和分析图像和视频数据的计算机算法和模型):
1. 传统图像处理阶段(20世纪70-80年代):
在这个阶段,CV模型主要依赖于传统的图像处理技术。

常使用的算法包括边缘检测、图像分割和特征提取。

传统的图像处理算法集中在低级的像素级和几何级处理,忽视了语义级别的理解。

因此,这时的CV模型对于复杂的图像任务表现有限。

2. 统计模型和机器学习阶段(20世纪90年代-2000年代):
随着机器学习和统计学的发展,CV模型开始使用统计和机器学习方法来解决图像识别和分类问题。

常用的模型包括SVM、决策树和随机森林等。

这些模型为CV模型提供了更强的泛化能力和灵活性,使其在一些基本的视觉任务上取得了较好的结果。

3. 深度学习阶段(2010年代至今):
随着深度学习技术的兴起,CV模型进入了一个新的阶段。

通过使用深度神经网络,CV模型能够自动从原始图像数据中学习有关特征的表示,并能够在目标识别、物体检测和图像分割等任务中取得令人瞩目的结果。

卷积神经网络(CNN)是CV模型中最常用的深度学习架构之一。

总体而言,CV模型的发展经历了从传统图像处理到机器学习和统计模型再到深度学习的演进过程。

随着硬件的发展和数据集的扩大,CV模型在图像识别、物体检测和图像分割等领域的性能不断提升,为我们提供了更多有关图像和视频数据的深层次理解和分析能力。

CV模型的Matlab实现

CV模型的Matlab实现


Ch a

n

+


+
厶 (忡 蝴) Al 』f 如 ∞ A _I 心扪
n 。




n
P 日 (口 甜) 出 如
t

-
已 知矩 阵
a 【x a

l
; f: ;I

7
4
8
6
9 3

2 4
l

11 0

J

a
r 向


q
2
产 0
-
) m e (n 加 ’ 出 咖
y
]
=
g
r a
d i e n t (a
D T EC HNO L o G Y
fNF OR M A T ION D e
c

200 8
CV
张 晓峰
模型 的
Ma t l a b
2 2 6 0 19
实现
: ! i芏 = 当



屯蛾 )
竖 l嚣
南通 大 学 计算 机 科 学 与 技 术 学 院

(露 丽
△ 嘉!
需 筹菰

)
+
(丽


t
f dm . 。
a n



=
n 加 ■ ∞, 亿
(6 )
1
3 1 5


2 3

~NV e s e 提 出 的 是 种 简 化的 M S 模 型 他 们 假 设 图 像 中每 个 同 质 区 域 的 灰 度值是常 数 即 :

cv相关算法模型

cv相关算法模型

cv相关算法模型计算机视觉(Computer Vision,简称CV)是人工智能领域的一个重要分支,致力于让计算机具备感知和理解图像或视频的能力。

在CV相关算法模型中,有许多经典的算法和模型被广泛应用于图像处理、目标检测、图像分割等领域。

本文将介绍几个常见的CV算法模型,并探讨其应用和优缺点。

一、卷积神经网络(Convolutional Neural Networks,简称CNN)卷积神经网络是一种深度学习模型,模拟了人类视觉系统的工作原理,通过多层卷积和池化操作提取图像特征,并通过全连接层进行分类。

CNN在图像分类、目标检测和图像分割等任务上取得了显著的成果。

然而,CNN在处理大规模数据和复杂背景下的性能仍有待提高。

二、循环神经网络(Recurrent Neural Networks,简称RNN)循环神经网络是一种具有记忆功能的神经网络,通过将当前输入和前一时刻的输出进行循环计算,可以处理序列数据。

在CV领域,RNN常用于图像描述生成、视频分析等任务。

然而,由于RNN的计算过程是串行的,导致其在处理长序列时容易出现梯度消失或梯度爆炸的问题。

三、生成对抗网络(Generative Adversarial Networks,简称GAN)生成对抗网络由生成器和判别器两个模型组成,通过对抗学习的方式,使生成器生成的样本更加逼真。

GAN在图像生成、图像转换等任务上取得了很好的效果,如生成逼真的人脸图像、将草图转换为真实图像等。

然而,GAN的训练过程相对不稳定,容易出现模式崩溃和模式坍塌的问题。

四、目标检测算法模型目标检测是CV领域的一个重要任务,旨在从图像中准确地找出并定位出感兴趣的目标。

目前,一些主流的目标检测算法模型包括:基于区域的卷积神经网络(RCNN)、快速的RCNN(Fast RCNN)、更快的RCNN(Faster RCNN)和单阶段检测器(YOLO、SSD)。

这些模型在目标检测的准确性和速度上有不同的权衡。

融合局部和全局图像信息的活动轮廓模型

融合局部和全局图像信息的活动轮廓模型
('le e f Ma h ma is n t t t s h n qn n v r i C o g ig 4 1 3 ) ( lg t e t d S a i i ,C o g ig U i e s y, h n qn 0 3 1 o o ca sc t
Ab t a t sr c :An a tv o t r m o e ombi i g bo h l a nd g o a i a n o ma i n i o s d n c i e c n ou d lc n n t oc la l b l m ge i f r to s pr po e i t s pa r t le i t he h gh s n ii iy o h o o nii lz ton o he l c li ge ft i g ( F) hi pe o a lv a e t i e s tv t n t e c nt ur i ta ia i ft o a ma itn LI
滤 波 正 则 水平 集 函 数法 实 现水 平 集 函数 的 正 则 化 . 验 结 果 表 明 , 于 一 些Байду номын сангаас真 实 和 人 造 图 像 , 中 模 型 显 示 了 对 轮 实 对 文 廓 初 始化 的鲁 棒 性 , 以及 较 好 地 处 理 灰 度 不 均 图 像 的 能 力 .
关 键 词 :图像 分 割 ; 动 轮 廓模 型 ; — 活 C V模 型 ; 部 图像 拟 合 模 型 ; 度 不 均 局 灰 中 图 法 分 类 号 : P 9 T 31
融合 局 部和 全局 图像信 息 的活 动 轮廓 模 型
刘瑞娟, 何传江, 野 原
( 庆 大 学 数学 与 统计 学 院 重
( hu nin he sna c r ) c a ja g @ i . o n

cv 单目标定 畸变矫正 理想模型 12个参数

cv 单目标定 畸变矫正 理想模型 12个参数

cv 单目标定畸变矫正理想模型 12个参数CV单目标定是计算机视觉领域中的一个重要概念,它在机器人导航、三维重建、增强现实等领域有着广泛的应用。

在CV单目标定中,畸变矫正是一个至关重要的步骤,它能够有效地提高图像的质量,使得目标的定位更加准确。

理想模型和12个参数在单目标定中也扮演着非常重要的角色,它们能够帮助我们更好地理解相机成像的原理,从而提高定位的准确性。

接下来,我们将从简到繁地探讨CV单目标定、畸变矫正、理想模型和12个参数,帮助您更深入地理解这些概念。

1. CV单目标定在计算机视觉中,单目标定是指通过一张单目图像来确定目标在三维空间中的位置和姿态。

这个过程需要考虑到相机的内参矩阵、外参矩阵以及目标的特征点等因素,通过这些信息来计算目标在三维空间中的位置和姿态。

2. 理想模型在单目标定中,我们通常使用相机投影模型来描述相机成像的过程。

理想模型是一种简化的模型,它假设了相机成像过程中不存在畸变等因素,可以很好地帮助我们理解相机成像的原理。

3. 畸变矫正然而,在实际情况中,相机成像过程中经常会受到畸变的影响,导致图像中的目标形状发生扭曲。

畸变矫正是一种校正图像畸变的方法,它能够有效地提高图像的质量,使得目标的定位更加准确。

4. 12个参数在畸变矫正中,我们通常使用12个参数的模型来描述相机的畸变情况。

这12个参数包括了径向畸变和切向畸变等因素,通过它们可以更精确地对图像进行畸变校正。

总结回顾通过本文的探讨,我们深入地了解了CV单目标定、畸变矫正、理想模型和12个参数。

CV单目标定是计算机视觉中的一个重要概念,畸变矫正能够提高图像的质量,理想模型和12个参数对于理解相机成像原理也起着至关重要的作用。

对于这些概念,我们深入地探讨了它们的原理和应用,希望能够对您有所帮助。

个人观点和理解个人认为,在计算机视觉领域,CV单目标定、畸变矫正和理想模型是非常重要的概念,它们为我们理解相机成像原理和提高图像定位的准确性提供了重要的理论基础。

基于熵和局部邻域信息的高斯约束CV模型

基于熵和局部邻域信息的高斯约束CV模型
( 南 方 医科 大 学 医 学 图像 处 理 重 点 实 验 室 广 州 5 1 0 5 1 5 )
摘 要 基 于 曲 线 演 化 的 C h a n - V e s e ( C V) 模 型 常 常不 能 准 确 分 割 非 均 匀 性 且 结 构 复 杂 的 医 学 图 像 . 针对此 缺点 , 文 中 提 出 了 一 种 基 于 熵 和 局 部 邻 域 信 息 的高 斯 约 束 C V模 型 , 作 者利用 熵构造 内部 和外部 区域能量 的权值 系数 , 加 强 了对 曲线 演 化 的 控 制 ; 同 时将 曲线 上 各 点 的 局 部 邻 域 信 息 引 入 到 曲线 演 化 过 程 中 , 提 高 了分 割 的 准 确 性 , 并 降 低 了 区域 内 灰度 不 均 匀 等 因素 对 曲线 演 化 的影 响 ; 高 斯 约 束 保 证 了 曲线 演 化 过 程 中 的稳 定 性 、 光 滑性 , 同 时 不 需 要 曲线 周 长 约 束 项 和 重 复 初 始 化 . 利用 C i r c u l a r Ho u g h变 换 对 左 心 室壁 内 、 外膜进行初始定 位 , 避 免 了人 工 设 置 初 始 轮廓 , 减 少 了 曲线 向 目标 轮 廓 演 化 时 间 和 初 始 轮 廓 位 置 敏 感 性 对 分 割 结 果 的 影 响. 作 者 对 心 脏 MR 图 像 的左 心 室 内、 外 膜 进 行 了分 割 . 结 果 表 明文 中方 法 能够 快 速 准 确 地 分 割 左 心 室 壁 内 、 外膜 , 抗干扰能力强 , 鲁棒性好.
Ga u s s i a n Re g u l a r i z i n g CV Mo d e l Ba s e d o n En t r o py a n d

一种新的基于局部区域的活动轮廓模型

一种新的基于局部区域的活动轮廓模型
pr po e od ii st o li o s dm elutl he lca mag nf r ai n t e a e t l ba ve a e i e iy o V o l ti bl o s gm e t ze e i o m to o r plc he g o la r g ntnst fC— m de ,i s a e t e n i mag s wih i t nst n e t n e iy ihomog nete .M or o r ta s t h e ls tr g a i ai em n t e r y f e ii s e ve .i dd o t e lve e e ulrz ton tr i he ne g unc ina o e ur to lt ns e
第1 期
徐 海勇 ,等:一种 新 的基于 局部 区域 的 活动轮 廓模 型
4 3
束 能量 项 , 于模 型 中出现 的 Di c 对 r 函数 , 对该 函数 的缺 点 , 行 了改进 .通过 实验结 果分 析 , 文提 出 a 针 进 本 的模 型对非 均匀 物体 的分 割是 有效 的 .
基于边界模型利用图像梯度作为约束, 使轮廓线运行到 目 标物体,以此得到图像的分割. 测地活动轮
廓( GAC模 型 ¨ 其 中最 著名 的模 型 之一 .当图像 存 在离 散边 界 或弱边 界 时,活 动轮 廓难 以在 目标 边界 上 ) 2 ] 是 停 止,此 外 由于该模 型的特 点 , 很难 分割 含噪 图像 , 且对 初始 轮廓有 很 高 的要 求 . 也 并 与 之 相反 ,基 于 区域 活 动轮 廓 模 型利 用 轮廓 线 内外 部 全 局统 计 信息 来代 替 图像 梯 度 , 轮廓 线运 行 使 到 目标 物体 的边 界停 止 . 比较基 于边 界模 型,其对 于 离散 边界 和弱边 界 图像有 很好 的分 割效 果 , 且对 相 并 仞 始 轮廓 线选 取 的位 置不 敏感 .其 中将 轮廓 线 内外 部灰 度近 似为 常数 的 CV 模 型I最 为有 名 , 模 型是 . j l J 该 Mu odS a 图像 分割 问题 【的简 化模 型 , 很好 的处 理二 相位 图像 分割 问题 . 由于 C— mfr—hh 4 l 能 但 V模 型是 一种 全 局 域模 型,对 于灰 度不 均匀 物体 图像 ,并不 能得 到满 意 的分割效 果 . 然 V s[ cV模 型推 广到 多 虽 ee 将 — q

cv、ca、 ct运动模型的理解和matlab的程序简单实现

cv、ca、 ct运动模型的理解和matlab的程序简单实现

cv、ca、 ct运动模型的理解和matlab的程序简单实现CV、CA、CT运动模型是指计算机视觉、控制论和计算机图形学中常用的三种运动模型。

这些模型在机器人运动规划、目标跟踪、动画生成等领域都有广泛的应用。

本文将针对这三种运动模型进行深度解析,并通过MATLAB程序进行简单实现。

1. CV运动模型CV运动模型是指匀速运动模型,也称为匀速直线运动模型。

在这种模型中,假设目标以恒定的速度在直线上运动。

对于一维的情况,可以用以下公式描述:\[ x_t = x_0 + v \cdot t \]其中,\( x_t \) 表示目标在时间 \( t \) 的位置,\( x_0 \) 表示初始位置,\( v \) 表示速度。

在二维或三维空间中,可以分别对每个维度进行类似的处理。

CV运动模型在目标跟踪和运动规划中有着重要的应用,可以用来预测目标未来的位置,从而实现目标跟踪和避障等功能。

2. CA运动模型CA运动模型是指匀加速运动模型,也称为匀加速直线运动模型。

在这种模型中,假设目标以恒定的加速度在直线上运动。

对于一维的情况,可以用以下公式描述:\[ x_t = x_0 + v_0 \cdot t + \frac{1}{2} a \cdot t^2 \]其中,\( x_t \) 表示目标在时间 \( t \) 的位置,\( x_0 \) 表示初始位置,\( v_0 \) 表示初始速度,\( a \) 表示加速度。

类似地,对于二维或三维空间中的情况,可以进行类似的处理。

CA运动模型常用于机器人的路径规划和动态目标的预测中,通过对目标的加速度进行建模,可以更精确地预测目标的运动轨迹。

3. CT运动模型CT运动模型是指匀角速度运动模型,也称为匀速转动模型。

在这种模型中,假设目标以恒定的角速度绕着固定轴进行转动。

对于二维空间中的情况,可以用以下公式描述:\[ \begin{pmatrix} x_t \\ y_t \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + \begin{pmatrix} \cos(\omega t) & -\sin(\omega t) \\ \sin(\omega t) & \cos(\omega t) \end{pmatrix} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} \]其中,\( (x_t, y_t) \) 表示目标在时间 \( t \) 的位置,\( (x_0, y_0) \) 表示初始位置,\( \omega \) 表示角速度。

CV目标运动模型的状态方程

CV目标运动模型的状态方程

CV目标运动模型的状态方程
机动目标是指CV目标运动状态变化莫测的目标。

机动目标检测,实质上是一种判别机制,它是利用目标的量测信息和数理统计的理论进行检测,具有机动检测的跟踪算法的基本思想是,目标的机动性将使原来的模型变差,从而造成目标状态估计偏离真实状态,滤波残差特性发生变化,根据残差过程的变化,可设计出机动检测准则,一旦检测到机动发生或消除,立即进行模型转换或噪声方差调整。

原理框图如下图所示。

这种方法的关键在于设计出合理的检测方式,包括检测门限的选择以及恰当的模型转换与调整等。

这种算法按照检测到机动后调整的方式又可进一步分类如下:
(1)调整滤波增益
具体的方法有:重新启动滤波增益序列;增大输入噪声方差;增大目标状态估计的协方差。

例如可调白噪声法就属于此类方法,它通过调整输入噪声的方差来达到调整滤波增益的目的。

(2)调整滤波结构
具体方法有:在不同的跟踪滤波器之间切换,增大目标状态维数。

其中变为滤波算法就是在判断出目标发生机动后将当前目标维数增加,在判断机动结束后恢复至原来的模型。

输入估计法是把加速度看成是未知的确定性输入,利用最小二乘法从新息中估计出机动加速度的大小,并用来更新目标状态。

目标的运动模型问题是目标状态估计算法的关键问题。

找到与目
标真实运动情况相匹配的运动模型是状态估计算法保证精度的最主要因素。

CV模型,又叫恒定速度模型(Constant Velocity),顾名思义它的速度,即位移对时间的一阶导数是恒定的,而速度对时间的一阶导数等于0。

cv大模型 算法

cv大模型 算法

CV大模型通常是指用于计算机视觉任务的大型深度学习模型,通常采用卷积神经网络(Convolutional Neural Network,CNN)等深度学习算法来实现。

这些模型通常具有大量的参数和计算量,能够从大量的图像和视频数据中学习复杂的特征和模式。

CV大模型的算法通常包括以下步骤:
1. 数据预处理:对输入的图像或视频数据进行预处理,包括尺寸调整、归一化、随机裁剪等操作,以便
于模型进行训练和测试。

2. 特征提取:利用卷积神经网络等深度学习算法对预处理后的图像或视频数据进行特征提取。

这一步
中,模型会学习到图像或视频中的各种特征,例如边缘、纹理、颜色等。

3. 特征融合:将不同层的特征进行融合,以便于模型能够更好地理解和分类图像或视频数据。

这一步
中,可以采用各种融合策略,例如特征拼接、注意力机制等。

4. 分类器:在特征融合的基础上,采用各种分类器对图像或视频数据进行分类。

常见的分类器包括支持
向量机、神经网络等。

5. 训练和优化:通过反向传播和梯度下降等优化算法对模型进行训练和优化,以使其能够更好地分类图
像或视频数据。

6. 测试和评估:对训练好的模型进行测试和评估,以确定其性能和准确率。

在CV大模型的算法中,还需要注意数据集的选择和划分、模型架构的设计、超参数的调整等问题。

同时,由于这些模型通常需要大量的计算资源和时间进行训练和推理,因此也需要考虑如何高效地进行模型的训练和部署。

基于局部调整动态轮廓模型提取超声图像乳腺肿瘤边缘

基于局部调整动态轮廓模型提取超声图像乳腺肿瘤边缘

基于局部调整动态轮廓模型提取超声图像乳腺肿瘤边缘
杨晓霜;汪源源
【期刊名称】《生物医学工程学进展》
【年(卷),期】2008(029)002
【摘要】提出一种基于局部调整动态轮廓模型提取超声图像乳腺肿瘤边缘的算法.该算法在Chan-Vese (CV)模型基础上,定义了一个局部调整项,采用基于水平集的动态轮廓模型提取超声图像乳腺肿瘤边缘.将该算法应用于89例临床超声图像乳腺肿瘤的边缘提取实验,结果表明:该算法比CV模型更适用于具有区域非同质性的超声图像的分割,可有效实现超声图像乳腺肿瘤边缘的提取.
【总页数】4页(P63-66)
【作者】杨晓霜;汪源源
【作者单位】复旦大学电子工程系,上海,200433;复旦大学电子工程系,上
海,200433
【正文语种】中文
【中图分类】R73
【相关文献】
1.基于活动轮廓模型和统计特征的血管内超声图像的边缘提取 [J], 曲怀敬;孙丰荣;李艳玲;刘泽;宫延新;张梅
2.基于活动轮廓模型和边缘对比度特征量的血管内超声图像边缘提取 [J], 孙丰荣;李艳玲;曲怀敬;刘泽;张梅
3.基于平均曲率流活动轮廓模型的超声医学图像边缘提取 [J], 杨柳;汪天富;林江莉;
李德玉
4.基于时/空滤波噪声抑制算法和活动轮廓模型的血管内超声图像边缘提取 [J], 李前娜;孙丰荣;李艳玲;李晓峰;姚桂华;张运
5.基于灰度阈值分割和动态规划的超声图像乳腺肿瘤边缘提取 [J], 沈嘉琳;汪源源;王涌;王怡
因版权原因,仅展示原文概要,查看原文内容请购买。

cv大模型研究报告

cv大模型研究报告

cv大模型研究报告随着人工智能技术的飞速发展,计算机视觉(Computer Vision,简称CV)领域取得了显著的成果。

大模型(Large Model)作为当前研究的热点,为CV领域带来了新的突破。

本文将围绕cv大模型展开研究,分析其技术特点、发展趋势及应用场景。

一、cv大模型概述1.定义cv大模型指的是在计算机视觉领域,采用大规模神经网络模型进行图像识别、目标检测、图像生成等任务的算法。

这类模型通常具有参数量巨大、计算复杂度高、训练数据量庞大等特点。

2.发展历程(1)深度学习兴起:2006年,多伦多大学的杰弗里·辛顿(Geoffrey Hinton)等人提出了深度信念网络(Deep Belief Network,DBN),标志着深度学习时代的到来。

(2)卷积神经网络(Convolutional Neural Network,CNN)的崛起:2012年,AlexNet在ImageNet图像识别大赛中一举夺冠,使得CNN成为计算机视觉领域的主流算法。

(3)大模型时代:随着计算能力的提升和数据量的增长,研究人员开始探索更大规模的神经网络模型,如VGG、GoogLeNet、ResNet等。

二、cv大模型技术特点1.参数量巨大:大模型通常具有上亿甚至百亿级别的参数量,这使得模型具有更强的表达能力。

2.计算复杂度高:大模型在训练和推理过程中,计算量较大,对硬件设备提出了更高的要求。

3.数据依赖性:大模型需要大量的训练数据,以充分学习数据的分布特征。

4.模型压缩与加速:为了满足实际应用需求,研究人员需要对大模型进行压缩和加速,如知识蒸馏、模型剪枝等。

三、cv大模型发展趋势1.模型结构优化:研究人员将继续探索更高效的神经网络结构,以提高模型性能和降低计算复杂度。

2.多模态学习:结合文本、音频等多模态信息,提升计算机视觉任务的泛化能力和准确性。

3.小样本学习:研究在小样本情况下,如何利用大模型的优势,提高图像识别等任务的性能。

CV基本操作与配置

CV基本操作与配置

CV基本操作与配置CV(计算机视觉)是一门研究和开发如何使机器“看”的技术。

在计算机视觉领域,常见的任务包括目标检测、图像分类、人脸识别等。

在本文中,我们将介绍CV的基本操作和配置。

CV的基本操作分为图像预处理、特征提取和模型训练三个部分。

第一,图像预处理。

图像预处理是指对原始图像进行一系列处理,以便更好地用于特征提取和模型训练。

预处理的一些常见操作包括图像变换(缩放、裁剪、翻转、旋转等)、图像增强(亮度调整、对比度增强、颜色平衡等)、噪声移除和图像平滑等。

预处理旨在提取图像中的有用信息,并降低图像中的噪声。

第二,特征提取。

特征提取是指从图像中提取有意义的特征以供后续处理使用。

特征可以是图像的局部结构、纹理、颜色等。

常见的特征提取方法包括SIFT(尺度不变特征变换)、SURF(加速稳健特征)、HOG(方向梯度直方图)等。

特征提取的目标是将图像中的不重要信息过滤掉,只保留对于问题求解有用的特征。

第三,模型训练。

模型训练是指使用预处理后的图像和提取的特征来训练机器学习模型。

常见的模型包括支持向量机(SVM)、卷积神经网络(CNN)、决策树等。

模型训练的目标是根据输入的图像特征,训练一个模型来解决具体的问题。

在训练模型时,通常需要将数据集分为训练集和验证集,用训练集来训练模型,用验证集来评估训练出的模型的性能。

CV的配置包括硬件和软件两方面。

硬件方面,CV通常需要使用图形处理器(GPU)来加速计算。

GPU拥有大量的并行处理单元,可以极大地加快矩阵计算和向量运算。

由于CV中常涉及大量的图像处理和矩阵运算,使用GPU可以显著提高计算速度。

此外,对于一些需要处理大规模数据集的任务,还可以考虑使用分布式计算平台,如Apache Hadoop和Apache Spark。

软件方面,CV需要使用一些常见的库和框架来进行开发和调试。

常见的库和框架包括OpenCV、TensorFlow、PyTorch等。

OpenCV是一个开源的计算机视觉库,它提供了很多用于图像处理和计算机视觉任务的函数和工具。

cv匀速模型 过程噪声方差

cv匀速模型 过程噪声方差

CV模型(Constant Velocity Model)是描述匀速度运动的模型,在多个领域如机器人导航、目标跟踪、无人驾驶等都有应用。

在CV模型中,通常会涉及到一些随机噪声来模拟真实世界中的随机干扰和不确定性。

这些噪声通常是高斯分布的,其方差描述了噪声的大小。

关于CV模型中过程噪声的标准方差,它通常是一个根据具体应用和场景来设定的参数。

在目标跟踪领域,过程噪声的标准方差通常用于描述目标运动的不确定性。

例如,如果目标在匀速运动,那么过程噪声的方差可能会相对较小,因为我们可以相对准确地预测其未来的位置。

然而,如果目标在运动过程中受到外部干扰或者执行了机动动作,那么过程噪声的方差可能会增大。

具体的数值会依赖于实际的应用场景和模型的设计。

在某些文献或仿真中,CV模型的过程噪声的标准方差可能会给出具体的数值,如`σ_w = 0.01 m/s^2`。

然而,这并不是一个固定的值,它可能会根据不同的应用和需要进行调整。

总之,CV模型中过程噪声的标准方差是一个需要根据具体应用场景和模型设计来确定的参数,它用于描述目标运动的不确定性。

具体的数值会依赖于实际的应用场景和模型的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pattern Recognition43(2010)603--618Contents lists available at ScienceDirectPattern Recognitionjournal homepage:w w w.e l s e v i e r.c o m/l o c a t e/prAn efficient local Chan–Vese model for image segmentationXiao-Feng Wang a,b,c,De-Shuang Huang a,∗,Huan Xu a,ba Intelligent Computing Lab,Hefei Institute of Intelligent Machines,Chinese Academy of Sciences,P.O.Box1130,Hefei Anhui230031,Chinab Department of Automation,University of Science and Technology of China,Hefei Anhui230027,Chinac Key Lab of Network and Intelligent Information Processing,Department of Computer Science and Technology,Hefei University,Hefei Anhui230022,China A R T I C L E I N F O A B S T R A C TArticle history:Received28September2008 Received in revised form14May2009 Accepted2August2009Keywords:Extended structure tensorImage segmentationIntensity inhomogeneityLevel set methodLocal Chan–Vese model In this paper,a new local Chan–Vese(LCV)model is proposed for image segmentation,which is built based on the techniques of curve evolution,local statistical function and level set method.The energy functional for the proposed model consists of three terms,i.e.,global term,local term and regularization term.By incorporating the local image information into the proposed model,the images with intensity inhomogeneity can be efficiently segmented.In addition,the time-consuming re-initialization step widely adopted in traditional level set methods can be avoided by introducing a new penalizing energy.To avoid the long iteration process for level set evolution,an efficient termination criterion is presented which is based on the length change of evolving curve.Particularly,we proposed constructing an extended structure tensor(EST)by adding the intensity information into the classical structure tensor for texture image segmentation.It can be found that by combining the EST with our LCV model,the texture image can be efficiently segmented no matter whether it presents intensity inhomogeneity or not.Finally, experiments on some synthetic and real images have demonstrated the efficiency and robustness of our model.Moreover,comparisons with the well-known Chan–Vese(CV)model and recent popular local binary fitting(LBF)model also show that our LCV model can segment images with few iteration times and be less sensitive to the location of initial contour and the selection of governing parameters.©2009Elsevier Ltd.All rights reserved.1.IntroductionImage segmentation has always been a fundamental problem and complex task in the field of image processing and computer vision. Its goal is to change the representation of an image into something that is more meaningful and easier to analyze[1].In other words, it is used to partition a given image into several parts in each of which the intensity is homogeneous.Up to now,a wide variety of algorithms have been proposed to solve the image segmentation problem.Researchers have also done great efforts to improve the performance of the image segmentation algorithms.Active contour model,or snakes,proposed by Kass et al.[2],has been proved to be an efficient framework for image segmentation. The fundamental idea of active contour model is to start with a curve around the object to be detected,and the curve moves toward its interior normal and stops on the true boundary of the object based on an energy-minimizing model.The main drawbacks of this∗Corresponding author.E-mail addresses:xfwanghf@,xfwang@(X.-F.Wang), dshuang@(D.-S.Huang),xuhuan@(H.Xu).0031-3203/$-see front matter©2009Elsevier Ltd.All rights reserved.doi:10.1016/j.patcog.2009.08.002method are its sensitivity to initial conditions and the difficulties associated with topological changes like the merging and splitting of the evolving curve.Since the active contour model was proposed, many methods have been proposed to improve it,in which level set method proposed by Osher and Sethian[3]is the most important and successful one.Level set method is based on active contour model and particu-larly designed to handle the segmentation of deformable structures. Generally,the classical active contour model uses spline curves to model the boundary of an object.However,the level set method is to use a deformable curve front for approximating the boundary of an object.In the level set framework,the curve is represented by the zero level set of a smooth function,usually called the level set function.Moving the curves can be done by evolving the level set functions instead of directly moving the curves.Therefore,level set methods exhibit interesting elastic behaviors and can efficiently handle the topological changes which is also a main advantage com-pared with classical active contour model.Formally,the evolution of the curve is driven by a time-dependent partial differential equation (PDE)where the so-called velocity term reflects the image features characterizing the object to be segmented[4].Generally,a classical level set framework consists of an implicit data representation of a hypersurface,a set of partial differential604X.-F.Wang et al./Pattern Recognition43(2010)603--618equations(PDEs)that govern how the curve moves,and the cor-responding numerical solution for implementing this method on computers[5].It should be mentioned that the early edge-based level set meth-ods[6–8]usually depend on the gradient of the given image for stop-ping the evolution of the curve.Therefore,these methods can only detect objects with edges defined by the gradient.However,the cor-responding discrete gradients are generally bounded and the energy functional will hardly approach zero on the boundaries in practice. So,the evolving curve may pass through the true boundaries,espe-cially for the models in[6–8].Recently,region-based level set methods[10–13]have been pro-posed and applied to image segmentation filed by incorporating region-based information into the energy functional.Unlike edge-based level set methods using image gradient,region-based meth-ods usually utilize the global region information to stabilize their responses to local variations(such as weak boundaries and noise). Thus,they can obtain a better performance of segmentation than edge-based level set methods,especially for images with weak object boundaries and noise.Among the region-based methods,Chan–Vese model[10]is a representative and popular one.Based on the Mumford–Shah functional[9]for segmentation, Chan and Vese[10]proposed an easily handled model,or called Chan–Vese(CV)model,to detect objects whose boundaries are not necessarily detected by the gradient.Mumford–Shah model was firstly proposed as a general image segmentation model by Mum-ford and Shah in[9].Using this model,the image is decomposed into some regions.Inside each region,the original image is approxi-mated by a smooth function.The optimal partition of the image can be found by minimizing the Mumford–Shah functional.Chan and Vese successfully solved the minimization problem by using level set functions,which utilized the global image statistics inside and out-side the evolving curve rather than the gradients on the boundaries.CV model has achieved good performance in image segmentation task due to its ability of obtaining a larger convergence range and handling topological changes naturally.However,it still has some intrinsic limitations.First,CV model generally works for images with intensity homogeneity since it assumes that the intensities in each region always maintain constant.Thus,it often leads to poor seg-mentation results for images with intensity inhomogeneity due to wrong movement of evolving curves guided by global image infor-mation.Second,the segmentation of CV model is usually dependent on the placement of the initial contour,especially for the compli-cated images.Sometimes,the different results will be obtained on the same image by using different initial contours.Thus,the place-ment of initial contour is still an important issue for CV model to get successful segmentation in complicated images.Third,the CV model may become time-consuming if the periodical re-initialization step is adopted,which is a technique for periodically re-initializing the level set function to a signed distance function during the evo-lution.It has been regarded as a numerical remedy for maintaining stable curve evolution and ensuring precise results,which also leads to time-consumption as the side effect.To solve the limitations of CV model,many efficient implemen-tation schemes have been proposed[14–20].For example,in[14], Vese and Chan extended their original model in[10]by using a mul-tiphase level set formulation.However,the involved computation in this model is very expensive,which also limits its applications in practice.In addition,to reduce the computational cost,this method usually requires that the initial contour should be near to the object boundaries.In[15],an initialization scheme for the CV model was in-troduced,in which the initial curve is found by searching among the externals of the fidelity term in[10].However,this one-dimensional search method is also time-consuming and fails to work when the gray difference between object and background is small.Xia et al.[16]proposed another initialization method which generates ini-tial closed curves by iteratively connecting edge points obtained by canny detector and morphological filter.This method can efficiently work for some simple images.To reduce the computational load of curve evolution for CV model,the implementation schemes with-out solving the PDEs were proposed[17,18].However,they are still sensitive to the selection of initial curves and sometime sensitive to noise.Li et al.[19]proposed a so-called penalizing energy which acts as a metric to characterize how close the level set function to a signed distance function.This metric can also be adopted by CV model to avoid the re-initialization step.In[20],the penalizing en-ergy proposed in[19]and a discrimination function based on color information was combined into the CV model for segmenting the color images.To efficiently perform the segmentation of images with intensity inhomogeneity,a new class of models has been proposed which not only utilize region-based techniques but also incorporate the benefits of local information.There have been several literatures[12,21–27] which are relevant to the existing works.Paragios et al.[12]pre-sented a method in which edge-based energies and region-based energies were explicitly summed to create a joint energy which was then minimized.In[21],Sum et al.took a similar approach and min-imized the sum of a global region-based energy and a local energy based on image contrast.Brox et al.[22]proposed the idea of in-corporating localized statistics into a variational framework which shows that segmentation with local means is a first order approxi-mation of the piecewise smooth simplification of the Mumford–Shah functional.Piovano et al.[23]employed convolutions to quickly com-pute localized statistics and yielded results similar to piecewise-smooth segmentation in a much more efficient manner.The work of An et al.[24]also noted the efficiency of localized approaches ver-sus full piecewise smooth estimation and introduced a way in which localizations at two different scales can be combined to allow sen-sitivity to both coarse and fine image features.In[25],the authors proposed a similar flow based on computing geodesic curves in the space of localized means rather than approximating a piecewise-smooth model.In[26],a novel localization framework was proposed which allows the region-based energy to be localized in a fully vari-ational way so that objects with heterogeneous statistics can be suc-cessfully segmented with the localized energies.Recently,Li et al. proposed an efficient region-based level set method by introducing a local binary fitting(LBF)energy with a kernel function[27].The LBF model enables the extraction of accurate local image and can be used to segment the images with intensity inhomogeneity.It has at-tracted extensive attentions for its good segmentation performance in limited iterations.However,the LBF model usually needs to per-form four convolution operations at each iteration,which greatly increases the computational complexity.In addition,it is also sen-sitive to the selection of governing parameters and the location of initial curve.For CV model using the intensity average only,texture image seg-mentation is another difficult issue since intensity averages cannot represent the texture information inside and outside the target ob-jects.In many texture images,due to the difference of the intensity averages of neighboring textures,the small textures in objects will be segmented while the desirable whole objects will be not sepa-rated.Therefore,other information should be introduced for texture image segmentation.Chan and Vese[10]suggested using texture in-formation or features extracted from the original image,such as the curvature or the orientation of level sets,to overcome the difficulty. However,the proposed texture information in[10]cannot work well in many complicated texture images due to their simple properties. Note that the texture image segmentation greatly relies on the ex-traction of suitable texture information from the image.Recently, Gabor filters have been efficiently incorporated into level setX.-F.Wang et al./Pattern Recognition43(2010)603--618605methods and CV model for the texture image segmentation[12,28,29].Unfortunately,Gabor filters have the fatal drawback thatthey induce a lot of redundancies and thus lots of feature channels[30].As another efficient texture representation,the structure ten-sor[31,32]is a kind of low dimensional feature computed from thespatial derivatives of the image.It is a common tool for local ori-entation estimation and image structure analysis which is formedas the outer product of the image gradient with itself.So far,thestructure tensor has been applied in many image segmentationalgorithms,most notably,in the early geodesic active contoursframework[33–35].In this paper,we proposed a so-called local Chan–Vese(LCV)model which utilizes both global image information and local im-age information for image segmentation.The energy functional forthe proposed model consists of three parts:global term,local termand regularization term.By using the local image information,theimages with intensity inhomogeneity can be efficiently segmentedin limited iterations.Moreover,the time-consuming re-initializationstep widely adopted in traditional level set methods can be avoidedby introducing a new penalizing energy to the regularization term.As a result,the time-consumption is greatly decreased.Specially,theevolving curve in level set evolution process can automatically stopon true boundaries of objects according to a termination criterionwhich is based on the length change of evolving curve.Finally,weproposed constructing an extended structure tensor(EST)by addingthe intensity information into the classical structure tensor for tex-ture image segmentation.By incorporating the EST into the proposedLCV model,the texture image can be easily segmented no matterwhether it presents intensity inhomogeneity or not.Moreover,thecomparisons with the CV model and recent LBF model show thatour LCV model can segment ordinary/texture images with or with-out intensity inhomogeneity in fewer iterations.Particularly,it canbe found that our model is less sensitive to the location of initialcontour and the selection of governing parameters.The rest of this paper is organized as follows:In Section2,we briefly review the Mumford–Shah model and Chan–Vese(CV)model.Our local Chan–Vese(LCV)model is presented in Section3.InSection4,the proposed model is validated by some experimentson synthetic and real images.Finally,some conclusive remarks areincluded in Section5.2.Previous works2.1.Mumford–Shah modelThe Chan–Vese model is the curve evolution implementationof a piecewise-constant case of the Mumford–Shah model[9].TheMumford–Shah model is an energy-based method introduced byMumford and Shah via an energy functional.The basic idea is to finda pair of(u,C)for a given image u0,where u is a nearly piecewisesmooth approximation of u0,and C denotes the smooth and closedsegmenting curve.The general form for the Mumford–Shah energyfunctional can be written asE MS(u,C)=|u0(x,y)−u(x,y)|2dx dy+\C|∇u(x,y)|2dx dy+ ·Length(C),(1)where and are positive constants, denotes the image domain, the segmenting curve C⊂ .To solve the Mumford–Shah problem is to minimize the energy functional over u and C.Note that the removal of any of the above three terms in(1)will result in trivial solutions for u and C[9].However,with all three terms,it becomes a difficult problem to solve since u is a function in the N-dimensional space (N=2in2D image segmentation),while C is an(N−1)-dimensional data set.2.2.Chan–Vese modelThe Chan–Vese(CV)model is an alternative solution to the Mumford–Shah problem which solves the minimization of(1)by minimizing the following energy functional:E CV(c1,c2,C)= ·Length(C)+ 1·inside(C)|u0(x,y)−c1|2dx dy+ 2·outside(C)|u0(x,y)−c2|2dx dy,(2)where , 1and 2are positive constants,usually fixing 1= 2=1. c1and c2are the intensity averages of u0inside C and outside C, respectively.To solve this minimization problem,the level set method[3]is used which replaces the unknown curve C by the level-set func-tion (x,y),considering that (x,y)>0if the point(x,y)is inside C, (x,y)<0if(x,y)is outside(x,y),and (x,y)=0if(x,y)is on C.Thus, the energy functional E CV(c1,c2,C)can be reformulated in terms of the level set function (x,y)as follows:E CV (c1,c2, )= ·( (x,y))|∇ (x,y)|dx dy+ 1·|u0(x,y)−c1|2H ( (x,y))dx dy+ 2·|u0(x,y)−c2|2(1−H ( (x,y)))dx dy,(3)where H (z)and (z)are,respectively,the regularized approxima-tion of Heaviside function H(z)and Dirac delta function (z)as fol-lows:H(z)=1if zՆ0,0if z<0,(z)=ddzH(z).(4)This minimization problem is solved by taking the Euler–Lagrange equations and updating the level set function (x,y)by the gradient descent method:*t= ( )div∇− 1(u0−c1)2+ 2(u0−c2)2,(5)where c1and c2can be,respectively,updated at each iteration byc1( )=u0(x,y)H ( (x,y))dx dyH ((x,y))dx dy,c2( )=u0(x,y)(1−H ( (x,y)))dx dy(1−H ((x,y)))dx dy.(6)The main advantages of this model are:First,it can deal with the detection of objects whose boundaries are either smooth or not nec-essarily defined by gradient.In such cases,the edge-based level set methods commonly fail and result in boundary leakage[36].Second, it does not require image smoothing and thus can efficiently process the images with noise.Therefore,the true boundaries are preserved and could be accurately detected.Third,it can automatically detect interior contours with the choice of Dirac delta function (z)that has non-compact support.However,CV model also has some drawbacks which have been described in Section1,i.e.,the unsuccessful segmentation of im-ages with intensity inhomogeneity(as shown in Fig.3(c)),the sen-sitivity to the placement of initial contour and the extraordinary time-consumption if re-initialization step is adopted for maintaining stable curve evolution and ensuring more precise results.606X.-F.Wang et al./Pattern Recognition 43(2010)603--6183.Local Chan–Vese modelIn this section,we shall present and discuss the details of our proposed local Chan–Vese (LCV)model and its numerical implementation.What should be stressed is that our model is de-fined based on the techniques of curve evolution,local statistical function and level set methods.It is well-known that some tradi-tional level set methods used either the image gradient [6–8]or the global information [10,11]to drive the evolving curve(s)towards the true boundaries.However,none of them can achieve success in segmenting images with intensity inhomogeneity.In the proposed model,we combined both global and local statistical information to overcome the inhomogeneous intensity distribution in some images and provided more satisfying segmentation result.Particularly,by incorporating a so-called extended structure tensor(EST)into the proposed LCV model,the texture image can also be segmented no matter whether it presents intensity inhomogeneity or not.The overall energy functional in our proposed LCV model E LCV consists of three parts:global term E G ,local term E L and regularization term E R .Thus the overall energy functional can be described as E LCV = ·E G + ·E L +E R .(7)3.1.Global termThe global term E G is directly derived from (2)in the Chan–Vese model,in which it is also called the fitting term.It can be seen that the global term is defined based on the global properties,i.e.,the averages of u 0inside C and outside C ,which is stated as follows:E G(c 1,c 2,C )=F 1(C )+F 2(C )=inside (C )|u 0(x ,y )−c 1|2dx dy+outside (C )|u 0(x ,y )−c 2|2dx dy ,(8)Using the level set formulation,the boundary C is represented by the zero level set of a Lipschitz function : →R . (x ,y )⎧⎪⎨⎪⎩>0if (x ,y )is inside C ,=0,(x ,y )∈C ,<0if (x ,y )is outside C .(9)Accordingly,the global term in (8)can be rewritten so as to eval-uate the level set function on the domain :E G(c 1,c 2, )=|u 0(x ,y )−c 1|2H ( (x ,y ))dx dy +|u 0(x ,y )−c 2|2(1−H ( (x ,y )))dx dy ,(10)where H (z )is the Heaviside function described in (4).Usually,after (10)comes to a steady state,or approximately to be zero,the evolving curve C (zero level set of )will separate the object from the background.However,for the images with inten-sity inhomogeneity,the final obtained curve C can hardly divide the image into object region and background region even after a long iteration time.The reason is that the global term assumes that the image intensity is piecewise constant like the CV model.Thus,the averages c 1and c 2actually act as the global information and cannot represent the inhomogeneous intensities of object region and back-ground region in the images with intensity inhomogeneity.So,to achieve a good performance in segmenting the images with intensity inhomogeneity,the local image information needs to be included.3.2.Local termBefore introducing the local term,we should firstly discuss the intensity inhomogeneity problem.Intensity inhomogeneity usually arises from the imperfect factors of acquisition process for ordinary images or medical images,such as non-uniform daylight and artificial illumination ,static field inhomogeneity,radio-frequency excitation field non-uniformity and inhomogeneity of reception coil sensitivity,etc.These inhomogeneities are known to appear in images as sys-tematic changes in the local statistical characteristics of target object.Although the presence of intensity inhomogeneity is usually hardly noticeable to a human observer,many image processing methods,including image segmentation methods,are highly sensitive to the spurious variations of image intensities since they are based on the assumptions that the intensities in each region are constant.The generally accepted assumption on intensity inhomogeneity is that it manifests itself as a smooth spatial varying function over the image [37].The most common model in describing the acquired images X with intensity inhomogeneity effect is X =BX +N ,(11)where X is the inhomogeneity-free image,B denotes the intensity inhomogeneity field and N is the noise.To simplify the computation,the noise is often ignored.Also,there have been theoretical mod-eling approaches to approximate the intensity inhomogeneity field.However,due to the complexity that causes the intensity inhomo-geneity,it is difficult for ones to model the intensity inhomogeneity under a variety of image acquisition conditions [38].Since the intensity inhomogeneity is slowly varying in the im-age domain,its spectrum in frequency domain will be concentrated in the low-frequency area.Thus,the intensity inhomogeneity effect mainly influences the non-contour pixels in the image,whereas for the pixels belonging to contour,this influence is less.Motivated by this observation,we proposed incorporating the local statistical in-formation into the level set method for segmenting the images with intensity inhomogeneity effect.It should be noted that we do not try to eliminate the intensity inhomogeneity from the images which is still not a completely solved problem [38].Here,the local term is introduced in (12)which uses the local statistical information as the key to improve the segmentation ca-pability of our model on the images with intensity inhomogeneity.E L(d 1,d 2,C )=inside (C )|g k ∗u 0(x ,y )−u 0(x ,y )−d 1|2dx dy +outside (C )|g k ∗u 0(x ,y )−u 0(x ,y )−d 2|2dx dy ,(12)where g k is a averaging convolution operator with k ×k size window.d 1and d 2are the intensity averages of difference image (g k ∗u 0(x ,y )−u 0(x ,y ))inside C and outside C ,respectively.The assumption behind the proposed local term is that smaller image regions are more likely to have approximately homogeneous intensity and the intensity of the object is statistically different from the background.It is significative to statistically analyze each pixel with respect to its local neighborhood.The most simple and fast statistical information function is the average of the local intensity distribution,the rationale being that if the object pixels are brighter than the background,they should also be brighter than the average.It should be noticed that the size of the neighborhood has to be properly selected so as to cover sufficient object and background pixels,which may make the local term less sensitive to the existence of noise.However,at a larger neighborhood size,the local term will probably lose some fine detail of images.So,it needs to be combined with the global term in the image segmentation process.By subtracting the original image from the averaging convolution image,the contrast between foreground intensities and backgroundX.-F.Wang et al./Pattern Recognition 43(2010)603--618607intensities can be significantly increased.Note that the difference image (g k ∗u 0(x ,y )−u 0(x ,y ))with higher image contrast is still not easily to be segmented due to the weak object boundaries and com-plicated topological structure.It needs under a level set evolution for obtaining better segmentation result.Thus,the structure of the fit-ting term in (8)is adopted,i.e.,local fitting term,with the difference image being used instead of original image.It can be obviously seen that the local fitting term keeps decreasing while the curve evolves towards the true boundaries of objects in difference image,and the true boundary C ∗is the minimizer of the following local fitting term:inf C(F L 1(C )+F L 2(C ))≈0≈F L 1(C ∗)+F L 2(C ∗),(13)where (F L 1(C )+F L 2(C ))denotes the local fitting term.In the same manner as global term,the local term (12)can also be reformulated in terms of the level set function (x ,y )as follows:E L (d 1,d 2, )=|g k ∗u 0(x ,y )−u 0(x ,y )−d 1|2H ( (x ,y ))dx dy+|g k ∗u 0(x ,y )−u 0(x ,y )−d 2|2(1−H ( (x ,y )))dx dy .(14)3.3.Regularization termIn order to control the smoothness of the zero level set and fur-ther avoid the occurrence of small,isolated regions in the final seg-mentation,we add to the regularization term a length penalty term L (C )which is defined related to the length of the evolving curve C .Let C be a smooth closed planar curve C (p ):[0,1]→ parameter-ized by parameter p ∈[0,1].The length functional can be written asL (C )=Cdp .(15)Here,through replacing the curve C by the level set function(x ,y ),L (C )can be reformulated asL ( =0)=|∇H ( (x ,y ))|dx dy =( (x ,y ))|∇ (x ,y )|dx dy ,(16)where H (z )is Heaviside function and (z )Dirac delta function,whichhave been described in (4).The use of length penalty term implies that the evolving curve C which minimizes the overall energy functional should be as short as possible.It imposes a penalty on the length of the curve that separates the two phases of image,i.e.,foreground and background,on which the energy functional will make a transition from one of its values,c 1(d 1),to the other,c 2(d 2).In many situations,the level set function will develop shocks,very sharp and/or flat shape during the evolution,which in turn makes further computation highly inaccurate in numerical approxi-mations.To avoid these problems,it is necessary to reshape the level set function to a more useful form,while keeping the zero location unchanged.A common numerical scheme is to initialize the function (X ,t =0)as a signed distance function before the evolution,and then re-initialize the function (X ,t )to be a signed distance function periodically during the evolution,which can be written as (X ,t )=⎧⎪⎨⎪⎩dist (X ,C t )if X is inside C t ,0,X ∈C t ,−dist (X ,C t )if X is outside C t ,(17)where dist (X ,C t )is the shortest Euclidean distance of X to the points on the evolving curve C t at time t .It is crucial to keep the evolving level set function as an approx-imate signed distance function during the evolution,especially in the neighborhood around the zero level set [5].The most straight-forward way of implementing the re-initialization operation is to extract the zero level set and then explicitly compute the distance function from it.However,this method is generally time-consuming.To overcome this difficulty,a now widely accepted method has been proposed [39]in order to re-initialize the level set function by solv-ing the following partial difference equation:*t=sign ( 0)(1−|∇ |),(18)where 0is the function to be re-initialized,and sign ( 0)is the signfunction.When the steady state of Eq.(18)is reached, will be a distance function with the same zero level set as 0despite 0is a distance function or not.This is commonly known as the standard re-initialization procedure.Another equivalent approach is to solve the following eikonal equation:|∇ |=1,(19)with the boundary condition =0on { 0=0}.Re-initialization has been extensively used as a numerical rem-edy for maintaining stable curve evolution and ensuring desirable results in the level set methods.Unfortunately,it is obviously a dis-agreement between the theory of level set method and its imple-mentation,since it has an undesirable side effect of moving the zero level set away from its original location.Moreover,it is quite com-plicated and time-consuming,and when and how to apply it is still a serious problem [40].Accordingly,some fast techniques [41,42]were proposed for finding a solution to these problems.Among these methods,fast marching method [42]is a representative and popu-lar one.It is the optimal technique for solving the Eikonal equation F |∇ |=1,where F denotes the speed of interface.For more detailed technical description about fast marching method,readers can re-fer to literature [42].Though fast marching method is more efficient than traditional approach,the computational time is still large.In this paper,we did not directly use the re-initialization step to keep the level set function as a signed distance function but add to the regularization term a penalty term as follows:P ( )=12(|∇ (x ,y )|−1)2dx dy (20)which can force the level set function to be close to a signed distance function.Actually,this penalty term is more like a metric which charac-terizes how close a function is to a signed distance function.The metric plays a key role in the elimination of re-initialization in our method.To explain the effect of the penalty term P ( ),we give its gradient flow as follows:∇2−div∇=div 1−1∇ .(21)Notice that the above gradient flow has the factor(1−(1/|∇ |)which can act as the diffusion rate.If |∇ |>1,the diffusion rate is positive and the effect of the penalty term is the usual diffusion,i.e.making more even and therefore reduce the gradient |∇ |.If |∇ |<1,the penalty term has effect of reverse diffusion and therefore increase the gradient.It can be seen that the penalty term continually adjusts the deviation of level set function from the signed distance function in the evolution process.Therefore,it can naturally and automatically force the level set function to be an approximate signed distance function during the evolution.。

相关文档
最新文档