Si3401-datasheet

合集下载

XR3401芯片资料

XR3401芯片资料

XR3401_____________________________ _________XySemi Inc - 1 - REV 0.4 1.2MHZ ,26V Step-up DC/DC ConverterGENERAL DESCRIPTIONThe XR3401 is a high frequency, high efficiency DC to DC converter with an integrated 3A, 0.1Ω power switch capable of providing an output voltage up to 26V. The fixed 1.2MHz allows the use of small external inductions and capacitors and provides fast transient response. It integrates Soft start, . only need fewcomponents outside, its comp circus can improve the load transient .FEATURESz 2.3V to 6V input voltage Range z Efficiency up to 96%z 26V Boost converter with 3A switchcurrentz 1.2Mhz fixed Switching Frequency z Integrated soft-start z Thermal Shutdown z Adjustable Comp Loop z Under voltage Lockout z 8-Pin SOP-EPAD PackageAPPLICATIONS• Handheld Devices • GPS Receiver • Digital Still Camera • Portable Applications • DSL Modem • PCMCIA Card• TFT LCD Bias SupplyFigure 1. Typical Application CircuitXR3401_______________________________________________________________________________________XySemi Inc - 2 - ORDERING INFORMATIONPARTNUMBER TEMP RANGE SWICHING FREQUENCY OUTPUT VOLTAGE (V)ILIM (A) PACKAGEPINSXR3401-40°C to 85°C1.2MHZADJ4SOP 8PIN CONFIGURATIONFigure 2. PIN ConfigurationPIN DESCRIPTIONPIN NUMBERPIN NAME PIN DESCRIPTION1 Vin Input power supply pin2ENShutdown control input., Connect this pin to logic high level to enable the device3 FB Feedback pin4 AGND Analog ground5 PGND Power ground6 COMP Compensation pin7 SW Switch pin8 SW Switch pinABSOLUTE MAXIMUM RATINGS(Note: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.) PARAMETER VALUE UNITSupply Voltage VIN -0.3 to 6.5 V FB, EN Voltage -0.3 to VIN+0.3 V SW VoltageVin+0.3 to 28VVXR3401_______________________________________________________________________________________XySemi Inc - 3 - Operating Ambient Temperature -40 to 85 °C Maximum Junction Temperature 150 °C Storage Temperature-55 to 150 °C Lead Temperature (Soldering, 10 sec)300°CELECTRICAL CHARACTERISTICS(V IN = 3.6V, T A = 25°C unless otherwise specified)PARAMETER SYMBOL TEST CONDITIONSMIN TYP MAX UNITInput Voltage Range V IN 2.3 6.0 V Boost output voltage range Vout26VUVLO Threshold V UVLOV HYSTERESIS =100mV 2.1 2.2 2.3 V Operating Supply CurrentV FB =1.3V ,EN=Vin, I Load =075 135Shutdown Supply Current I SUPPLYV EN =0V, V IN =4.2V0.11µA Regulated Feedback Voltage V FB 1.188 1.2 1.212 VPeak inductor Current limit(N-MOSFET current limit) Ilim 4 A Oscillator Frequency F OSC0.9 1.2 1.5 MHz Rds(ON) of N-channel FET I SW =-100mA 0.1 0.2 Ohm Enable Threshold V IN = 2.3V to 5.5V 0.3 1 1.5 V Enable Leakage Current-0.1 0.1µASW Leakage CurrentV EN = 0V, V SW = 0V or 5V, V IN = 5V1 uAXR3401_______________________________________________________________________________________XySemi Inc - 4 - Figure 3. Functional Block DiagramFUNCTIONAL DESCRIPTIONNORMAL OPERATIONThe boost converter is designed for output voltage up to 26V with a switch peak current limit of 4.0 A. The device, which operates in a current mode scheme with quasi-constant frequency, is externally 1.2MHZ and the minimum input voltage is 2.3 V. To control the inrush current at start-up a soft-start pin is available.During the on-time, the voltage across the inductor causes the current in it to rise. When the current reaches a threshold value set by the internal GM amplifier, the power transistor is turned off, the energy stored into the inductor is then released and the current flows through the Schottky diode towards the output of the boost converter. The off-time is fixed for a certain Vin and Vs, and therefore maintains the same frequency when varying these parameters.However, for different output loads, thefrequency may slightly change due to the voltage drop across the Rdson of the power transistor which will have an effect on the voltage across the inductor and thus on on T (off T remains fixed). Some slight frequency changes might also appear with a fixed output load due to the fact that the output voltage Vs is not sensed directly but via the SW Pin, which affects accuracy.Because of the quasi-constant frequency behavior of the device , the XR3401 eliminates the need for an internal oscillator and slope compensation, which provides better stability for the system over a wide of input and output voltages range, and more stable and accurate current limiting operation compared to boost converters operating with a conventional PWM scheme .The XR3401 topology has also the benefits of providing very good load and line regulations, and excellent load transient response.XR3401_______________________________________________________________________________________XySemi Inc - 5 - UNDERVOLTAGE LOCKOUT (UVLO)To avoid mis-operation of the device at low input voltages an under voltage lockout is included that disables the device, if the input voltage falls below 2.2VTHERMAL SHUTDOWNA thermal shutdown is implemented to prevent damages due to excessive heat and power dissipation. Typically the thermal shutdown threshold is 150℃ .When the thermal shutdown is triggered the device stops switching until the temperature falls below typically 136℃.Then the device starts switching again.APPLICATION INFORMATIONINDUCTOR SELECTIONIn normal operation, the inductor maintains continuous current to the output. The inductor current has a ripple that is dependent on the inductance value. The high inductance reduces the ripple current.Selected inductor by actual application:Manufa cturer Part Number Induct ance(u H) DRC max (Ohms) Dimensions L*W*H(mm3)1.0 0.0192.2 0.0303.3 0.0444.70.058Marata LQH5BP 100.1065*5*21.0 0.0082.2 00173.30.027SPM6530T4.7 0.0367.1*6.5*31.0 0.0132.2 0.0203.3 0.0254.7 0.029 TDKVLP6045LT100.0556*6*4.5744373 24022 2.2 0.0614.4*4.05744777004 4.7 0.0257.3*7.3*4.5WURTH 7447770011.0 0.0087.3*7.3*4.5Table 1. Recommend Surface Mount InductorsIf output voltage is 5V ,you can use 1uH~ 4.7uH, If output voltage is 12V, 3.3uH~ 10uH is OK ,if 24V ,maybe need 10uHXR3401_______________________________________________________________________________________XySemi Inc - 6 - INPUT CAPACITOR SELECTIONThe input capacitor reduces input voltage ripple to the converter, low ESR ceramic capacitor is highly recommended. For most applications, a 10uF capacitor is used. The input capacitor should be placed as close as possible to VIN and GND.OUTPUT CAPACITOR SELECTIONA low ESR output capacitor is required in order to maintain low output voltage ripple. In the case of ceramic output capacitors, capacitor ESR is very small and does not contribute to the ripple, so a lower capacitance value is acceptable when ceramic capacitors are used. A 10uF or two 10uF ceramic output capacitor is suitable for most applications.OUTPUT VOLTAGE PROGRAMMINGIn the adjustable version, the output voltage is set by a resistive divider according to the following equation:Typically choose R2=10K and determine R1 from the following equation:OUTPUT CAPACITOR SELECTIONThe regulator loop can be compensated by adjusting the external components connected to the COMP pin. The comp pin is the output of internal transconductance error amplifier. Standard value of Rcomp=100K and Ccomp=470pF will work for the majority of the applications. For detail application status ,we can select more suitable comp loop,For Example ,For 3V~4.2Vin 5Vout, 100Kohm 470pF is more suitable , For 3V~5Vin,9Vout, 200Kohm 470pF is more suitable. For 3V~5Vin 12Vout, 300Kohm 470pF is more suitable.DIODE SELECTIONAccording to max Iout and max Vout, you can select suitable diode. Normally we select diode If=(1.5~2)*Ioutmax and VR=(1.5~2)*Voutmax. For high efficiency ,suggest that you select low Vf Schottky diode.5V VOUT ANOTHER TYPICAL APPLICATION (VOUT SUPPLY POWER TO DC-DC )For more popular application – 5V Vout ,we suggest that you use Vout to supply power to DC-DC in order to get more efficiency if Iout>700mA just as below. In this schematic, you must add 100~470uF E-Cap to limit load transient inrush ripple when unloading, if no these E-Caps, the inrush ripple maybe destroy DC-DC.Notes: In PCB layout ,the power of DC-DC from Vout must get from Cout not from Diode.If Vout=5V Iout<700mA ,we suggest you to use typical application in page 1.XR3401_______________________________________________________________________________________XySemi Inc - 7 - TYPICAL PERFORMANCE CHARACTERISTICS(L=4.7uH, CIN=10uF, COUT=2*10uF,if not mentioned)Efficiency vs. Output Current (Vout=5V)Efficiency vs. Output Current(Vout=9V)LOAD TRANSIENT (3.6VIN 5V 0.1-0.6A 500MA OUT ) LOAD TRANSIENT (5VIN 9V 0.1-0.6A 500MA OUT )XR3401_______________________________________________________________________________________XySemi Inc - 8 - PWM SWITCHING CONTINUOUS PWM SWITCHING DISCONTINUOUS CONDUCTION MODE CONDUCTION MODENOTES:The efficiency is tested under normal temperature, the actual current driver capability is 70%~90% of the max current in sheet consider of high temperature surrounding statusXR3401_______________________________________________________________________________________XySemi Inc - 9 - PACKAGE OUTLINESOP8-EPAD PACKAGE OUTLINE AND DIMENSIONSIn order to increase the driver current capability of XR3401 and improve thetemperature of package, Please ensure Epad and enough ground PCB to release energy.Dimension inMillimeters Dimension in Inches SYMBOLMIN MAX MIN MAXA 1.35 1.75 0.0530.069A1 0.1000.250 0.0040.010A2 1.350 1.550 0.0530.061B 0.3300.510 0.0130.020C 0.1900.250 0.0070.010D 4.700 5.100 0.1850.201E 3.800 4.000 0.1500.157E1 5.800 6.300 0.2280.248e 1.27 TYP 0.050 TYP L 0.400 1.270 0.0160.050θ 0o 8o 0o 8oF 2.26 2.56 0.0890.101G 3.15 3.45 0.1240.136。

LM3401

LM3401

给高度力量的 Hysteretic PFET 控制器引导了驱动描述上将LM3401 是引导的设计提供对高度力量的持续涌流的一个转变控制器。

LM3401 驱动外部的 P-MOSFET 为递降的调整者转变。

LM3401 递送持续的涌流在±里面6% 对一个广泛的多样性的准确性和被连接的系列的数字引导。

出自放的涌流与外部的现在测知resis-岩山一起调整驱动高度力量引导超过1 一。

对于改良的准确性和效率,LM3401 以双重边磁滞现象、非常低的叁考电压和短增殖延迟为特色。

一个一周期一周期现在的界限提供赞成 tection 的反对结束现在而且使失败短路。

Addi- tional 的特征包括可调整的磁滞现象和互补型金属氧化半导体为使PWM 暗淡的的可并立的输入Pin。

特征■ Hysteretic 控制为速度和单纯■输入操作 4.5 V-35 V 的范围■ 1.5 百万赫兹最大值转变频率■低点 200 mV 叁考电压■可设计的现在界限■高速互补型金属氧化半导体可并立的准许│暗淡■可调整磁滞现象■输入 UVLO■没有输出电容器必需的■ MSOP-8 包裹申请■被引导的驱动员■电池充电器典型的申请线路Pin#1Pin名字CS描述现在的感觉用针别住。

对 PFET 排水沟连接2DIM使输入Pin暗淡。

当暗淡的是低点, HG 驱动是走开。

能被连接到逻辑水平 PWM 信号3SNS现在的回应用针别住-对引导的阴极。

连接这一个Pin的一个电阻将设定直流者置于地面引导涌流4HYS磁滞现象调整Pin。

连接从这一个Pin到设定磁滞现象窗户的接地的一个电阻5GND土地的Pin6HG门驱动输出。

连接到 PFET 门7VIN力量补给输入8ILIM现在的界限调整Pin。

连接从这一个Pin到设定现在的界限门槛的 PFET 来源的一个电阻在标准的类型的电的特性规格是给 TJ = 25 °C 只有,和在黑体字类型的极限在联接之上应用温度(TJ) -40 °C 的范围至 +125°C. 除非另外决定了的, VIN =24V。

赛德凯斯电子KW系列匀胶机配件选型手册说明书

赛德凯斯电子KW系列匀胶机配件选型手册说明书

北京赛德凯斯电子有限责任公司KW系列匀胶机配件选型手册2014.11V1版SC-5-7(5mm-7mm)----------------------------------------1 SC-8-10(8mm-10mm)--------------------------------------2 SC-11-13(11mm-13mm)-----------------------------------3 SC-14-18(14mm-18mm)-----------------------------------4 SC-19-23(19mm-23mm)-----------------------------------5 SC-24-28(24mm-28mm一寸片托)-------------------------6 SC-29-33(29mm-33mm)-----------------------------------7 SC-34-38(34mm-38mm)-----------------------------------8 SC-39-43(39mm-43mm)-----------------------------------9 SC-44-48(44mm-48mm)----------------------------------10 SC-49-53(49mm-53mm二寸片托)------------------------11 SC-54-58(54mm-58mm)----------------------------------12 SC-59-63(59mm-63mm)----------------------------------13 SC-64-68(64mm-68mm)----------------------------------14 SC-70-74(70mm-74mm)----------------------------------15 SC-75-79(75mm-79mm三寸片托)------------------------16 SC-80-84(80mm-84mm)----------------------------------17 SC-85-89(85mm-89mm)----------------------------------18 SC-97-101(97mm-101mm四寸片托)----------------------19 SCS-9-13(9mm-13mm)------------------------------------20 SCS-14-18(14mm-18mm盖玻片)--------------------------21 SCS-19-23(19mm-23mm)----------------------------------22 SC-24-28-75-79(载玻片)------------------------------------23 SCL-5-44----------------------------------------------------24 SCH-44-68--------------------------------------------------25 SCH-70-84--------------------------------------------------26 SCH-80------------------------------------------------------27圆片直径:80-84mm 选择片托示意说明KW系列匀胶机配件内部编号i c s C o ., L t d适用于:方片边长范围85-89mm 圆片直径:85-89mm选择片托示意说明KW系列匀胶机配件内部编号n i c s C o ., L t dtL,.oCscino圆片直径:97mm-101mm标准4寸圆片片托选择片托示意说明KW系列匀胶机配件内部编号SC-97-101第 19 頁,共 27 頁适用于:方片边长范围19-23mmSCS-19-23选择片托示意说明KW系列匀胶机配件内部编号北京赛德凯斯电子有限责任公司 第 22 頁,共 27 頁适用于:用于客户定制 边长或直径44mm-68mm之间片子SCH-44-68选择片托示意说明KW系列匀胶机配件内部编号第 25 頁,共 27 頁SCH-70-84适用于:客户定制 边长或直径范围:70-84mm选择片托示意说明KW系列匀胶机配件内部编号第 26 頁,共 27 頁适用于:用于客户定制 边长或直径大于80mm以上片子SCH-80选择片托示意说明KW系列匀胶机配件内部编号第 27 頁,共 27 頁。

SN3351 datasheet_CN V1.0 大电流驱动电源IC

SN3351 datasheet_CN V1.0 大电流驱动电源IC

0.2 0 0 2 4 6 8 10
Vref 与 Vin 在正常电压时的关系曲线
Vin(V) Vref 与 Vin 在低电压下的关系曲线
500 400
120 100 80
Iin (uA)
300 200 100 0 0 5 10 15 20 25 30 35 40
Iin(uA)
60 40 20 0 0 5 10 15 20 Vin(V) 25 30 35 40
0.0475 0.095 0.136 普通模式下的 输出电流 (mA) 2000 1000 700
微控制器控制 ADJ引脚 另外一种驱动方式是使用开漏级输出的微控制器。 下面电路图示意了这种驱动方式的连接方法:
以上对应值是假设ADJ脚悬空内部上拉到芯片的基 准电压1.2V。当ADJ引脚外加电压改变时,也可以使用 不同的RS值。 Rs电阻建议采用1%精度的电阻, 且电阻的温度系数 要好才能保证输出电流的稳定性。 通过外加直流电压调整输出电流 可以通过在 ADJ 管脚施加直流电压 (VADJ) 来调整 输出电流,使其低于普通模式下的RS设置的电流。 二极管和电阻可以抑制加在ADJ引脚上的由场效应 管漏源级寄生电容引起的大幅值的负脉冲。这个负脉冲 会导致错误的输出电流和芯片的工作不稳定。 关断模式 当ADJ引脚电压小于0.2V时,输出关闭。芯片进入待 机状态,此时芯片待机电流下降到60μA。 结构固有的 LED开路保护 如果LED与芯片连接的地方出现开路,电感就会与 外置NMOS的漏极分离,而避免其他升压结构会出现的 损坏开关管的问题。 输入电容的选择 在这种情况下,输出电流的计算公式为: IOUTdc = 0.079*V ADJ /RS [for 0.3V< VADJ <1.2V] 当VADJ = VREF时,输出为100%的IOUTnom。当ADJ引 脚外加电压高于 1.2V 时,电流将自动被钳位在 100% 的 IOUTnom。 ADJ引脚的输入阻抗是500kΩ ±25%。 通过PWM控制方式调整输出电流 PWM信号直接驱动 ADJ引脚 可以通过在ADJ引脚加脉宽调制(PWM)信号,来调 整输出电流,使其小于电阻RS所设置电流值(PWM信号 幅值0V~5V)。PWM信号强度必须能驱动ADJ引脚内部 500 kΩ上拉电阻。电路如下图所示: 其计算公式为: 应该选用低ESR的电容充当输入去耦电容,因为电 容的ESR会呈现为与电源串联的阻抗,降低系统效率。 这个去耦电容须为电感提供大的峰值电流和平滑电源输 入的电流纹波。 如果前级为直流电源,则电容量由电源纹波决定,

SI2302-TP;中文规格书,Datasheet资料

SI2302-TP;中文规格书,Datasheet资料
Figure 6. Body Diode Forward Voltage Variation with Source Current
Revision: A
/

3 of 5
2011/01/01
VGS, Gate to Source Voltage (V) ID, Drain Current (A)
VTH, Normalized Gate-Source Threshold Voltage
RDS(ON), Normalized RDS(ON), On-Resistance(Ohms)
IS, Source-drain current (A)
ID, Drain Current (A)
SI2302
10 25 C
Maximum Ratings @ 25OC Unless Otherwise Specified
Symbol VDS ID IDM VGS
PD R©JA
TJ
TSTG
Parameter Drain-source Voltage Drain Current-Continuous Drain Current-Pulsed a Gate-source Voltage
MCC
TM
Micro Commercial Components
5 VDS=10V ID=3.6A
4
3
2
1
0
0
2
4
6
Qg, Total Gate Charge (nC)
Figure 7. Gate Charge
VDD
RL VIN
D
VOUT
VGS
RGEN G
S
Figure 9. Switching Test Circuit

ADuM3400_3401_3402_CN

ADuM3400_3401_3402_CN
符号 VDD1 VDD2 IDDI(Q) IDDO(Q) IDD1 IDD2 IDD1 IDD2 IDD1 IDD2 VIH VIL VOH VOL

2.0 VDD1,2-0.1
-18 -22 Min 2.7 2.7
1.6 VDD1,2-0.1
ADuM3400/1/2
图 1,ADuM3400 功能框图
图 2,ADuM3401 功能框图
三、应用
图 3,ADuM3402 功能框图
� 通用型多通道的隔离 � SPI 接口和数字转换器的隔离
� RS-232/RS-422/RS-485 收发器隔离 � 工业现场总线隔离
四、典型应用参数
VDD1=VDD2=5V,TA=25℃ 工作参数
32
2
-40~105 SOW-16
100
40
-40~105 SOW-16
50
3
-40~105 SOW-16
32
2
-40~105 SOW-16

第8页/共 10 页
ADuM3400/1/2
声明
本中文资料是根据 ADI 官方提供的英文数据手册相关内容翻译和直接引用而得。仅用于帮助工程师更 快更好的了解该芯片基本功能,译文中可能存在文字组织或翻译错误,不对文档中存在的翻译差异及由此 产生的错误负责。最终解释权归北京晶圆智通科技有限公司所有,未经本公司授权,任何单位及个人不得 非法修改、拷贝和盈利。本公司拥有对此资料所有权及修改权且无需提前通知客户的权利。如需涉及更准 确性的资料,请参考原始英文版本资料。 /static/imported-files/data_sheets/ADUM3400_3401_3402.pdf 版本信息 题目: 四通道数字隔离器——ADuM340x 来源:北京晶圆智通科技有限公司 更新时间:2009-11 V1.3

a1semi矽海半导体产品列表

a1semi矽海半导体产品列表

10V
1.5/1.8/2.5 /2.85V/3.3V/5.0V
5A
AS9174 1.6-6V
2A
0.8V
Fixed
1.15V
Fixed
1.16V
Fixed
1.5V
1.25V
package TO92/SOT89
replacement
TO220/TO252
TO92/SOT23-3/5
TO92/SSOOITC-283-3/5
AS1117L3 AS2815 双通道 AS2830 双通道 AS2915
AS2930
AS2930C
8V
1.5/1.8/2.5 /3.0/3.3V/ADJ
1.5-8V 2.5-5.5V
1.5/2.5/2.8V /3.3/5V/ADJ
1.2/1.5/1.8/2.5 2.85/3.3/
1.8-8V 2-6V 2-6V
AS2933 2.2-5.5V
0.8-4.5V
AS2935
2-6V
1.0-4.4V
AS2936 2.2-5.5V AS2950 2.0-5.5V AS2951 1.8-8V
1.0-4.5V
1.5/1.8/2.5 /2.8V/3.V/
1.2-4.5V
AS5102
4-7V
3.3V
0.3A 0.5A 0.3A 0.3A 0.3A 0.5A 0.5A 0.3A
ADJ
AS5428 2.5-5.5V
ADJ
AS5430 4.5V-23V
ADJ
2A
0.923V
340K
SOP8
tape&reel 2.5K
3A
0.8V

SCM3401A半双工增强型收发器

SCM3401A半双工增强型收发器

目录
特点及封装..................................................................1 应用范围.....................................................................1 功能描述.....................................................................1 典型应用电路..............................................................1 引脚封装.....................................................................2 内部框图.....................................................................2 真值表.........................................................................2 引脚描述.....................................................................2 极限额定值.................................................................3 推荐工作参数..............................................................3
参数
测试条件
数字输入信号:DI,DE, RE

Silicon Carbide Power MOSFET SCTWA60N120G2-4 数据手册说

Silicon Carbide Power MOSFET SCTWA60N120G2-4 数据手册说

SCTWA60N120G2-4HiP247-4ND1TPS2DS3G4Features•Very fast and robust intrinsic body diode•Extremely low gate charge and input capacitance•Very high operating junction temperature capability (T J = 200 °C)•Source sensing pin for increased efficiencyApplications•Switching mode power supply•DC-DC converters•Industrial motor controlDescriptionThis silicon carbide Power MOSFET device has been developed using ST’sadvanced and innovative 2nd generation SiC MOSFET technology. The devicefeatures remarkably low on-resistance per unit area and very good switchingperformance. The variation of switching loss is almost independent of junctiontemperature.Silicon carbide Power MOSFET 1200 V, 35 mΩ typ., 60 Ain an HiP247-4 packageSCTWA60N120G2-4DatasheetSCTWA60N120G2-4Electrical ratings 1Electrical ratingsTable 1. Absolute maximum ratings1.Pulse width is limited by safe operating area.Table 2. Thermal dataSCTWA60N120G2-4Electrical characteristics 2Electrical characteristicsT C = 25 °C unless otherwise specified.Table 3. On/off statesTable 4. DynamicTable 5. Switching energy (inductive load)Table 6. Switching timesSCTWA60N120G2-4Electrical characteristics Table 7. Reverse SiC diode characteristicsSCTWA60N120G2-4Electrical characteristics (curves) 2.1Electrical characteristics (curves)duty = t on / Tt onT10 -2 10 -1 t p (s)Typical output characteristics (T J = 200 °C)GADG150220210834OC200567VSCTWA60N120G2-4 Electrical characteristics (curves)SCTWA60N120G2-4 Electrical characteristics (curves)3Package informationIn order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: . ECOPACK is an ST trademark.3.1HiP247-4 package informationFigure 17.HiP247-4 package outlineSCTWA60N120G2-4Package informationSCTWA60N120G2-4HiP247-4 package information Table 8. HiP247-4 mechanical dataRevision historyTable 9. Document revision historyContentsContents1Electrical ratings (2)2Electrical characteristics (3)2.1Electrical characteristics (curves) (5)3Package information (8)3.1HiP247-4 package information (8)Revision history (10)IMPORTANT NOTICE – PLEASE READ CAREFULLYSTMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.No license, express or implied, to any intellectual property right is granted by ST herein.Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to /trademarks. All other product or service names are the property of their respective owners.Information in this document supersedes and replaces information previously supplied in any prior versions of this document.© 2021 STMicroelectronics – All rights reservedSCTWA60N120G2-4。

SI4401

SI4401

Symbol
VDS VGS
10 secs
Steady State
–40 "20
Unit
V
–10.5
–8.7
THERMAL RESISTANCE RATINGS
Parameter
t v 10 sec Maximum Junction-to-Ambienta Maximum Junction-to-Foot (Drain) Notes a. Surface Mounted on 1” x 1” FR4 Board. Document Number: 71226 S-03452—Rev. C, 09-Apr-01 Steady State Steady State RthJA RthJF
–10.5
S S S
SO-8
S S S G 1 2 3 4 Top View D D D D P-Channel MOSFET 8 7 6 5 D D D D
G
ABSOLUTE MAXIMUM RATINGS (TA = 25_C UNLESS OTHERWISE NOTED)
Parameter
Drain-Source Voltage Gate-Source Voltage Continuous Drain Current (TJ = 150_C)a _ Pulsed Drain Current continuous Source Current (Diode Conduction)a Maximum Power Dissipationa Operating Junction and Storage Temperature Range TA = 25_C TA = 70_C PD TJ, Tstg TA = 25_C ID TA = 70_C IDM IS –2.7 3.0 1.9 –55 to 150 –8.3 –50 –1.36 1.5 0.95 W _C –5.9 A

芯科科技 Si1120 配有 PWM 输出的接近光 环境光感应器 数据表

芯科科技 Si1120 配有 PWM 输出的接近光 环境光感应器 数据表

初步修订 1.0 8/10© 2010 年由Silicon Laboratories 版权所有Si1120本资料适用于正在研发的产品。

产品的特性及规格如有变更,恕不另行通知。

特征应用描述Si1120 是一款低耗能、反射型接近光及环境光感应器,配有先进的模拟信号处理及模拟 PWM 输出。

包括集成型分化光电二极管、信号处理器及LED 驱动。

接近感应乃基于测量外部、光隔离及选通的 LED 的反射光。

环境光感应中使用的是一个单独的可见光光电二极管。

Si1120 的标准包装是8 针脚 ODFN 。

⏹典型的带有单脉冲的 50 cm 接近范围计量表⏹七种精确的测光模式:● 3 种接近范围● 3 dc 环境范围● 1 种校准模式⏹低噪音环境补偿电路敏感度最大可达 8-12 位的分辨率⏹ALS 可直接在阳光下工作 (100 klux)⏹最小反射敏感度小于1µW/cm 2⏹无需隔离包装即可具有较高的 EMI 防御能力⏹供电:2.2-3.7 V⏹操作的温度范围:-40 至 +85 °C ⏹通常为 10 μA 的电流消耗⏹可设计的 LED 恒电流驱动输出 400/50 mA⏹允许独立的 LED 供电⏹3 x 3 mm 的小巧外观 (ODFN)⏹听筒⏹无需触摸式开关⏹占用感应器⏹客户的电子设备⏹笔记本电脑/个人电脑⏹工业自动化⏹显示背光控制⏹光断续器美国专利号 5,864,591美国专利号6,198,118其他正在审批的专利Si1120功能结构图图 1:Si1120 配有 C8051F931 MCU 及 I2C 界面的独特数字接近光及环境光感应器应用范例Si11201.03目录章节页码1. 电气规格 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42. 应用资料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62.1. 操作理论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62.2. 模式选择 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72.3. 接近模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82.4. 环境光模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112.5. LED 和LED 电流的选择 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142.6. 电源瞬变 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142.7. 实际考虑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153. 针脚说明—Si1120 (ODFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164. 订购指南 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175. 光电二极管中心 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176. 封装外形图 (8 针ODFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18文件更新一览表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19联络资料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20Si11201. 电气规格表1:绝对值最大等级*参数条件最小值特有值最大值 单位供电电压–0.3— 5.5V 操作温度–40—85°C 存储温度–65—85°C TXO 上的 GND 电压–0.3— 5.5V 所有其他针脚上的 GND 电压–0.3—VDD + 0.3V (当 TXO 激活时) 通过 TXO 的最大总电流——500mA 通过 TXGD 及 VSS 的最大总电流——600mA 通过所有其他针脚的最大总电流——100mA ESD 等级人体模型——2kV*注: 如使用负荷超过上表所列数值可能对设备造成永久损害。

SI4401DDY-T1-GE3;中文规格书,Datasheet资料

SI4401DDY-T1-GE3;中文规格书,Datasheet资料

0.024 V GS = 4.5 V 0.018 V GS = 10 V 0.012
C - Capacitance (pF)
3600 Ciss 2700
1800
0.006
900
Coss Crss
0 0 10 20 30 40 50
0 0 8 16 24 32 40
ID - Drain Current (A)
0.5
1.0
1.5
2.0
VDS - Drain-to-Source Voltage (V)
VGS - Gate-to-Source Voltage (V)
Output Characteristics
0.030 4500
Transfer Characteristics
RDS(on) - On-Resistance (Ω)
50 V GS = 10 V thru 5 V 40
ID - Drain Current (A)
10
V GS = 4 V
ID - Drain Current (A)
8
30
6
20
4 T C = 25 °C 2
10 V GS = 3 V 0 0.0
T C = 125 °C 0 T C = - 55 °C 0 1 2 3 4
• Halogen-free According to IEC 61249-2-21 Definition • TrenchFET® Power MOSFET • 100 % Rg Tested • 100 % UIS Tested • Compliant to RoHS Directive 2002/95/EC
Si4401DDY
Vishay Siliconix

MSP3401摩矽MOS管

MSP3401摩矽MOS管

MSP3401● V DS = -30V,I D = -4.2A R DS(ON) < 130m Ω @ V GS =-2.5V R DS(ON) < 75m Ω @ V GS =-4.5V R DS(ON) < 55m Ω @ V GS =-10V● High power and current handing capability ● Lead free product is acquired ● Surface mount package●PWM applications ●Load switch ●Power managementSchematic diagramMarking and Pin AssignmentSOT-23 top viewPackage Marking And Ordering InformationDevice MarkingDevice Device PackageReel Size Tape width Quantity MSP3401SOT-23Ø180mm8 mm3000 unitsAbsolute Maximum Ratings (TA=25℃unless otherwise noted)Parameter Symbol Limit UnitDrain-Source Voltage V DS -30 V Gate-Source VoltageV GS ±12 V Drain Current-Continuous I D -4.2 A Drain Current-Pulsed (Note 1) I DM-30 A Maximum Power Dissipation P D 1.2 W Operating Junction and Storage Temperature Range T J ,T STG -55 To 150 ℃Thermal CharacteristicThermal Resistance,Junction-to-Ambient (Note 2)R θJA104 /W ℃-30V(D-S) P-Channel Enhancement Mode Power MOS FETLead FreePIN ConfigurationGeneral FeaturesApplicationGate-Body Leakage Current I GSSV GS =±10V,V DS =0V - - ±100nAOn Characteristics (Note 3) Gate Threshold VoltageV GS(th) V DS =V GS ,I D =-250μA -0.7 -1 -1.3 V V GS =-10V, I D =-4.2A - 50 55 m ΩV GS =-4.5V, I D =-4A - 64 75 m Ω Drain-Source On-State ResistanceR DS(ON)V GS =-2.5V, I D =-1A95 130 m Ω Forward Transconductance g FSV DS =-5V,I D =-4.2A - 10 - SDynamic Characteristics (Note4) Input Capacitance C lss - 950 - PF Output CapacitanceC oss - 115 - PFReverse Transfer Capacitance C rssV DS =-15V,V GS =0V,F=1.0MHz- 75 - PF Switching Characteristics (Note 4) Turn-on Delay Time t d(on) - 7 - nSTurn-on Rise Time t r - 3 - nS Turn-Off Delay Time t d(off) - 30 - nSTurn-Off Fall Time t fV DD =-15V,I D =-3.2A V GS =-10V,R GEN =6Ω - 12 - nSTotal Gate Charge Q g - 9.5 - nC Gate-Source Charge Q gs - 2 - nCGate-Drain ChargeQ gdV DS =-15V,I D =-4A,V GS =-4.5V - 3 - nCDrain-Source Diode Characteristics Diode Forward Voltage (Note 3)V SDV GS =0V,I S =-1A - - -1.2 VNotes:1. Repetitive Rating: Pulse width limited by maximum junction temperature.2. Surface Mounted on FR4 Board, t ≤ 10 sec.3. Pulse Test: Pulse Width ≤ 300μs, Duty Cycle ≤ 2%.4. Guaranteed by design, not subject to productionElectrical Characteristics (TA=25℃unless otherwise noted)ParameterSymbol Condition Min Typ Max UnitOff CharacteristicsDrain-Source Breakdown Voltage BV DSS V GS =0V I D =-250μA -30 - V Zero Gate Voltage Drain Current I DSS V DS =-24V,V GS =0V - - -1 μATypical Electrical and Thermal CharacteristicsFigure 1:Switching Test CircuitT J -Junction Temperature(℃)Figure 3 Power DissipationVds Drain-Source Voltage (V)Figure 5 Output CharacteristicsV INV tFigure 2:Switching WaveformsT J -Junction Temperature(℃)Figure 4 Drain CurrentI D - Drain Current (A)Figure 6 Drain-Source On-ResistanceP D P o w e r (W )I D - D r a i n C u r r e n t (A )R d s o n O n -R e s i s t a n c e (m Ω)I D - D r a i n C u r r e n t (A )Vgs Gate-Source Voltage (V)Figure 7 Transfer CharacteristicsVgs Gate-Source Voltage (V)Figure 9 Rdson vs VgsQg Gate Charge (nC)Figure 11 Gate ChargeT J -Junction Temperature(℃)Figure 8 Drain-Source On-ResistanceVds Drain-Source Voltage (V)Figure 10 Capacitance vs VdsVsd Source-Drain Voltage (V)Figure 12 Source- Drain Diode ForwardI D - D r a i n C u r r e n t (A )R d s o n O n -R e s i s t a n c e (m Ω)V g s G a t e -S o u r c e V o l t a g e (V )N o r m a l i z e d O n -R e s i s t a n c eC C a p a c i t a n c e (p F )I s - R e v e r s e D r a i n C u r r e n t (A )Vds Drain-Source Voltage (V)Figure 13 Safe Operation AreaSquare Wave Pluse Duration(sec)Figure 14 Normalized Maximum Transient Thermal Impedancer (t ),N o r m a l i z e d E f f e c t i v e T r a n s i e n t T h e r m a l I m p e d a n c eI D - D r a i n C u r r e n t (A )SOT-23 Package InformationDimensions in MillimetersSymbolMIN. MAX.A 0.900 1.150A1 0.000 0.100A2 0.900 1.050b 0.300 0.500c 0.080 0.150D 2.800 3.000E 1.200 1.400E1 2.250 2.550e 0.950TYPe1 1.800 2.000L 0.550REFL1 0.300 0.500θ 0° 8°Notes1. All dimensions are in millimeters.2. Tolerance ±0.10mm (4 mil) unless otherwise specified3. Package body sizes exclude mold flash and gate burrs. Mold flash at the non-lead sides should be less than 5 mils.4. Dimension L is measured in gauge plane.5. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.。

LM3401中文资料

LM3401中文资料

46 80 ns
69 120 ns
4
5.5 8
µA
-10
0 +10 mV
-70 -130 -200 mV
1.85 2.0 2.25 V
286
mV
ISNS UVLO
SNS pin Bias Current UVLO threshold
VSNS = 200 mV Vin rising
300 780 nA 4.3 4.48 V
apply over the junction temperature (TJ) range of -40°C to +125°C. Unless otherwise stated, VIN = 24V. Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at
TJ = 25°C, and are provided for reference purposes only (Note 4).
Symbol Parameter
Conditions
Min Typ Max Units
SYSTEM
VREF ΔVREF / ΔVIN
IQ IHYS SNSHYS_MU TDLY TDIM IILIM VCL_OFF VZC VDIM
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin.

CS5460A中文数据手册

CS5460A中文数据手册
Tel: 021-54385846, 54996731; Fax:021-54996731; MP: 13818593177 Email: zhoubenhong@; zhoubenhong@ QQ: 511937505; Skype: zhoubenhong; MSN: zhoubh888@ Website:
l 片内功能:可以测量电能(有功),I *V,IRMS 和 VRMS ,具有电能-脉冲转换功能
l 可以从串行EEPROM 智能“自引导”,不需要微 控制器
l AC 或DC 系统校准 l 具有机械计度器/步进电机驱动器 l 符合IEC687/1036 ,JIS 工业标准 l 功耗<12mW l 优化的分流器接口 l V对I的相位补偿 l 单电源地参考信号 l 片内2.5V 参考电压(最大温漂60ppm/℃) l 简单的三线数字串行接口 l 看门狗定时器 l 内带电源监视器 l 电源配置
VA+ = +5 V; VA- = 0V; VD+ = +3.3V~+5 V
概述
CS5460A 是一个包含两个ΔΣ模-数转换 器(ADC)、高速电能计算功能和一个串行接 口的高度集成的ΔΣ 模-数转换器。它可以精确 测量和计算有功电能、瞬时功率、IRMS 和VRMS , 用于研制开发单相2 线或3 线电表。CS5460A 可以使用低成本的分流器或互感器测量电流,使 用分压电阻或电压互感器测量电压。CS5460A 具有与微控制器通讯的双向串口,芯片的脉冲输 出频率与有功能量成正比。CS5460A 具有方便 的片上AC/DC 系统校准功能。
cs5460a单相双向功率电能ic特性rms具有电能脉冲转换功能可以从串行eeprom智能自引导不需要微控制器ac或dc系统校准符合iec6871036jis工业标准片内25v参考电压最大温漂60ppm电源配置va0v

3401 DATASHEET

3401  DATASHEET

Parameter
Drain-Source Breakdown Voltage Zero Gate Voltage Drain Current Gate Threshold Voltage Gate Leakage Current Drain-Source On-state Resistance
VGS=0V, IDS=-250µA VDS=-24V, VGS=0V TJ=85°C VDS=VGS, IDS=-250µA VGS=±12V, VDS=0V VGS=-10V, IDS=-3A VGS=-4.5V, IDS=-2A VGS=-2.5V, IDS=-1A
30
800
Ciss
8 7 6 5 4 3 2 1
C - Capacitance (pF)
700 600 500 400 300 200 100 0 0 Coss Crss 5 10 15 20 25
0
0
2
4
6
8
10
12
14
16
-VDS - Drain - Source Voltage (V)
QG - Gate Charge (nC)
3
3401
Typical Operating Characteristics
Power Dissipation
1.0 0.9 0.8
Drain Current
3.5 3.0 2.5 2.0 1.5 1.0 0.5
0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 20 TA=25 C 40 60 80 100 120 140 160
Gate-Source Charge Gate-Drain Charge
VDS=-15V, VGS=-10V, IDS=-3A

SI3401中文资料

SI3401中文资料

Rev. 0.9 8/07Copyright © 2007 by Silicon LaboratoriesSi3400/Si3401This information applies to a product under development. Its characteristics and specifications are subject to change without notice.Si3400Si3401F U L L Y -I N T EG R A T E D 802.3-C O M P L I A N T PD I N T E R F A C E A N D S W I T CHI N G R E G U L A T O RFeaturesApplicationsDescriptionThe Si3400 and Si3401 integrate all power management and control functions required in a Power-over-Ethernet (PoE) powered device (PD)application. The Si3400 and Si3401 convert the high voltage supplied over the 10/100/1000BASE-T Ethernet connection into a regulated, low-voltage output supply. The optimized architectures of the Si3400 and Si3401minimize the solution footprint, reduce external BOM cost, and enable the use of low-cost external components while maintaining high performance.The Si3400 and Si3401 integrate the required diode bridges and transient surge suppressors, thus enabling direct connection of ICs to the Ethernet RJ-45 connector. The switching power FET and all associated functions are also integrated. The integrated switching regulator supports isolated (flyback) and non-isolated (buck) converter topologies. The Si3400 and Si3401 support IEEE STD™ 802.3-2005 (future instances are referred to as 802.3) compliant solutions as well as pre-standard products, all in a single IC. Standard external resistors connected to the Si3400 and Si3401 provide the proper 802.3 signatures for the detection function and programming of the classification mode. Startup circuits ensure well-controlled initial operation of both the hotswap switch and the voltage regulator. The Si3400and Si3401 are available in low-profile, 20-pin, 5x 5mm QFN packages.While the Si3400 is designed for applications up to 10W, the Si3401 is optimized for higher power applications (up to approximately 15W). See also “AN313: Using the Si3400/01 in High Power Applications” for more information.IEEE 802.3 standard-compliant solution, including pre-standard (legacy) PoE supportHighly-integrated IC enables compact solution footprintsMinimal external components Integrated diode bridges and transient surge suppressor Integrated switching regulator controller with on-chip power FETIntegrated dual current-limited hotswap switchSupport non-isolated and isolated switching topologiesComprehensive protection circuitryTransient overvoltage protectionUndervoltage lockoutEarly power-loss indicator Thermal shutdown protection Foldback current limiting Programmable classification circuitLow-profile 5x 5mm 20-pin QFNPb-Free and RoHS-compliantVoice over IP telephones and adaptersWireless access points Security camerasPoint-of-sale terminals Internet appliances Network devicesHigh power applications (Si3401)1.Pin VSSA added on revisions CZand higher.2. Pin ISOSSFT added on revisionsCZ and higher. Function available on revision E silicon. For Rev CZ, or to disable this feature on Revision E, tie this pin to VDD.Ordering Information:See Ordering Guide on pagepage 17.元器件交易网Si3400/Si34012Rev. 0.9Functional Block DiagramSi3400/Si3401Rev. 0.93T A B L E O F C O N T E N TSSectionPage1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42. Typical Application Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103.2. PD Hotswap Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103.3. Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20Si3400/Si34014Rev. 0.91. Electrical SpecificationsTable 1. Absolute Maximum Ratings (DC)1Type DescriptionRating UnitVoltageCT1 to CT2–60 to 60V SP1 to SP2–60 to 60VPOS 2–0.3 to 60HSO–0.3 to 60VSS1 or VSS2–0.3 to 60SWO–0.3 to 60PLOSS to VPOS 2–60 to 0.3RDET –0.3 to 60RCL–0.3 to 5SSFT to VPOS 2–5 to 0.3EROUT to VSS1, VSS2, or VSSA –0.3 to VDD+0.3FB to VPOS–5 to 0.3RIMAX to VSS1, VSS2, or VSSA –0.3 to VDD+0.3VSS1 to VSS2 or VSSA –0.3 to 0.3VDD to VSS1, VSS2, or VSSA–0.3 to 5CurrentRCL 0 to 100mA RDET0 to 1CT1, CT2, SP1, SP2–400 to 400VPOS 2–400 to 400HSO 0 to 400PLOSS –0.5 to 5VDD 0 to 2SWO0 to 400VSS1, VSS2, or VSSA–400 to 0Ambient TemperatureStorage –65 to 150°C Operating–40 to 85Notes:1.Unless otherwise noted, all voltages referenced to VNEG. Permanent device damage may occur if the maximum ratingsare exceeded. Functional operation should be restricted to those conditions specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may adversely affect device reliability.2. VPOS is equal to VPOSF and VPOSS tied together for test condition purposes.Si3400/Si3401Rev. 0.95Table 2. Absolute Maximum Ratings (Transient)1Transient surge defined in IEC60060 as a 1000V impulse of either polarity applied across CT1–CT2 or SP1–SP2. The shape of the impulse shall have a 300ns full rise time and a 50µs half fall time, with 201Ω source impedance.Type Description Rating UnitVoltageCT1 to CT2–82 to 82VSP1 to SP2–82 to 82VPOS 2–0.7 to 80HSO–0.7 to 80VSS1, VSS2, or VSSA –0.7 to 80SWO–0.7 to 80PLOSS to VPOS 2–80 to 0.7RDET–0.7 to 80CurrentCT1, CT2, SP1, SP2–5 to 5A VPOS 2–5 to 5ESD 3HBM, all pins–2 to 2kVNotes:1.Unless otherwise noted, all voltages referenced to VNEG. Permanent device damage may occur if the maximum ratingsare exceeded. Functional operation should be restricted to those conditions specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may adversely affect device reliability.2. VPOS is equal to VPOSF and VPOSS tied together for test condition purposes.3. For more information regarding system-level ESD tolerance, refer to “AN315: Robust Electrical Surge Immunity for PoEPDs through Integrated Protection”.Table 3. Recommended Operating ConditionsDescriptionSymbol Min Typ Max Units |CT1–CT2| or |SP1–SP2|VPORT 2.8—57V Ambient Operating TemperatureTA–402585°CNote:Unless otherwise noted, all voltages referenced to VNEG. All minimum and maximum specifications are guaranteedand apply across the recommended operating conditions. Typical values apply at nominal supply voltage and ambient temperature unless otherwise noted.Si3400/Si34016Rev. 0.9Table 4. Electrical CharacteristicsParameter Description Min Typ Max UnitVPORTDetection 2.7—11V Classification14—22UVLO Turn Off——42UVLO Turn On30—36 Transient Surge162—79Input Offset Current VPORT < 10V——10µA Diode bridge leakage VPORT=57V——25µAIPORT Classification2Class 00—4mA Class 19—12Class 217—20Class 326—30Class 436—44IPORT Operating Current336V<VPORT<57V—2 3.1mACurrent Limit4Inrush—130— mA Operating350 (Si3400)470 (Si3401)525550—mAHotswap FET On-Resistance +R SENSE36V<VPORT<57V0.5— 1.4ΩPower loss VPORT Threshold273033V Switcher Frequency—350—kHzMaximum Switcher Duty Cycle5ISOSSFT connected toVDD —50—%Switching FET On-Resistance0.3—0.86ΩRegulated Feedback @ pin FB6DC Avg.— 1.23—VRegulated Output Voltage Tolerance6Output voltage tolerance @VOUT –5—5%Notes:1.Transient surge defined in IEC60060 as a 1000V impulse of either polarity applied to CT1–CT2 or SP1–SP2. Theshape of the impulse shall have a 300ns full rise time and a 50µs half fall time with 201Ω source impedance.2. The classification currents are guaranteed only when recommended RCLASS resistors are used, as specified inTable10.3. IPORT includes full operating current of switching regulator controller.4. The PD interface includes dual-level input current limit. At turn-on, before the HSO load capacitor is charged, thecurrent limit is set at the inrush level. After the capacitor has been charged within ~1.25V of VNEG, the operating current limit is engaged. This higher current limit remains active until the UVLO lower limit has been tripped or until the hotswap switch is sufficiently current-limited to cause a foldback of the HSO voltage.5. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-Isolated Designs” for more information.6. Applies to non-isolated applications only (VOUT on schematic in Figure1).Si3400/Si3401Rev. 0.97VDD accuracy @ 0.8mA 36V <VPORT <57V4.5—5.5V Softstart charging current —12—µA Thermal ShutdownJunction temperature—160—ºC Thermal Shutdown Hysteresis——25ºCTable 5. Total Power DissipationDescription ConditionMin Typ Max Units Power Dissipation VPORT =50V, V OUT =5V, 2A— 1.2—W Power Dissipation*VPORT =50V, V OUT =5V, 2A w/ diode bridges bypassed—0.7—W*Note: Silicon Laboratories recommends the on-chip diode bridges be bypassed when output power requirements are >10W(Si3401) or in thermally-constrained applications. For more information, see “AN313: Using the Si3400 and Si3401 in High Power Applications”.Table 6. Package Thermal CharacteristicsParameterSymbol Test ConditionTyp Units Thermal resistance (junction to ambient)θJAStill air; assumes a minimum of nine thermal vias are connected to a 2in 2 heat spreader plane for the package “pad” node (VNEG).44°C/WTable 4. Electrical Characteristics (Continued)ParameterDescription Min Typ Max Unit Notes:1.Transient surge defined in IEC60060 as a 1000V impulse of either polarity applied to CT1–CT2 or SP1–SP2. Theshape of the impulse shall have a 300ns full rise time and a 50µs half fall time with 201Ω source impedance.2. The classification currents are guaranteed only when recommended RCLASS resistors are used, as specified inTable 10.3. IPORT includes full operating current of switching regulator controller.4. The PD interface includes dual-level input current limit. At turn-on, before the HSO load capacitor is charged, thecurrent limit is set at the inrush level. After the capacitor has been charged within ~1.25V of VNEG, the operatingcurrent limit is engaged. This higher current limit remains active until the UVLO lower limit has been tripped or until the hotswap switch is sufficiently current-limited to cause a foldback of the HSO voltage.5. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-Isolated Designs” for more information.6. Applies to non-isolated applications only (VOUT on schematic in Figure 1).Si3400/Si34018Rev. 0.92. Typical Application SchematicsFigure1.Schematic—Class 0 with Non-Isolated 5V Output**Note:This is a simplified schematic. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-Isolated Designs” for more details and complete application schematics.Table 7. Component Listing—Class 0 with 5V OutputItem Type Value Toler.Rating NotesC1Capacitor15µF20%100V Switcher supply capacitor. Several paral-lel capacitors are used for lower ESR.C2Capacitor0.1µF20%100V PD input supply capacitor.C3Capacitor1000µF20%10V Switcher load capacitor - 1000µF in par-allel with and X5R 22µF for lower ESR.C4Capacitor0.1µF20%16V VDD bypass capacitor.C5Capacitor0.1µF10%16V Softstart capacitor.C6Capacitor 3.3nF10%16V Compensation capacitor.C7Capacitor150pF10%16V Compensation capacitor.R1Resistor25.5kΩ1%1/16W Detection resistor.R2Resistor7.32kΩ1%1/16W Feedback resistor divider.R3Resistor 2.87kΩ1%1/16W Feedback resistor divider.R4Resistor30.1kΩ1%1/16W Feedback compensation resistor.D1Diode100V Schottky diode; part no. PDS5100.L1Inductor33µH20% 3.5A Coilcraft part no. DO5010333.Si3400/Si3401Rev. 0.99Figure 2.Schematic—Class 1 with Isolated 5.0V Output**Note: This is a simplified schematic. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-IsolatedDesigns” for more details and complete application schematics.Table 8. Components—Class 1 with Isolated 5.0V OutputItem Type Value Toler.Rating NotesC1Capacitor 15µF 20%100V Switcher supply capacitor. Several paral-lel capacitors are used for lower ESR.C2Capacitor 0.1µF 20%100V PD input supply capacitor.C3Capacitor1100µF20%10VSwitcher load capacitor. 100µF in parallel 1000µF and optional 1µH inductor for additional filtering.C4Capacitor 15nF 10%16V Feedback compensation.C5Capacitor 220nF 10%16V Feedback compensation.C7Capacitor 0.1µF 20%16V VDD bypass capacitor.C8Capacitor 1µF 20%16V Isolated mode soft start (tie ISOSSFT to VDD if this feature is not used).R1Resistor 25.5k Ω1%1/16W Detection resistor.R2Resistor 4.99k Ω1%1/16W Pull-up resistor.R3Resistor 100Ω1%1/16W Feedback compensation resistor.R4Resistor 10k Ω1%1/16W Feedback compensation resistor.R5Resistor 2.05k Ω1%1/16W Pull-up resistor.R6Resistor 36.5k Ω1%1/16W Feedback resistor divider.R7Resistor 12.1k Ω1%1/16W Feedback resistor divider.R8Resistor 127Ω1%1/16W Classification resistor.D1Diode 10A 40V Schottky diode; part no. PN PDS1040.D2Diode 1A 100V Snubber diode (1N4148)D3Diode 15V 9ASnubber diode (DFLT15A)T1Transformer 40µHCoilcraft part number FA2672 (5V).PS2911Optocoupler TLV431Voltage referenceSi3400/Si340110Rev. 0.93. Functional DescriptionThe Si3400 and Si3401 consist of two major functions: a hotswap controller/interface and a complete pulse-width-modulated switching regulator (controller and power FET).3.1. OverviewThe hotswap interfaces of the Si3400 and Si3401 provide the complete front end of an 802.3-compliant PD. The Si3400 and Si3401 also include two full diode bridges, a transient voltage surge suppressor, detection circuit, classification current source, and dual-level hotswap current limiting switch. This high level of integration enables direct connection to the RJ-45 connector, simplifies system design, and provides significant advantages for reliability and protection. The Si3400 and Si3401 require only four standard external components (detection resistor, optional classification resistor, load capacitor, and input capacitor) to create a fully 802.3-compliant interface. For more information about supporting higher-power applications, see “AN313: Using the Si3400 and Si3401 in High Power Applications” and “AN314: Power Combining Circuit for PoE for up to 18.5W Output”.The Si3400 and Si3401 integrate a complete pulse-width modulated switching regulator that includes the controller and power FET. The switching regulator utilizes a constant frequency pulse-width modulated controller optimized for all possible load conditions in PoE applications. The regulator integrates a low on-resistance (Ron) switching power MOSFET that minimizes power dissipation, increases overall regulator efficiency, and simplifies system design. An integrated error amplifier, precision reference, and programmable soft-start current source provide the flexibility of using a non-isolated buck regulator topology or an isolated flyback regulator topology.The Si3400 and Si3401 are designed to operate with both 802.3-compliant Power Sourcing Equipment (PSE) and pre-standard (legacy) PSEs that do not adhere to the 802.3 specified inrush current limits. The Si3400 and Si3401 are compatible with compliant and legacy PSEs because they use two levels for the hotswap current limits. By setting the initial inrush current limit to a low level, a PD based on the Si3400 or Si3401 minimizes the current drawn from either a compliant or legacy PSE during startup. After powering up, the Si3400 and Si3401 automatically switch to a higher-level current limit, thereby allowing the PD to consume up to 12.95W (the max power allowed by the 802.3 specification).The inrush current limit specified by the 802.3 standard can generate high transient power dissipation in the PD. By properly sizing the devices and implementing on-chip thermal protection, the Si3400 and Si3401 can go through multiple turn-on sequences without overheating the package or damaging the device. The switching regulator power MOSFET has been conservatively designed and sized to withstand the high peak currents created when converting a high-voltage, low-current supply into a low-voltage, high-current supply. Excessive power cycling or short circuit faults will engage the thermal overload protection to prevent the onboard power MOSFETs from exceeding their safe and reliable operating ranges.3.2. PD Hotswap ControllerThe Si3400 and Si3401 hotswap controllers change their mode of operation based on the input voltage applied to the CT1 and CT2 pins or the SP1 and SP2 pins, the 802.3-defined modes of operation, and internal controller requirements. Table9 defines the modes of operation for the hotswap interface.3.2.1. Rectification Diode Bridges andSurge SuppressorThe 802.3 specification defines the input voltage at the RJ-45 connector of the PD with no reference to polarity. In other words, the PD must be able to accept power of either polarity at each of its inputs. This requirement necessitates the use of two sets of diode bridges, one for the CT1 and CT2 pins and one for the SP1 and SP2 pins to rectify the voltage. Furthermore, the standard requires that a PD withstand a high-voltage transient surge consisting of a 1000V common-mode impulse with 300ns rise time and 50µs half fall time. Typically, the diode bridge and the surge suppressor have been implemented externally, adding cost and complexity to the PD system design.The diode bridge* and the surge suppressor have been integrated into the Si3400 and Si3401, thus reducing system cost and design complexity.*Note:Silicon Laboratories recommends that on-chip diode bridges be bypassed when >10W of output power isrequired.By integrating the diode bridges, the Si3400 and Si3401 gain access to the input side of the diode bridge. Monitoring the voltage at the input of the diode bridges instead of the voltage across the load capacitor provides the earliest indication of a power loss. This true early power loss indicator, PLOSS, provides a local microcontroller time to save states and shut down gracefully before the load capacitor discharges below the minimum 802.3-specified operating voltage of 36V. Integration of the surge suppressor enables optimization of the clamping voltage and guarantees protection of all connected circuitry.As an added benefit, the transient surge suppressor, when tripped, actively disables the hotswap interface and switching regulator, preventing downstream circuits from encountering the high-energy transients.3.2.2. DetectionIn order to identify a device as a valid PD, a PSE will apply a voltage in the range of 2.8V to 10V on the cable and look for the 25.5kΩ signature resistor. The Si3400 and Si3401 will react to voltages in this range by connecting an external 25.5kΩ resistor between VPOS and VNEG. This external resistor and internal low-leakage control circuitry create the proper signature to alert the PSE that a valid PD has been detected and is ready to have power applied. The internal hotswap switch is disabled during this time to prevent the switching regulator and attached load circuitry from generating errors in the detection signature.Since the Si3400 and Si3401 integrate the diode bridges, the IC can compensate for the voltage and resistance effects of the diode bridges. The 802.3 specification requires that the PSE use a multi-point,∆V/∆I measurement technique to remove the diode-induced dc offset from the signature resistance measurement. However, the specification does not address the diode's nonlinear resistance and the error induced in the signature resistor measurement. Since the diode's resistance appears in series with the signature resistor, the PD system must find some way of compensating for this error. In systems where the diode bridges are external, compensation is difficult and suffers from errors. Since the diode bridges are integrated in the Si3400 and Si3401, the IC can easily compensate for this error by offsetting resistance across all operating conditions and thus meeting the 802.3 requirements. An added benefit is that this function can be tested during the IC’s automated testing step, guaranteeing system compliance when used in the final PD application. For more information about supporting higher-power applications (above 12.95W), see “AN313: Using the Si3400 and Si3401 in High Power Applications” and “AN314: Power Combining Circuit for PoE for up to 18.5W Output”.3.2.3. ClassificationOnce the PSE has detected a valid PD, the PSE may classify the PD for one of five power levels or classes. A class is based on the expected power consumption of the powered device. An external resistor sets the nominal class current that can then be read by the PSE to determine the proper power requirements of the PD. When the PSE presents a fixed voltage between 15.5V and 20.5V to the PD, the Si3400 and Si3401 assert the class current from VPOS through the RCL resistor.Table 9. Hotswap Interface ModesInput Voltage (|CT1-CT2| or |SP1-SP2|)Si3400 and Si3401Mode0V to 2.7V Inactive2.7V to 11V Detection signature11V to 14V Detection turns off andinternal bias starts 14V to 22V Classification signature22V to 42V Transition region42V up to 57V Switcher operating mode(hysteresis limit based onrising input voltage)57V down to 36V Switcher operating mode(hysteresis limit based onfalling input voltage)The resistor values associated with each class are shown in Table10.The 802.3 specification limits the classification time to 75ms to limit the power dissipated in the PD. If the PSE classification period exceeds 75ms and the die temperature rises above the thermal shutdown limits, the thermal protection circuit will engage and disable the classification current source in order to protect the Si3400 and Si3401. The Si3400 and Si3401 stay in classification mode until the input voltage exceeds 22V (the upper end of its classification operation region). 3.2.4. Under Voltage LockoutThe 802.3 standard specifies the PD to turn on when the line voltage rises to 42V and for the PD to turn off when the line voltage falls to 30V. The PD must also maintain a large on-off hysteresis region to prevent wiring losses between the PSE and the PD from causing startup oscillation.The Si3400 and Si3401 incorporate an undervoltage lockout (UVLO) circuit to monitor the line voltage and determine when to apply power to the integrated switching regulator. Before the power is applied to the switching regulator, the hotswap switch output (HSO) pin is high-impedance and typically follows VPOS as the input is ramped (due to the discharged switcher supply capacitor). When the input voltage rises above the UVLO turn-on threshold, the Si3400 and Si3401 begin to turn on the internal hotswap power MOSFET. The switcher supply capacitor begins to charge up under the current limit control of the Si3400 and Si3401, and the HSO pin transitions from VPOS to VNEG. The Si3400 and Si3401 include hysteretic UVLO circuits to maintain power to the load until the input voltage falls below the UVLO turn-off threshold. Once the input voltage falls below 30V, the internal hotswap MOSFET is turned off.3.2.5. Dual Current Limit and Switcher Turn-OnThe Si3400 and Si3401 implement dual current limits. While the hotswap MOSFET is charging the switcher supply capacitor, the Si3400 and Si3401 maintain a low current limit. The switching regulator is disabled until the voltage across the hotswap MOSFET becomes sufficiently low, indicating the switcher supply capacitor is almost completely charged. When this threshold is reached, the switcher is activated, and the hotswap current limit is increased. This threshold also has hysteresis to prevent systemic oscillation as the switcher begins to draw current and the current limit is increased, which allows resistive losses in the cable to effectively decrease the input supply.The Si3400 and Si3401 stay in a high-level current limit mode until the input voltage drops below the UVLO turn-off threshold or excessive power is dissipated in the hotswap switch. This dual level current limit allows the system designer to design powered devices for use with both legacy and compliant PoE systems.An additional feature of the dual current limit circuitry is foldback current limiting in the event of a fault condition. When the current limit is switched to the higher level, 400mA of current can be drawn by the PD. Should a fault cause more than this current to be consumed, the voltage across the hotswap MOSFET will increase to clamp the maximum amount of power consumed. The power dissipated by the MOSFET can be very high under this condition. If the fault is very low impedance, the voltage across the hotswap MOSFET will continue to rise until the lower current limit level is engaged, further reducing the dissipated power. If the fault condition remains, the thermal overload protection circuitry will eventually engage and shut down the hotswap interface and switching regulator. The foldback current limiting occurs much faster than the thermal overload protection and is, therefore, necessary for comprehensive protection of the hotswap MOSFET.Table 10. Class Resistor ValuesClass Usage Power Levels Nominal ClassCurrent RCL Resistor (1%,1/16W)0Default0.44W to 12.95W< 4mA> 1.33kΩ(or open circuit) 1Optional0.44W to 3.84W10.5mA127Ω2Optional 3.84W to 6.49W18.5mA69.8Ω3Optional 6.49W to 12.95W28mA45.3Ω4Reserved Reserved40mA30.9Ω3.2.6. Power Loss IndicatorA situation can occur in which power is lost at the input of the diode bridge and the hotswap controller does not detect the fault due to the VPOS to VNEG capacitor maintaining the voltage. In such a situation, the PD can remain operational for hundreds of microseconds despite the PSE having removed the line voltage. If it is recognized early enough, the time from power loss to power failure can provide valuable time to gracefully shut down an application.Due to integration of the diode bridges, the Si3400 and Si3401 are able to instantaneously detect the removal of the line voltage and provide that early warning signal to the PD application. The PLOSS pin is an open drain output that pulls up to VPOS when a line voltage greater than 27V is applied. When the line voltage falls below 27V, the output becomes high-impedance, allowing an external pull-down resistor to change the logic state of PLOSS. The benefit of this indicator is that the powered device may include a microcontroller that can quickly save its memory or operational state before draining the supply capacitors and powering itself down. This feature can help improve overall manageability in applications, such as wireless access points.3.3. Switching RegulatorPower over Ethernet (PoE) applications fall into two broad categories, isolated and non-isolated. Non-isolated systems can be used when the powered device is self-contained and does not provide external conductors to the user or another application. Non-isolated applications include wireless access points and security cameras. In these applications, there is no explicit need for dc isolation between the switching regulator output and the hotswap interface. An isolated system must be used when the powered device interfaces with other self-powered equipment or has external conductors accessible to the user or other applications. For proper operation, the regulated output supply of the switching regulator must not have a dc electrical path to the hotswap interface or switching regulator primary side. Isolated applications include point-of-sale terminals where the user can touch the grounded metal chassis.The application determines the converter topology. An isolated application will require a flyback transformer-based switching topology while a non-isolated application can use an inductor-based buck converter topology. In the isolated case, dc isolation is achieved through a transformer in the forward path and a voltage reference plus opto-isolator in the feedback path. The application circuit shown in Figure2 is an example of such a topology. The non-isolated application in Figure1 makes use of a single inductor as the energy conversion element, and the feedback signal is directly supplied into the internal error amplifier. As can be seen from the application circuits, the isolated topology has an increased number of components, thus increasing the bill of materials (BOM) and system footprint.To optimize cost and ease implementation, each application should be evaluated for its isolated or non-isolated requirements.。

HC3401产品规格书 3401

HC3401产品规格书 3401

HC3401
Symbol Parameter
Condition
STATIC PARAMETERS
BVDSS IDSS IGSS VGS(th)
Drain-Source Breakdown Voltage Zero Gate Voltage Drain Current Gate-Body Leakage Current Gate Threshold Voltage
VGS=0V ID=-250μA VDS=-30V,VGS=0V VGS=±12V,VDS=0V VDS=VGS,ID=-250μA
VGS=-10V, ID=-4.0A
RDS(ON) Drain-Source On-State Resistance VGS=-4.5V, ID=-3.5A
VGS=-2.5V, ID=1
Single Pulse
PD Ton T
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
1000
VDS=-15V,ID=-1A,
tr
Turn-on Rise Time
VGS=-10V,
td(off)
Turn-Off Delay Time
RG=3Ω
tf
Turn-Off Fall Time
Qg
Total Gate Charge
VDS=-15V,ID=-4.0A,
Qgs
Gate-Source Charge
Parameter
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Rev. 0.9 8/07Copyright © 2007 by Silicon LaboratoriesSi3400/Si3401This information applies to a product under development. Its characteristics and specifications are subject to change without notice.Si3400Si3401F U L L Y -I N T EG R A T E D 802.3-C O M P L I A N T PD I N T E R F A C E A N D S W I T CHI N G R E G U L A T O RFeaturesApplicationsDescriptionThe Si3400 and Si3401 integrate all power management and control functions required in a Power-over-Ethernet (PoE) powered device (PD)application. The Si3400 and Si3401 convert the high voltage supplied over the 10/100/1000BASE-T Ethernet connection into a regulated, low-voltage output supply. The optimized architectures of the Si3400 and Si3401minimize the solution footprint, reduce external BOM cost, and enable the use of low-cost external components while maintaining high performance.The Si3400 and Si3401 integrate the required diode bridges and transient surge suppressors, thus enabling direct connection of ICs to the Ethernet RJ-45 connector. The switching power FET and all associated functions are also integrated. The integrated switching regulator supports isolated (flyback) and non-isolated (buck) converter topologies. The Si3400 and Si3401 support IEEE STD™ 802.3-2005 (future instances are referred to as 802.3) compliant solutions as well as pre-standard products, all in a single IC. Standard external resistors connected to the Si3400 and Si3401 provide the proper 802.3 signatures for the detection function and programming of the classification mode. Startup circuits ensure well-controlled initial operation of both the hotswap switch and the voltage regulator. The Si3400and Si3401 are available in low-profile, 20-pin, 5x 5mm QFN packages.While the Si3400 is designed for applications up to 10W, the Si3401 is optimized for higher power applications (up to approximately 15W). See also “AN313: Using the Si3400/01 in High Power Applications” for more information.IEEE 802.3 standard-compliant solution, including pre-standard (legacy) PoE supportHighly-integrated IC enables compact solution footprintsMinimal external components Integrated diode bridges and transient surge suppressor Integrated switching regulator controller with on-chip power FETIntegrated dual current-limited hotswap switchSupport non-isolated and isolated switching topologiesComprehensive protection circuitryTransient overvoltage protectionUndervoltage lockoutEarly power-loss indicator Thermal shutdown protection Foldback current limiting Programmable classification circuitLow-profile 5x 5mm 20-pin QFNPb-Free and RoHS-compliantVoice over IP telephones and adaptersWireless access points Security camerasPoint-of-sale terminals Internet appliances Network devicesHigh power applications (Si3401)1.Pin VSSA added on revisions CZand higher.2. Pin ISOSSFT added on revisionsCZ and higher. Function available on revision E silicon. For Rev CZ, or to disable this feature on Revision E, tie this pin to VDD.Ordering Information:See Ordering Guide on pagepage 17.Si3400/Si34012Rev. 0.9Functional Block DiagramSi3400/Si3401Rev. 0.93T A B L E O F C O N T E N TSSectionPage1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42. Typical Application Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103.2. PD Hotswap Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103.3. Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20Si3400/Si34014Rev. 0.91. Electrical SpecificationsTable 1. Absolute Maximum Ratings (DC)1Type DescriptionRating UnitVoltageCT1 to CT2–60 to 60V SP1 to SP2–60 to 60VPOS 2–0.3 to 60HSO–0.3 to 60VSS1 or VSS2–0.3 to 60SWO–0.3 to 60PLOSS to VPOS 2–60 to 0.3RDET –0.3 to 60RCL–0.3 to 5SSFT to VPOS 2–5 to 0.3EROUT to VSS1, VSS2, or VSSA –0.3 to VDD+0.3FB to VPOS–5 to 0.3RIMAX to VSS1, VSS2, or VSSA –0.3 to VDD+0.3VSS1 to VSS2 or VSSA –0.3 to 0.3VDD to VSS1, VSS2, or VSSA–0.3 to 5CurrentRCL 0 to 100mA RDET0 to 1CT1, CT2, SP1, SP2–400 to 400VPOS 2–400 to 400HSO 0 to 400PLOSS –0.5 to 5VDD 0 to 2SWO0 to 400VSS1, VSS2, or VSSA–400 to 0Ambient TemperatureStorage –65 to 150°C Operating–40 to 85Notes:1.Unless otherwise noted, all voltages referenced to VNEG. Permanent device damage may occur if the maximum ratingsare exceeded. Functional operation should be restricted to those conditions specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may adversely affect device reliability.2. VPOS is equal to VPOSF and VPOSS tied together for test condition purposes.Si3400/Si3401Rev. 0.95Table 2. Absolute Maximum Ratings (Transient)1Transient surge defined in IEC60060 as a 1000V impulse of either polarity applied across CT1–CT2 or SP1–SP2. The shape of the impulse shall have a 300ns full rise time and a 50µs half fall time, with 201Ω source impedance.Type Description Rating UnitVoltageCT1 to CT2–82 to 82VSP1 to SP2–82 to 82VPOS 2–0.7 to 80HSO–0.7 to 80VSS1, VSS2, or VSSA –0.7 to 80SWO–0.7 to 80PLOSS to VPOS 2–80 to 0.7RDET–0.7 to 80CurrentCT1, CT2, SP1, SP2–5 to 5A VPOS 2–5 to 5ESD 3HBM, all pins–2 to 2kVNotes:1.Unless otherwise noted, all voltages referenced to VNEG. Permanent device damage may occur if the maximum ratingsare exceeded. Functional operation should be restricted to those conditions specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may adversely affect device reliability.2. VPOS is equal to VPOSF and VPOSS tied together for test condition purposes.3. For more information regarding system-level ESD tolerance, refer to “AN315: Robust Electrical Surge Immunity for PoEPDs through Integrated Protection”.Table 3. Recommended Operating ConditionsDescriptionSymbol Min Typ Max Units |CT1–CT2| or |SP1–SP2|VPORT 2.8—57V Ambient Operating TemperatureTA–402585°CNote:Unless otherwise noted, all voltages referenced to VNEG. All minimum and maximum specifications are guaranteedand apply across the recommended operating conditions. Typical values apply at nominal supply voltage and ambient temperature unless otherwise noted.Si3400/Si34016Rev. 0.9Table 4. Electrical CharacteristicsParameter Description Min Typ Max UnitVPORTDetection 2.7—11V Classification14—22UVLO Turn Off——42UVLO Turn On30—36 Transient Surge162—79Input Offset Current VPORT < 10V——10µA Diode bridge leakage VPORT=57V——25µAIPORT Classification2Class 00—4mA Class 19—12Class 217—20Class 326—30Class 436—44IPORT Operating Current336V<VPORT<57V—2 3.1mACurrent Limit4Inrush—130— mA Operating350 (Si3400)470 (Si3401)525550—mAHotswap FET On-Resistance +R SENSE36V<VPORT<57V0.5— 1.4ΩPower loss VPORT Threshold273033V Switcher Frequency—350—kHzMaximum Switcher Duty Cycle5ISOSSFT connected toVDD —50—%Switching FET On-Resistance0.3—0.86ΩRegulated Feedback @ pin FB6DC Avg.— 1.23—VRegulated Output Voltage Tolerance6Output voltage tolerance @VOUT –5—5%Notes:1.Transient surge defined in IEC60060 as a 1000V impulse of either polarity applied to CT1–CT2 or SP1–SP2. Theshape of the impulse shall have a 300ns full rise time and a 50µs half fall time with 201Ω source impedance.2. The classification currents are guaranteed only when recommended RCLASS resistors are used, as specified inTable10.3. IPORT includes full operating current of switching regulator controller.4. The PD interface includes dual-level input current limit. At turn-on, before the HSO load capacitor is charged, thecurrent limit is set at the inrush level. After the capacitor has been charged within ~1.25V of VNEG, the operating current limit is engaged. This higher current limit remains active until the UVLO lower limit has been tripped or until the hotswap switch is sufficiently current-limited to cause a foldback of the HSO voltage.5. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-Isolated Designs” for more information.6. Applies to non-isolated applications only (VOUT on schematic in Figure1).Si3400/Si3401Rev. 0.97VDD accuracy @ 0.8mA 36V <VPORT <57V4.5—5.5V Softstart charging current —12—µA Thermal ShutdownJunction temperature—160—ºC Thermal Shutdown Hysteresis——25ºCTable 5. Total Power DissipationDescription ConditionMin Typ Max Units Power Dissipation VPORT =50V, V OUT =5V, 2A— 1.2—W Power Dissipation*VPORT =50V, V OUT =5V, 2A w/ diode bridges bypassed—0.7—W*Note: Silicon Laboratories recommends the on-chip diode bridges be bypassed when output power requirements are >10W(Si3401) or in thermally-constrained applications. For more information, see “AN313: Using the Si3400 and Si3401 in High Power Applications”.Table 6. Package Thermal CharacteristicsParameterSymbol Test ConditionTyp Units Thermal resistance (junction to ambient)θJAStill air; assumes a minimum of nine thermal vias are connected to a 2in 2 heat spreader plane for the package “pad” node (VNEG).44°C/WTable 4. Electrical Characteristics (Continued)ParameterDescription Min Typ Max Unit Notes:1.Transient surge defined in IEC60060 as a 1000V impulse of either polarity applied to CT1–CT2 or SP1–SP2. Theshape of the impulse shall have a 300ns full rise time and a 50µs half fall time with 201Ω source impedance.2. The classification currents are guaranteed only when recommended RCLASS resistors are used, as specified inTable 10.3. IPORT includes full operating current of switching regulator controller.4. The PD interface includes dual-level input current limit. At turn-on, before the HSO load capacitor is charged, thecurrent limit is set at the inrush level. After the capacitor has been charged within ~1.25V of VNEG, the operatingcurrent limit is engaged. This higher current limit remains active until the UVLO lower limit has been tripped or until the hotswap switch is sufficiently current-limited to cause a foldback of the HSO voltage.5. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-Isolated Designs” for more information.6. Applies to non-isolated applications only (VOUT on schematic in Figure 1).Si3400/Si34018Rev. 0.92. Typical Application SchematicsFigure1.Schematic—Class 0 with Non-Isolated 5V Output**Note:This is a simplified schematic. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-Isolated Designs” for more details and complete application schematics.Table 7. Component Listing—Class 0 with 5V OutputItem Type Value Toler.Rating NotesC1Capacitor15µF20%100V Switcher supply capacitor. Several paral-lel capacitors are used for lower ESR.C2Capacitor0.1µF20%100V PD input supply capacitor.C3Capacitor1000µF20%10V Switcher load capacitor - 1000µF in par-allel with and X5R 22µF for lower ESR.C4Capacitor0.1µF20%16V VDD bypass capacitor.C5Capacitor0.1µF10%16V Softstart capacitor.C6Capacitor 3.3nF10%16V Compensation capacitor.C7Capacitor150pF10%16V Compensation capacitor.R1Resistor25.5kΩ1%1/16W Detection resistor.R2Resistor7.32kΩ1%1/16W Feedback resistor divider.R3Resistor 2.87kΩ1%1/16W Feedback resistor divider.R4Resistor30.1kΩ1%1/16W Feedback compensation resistor.D1Diode100V Schottky diode; part no. PDS5100.L1Inductor33µH20% 3.5A Coilcraft part no. DO5010333.Si3400/Si3401Rev. 0.99Figure 2.Schematic—Class 1 with Isolated 5.0V Output**Note: This is a simplified schematic. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-IsolatedDesigns” for more details and complete application schematics.Table 8. Components—Class 1 with Isolated 5.0V OutputItem Type Value Toler.Rating NotesC1Capacitor 15µF 20%100V Switcher supply capacitor. Several paral-lel capacitors are used for lower ESR.C2Capacitor 0.1µF 20%100V PD input supply capacitor.C3Capacitor1100µF20%10VSwitcher load capacitor. 100µF in parallel 1000µF and optional 1µH inductor for additional filtering.C4Capacitor 15nF 10%16V Feedback compensation.C5Capacitor 220nF 10%16V Feedback compensation.C7Capacitor 0.1µF 20%16V VDD bypass capacitor.C8Capacitor 1µF 20%16V Isolated mode soft start (tie ISOSSFT to VDD if this feature is not used).R1Resistor 25.5k Ω1%1/16W Detection resistor.R2Resistor 4.99k Ω1%1/16W Pull-up resistor.R3Resistor 100Ω1%1/16W Feedback compensation resistor.R4Resistor 10k Ω1%1/16W Feedback compensation resistor.R5Resistor 2.05k Ω1%1/16W Pull-up resistor.R6Resistor 36.5k Ω1%1/16W Feedback resistor divider.R7Resistor 12.1k Ω1%1/16W Feedback resistor divider.R8Resistor 127Ω1%1/16W Classification resistor.D1Diode 10A 40V Schottky diode; part no. PN PDS1040.D2Diode 1A 100V Snubber diode (1N4148)D3Diode 15V 9ASnubber diode (DFLT15A)T1Transformer 40µHCoilcraft part number FA2672 (5V).PS2911Optocoupler TLV431Voltage referenceSi3400/Si340110Rev. 0.93. Functional DescriptionThe Si3400 and Si3401 consist of two major functions: a hotswap controller/interface and a complete pulse-width-modulated switching regulator (controller and power FET).3.1. OverviewThe hotswap interfaces of the Si3400 and Si3401 provide the complete front end of an 802.3-compliant PD. The Si3400 and Si3401 also include two full diode bridges, a transient voltage surge suppressor, detection circuit, classification current source, and dual-level hotswap current limiting switch. This high level of integration enables direct connection to the RJ-45 connector, simplifies system design, and provides significant advantages for reliability and protection. The Si3400 and Si3401 require only four standard external components (detection resistor, optional classification resistor, load capacitor, and input capacitor) to create a fully 802.3-compliant interface. For more information about supporting higher-power applications, see “AN313: Using the Si3400 and Si3401 in High Power Applications” and “AN314: Power Combining Circuit for PoE for up to 18.5W Output”.The Si3400 and Si3401 integrate a complete pulse-width modulated switching regulator that includes the controller and power FET. The switching regulator utilizes a constant frequency pulse-width modulated controller optimized for all possible load conditions in PoE applications. The regulator integrates a low on-resistance (Ron) switching power MOSFET that minimizes power dissipation, increases overall regulator efficiency, and simplifies system design. An integrated error amplifier, precision reference, and programmable soft-start current source provide the flexibility of using a non-isolated buck regulator topology or an isolated flyback regulator topology.The Si3400 and Si3401 are designed to operate with both 802.3-compliant Power Sourcing Equipment (PSE) and pre-standard (legacy) PSEs that do not adhere to the 802.3 specified inrush current limits. The Si3400 and Si3401 are compatible with compliant and legacy PSEs because they use two levels for the hotswap current limits. By setting the initial inrush current limit to a low level, a PD based on the Si3400 or Si3401 minimizes the current drawn from either a compliant or legacy PSE during startup. After powering up, the Si3400 and Si3401 automatically switch to a higher-level current limit, thereby allowing the PD to consume up to 12.95W (the max power allowed by the 802.3 specification).The inrush current limit specified by the 802.3 standard can generate high transient power dissipation in the PD. By properly sizing the devices and implementing on-chip thermal protection, the Si3400 and Si3401 can go through multiple turn-on sequences without overheating the package or damaging the device. The switching regulator power MOSFET has been conservatively designed and sized to withstand the high peak currents created when converting a high-voltage, low-current supply into a low-voltage, high-current supply. Excessive power cycling or short circuit faults will engage the thermal overload protection to prevent the onboard power MOSFETs from exceeding their safe and reliable operating ranges.3.2. PD Hotswap ControllerThe Si3400 and Si3401 hotswap controllers change their mode of operation based on the input voltage applied to the CT1 and CT2 pins or the SP1 and SP2 pins, the 802.3-defined modes of operation, and internal controller requirements. Table9 defines the modes of operation for the hotswap interface.3.2.1. Rectification Diode Bridges andSurge SuppressorThe 802.3 specification defines the input voltage at the RJ-45 connector of the PD with no reference to polarity. In other words, the PD must be able to accept power of either polarity at each of its inputs. This requirement necessitates the use of two sets of diode bridges, one for the CT1 and CT2 pins and one for the SP1 and SP2 pins to rectify the voltage. Furthermore, the standard requires that a PD withstand a high-voltage transient surge consisting of a 1000V common-mode impulse with 300ns rise time and 50µs half fall time. Typically, the diode bridge and the surge suppressor have been implemented externally, adding cost and complexity to the PD system design.The diode bridge* and the surge suppressor have been integrated into the Si3400 and Si3401, thus reducing system cost and design complexity.*Note:Silicon Laboratories recommends that on-chip diode bridges be bypassed when >10W of output power isrequired.By integrating the diode bridges, the Si3400 and Si3401 gain access to the input side of the diode bridge. Monitoring the voltage at the input of the diode bridges instead of the voltage across the load capacitor provides the earliest indication of a power loss. This true early power loss indicator, PLOSS, provides a local microcontroller time to save states and shut down gracefully before the load capacitor discharges below the minimum 802.3-specified operating voltage of 36V. Integration of the surge suppressor enables optimization of the clamping voltage and guarantees protection of all connected circuitry.As an added benefit, the transient surge suppressor, when tripped, actively disables the hotswap interface and switching regulator, preventing downstream circuits from encountering the high-energy transients.3.2.2. DetectionIn order to identify a device as a valid PD, a PSE will apply a voltage in the range of 2.8V to 10V on the cable and look for the 25.5kΩ signature resistor. The Si3400 and Si3401 will react to voltages in this range by connecting an external 25.5kΩ resistor between VPOS and VNEG. This external resistor and internal low-leakage control circuitry create the proper signature to alert the PSE that a valid PD has been detected and is ready to have power applied. The internal hotswap switch is disabled during this time to prevent the switching regulator and attached load circuitry from generating errors in the detection signature.Since the Si3400 and Si3401 integrate the diode bridges, the IC can compensate for the voltage and resistance effects of the diode bridges. The 802.3 specification requires that the PSE use a multi-point,∆V/∆I measurement technique to remove the diode-induced dc offset from the signature resistance measurement. However, the specification does not address the diode's nonlinear resistance and the error induced in the signature resistor measurement. Since the diode's resistance appears in series with the signature resistor, the PD system must find some way of compensating for this error. In systems where the diode bridges are external, compensation is difficult and suffers from errors. Since the diode bridges are integrated in the Si3400 and Si3401, the IC can easily compensate for this error by offsetting resistance across all operating conditions and thus meeting the 802.3 requirements. An added benefit is that this function can be tested during the IC’s automated testing step, guaranteeing system compliance when used in the final PD application. For more information about supporting higher-power applications (above 12.95W), see “AN313: Using the Si3400 and Si3401 in High Power Applications” and “AN314: Power Combining Circuit for PoE for up to 18.5W Output”.3.2.3. ClassificationOnce the PSE has detected a valid PD, the PSE may classify the PD for one of five power levels or classes. A class is based on the expected power consumption of the powered device. An external resistor sets the nominal class current that can then be read by the PSE to determine the proper power requirements of the PD. When the PSE presents a fixed voltage between 15.5V and 20.5V to the PD, the Si3400 and Si3401 assert the class current from VPOS through the RCL resistor.Table 9. Hotswap Interface ModesInput Voltage (|CT1-CT2| or |SP1-SP2|)Si3400 and Si3401Mode0V to 2.7V Inactive2.7V to 11V Detection signature11V to 14V Detection turns off andinternal bias starts 14V to 22V Classification signature22V to 42V Transition region42V up to 57V Switcher operating mode(hysteresis limit based onrising input voltage)57V down to 36V Switcher operating mode(hysteresis limit based onfalling input voltage)The resistor values associated with each class are shown in Table10.The 802.3 specification limits the classification time to 75ms to limit the power dissipated in the PD. If the PSE classification period exceeds 75ms and the die temperature rises above the thermal shutdown limits, the thermal protection circuit will engage and disable the classification current source in order to protect the Si3400 and Si3401. The Si3400 and Si3401 stay in classification mode until the input voltage exceeds 22V (the upper end of its classification operation region). 3.2.4. Under Voltage LockoutThe 802.3 standard specifies the PD to turn on when the line voltage rises to 42V and for the PD to turn off when the line voltage falls to 30V. The PD must also maintain a large on-off hysteresis region to prevent wiring losses between the PSE and the PD from causing startup oscillation.The Si3400 and Si3401 incorporate an undervoltage lockout (UVLO) circuit to monitor the line voltage and determine when to apply power to the integrated switching regulator. Before the power is applied to the switching regulator, the hotswap switch output (HSO) pin is high-impedance and typically follows VPOS as the input is ramped (due to the discharged switcher supply capacitor). When the input voltage rises above the UVLO turn-on threshold, the Si3400 and Si3401 begin to turn on the internal hotswap power MOSFET. The switcher supply capacitor begins to charge up under the current limit control of the Si3400 and Si3401, and the HSO pin transitions from VPOS to VNEG. The Si3400 and Si3401 include hysteretic UVLO circuits to maintain power to the load until the input voltage falls below the UVLO turn-off threshold. Once the input voltage falls below 30V, the internal hotswap MOSFET is turned off.3.2.5. Dual Current Limit and Switcher Turn-OnThe Si3400 and Si3401 implement dual current limits. While the hotswap MOSFET is charging the switcher supply capacitor, the Si3400 and Si3401 maintain a low current limit. The switching regulator is disabled until the voltage across the hotswap MOSFET becomes sufficiently low, indicating the switcher supply capacitor is almost completely charged. When this threshold is reached, the switcher is activated, and the hotswap current limit is increased. This threshold also has hysteresis to prevent systemic oscillation as the switcher begins to draw current and the current limit is increased, which allows resistive losses in the cable to effectively decrease the input supply.The Si3400 and Si3401 stay in a high-level current limit mode until the input voltage drops below the UVLO turn-off threshold or excessive power is dissipated in the hotswap switch. This dual level current limit allows the system designer to design powered devices for use with both legacy and compliant PoE systems.An additional feature of the dual current limit circuitry is foldback current limiting in the event of a fault condition. When the current limit is switched to the higher level, 400mA of current can be drawn by the PD. Should a fault cause more than this current to be consumed, the voltage across the hotswap MOSFET will increase to clamp the maximum amount of power consumed. The power dissipated by the MOSFET can be very high under this condition. If the fault is very low impedance, the voltage across the hotswap MOSFET will continue to rise until the lower current limit level is engaged, further reducing the dissipated power. If the fault condition remains, the thermal overload protection circuitry will eventually engage and shut down the hotswap interface and switching regulator. The foldback current limiting occurs much faster than the thermal overload protection and is, therefore, necessary for comprehensive protection of the hotswap MOSFET.Table 10. Class Resistor ValuesClass Usage Power Levels Nominal ClassCurrent RCL Resistor (1%,1/16W)0Default0.44W to 12.95W< 4mA> 1.33kΩ(or open circuit) 1Optional0.44W to 3.84W10.5mA127Ω2Optional 3.84W to 6.49W18.5mA69.8Ω3Optional 6.49W to 12.95W28mA45.3Ω4Reserved Reserved40mA30.9Ω3.2.6. Power Loss IndicatorA situation can occur in which power is lost at the input of the diode bridge and the hotswap controller does not detect the fault due to the VPOS to VNEG capacitor maintaining the voltage. In such a situation, the PD can remain operational for hundreds of microseconds despite the PSE having removed the line voltage. If it is recognized early enough, the time from power loss to power failure can provide valuable time to gracefully shut down an application.Due to integration of the diode bridges, the Si3400 and Si3401 are able to instantaneously detect the removal of the line voltage and provide that early warning signal to the PD application. The PLOSS pin is an open drain output that pulls up to VPOS when a line voltage greater than 27V is applied. When the line voltage falls below 27V, the output becomes high-impedance, allowing an external pull-down resistor to change the logic state of PLOSS. The benefit of this indicator is that the powered device may include a microcontroller that can quickly save its memory or operational state before draining the supply capacitors and powering itself down. This feature can help improve overall manageability in applications, such as wireless access points.3.3. Switching RegulatorPower over Ethernet (PoE) applications fall into two broad categories, isolated and non-isolated. Non-isolated systems can be used when the powered device is self-contained and does not provide external conductors to the user or another application. Non-isolated applications include wireless access points and security cameras. In these applications, there is no explicit need for dc isolation between the switching regulator output and the hotswap interface. An isolated system must be used when the powered device interfaces with other self-powered equipment or has external conductors accessible to the user or other applications. For proper operation, the regulated output supply of the switching regulator must not have a dc electrical path to the hotswap interface or switching regulator primary side. Isolated applications include point-of-sale terminals where the user can touch the grounded metal chassis.The application determines the converter topology. An isolated application will require a flyback transformer-based switching topology while a non-isolated application can use an inductor-based buck converter topology. In the isolated case, dc isolation is achieved through a transformer in the forward path and a voltage reference plus opto-isolator in the feedback path. The application circuit shown in Figure2 is an example of such a topology. The non-isolated application in Figure1 makes use of a single inductor as the energy conversion element, and the feedback signal is directly supplied into the internal error amplifier. As can be seen from the application circuits, the isolated topology has an increased number of components, thus increasing the bill of materials (BOM) and system footprint.To optimize cost and ease implementation, each application should be evaluated for its isolated or non-isolated requirements.。

相关文档
最新文档