北师大版九年级数学上册期末测试题
北师大版九年级上册数学期末考试试卷含答案
北师大版九年级上册数学期末考试试题一、单选题 1.若25x y =,则xy的值是( ) A .52 B .25 C .32D .232.如图所示的几何体的左视图是( )A .B .C .D .3.下列关于矩形的说法,正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分 4.连续两次掷一枚质地均匀的硬币,两次都是正面朝上的概率是( ) A .16 B .14C .12 D .135.两个相似多边形的相似比是3:4,其中小多边形的面积为18cm 2,则较大多边形的面积为( )A .16cm 2B .54cm 2C .32cm 2D .48cm 2 6.如图,////AB CD EF ,若3BF DF =,则ACCE的值是( )A .2B .12 C .13D .3 7.点A (﹣3,y 1)、B (﹣1,y 2)、C (2,y 3)都在反比例函数y =6x-的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 8.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根 D .没有实数根9.如图,有一张矩形纸片,长10cm ,宽6cm ,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm 2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm ,根据题意可列方程为( )A .10×6﹣4×6x=32B .(10﹣2x )(6﹣2x )=32C .(10﹣x )(6﹣x )=32D .10×6﹣4x 2=32 10.函数y=x+m 与my x=(m≠0)在同一坐标系内的图象可以是( ) A .B .C .D .11.如图,在平面直角坐标系中,已知点A (﹣3,6)、B (﹣9,﹣3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点B 的对应点B′的坐标是( )A .(﹣3,﹣1)B .(﹣1,2)C .(﹣9,1)或(9,﹣1)D .(﹣3,﹣1)或(3,1)12.如图,在矩形ABCD 中,对角线AC 、BD 交于O ,2,BC AE BD =⊥,垂足为E ,30BAE∠=︒,那么ECO∆的面积是()A B C D二、填空题13.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为16m,那么这根旗杆的高度为_______m.14.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.15.若一元二次方程ax2﹣bx﹣2021=0有一根为x=﹣1,则a+b=______.16.如图,点O是菱形ABCD对角线的交点,DE//AC,CE//BD,连接OE,设AC=12,BD=16,则OE的长为_____.17.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=kx(k≠0,x>0)上,若矩形ABCD的面积为8,则k的值为___.三、解答题18.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)若a的值为3时,请解这个方程.19.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A:乘坐电动车,B:乘坐普通公交车或地铁,C:乘坐学校的定制公交车,D:乘坐家庭汽车,E:步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.20.某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利为81元,平均每天可售出20件.(1)求平均每次降价盈利的百分率;(2)为扩大销售量,尽快减少库存,在“双十一”期间该商场决定再次采取适当的降价措施,经调查发现,一件女款上衣每降价1元,每天可多售出2件.若商场每天要盈利2940元,每件应降价多少元?21.如图,在Rt△ABC中,△ACB=90°,过点C的直线MN△AB,D为AB边上一点,过点D作DE△BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE =AD ;(2)当D 为AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC 满足什么条件时,四边形BECD 是正方形?(不必说明理由)22.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y =mx(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积; (3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标. 23.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.24.如图,已知Rt△ABO ,点B 在x 轴上,△ABO=90°,△AOB=30°,OB=函数()0ky x x=>的图象经过OA 的中点C ,交AB 于点D . (1)求反比例函数ky x=的表达式; (2)求△OCD 的面积;(3)点P 是x 轴上的一个动点,请直接写出使△OCP 为直角三角形的点P 坐标.25.如图,在Rt△ABC 中,△ACB=90°,点D 是斜边AB 的中点,过点B 、点C 分别作BE△CD ,CE△BD .(1)求证:四边形BECD 是菱形;(2)若△A=60°,BECD 的面积.26.如图(1),在四边形ABCD 中,AB△DC ,CB△AB ,AB =16cm ,BC =6cm ,CD =8cm ,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2cm/s .点P 和点Q 同时出发,设运动的时间为t (s ),0<t <5 (1)用含t 的代数式表示AP ;(2)当以点A 、P 、Q 为顶点的三角形与△ABD 相似时,求t 的值;(3)如图(2),延长QP、BD,两延长线相交于点M,当△QMB为直角三角形时,求t 的值.参考答案1.A【分析】利用比例的基本性质计算即可.【详解】△2x=5y,△xy=52,故选A.【点睛】本题考查了比例的基本性质,熟练掌握比例的性质并能进行灵活变形是解题的关键.2.D【分析】根据简单组合体的三视图的画法可知,其左视图是中间有一道横虚线的长方形,即可求解.【详解】解:根据简单组合体的三视图的画法可知,其左视图是中间有一道横虚线的长方形,因此选项D的图形比较符合题意,故选:D.【点睛】考查三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.3.D【详解】分析:根据定义有一个角是直角的平行四边形叫做矩形.矩形的性质:1.矩形的四个角都是直角2.矩形的对角线相等3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线).5.对边平行且相等6.对角线互相平分,对各个选项进行分析即可.解答:解:A、因为对角线相等的平行四边形是矩形,所以本选项错误;B、因为对角线互相平分且相等的四边形是矩形,所以本选项错误;C、因为矩形的对角线相等且互相平分,所以本选项错误;D、因为矩形的对角线相等且互相平分,所以本选项正确.故选D.4.B【分析】利用树状图法列出连续两次掷一枚质地均匀的硬币会出现的所有情况,看两次都正面朝上的情况占总情况的多少即为所求.【详解】解:画树状图如图所示:共有4种情况,两次都正面朝上的情况只有一种,所以两次都是正面朝上的概率是14.故答案选:B.【点睛】本题考查了求概率的方法,熟练应用树状图法或列表法求出所求情况数和总情况数是解题的关键.5.C【分析】设较大多边形的面积为S,由相似比与面积相似比的关系得18916S=,计算求解即可.【详解】解:设较大多边形的面积为S由两个相似多边形的相似比是3:4,可知两个相似多边形面积的相似比是9:16△18916 S=解得32S=故选C.【点睛】本题考查了相似三角形的性质.解题的关键在于明确相似多边形的面积比与相似6.A【分析】由BF=3DF,得BD=2DF,使用平行线分线段成比例定理计算即可.【详解】△BF=3DF,△BD=2DF,△////AB CD EF,△ACCE=BDDF,△ACCE=2DFDF=2,故选A.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理,特别是定理的对应关系是解题的关键.7.C【分析】分别把A、B、C各点坐标代入反比例函数y=6x-求出y1、y2、y3的值,再比较大小即可.【详解】解:△点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=6x-的图象上,△y1=63--=2,y2=61--=6,y3=62-=﹣3,△﹣3<2<6,△y3<y1<y2,故选:C.【点睛】本题考查了反比例函数图像上点的特征,熟练掌握反比例函数的性质是解题的关键8.A【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】△a=1,b=1,c=﹣3,△△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,△方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0△方程有两个不相等的实数根;(2)△=0△方程有两个相等的实数根;(3)△<0△方程没有9.B【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据题意得:(10−2x)(6−2x)=32.故选B.【点睛】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.B【分析】先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m 的取值,二者一致的即为正确答案.【详解】A.由函数y=x+m的图象可知m<0,由函数ymx=的图象可知m>0,相矛盾,故错误;B.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m>0,正确;C.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m<0,相矛盾,故错误;D.由函数y=x+m的图象可知m=0,由函数ymx=的图象可知m<0,相矛盾,故错误.故选:B.【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于掌握它们的性质才能灵活解题.11.D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以13或-13即可得到点B′的坐标.【详解】解:△以原点O为位似中心,相似比为13,把△ABO缩小,△点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).故选:D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.12.B【分析】过点C作CF△BD于F.根据矩形的性质得到△ABE=△CDF=60°,AB=CD ,AD =BC =2,△AEB =△CFD =90°.根据全等三角形的性质得到AE =CF .解直角三角形得到OE 【详解】解:如图:过点C 作CF△BD 于F .△矩形ABCD 中,BC =2,AE△BD ,△△ABE =△CDF =60°,AB =CD ,AD =BC =2,△AEB =△CFD =90°.△△ABE△△CDF ,(AAS ),△AE =CF .△△ABE =△CDF =60°,△△ADE =△CBF =30°,△CF =AE =12AD =1,△BE =tan AE ABE ∠ △△ABE =60°,AO=BO ,△△ABO 是等边三角形,△OE =△S△ECO =12OE•CF =112= 故选B .13.8【分析】根据同时同地物高与影长成比相等,列式计算即可得解.【详解】设旗杆高度为x 米,由题意得:1.5316x = 解得8x =.故答案为8.14.25【详解】试题分析:根据实验结果估计袋中小球总数是10÷27=35个,所以袋中红球约为35-10=25个.考点:简单事件的频率.15.2021【分析】将1x =-代入原方程即可得出答案.【详解】解:将1x =-代入一元二次方程ax 2﹣bx ﹣2021=0中,得:20210a b +-=,△2021a b +=,故答案为:2021.16.10【分析】由菱形的性质和勾股定理求出CD =20,证出平行四边形OCED 为矩形,得OE =CD =10即可.【详解】解:△DE //AC ,CE //BD ,△四边形OCED 为平行四边形,△四边形ABCD 是菱形,△AC△BD ,OA =OC =12AC =6,OB =OD =12BD =8,△△DOC =90︒,CD =10,△平行四边形OCED 为矩形,△OE =CD =10,故答案为:10.17.4.【分析】设A 点的坐标为(m ,n )则根据矩形的性质得出矩形中心的纵坐标为2n ,根据中心在反比例函数y =k x 上,求出中心的横坐标为2k n ,进而可得出BC 的长度,根据矩形ABCD 的面积即可求得.【详解】如图,延长DA 交y 轴于点E ,△四边形ABCD 是矩形,设A 点的坐标为(m ,n )则根据矩形的性质得出矩形中心的纵坐标为2n ,△矩形ABCD 的中心都在反比例函数y =k x 上, △x =2k n, △矩形ABCD 中心的坐标为(2k n ,2n ) △BC =2(2k n ﹣m )=4k n﹣2m , △S 矩形ABCD =8,△(4k n﹣2m )•n =8, 4k ﹣2mn =8,△点A (m ,n )在y =k x上, △mn =k ,△4k ﹣2k =8解得:k =4故答案为:418.(1)12(2)12x x == 【分析】(1)将x=1代入原方程可得出关于a 的一元一次方程,解之即可得出a 的值; (2)把a=3代入原方程得到x 2+3x+1=0,再利用公式法求解即可.(1)将x=1代入原方程,得:1+a+a-2=0,解得:a=12.(2)把a=3代入原方程得,x 2+3x+1=0,△Δ=32-4×1×1=5,△x ==△12x x . 19.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B 项对应的扇形圆心角是4036072200︒⨯=︒, 故答案为:200;72;(2)C 选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个, ∴甲、乙两名学生恰好选择同一种交通工具上班的概率为3193=. 20.(1)10%;(2)60元【分析】(1)设每次下降的百分率为a ,根据刚上市每件利润100元和连续两次降价后每件利润81元,可列方程为:100(1﹣a )2=81,即可求解;(2)设每件应降价x 元,则降价后的利润为()81x -,因降价后销量为()202x +,根据总利润=利润⨯销量,列方程进而求解.【详解】(1)设每次下降的百分率为a ,根据题意,得:100(1﹣a )2=81,解得:a =1.9(舍)或a =0.1=10%,答:每次下降的百分率为10%;(2)设每件应降价x元,根据题意,得(81﹣x)(20+2x)=2940,解得:x1=60,x2=11,△尽快减少库存,△x=60,答:若商场每天要盈利2940元,每件应降价60元.21.(1)见解析;(2)菱形,理由见解析;(3)△A=45°.【分析】(1)根据△ACB=90°,DE△BC可得DE//AC,即可证明四边形ADEC是平行四边形,根据平行四边形的性质即可得结论;(2)根据直角三角形斜边中线的性质可得AD=BD=CD,可得BD=CE,根据AB//MN可证明BECD是平行四边形,根据有一组邻边相等的平行四边形是菱形即可得结论;(3)根据正方形的性质可得△CBD=45°,根据△ACB=90°可得△ABC为等腰直角三角形,可得答案.【详解】(1)△DE△BC,△△DFB=90°,△△ACB=90°,△△ACB=△DFB,△AC△DE,△MN△AB,即CE△AD,△四边形ADEC是平行四边形,△CE=AD.(2)四边形BECD是菱形,理由如下:△D为AB中点,△ACB=90°,△AD=BD=CD,△CE=AD,△BD=CE,△BD△CE,△四边形BECD是平行四边形,△BD=CD,△四边形BECD是菱形.(3)当△ABC 是等腰直角三角形时,四边形BECD 是正方形,理由如下:由(2)可知,四边形BECD 是菱形,△△BDC=90°时,四边形BECD 是正方形,△△CBD =45°,△△ACB=90°,△△ABC 是等腰直角三角形,△当△ABC 是等腰直角三角形时,四边形BECD 是正方形.22.(1)132y x =-,y=8x; (2)C (2,-2),18(3)O'(4,2),D'(6,6).【分析】(1)把A 坐标代入一次函数解析式求出k 的值,确定出一次函数解析式,再将A 坐标代入反比例函数解析式求出k 的值,即可确定出反比例解析式;(2)设C 的坐标为(a ,132a -),表示出D 的坐标,两点纵坐标之差即为DC 的长,由已知DC 的长求出a 的值,确定出C 的坐标,过A 作AE△CD 于点E ,由A 与C 的横坐标之差求出AE 的长,三角形ACD 面积以DC 为底,AE 为高,求出即可;(3)连接OO',由平移可得:OO'△AC ,根据两直线平行时k 的值相同确定出直线OO'的解析式,与反比例函数解析式联立求出交点O'的坐标,根据平移的性质,由O 平移到O'的路径确定出D 平移到D'的路径,进而确定出D'的坐标即可.(1)解:△点A (8,1)在直线y=kx -3上,△1=8k -3,解得:k=12,△一次函数解析式为132y x =-,△A (8,1)在y=m x(x >0)的图象上, △1=8m , 解得:m=8,则反比例函数解析式为y=8x;(2)解:设C(a,132a-)(0<a<8),则有D(a,8a),△CD=8a-(132a-)=8132aa-+,△CD=6,△81362aa-+=,解得:a=-8(舍去)或a=2,△131322a-=-=-,△C(2,-2),过A作AE△CD于点E,则AE=8-2=6,△S△ACD=12CD•AE=12×6×6=18;(3)连接OO',由平移可得:OO'△AC,△直线OO'的解析式为y=12x,联立得:812y x y x ⎧=⎪⎪⎨⎪=⎪⎩, 解得:42x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩(不合题意,舍去), △O'(4,2),即O (0,0)通过往右平移4个单位,往上平移2个单位得到O'(4,2),又由(2)中知D 坐标为(2,4),△点D (2,4)往右平移4个单位,往上平移2个单位得到D'(6,6).【点睛】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数及反比例函数解析式,一次函数与反比例函数的交点,平移的性质,熟练掌握各自的性质是解本题的关键.23.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD△BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC =,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD =,1CD ∴=,∴AC.【点睛】此题考查菱形的判定定理及性质定理,勾股定理,直角三角形30度角的性质,平行线的性质,直角三角形斜边中线等于斜边一半的性质,熟记菱形的判定及性质是解题的关键.24.(1)0)y x =>;(2(3)P (2,0)或(4,0)【分析】(1)解直角三角形求得AB ,作CE△OB 于E ,根据平行线分线段成比例定理和三角形中位线的性质求得C 的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)补形法,求出各点坐标,S △OCD =S △AOB -S △ACD - S △OBD ;(3)分两种情形:△△OPC=90°.△△OCP=90°,分别求解即可.【详解】解:(1)△△ABO=90°,△AOB=30°,OB=OB=2, 作CE△OB 于E ,△△ABO=90°,△CE△AB ,△OC=AC , △OE=BE=12CE=12AB=1,△C1),△反比例函数k y x =(x >0)的图象经过OA 的中点C ,△反比例函数的关系式为y=;(2)△OB=△D的横坐标为代入y=y=12,△D(12),△BD=12,△AB=12,△AD=32,△S△OCD =S△AOB-S△ACD- S△OBD=12OB•AB-12AD•BE-12(3)当△OPC=90°时,点P的横坐标与点C的横坐标相等,C(2,2),△P(2,0).当△OCP=90°时.△C(2,2),△△COB=45°.△△OCP为等腰直角三角形.△P(4,0).综上所述,点P的坐标为(2,0)或(4,0).【点睛】本题主要考查的是一次函数、反比例函数的综合应用,列出关于k、n的方程组是解答问题(2)的关键,分类讨论是解答问题(3)的关键.25.(1)见解析;(2)面积(1)先证明四边形BECD是平行四边形,再根据直角三角形中线的性质可得CD=BD,再根据菱形的判定即可求解;(2)根据图形可得菱形BECD的面积=直角三角形ACB的面积,根据三角函数可求BC,根据直角三角形面积公式求解即可.【详解】(1)证明:△BE△CD,CE△BD,△四边形BECD是平行四边形,△Rt△ABC中点D是AB中点,△CD=BD,△四边形BECD是菱形;(2)解:△Rt△ABC中,△A=60°,,△直角三角形ACB的面积为△菱形BECD【点睛】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.26.(1)10-2t;(2)4013或2513;(3)3527或209【分析】(1)作DH△AB于H,得矩形DHBC,则CD=BH=8cm,DH=BC=6cm,AH=8cm,由勾股定理可求得AD的长,从而可得AP;(2)分两种相似情况加以考虑,根据对应边成比例即可完成;(3)分△QMB=90゜和△MQB=90゜两种情况考虑即可,再由相似三角形的性质即可求得t 的值.【详解】(1)如图,作DH△AB于H则四边形DHBC是矩形△CD=BH=8cm,DH=BC=6cm△AH=AB-BH=16-8=8(cm)在Rt△ADH中,由勾股定理得10(cm)AD==△DP=2tcm△AP=AD-DP=(10-2t)cm(2)△当△APQ△△ADB时则有AP AD AQ AB=△10210 216tt-=解得:4013 t=△当△APQ△△ABD时则有AP AB AQ AD=△10216 210tt-=解得:2513 t=综上所述,当4013t=或2513t=时,以点A、P、Q为顶点的三角形与△ABD相似;(3)△当△QMB=90゜时,△QMB为直角三角形如图,过点P作PN△AB于N,DH△AB于H△△PNQ=△BHD△△QMB=90゜△△PQN+△DBH=90゜△△PQN+△QPN=90゜△△QPN=△DBH△△PNQ△△BHD△6384 QN DHPN BH===即4QN=3PN△PN△DH△△APN△△ADH△63105PN DHAP AD===,84105AN AHAP AD===△33(102)55PN AP t==-,44(102)55AN AP t==-△418(102)2855 QN AN AQ t t t =-=--=-由4QN=3PN得:1834(8)3(102) 55t t -=⨯-解得:3527 t=△当△MQB=90゜时,△QMB为直角三角形,如图则PQ△DH△△APQ△△ADH△45 AQ AHAP AD==△45 AQ AP=即42(102)5t t =-解得:209 t=综上所述,当3527t=或209时,△QMB是直角三角形.。
北师大版九年级上册数学期末测试卷(完美版)
北师大版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2B.m<﹣2C.m>2D.m<22、如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD 于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD =AC•BC;③OE:AC= :6;④S△OCF=2S△OEF成立的个数有()A.1个B.2个C.3个D.4个3、以下A、B、C、D四个三角形中,与左图中的三角形相似的是()A. B. C. D.4、将方程x2-6x+1=0配方后,原方程变形()A.(x-3) 2=8B.(x-3) 2=-8C.(x-3) 2=9D.(x-3) 2=-95、用配方法解一元二次方程x2-4x=5的过程中,配方正确的是()A.(B.C.D.6、如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长,交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A. B. C. D.7、如下图,双曲线经过平行四边形ABCO的对角线的交点D,已知边OC在y轴上,且于点C,则平行四边形OABC的面积是()A. B. C.3 D.68、在已知反比例函数(k为常数)的图象上有三点,,,若,则a的取值范围是()A. B. C. 或 D.9、某反比例函数的图象经过点(-1,6),则此函数图象也经过点 ( )A. B. C. D.10、用公式法解一元二次方程,正确的应是()A.x=B.x=C.x=D.x=11、如图,在△ABC中,点D,E分别是边AC,AB的中点,BD与CE交于点O,连接DE.下列结论:① ;② ;③ ;④ .其中正确的个数有()A.1个B.2个C.3个D.4个12、如图,一次函数y=kx﹣1的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B,BC垂直x轴于点C.若△ABC的面积为1,则k的值是()A.1B.2C.3D.413、如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是()A.①②③④B.①②③C.①②④D.②③④14、阜宁到南京之间的距离约为240千米,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于()A.一根火柴的长度B.一根筷子的长度C.一支铅笔的长度D.一支钢笔的长度15、若反比例函数y=﹣的图象上有3个点A(x1, y1),B(x2, y2),C(x3, y3),且满足x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共10题,共计30分)16、反比例函数的图象经过点P(﹣1,2),则此反比例函数的解析式为________17、在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是________.18、已知点A1(-1,y1),A2(-3,y2)都在反比例函数y= (k>0)的图像上,则y1与y2的大小关系为________.19、如图,△AOB,AB∥x轴,OB=2,点B在反比例函数y=上,将△AOB 绕点B逆时针旋转,当点O的对应点O′落在x轴的正半轴上时,AB的对应边A′B恰好经过点O,则k的值为________.20、如图,以的斜边为边,向外作正方形,设正方形的对角线与的交点为O,连接,若,,则的值是________.21、若一个反比例函数的图象经过点和,则这个反比例函数的表达式为________.22、如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为________.23、一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有________个.24、已知关于x的方程的一个根为,则方程的另一个根为________。
北师大版九年级上册数学期末试卷(完美版)
北师大版九年级上册数学期末试卷(完美版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2的大小,正确的是( )A .2<<B .2<<C 2<<D 2<<2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A B .C .6,7,8D .2,3,4 4.若函数y =(3﹣m )27mx -﹣x+1是二次函数,则m 的值为( ) A .3 B .﹣3C .±3D .9 5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.抛物线2y 3(x 1)1=-+的顶点坐标是( )A .()1,1B .()1,1-C .()1,1--D .()1,1-7.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.64的算术平方根是__________.2.分解因式:x 3﹣16x =_____________.3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,直线l 为y=3x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x 轴于点A 3;……,按此作法进行下去,则点A n 的坐标为__________.6.如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241x -+1=11x x -+2.先化简,再求值:222221412()x x x x x x x x -+-+÷-+,且x 为满足﹣3<x <2的整数.3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF ∽△DEC ;(2)若AB=8,AD=63,AF=43,求AE 的长.4.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:△ABM ∽△EFA ;(2)若AB=12,BM=5,求DE 的长.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、B5、B6、A7、D8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、x (x +4)(x –4).3、7或-14、125.5、2n ﹣1,06、35r <<.三、解答题(本大题共6小题,共72分)1、无解.2、-53、(1)略(2)64、(1)略;(2)4.95、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
北师大版九年级上册数学期末测试卷(必刷题)
北师大版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,矩形ABOC的面积为3,反比例函数y=的图象过点A,则k=()A.3B.-1.5C.-3D.-62、已知函数y=mx与y=在同一直角坐标系中的图象大致如图,则下列结论正确的是()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<03、如图,点D,E分别在△ABC的边BA,CA的延长线上,DE∥BC.若EC =3EA,△AED的周长为3,则△ABC的周长为()A.3B.6C.9D.124、如图,反比例函数y=(x<0)的图象经过点P,则k的值为()A.﹣6B.-5C.6D.55、如图,小亮同学在晚上由路灯A走向路灯B,当他走到点P时,发现他的身影顶部正好接触路灯B的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为()A.6.4米B.8米C.9.6米D.11.2米6、如图,小芳在达网球时,为使球恰好能过网(网高0.8米),且落在对方区域内离网5米的位置上,如果她的击球高度是2.4米,则应站在离网的()A.15米处B.10米处C.8米处D.7.5米处7、如图,点A在双曲线y= 上,点B在双曲线y= (k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6B.9C.10D.128、如果点A(﹣5,y1),B(﹣,y2),C(,y3),在双曲线y=上(k<0),则y1,y2,y3的大小关系是()A. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y<y3<y219、若点A(-2,)、B(-1,)、C(1,)在反比例函数的图像上,则()A. B. C. D.10、如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有()A.1对B.2对C.3对D.4对11、下列各种现象属于中心投影现象的是()A.上午10点时,走在路上的人的影子B.晚上10点时,走在路灯下的人的影子 C.中午用来乘凉的树影 D.升国旗时,地上旗杆的影子12、三本相同的书本叠成如图所示的几何体,它的俯视图是()A. B. C. D.13、已知△ABC如图所示,则下面四个三角形中与△ABC相似的是()A. B. C. D.14、对于反比例函数,当时,y随x的增大而减小,则k的取值范围是()A. B. C. D.15、如图,双曲线经过的对角线交点D,已知边在y轴上,且于点C,则的面积是()A.3B.4C.6D.12二、填空题(共10题,共计30分)16、已知x=-1是一元二次方程ax2+bx-10=0的一个解,且a≠-b ,则的值为________17、如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.5m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),她先测得留在墙壁上的影高为1m,又测得地面的影长为1.5m,请你帮她算一下,树高为________.18、如图,点A是反比例函数y= (x>0)图象上一点,过点A作x轴的平1= (x>0)的图象于点B,连接OA、OB,若△OAB的行线,交反比例函数y2面积为2,则k的值为________.19、如图,在⊙O中,C,D分别是OA,OB的中点,MC⊥AB,ND⊥AB,M,N在⊙O上.下列结论:①MC=ND;② ;③四边形MCDN是正方形;④MN=AB,其中正确的结论是________(填序号).20、如图,⊙P的半径为2,圆心P在函数(x>0)的图象上运动,当⊙P与x轴相切时,点P的坐标为________.21、已知x1,x2是方程x2-4x+2=0的两根,求:(x1-x2)2=________.22、如图,在平面直角坐标系中,点A是x轴正半轴上一点,菱形OABC的边长为5,且tan∠COA= ,若函数的图象经过顶点B,则k的值为________.23、如图,在大小为4×4的正方形网格中,是相似三角形的是________(请填上编号).24、如图,在△ABC中,点D为AC上一点,且,过点D作DE∥BC交AB于点E,连接CE,过点D作DF∥CE交AB于点F.若AB=15,则EF=________.25、已知,则k的值是________.三、解答题(共5题,共计25分)26、解方程:2x2﹣4x﹣5=0(用配方法)27、已知:如图,矩形ABCD的对角线交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.28、将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.(Ⅰ)如图①,在OA上取一点E,将△EOC沿EC折叠,使点O落在AB边上的D点,求E点的坐标;(Ⅱ)如图②,在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上D′点,过D′作D′G∥OA交E′F于T点,交OC于G 点,设T的坐标为(x,y),求y与x之间的函数关系式,并直接写出自变量x的取值范围;(Ⅲ)在(Ⅱ)的条件下,若OG=2 ,求△D′TF的面积.(直接写出结果即可)29、如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF 关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t= s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.30、如图,在△ABC中,AB=AC,D为边BC上一点,以AB、BD为邻边作平行四边形ABDE,连接AD、EC.若BD=CD,求证:四边形ADCE是矩形.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、A5、C6、B7、D8、A9、C10、C11、B12、D13、C14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
北师大版九年级上册数学期末试卷(带答案)
北师大版九年级上册数学期末试卷(带答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab = 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33 9.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于( )A .63米B .6米C .33米D .3米10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:2x 3﹣6x 2+4x =__________.3.函数2y x =-中,自变量x 的取值范围是__________.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________. 6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=__________cm .三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.4.如图,ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表 借阅图书的次数0次 1次 2次 3次 4次及以上 人数 7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、D5、C6、C7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、2x(x﹣1)(x﹣2).x≥3、24、125、5.6、9三、解答题(本大题共6小题,共72分)x=1、42、3、(1)略;(2)2.4、(1)略;(2)78°.5、()117、20;()22次、2次;()372;()4120人.6、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。
北师大版数学九年级上册期末试卷及参考答案
北师大版数学九年级上册期末试卷1一、选择题(每题3分,共30分)1.用配方法解方程3x2-6x+2=0,则方程可变形为()A.(x-3)2=23B.3(x-1)2=23C.(3x-1)2=1 D.(x-1)2=132.关于x的一元二次方程(a-1)x2+a2-1=0的一个根是0,则a的值为()A.1 B.-1 C.1或-1 D.1 23.已知反比例函数的图象经过点P(1,-2),则这个函数的图象位于() A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限4.如图是一次数学活动课上制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数(当指针恰好指在分界线上时,不记,重转),则记录的两个数都是正数的概率为()A.18B.16C.14D.125.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()6.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为()A.6 B.8 C.10 D.127.如图,线段AB的两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3)C.(3,1) D.(4,1)8.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A.5 B.4 C.342D.349.如图,两个反比例函数y=1x和y=-2x的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△P AB的面积为()A.3 B.4 C.92D.510.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A.22B.32C.1 D.62二、填空题(每题3分,共30分)11.如图,添加一个条件:______________,使△ADE∽△ACB(写出一个即可).12.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是____________.13.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k 的取值范围是___________________________.14.从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为________.15.若干桶方便面摆放在桌子上,三视图如图所示,则这一堆方便面共有___桶.16.若矩形ABCD的两邻边长分别为一元二次方程x2-7x+12=0的两个实数根,则矩形ABCD的对角线长为________.17.如图,在△ABC中,M,N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM=________.18.如图,在菱形ABCD中,AC交BD于点O,DE⊥BC于点E,连接OE,若∠ABC=140°,则∠OED=________.19.如图,A,B两点在函数y=4x(x>0)的图象上,分别经过A,B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=________.20.如图,正方形ABCD的边长为4,E是BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值是________.三、解答题(21~25题每题8分,其余每题10分,共60分)21.解下列方程:(1)x2-6x-6=0;(2)(x+2)(x+3)=1.22.如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是________.23.关于x的一元二次方程x2-(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.24.现有5个质地、大小完全相同的小球,上面分别标有数-1,-2,1,2,3.先将标有数-2,1,3的小球放在一个不透明的盒子里,再将其余小球放在另一个不透明的盒子里.现分别从这两个盒子里各随机取出一个小球.(1)请利用画树状图或列表的方法表示取出的两个小球上的数之和的所有可能结果;(2)求取出的两个小球上的数之和等于0的概率.25.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售.销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.如果这批旅游纪念品共获利1 250元,则第二周每个旅游纪念品的销售价格为多少元?26.如图,一次函数y1=kx+b和反比例函数y2=mx的图象交于A,B两点.(1)求一次函数y1=kx+b和反比例函数y2=mx的表达式;(2)观察图象,当y1<y2时,x的取值范围为________________;(3)求△OAB的面积.27.如图,在Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B 出发,在BA边上以5 cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4 cm/s的速度向点B匀速运动,运动时间为t s(0<t<2),连接PQ.(1)若△BPQ和△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值.答案一、1.D 2.B 3.C 4.C 5.A 6.C 7.A 8.D 9.C 10.C 二、11.∠ADE =∠ACB (答案不唯一) 12.y =-6x 13.k >12且k ≠1 14.23 15.6 16.5 17.3 18.20° 19.6 20.6三、21.解:(1)移项,得x 2-6x =6,配方,得x 2-6x +9=6+9,即(x -3)2=15. 两边开平方,得x -3=±15, 即x -3=15或x -3=-15. ∴x 1=3+15,x 2=3-15.(2)将原方程化为一般形式,得x 2+5x +5=0.∵b 2-4ac =52-4×1×5=5,∴x =-5±52.∴x 1=-5+52,x 2=-5-52.22.(1)证明:∵DE ∥CA ,AE ∥BD ,∴四边形AODE 是平行四边形. ∵矩形ABCD 的对角线相交于点O , ∴AC =BD ,OA =OC =12AC ,OB =OD =12BD . ∴OA =OD .∴四边形AODE 是菱形. (2)矩形23.(1)证明:∵在方程x 2-(k +3)x +2k +2=0中,Δ=[-(k +3)]2-4×1×(2k +2)=k 2-2k +1=(k -1)2≥0, ∴方程总有两个实数根.(2)解:∵x 2-(k +3)x +2k +2=(x -2)(x -k -1)=0,∴x 1=2,x 2=k +1.∵方程有一个根小于1,∴k +1<1,解得k <0.24.解:(1)画树状图如图所示.(2)因为所有等可能的结果有6种,其中和为0的有2种,所以所求概率为26=13.25.解:由题意得出200×(10-6)+(10-x -6)×(200+50x )+(4-6)[600-200-(200+50x )]=1 250,即800+(4-x )(200+50x )-2(200-50x )=1 250, 整理得x 2-2x +1=0, 解得x 1=x 2=1. ∴10-1=9(元).答:第二周每个旅游纪念品的销售价格为9元. 26.解:(1)由图象可知点A 的坐标为(-2,-2).∵反比例函数y 2=mx 的图象过点A ,∴m =4. ∴反比例函数的表达式是y 2=4x .把x =3代入y 2=4x ,得y 2=43,∴点B 的坐标为⎝ ⎛⎭⎪⎫3,43.∵直线y 1=kx +b 过A ,B 两点, ∴⎩⎪⎨⎪⎧-2k +b =-2,3k +b =43,解得⎩⎪⎨⎪⎧k =23,b =-23. ∴一次函数的表达式是y 1=23x -23. (2)x <-2或0<x <3(3)设直线AB 与y 轴的交点为C ,由一次函数y 1=23x -23可知C ⎝ ⎛⎭⎪⎫0,-23,∴S △OAB =S △OAC +S △OBC =12×23×2+12×23×3=53.27.解:(1)由题易知AB=10 cm,BP=5t cm,CQ=4t cm,∴BQ=(8-4t) cm.当△ABC∽△PBQ时,有BPBA=BQBC,即5t10=8-4t8,∴t=1;当△ABC∽△QBP时,有BQBA=BPBC,即8-4t10=5t8,∴t=3241.∴若△BPQ和△ABC相似,则t=1 或t=32 41.(2)如图,过点P作PD⊥BC于点D.由(1)知BP=5t cm,CQ=4t cm,可求得PD=3t cm,BD=4t cm,∴CD=(8-4t) cm.∵AQ⊥CP,∠ACB=90°,∴∠CAQ+∠ACP=90°,∠DCP+∠ACP=90°.∴∠CAQ=∠DCP.又∵∠CDP=∠ACQ=90°,∴△CPD∽△AQC.∴CDAC=PDQC,即8-4t6=3t4t.∴t=78.北师大版数学九年级上册期末试卷2一、选择题(每题3分,共30分)1. 下列方程中,不是一元二次方程的是()A.3y2+2y+1=0B.12x2=1-3x C.110a2-16a+23=0D.x2+x-3=x22.如图放置的几何体的左视图是()3.下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形4.若反比例函数y=kx的图象经过点(m,3m),其中m≠0,则反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个实数根,则k的取值范围是()A.k≤-2 B.k≤2 C.k≥2 D.k≤2且k≠16.有三张正面分别标有数-2,3,4的不透明卡片,它们除数不同外,其他全部相同.现将它们背面朝上洗匀后,从中任取两张,则抽取的两张卡片上的数之积为正偶数的概率是()A.49 B.112 C.13 D.167.如图,在△ABC中,已知点D,E分别是边AC,BC上的点,DE∥AB,且CE:EB=2:3,则DE AB等于()A.2:3 B.2:5 C.3:5 D.4:58.如图,在菱形纸片ABCD中,∠A=60°,P为AB的中点,折叠该纸片使点C 落在点C′处,且点P在DC′上,折痕为DE,则∠CDE的度数为()A.30°B.40°C.45°D.60°9.设△ABC的一边长为x,这条边上的高为y,y与x之间的反比例函数关系如图所示.当△ABC为等腰直角三角形时,x+y的值为()A.4 B.5 C.5或3 2 D.4或3 210.如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边上的中线,点D,E分别在边AC和BC上,DB=DE,DE与BM相交于点N,EF⊥AC于点F,有以下结论:①∠DBM=∠CDE;②S△BDE<S四边形BMFE;③CD·EN=BN·BD;④AC=2DF.其中正确结论的数量是()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.已知一元二次方程(m-2)x2-3x+m2-4=0的一个根为0,则m=________.12.如图,物理课上张明做小孔成像实验,已知蜡烛与成像板之间的距离为24 cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间带小孔的纸板应放在离蜡烛________的地方.13.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.14.为预防流感,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y(mg)与时间x(min)之间的函数关系如图所示.已知在药物燃烧阶段,y与x成正比例,燃烧完后y与x成反比例.现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg.当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用.那么从消毒开始,经过________min后教室内的空气才能达到安全要求.15.已知三角形纸片(△ABC)中,AB=AC=5,BC=8,将三角形按照如图所示的方式折叠,使点B落在直线AC上,记为点B′,折痕为EF.若以点B′,F,C 为顶点的三角形与△ABC相似,则BF的长度是________.16.为了估计鱼塘中鱼的数量,养鱼者首先从鱼塘中捕获10条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞100条鱼.如果在这100条鱼中有2条鱼是有记号的,则可估计鱼塘中约有鱼________条.17.如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A,C的坐标分别为(2,4),(3,0),过点A的反比例函数y=kx的图象交BC于点D,连接AD,则四边形AOCD的面积是________.18.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.三、解答题(19~22题每题8分,23,24题每题11分,25题12分,共66分) 19.解方程:(1)x2-6x-6=0; (2)(x+2)(x+3)=1.20.已知关于x的一元二次方程kx2+x-2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1,x2,且满足(x1+x2)2+x1·x2=3,求k的值.21.在一个不透明的布袋里装有4个分别标有数字1,2,3,4的小球,它们除所标数字外其他完全相同,小明从布袋里随机取出1个小球,记下数字为x,小红在剩下的3个小球中随机取出1个小球,记下数字为y.(1)计算由x,y确定的点(x,y)在函数y=-x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x,y满足xy>6,则小明胜,若x,y满足xy<6,则小红胜,这个游戏公平吗?请说明理由.若不公平,请写出公平的游戏规则.22.如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竹竿AB的长为3 m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2 m.(1)请你在图中画出此时旗杆DE在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6 m,请你计算旗杆DE的高度.23.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,-2),反比例函数y=kx的图象经过点C,一次函数y=ax+b的图象经过A,C两点.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求点P的坐标.24.如图①,在正方形ABCD中,P是BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.25.在等腰三角形ABC中,AB=AC,D是AB延长线上一点,E是AC上一点,DE交BC于点F.(1)如图①,若BD=CE,求证:DF=EF.(2)如图②,若BD=1n CE,试写出DF和EF之间的数量关系,并证明.(3)如图③,在(2)的条件下,若点E在CA的延长线上,那么(2)中的结论还成立吗?试证明.答案一、1.D 2.C 3.C4.B 【点拨】把点(m ,3m )的坐标代入y =kx ,得到k =3m 2,因为m ≠0,所以k >0.所以图象在第一、三象限. 5.D 6.C 7.B 8.C9.D 【点拨】由题意得xy =4,当等腰直角三角形ABC 的斜边长为x 时,x =2y ,所以2y 2=4,解得y =2或y =-2(不合题意,舍去),所以x =22,所以x +y =32;当等腰直角三角形ABC 的一条直角边长为x 时,x =y ,所以y 2=4,解得y =2或y =-2(不合题意,舍去),所以x =2,所以x +y =4.故x +y 的值为4或3 2.故选D.10.C 【点拨】设∠EDC =x ,则∠DEF =90°-x ,从而可得到∠DBE =∠DEB =180°-(90°-x )-45°=45°+x ,∠DBM =∠DBE -∠MBE =45°+x -45°=x ,从而可得到∠DBM =∠CDE ,所以①正确.可证明△BDM ≌△DEF ,然后可证明S △DNB =S 四边形NMFE ,所以S △DNB +S △BNE =S 四边形NMFE+S △BNE ,即S △BDE =S 四边形BMFE .所以②错误.可证明△DBC ∽△NEB ,所以CD BD =BNEN ,即CD ·EN =BN ·BD .所以③正确. 由△BDM ≌△DEF ,可知DF =BM ,由直角三角形斜边上的中线的性质可知BM =12AC ,所以DF =12AC ,即AC =2DF .所以④正确.故选C. 二、11.-2 12.8 cm13.5 【点拨】综合左视图和主视图知,这个几何体有两层,底层最少有2+1=3(个)小正方体,第二层有2个小正方体,因此组成这个几何体的小正方体最少有3+2=5(个).14.50 【点拨】设药物燃烧完后y 与x 之间的函数表达式为y =kx ,把点(10,8)的坐标代入y =k x ,得8=k10,解得k =80,所以药物燃烧完后y 与x 之间的函数表达式为y =80x .当y =1.6时,由y =80x 得x =50,所以从消毒开始,经过50 min后教室内的空气才能达到安全要求. 15.4或4013 16.50017.9 【点拨】由题易知OC =3,点B 的坐标为(5,4),▱ABCO 的面积为12.设直线BC 对应的函数表达式为y =k ′x +b ,则⎩⎨⎧3k ′+b =0,5k ′+b =4,解得⎩⎨⎧k ′=2,b =-6.∴直线BC 对应的函数表达式为y =2x -6.∵点A (2,4)在反比例函数y =k x 的图象上,∴k =8.∴反比例函数的表达式为y =8x .由⎩⎪⎨⎪⎧y =2x -6,y =8x解得⎩⎨⎧x =4,y =2或⎩⎨⎧x =-1,y =-8(舍去).∴点D 的坐标为(4,2). ∴△ABD 的面积为12×2×3=3. ∴四边形AOCD 的面积是9.18.12 【点拨】易知EF ∥BD ∥HG , 且EF =HG =12BD =3,EH ∥AC ∥GF 且EH =GF =12AC =4. ∵AC ⊥BD ,∴EF ⊥FG . ∴四边形EFGH 是矩形.∴四边形EFGH 的面积=EF ·EH =3×4=12. 三、19.解:(1)x 2-6x -6=0, x 2-6x +9= 15, (x -3)2= 15, x -3= ±15,∴x 1=3+15,x 2=3-15.(2)(x +2)(x +3)=1, x 2+5x +6= 1, x 2+5x +5= 0, ∵a =1,b =5,c =5, ∴b 2-4ac =52-4×1×5=5. ∴x =-5±52. ∴x 1=-5+52,x 2=-5-52. 20.解:(1)∵方程有两个不相等的实数根, ∴Δ=12+8k >0, ∴k >-18. 又∵k ≠0,∴k 的取值范围是k >-18且k ≠0.(2)由根与系数的关系,得x 1+x 2=-1k ,x 1·x 2=-2k . ∵(x 1+x 2)2+x 1·x 2=3,∴⎝ ⎛⎭⎪⎫-1k 2-2k =3,即3k 2+2k -1=0, 解得k =13或k =-1. 由(1)得k >-18且k ≠0, ∴k =13.21.解:(1)画树状图如图.由树状图可知共有12种等可能的结果.其中在函数y =-x +5的图象上的有(1,4),(2,3),(3,2),(4,1), ∴点(x ,y )在函数y =-x +5的图象上的概率为412=13.(2)不公平.理由:∵x ,y 满足xy >6的有(2,4),(3,4),(4,2),(4,3),共4种结果,x ,y 满足xy <6的有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),共6种结果, ∴P (小明胜)=412=13, P (小红胜)=612=12. ∵13≠12,∴游戏不公平.公平的游戏规则为:若x ,y 满足xy ≥6,则小明胜,若x ,y 满足xy <6,则小红胜.(规则不唯一)22.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(2)∵AC ∥DF ,∴∠ACB =∠DFE . 又∠ABC =∠DEF =90°, ∴△ABC ∽△DEF .∴AB DE =BC EF . ∵AB =3 m ,BC =2 m ,EF =6 m , ∴3DE =26. ∴DE =9 m.即旗杆DE 的高度为9 m.23.解:(1)∵点A 的坐标为(0,1),点B 的坐标为(0,-2), ∴AB =1+2=3,即正方形ABCD 的边长为3,∴点C 的坐标为(3,-2).将点C 的坐标代入y =kx 可得k =-6, ∴反比例函数的表达式为y =-6x .将C (3,-2),A (0,1)的坐标分别代入y =ax +b ,得⎩⎨⎧3a +b =-2,b =1,解得⎩⎨⎧a =-1,b =1,∴一次函数的表达式为y =-x +1. (2)设P ⎝ ⎛⎭⎪⎫t ,-6t ,∵△OAP 的面积恰好等于正方形ABCD 的面积, ∴12×1×|t |=3×3,解得t =±18.∴点P 的坐标为⎝ ⎛⎭⎪⎫18,-13或⎝ ⎛⎭⎪⎫-18,13. 24.(1)证明:∵四边形ABCD 是正方形, ∴AD =CD ,∠ADP =∠CDP . 又∵DP =DP ,∴△ADP ≌△CDP . ∴P A =PC .又∵P A =PE ,∴PC =PE . (2)解:由(1)知△ADP ≌△CDP , ∴∠DAP =∠DCP . ∵P A =PE ,∴∠DAP =∠E . ∴∠FCP =∠E .又∵∠PFC =∠DFE ,∠EDF =90°, ∴∠CPE =∠EDF =90°. (3)解:AP =CE .理由如下: ∵四边形ABCD 是菱形, ∴AD =CD ,∠ADP =∠CDP . 又∵DP =DP ,∴△ADP ≌△CDP . ∴P A =PC ,∠DAP =∠DCP .又∵P A=PE,∴PC=PE,∠DAP=∠DEP.∴∠DCP=∠DEP.又∵∠PFC=∠DFE,∴∠CPF=∠EDF.∵在菱形ABCD中,∠ABC=120°,∴∠ADC=120°.∴∠EDC=60°.∴∠CPE=∠EDF=60°.又∵PC=PE,∴△PCE是等边三角形.∴PE=CE.又∵P A=PE,∴AP=CE.25.(1)证明:在题图①中作EG∥AB交BC于点G,则∠ABC=∠EGC,∠D=∠FEG.∵AB=AC,∴∠ABC=∠C.∴∠EGC=∠C.∴EG=EC.∵BD=CE,∴BD=EG.又∵∠D=∠FEG,∠BFD=∠GFE,∴△BFD≌△GFE.∴DF=EF.(2)解:DF=1n EF.证明:在题图②中作EG∥AB交BC于点G,则∠D=∠FEG. 同(1)可得EG=EC.∵∠D=∠FEG,∠BFD=∠EFG,∴△BFD∽△GFE.∴BDEG=DFEF.∵BD=1n CE=1n EG,∴DF=1n EF.(3)解:成立.证明:在题图③中作EG∥AB交CB的延长线于点G,则仍有EG =EC ,△BFD ∽△GFE . ∴BD EG =DF EF .∵BD =1n CE =1n EG ,∴DF =1n EF .。
【完整版】北师大版九年级上册数学期末测试卷
北师大版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,E,F分别为,AD与BC的中点,且矩形ABCD∽矩形AEFB,的值为()A.2B.C.D.2、对于反比例函数y= 的图象的对称性叙述错误的是( )A.关于原点中心对称B.关于直线y=x对称C.关于直线y=-x对称 D.关于x轴对称3、如图所示为农村一古老的捣碎器,已知支撑柱的高为0.3米,路板长为1.6米,支撑点到踏脚的距离为0.6米,原来捣头点着地,现在踏脚着地,则捣头点E上升了()A.1.2米B.1米C.0.8米D.1.5米4、如图,BD为∠ABC的角平分线,且BD=BC,E为BD的延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①∠ABE=∠ACE;②∠BCE+∠BCD=180°;③AE=EC;④BE+BD=2BF,其中正确的是()A.①②③B.①③④C.①②④D.①②③④5、已知:多项式x2﹣kx+1是一个完全平方式,则反比例函数y=的解析式为()A.y=B.y=﹣C.y= 或y=﹣D.y= 或y=﹣6、一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是()A.b=2a+kB.a=b+kC.a>b>0D.a>k>07、小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O,准星A,目标B在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A偏离到,若OA=0.2米,OB=40米,=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为()A.3米B.0.3米C.0.03米D.0.2米8、如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A. B. C. D.9、如图,已知直线y=x与双曲线y=(k>0)交于A,B两点,且点A的横坐标为4.点C是双曲线上一点,且纵坐标为8,则△AOC的面积为( )A.8B.32C.10D.1510、如图,能推得DE∥BC的条件是()A.AD∶AB=DE∶BCB.AD∶DB=DE∶BCC.AE∶AC=AD∶DBD.AD∶DB=AE∶EC11、如图,AB、CD是⊙O的两条平行弦,BE∥AC交CD于E,过A点的切线交DC延长线于P,若AC=3 ,则PC•CE的值是()A.18B.6C.6D.912、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y= 在同一坐标系内的图象大致为()A. B. C.D.13、如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且 ,则S △ADE :S 四边形BCED 的值为()A.1:B.1:2C.1:3D.1:414、如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD 的长为( )A. B. C.2 D.315、用5个完全相同的小正方体组合体,则从上面看到它的形状图( )A. B. C. D.二、填空题(共10题,共计30分)16、在正方形中,,点在边上,作点关于的对称点,连接并延长交于点,若点将分为的两部分,则________.17、如图,已知点A、B分别在反比例函数y= (x>0),y= (x<0)的图象上,且OA⊥OB,则OA:OB的值为________。
北师大版九年级上册数学期末考试试卷含答案
北师大版九年级上册数学期末考试试题一、单选题1.下列命题是真命题的是()A .四个角都相等的四边形是菱形B .四条边都相等的四边形是正方形C .平行四边形、菱形、矩形都既是轴对称图形,又是中心对称图形D .顺次连接菱形各边中点得到的四边形是矩形2.如图,该几何体的俯视图是()A .B .C .D .3.如图,直线AB//CD//EF ,若BD :DF =3:4,AC =3.6,则AE 的长为()A .4.8B .6.6C .7.6D .8.44.已知在Rt △ABC 中,∠C =90°,若sinA cosA 等于()A .12B C D .15.若关于x 的一元二次方程21022kx x +=-有两个实数根,则实数k 的取值范围是()A .2k <B .2k ≥C .k 2≤且0k ≠D .2k <且0k ≠6.一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是()A.49B.23C.12D.137.已知正比例函数y1=kx的图象与反比例函数y2=mx的图象相交于点A(2,4),则下列说法正确的是()A.正比例函数y1与反比例函数y2都随x的增大而增大B.两个函数图象的另一交点坐标为(2,﹣4)C.当x<﹣2或0<x<2时,y1<y2D.反比例函数y2的解析式是y2=﹣8 x8.如图,在△ABC中,AD⊥BC于点D.若BD=9,DC=5,cos B=35,E为边AC的中点,则cos∠ADE的值为()A.45B.513C.512D.12139.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.1410.如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,AD=6,则BE的长为()A.52B.73C.3D.3.511.如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A.43B.4C.23D.212.如图,△ABC中,DE∥BC,BE与CD交于点O,AO与DE,BC交于点N、M,则下列式子中错误的是()A.DN ADBM AB=B.AD DEAB BC=C.DO DEOC BC=D.AE AOEC OM=二、填空题13.方程x2=2x的解是_______.14.高为7米的旗杆在水平地面上的影子长为5米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.15.小明要把一篇文章录入电脑,所需时间(min)y与录入文字的速度x(字/min)之间的反比例函数关系如图所示,如果小明要在9min内完成录入任务,则小明录入文字的速度至少为______字/min.16.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为___.17.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30角时,已知两次测量的影长相差8米,则树高AB 为多少?___.(结果保留根号)18.如图,在平面直角坐标系中,△ABC 和△A 1B 1C 1是以坐标原点O 为位似中心的位似图形,且点B (5,1),B 1(10,2),若△ABC 的面积为m ,则△A 1B 1C 1的面积为_____.19.如图,点A ,B 在反比例函数()10y x x=>的图象上,点C ,D 在反比例函数()0k y k x =>的图像上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为2,4,OAC 与ABD △的面积之和为3,则k的值为_______.三、解答题20.解方程:3x2+5(2x+1)=0.21.如图,CD是线段AB的垂直平分线,M是AC延长线上一点.(1)用直尺和圆规:作∠BCM的角平分线CN,过点B作CN的垂线,垂足为E;(保留作图痕迹,不要求写作法)(2)求证:四边形BECD是矩形.22.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?23.某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的木板材料可使新建板墙的总长为26米,(1)为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米?(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54米,那么小路的宽度是多少米?24.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE =BF ,连接AE ,CF .(1)求证:CF =AE ;(2)当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.25.如图,一次函数y kx b =+的图象交反比例函数()0ay x x=>的图象于()4,8A -、(),2B m -两点,交x 轴于点C .(1)求反比例函数与一次函数的关系式;(2)根据图象回答:在第四象限内,当一次函数的值小于反比例函数的值时,x 的取值范围是什么?(3)若点P 在x 轴上,点Q 在坐标平内面,当以A 、B 、P 、Q 为顶点的四边形是矩形时,求出点P 的坐标.26.如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,且满足BF =EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作FG 的平行线,交DA 的延长线于点N ,连接NG .(1)求证:BE =2CF ;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.27.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.参考答案1.D【分析】根据正方形、菱形、矩形、平行四边形的判定和性质一一判断即可【详解】解:A、若四个角都相等,则这四个角都为直角,有三个角是直角的四边形是矩形,故A选项为假命题,不符合题意;B、四条边都相等的四边形是菱形,故B选项为假命题,不符合题意;C、平行四边形是中心对称图形,但不是轴对称图形,菱形和矩形既是轴对称图形,又是中心对称图形,故C选项为假命题,不符合题意;D、顺次连接菱形各边中点得到的四边形是矩形,故D选项为真命题,符合题意,故选:D.【点睛】本题考查的是命题的真假判断以及正方形、菱形、矩形、平行四边形的判定和性质等知识,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.A 【分析】俯视图,从上面看到的平面图形,根据定义可得答案.【详解】解:从上面看这个几何体看到的是三个长方形,所以俯视图是:故选A【点睛】本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.3.D 【分析】根据平行线分线段成比例定理得到比例式,然后带入已知条件即可得到CE 的长,最后求得AE 的长.【详解】解:∵AB//CD//EF ,BD :DF =3:4,∴34AC B DF CE D ==,∵AC =3.6,∴ 4.8=CE ,∴ 3.6 4.88.4AE AC CE =+=+=.故选:D【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.4.A 【分析】利用60°的三角函数值解决问题.【详解】解:∵∠C =90°,sinA 2=,∴∠A =60°,∴cosA =cos60°12=.故选:A .【点睛】本题考查了特殊角的三角函数值,记住特殊角的三角函数值是解决此类问题的关键.5.C 【分析】根据根的判别式24b ac ∆=-是非负数,且二次项系数不等于0,列不等式求解即可.【详解】解:由题意得,21(2)402k --⨯≥且0k ≠解得k 2≤且0k ≠.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)根的判别式24b ac ∆=-与根的关系求参数,熟练掌握根的判别式与根的关系是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.6.D 【分析】根据题意画出树状图,由概率公式即可得两次都摸到红球的概率.【详解】解:画出树状图:根据树状图可知:所有等可能的结果共有6种,其中两次都摸到红球的有2种,∴两次都摸到红球的概率是26=13;故选:D .【点睛】本题考查了列表法与树状图法以及概率公式,解决本题的关键是画出树状图.7.C 【分析】由题意可求正比例函数解析式和反比例函数解析式,根据正比例函数和反比例函数的性质可判断求解.【详解】∵正比例函数1y kx =的图象与反比例函数2my x=的图象相交于点(2,4)A ,42k ∴=,42m =,解得:2k =,8m =,∴正比例函数12y x =,反比例函数28y x=,28y x y x =⎧⎪⎨=⎪⎩,解得:24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩,∴两个函数图象的另一个交点为(2,4)--,在正比例函数12y x =中,20k => ,∴y 随x 的增大而增大,在反比例函数28y x=中,80m => ,,∴在每个象限内y 随x 的增大而减小,∵当x <﹣2或0<x <2时,y 1<y 2,∴A 、B 、D 选项说法错误;选项C 说法正确.故选:C .【点睛】本题考查反比例函数与正比例函数,掌握函数的图像与性质是解题的关键.8.D 【分析】根据直角三角形勾股定理及余弦函数可得12AD =,再由勾股定理可得13AC =,根据直角三角形中斜边上中线等于斜边的一半可得12ED AC EC ==,依据等边对等角可得EDA DAE ∠=∠,由此计算角的余弦即可.【详解】解:∵AD BC ⊥于D ,9BD =,3cos 5B =,∴15cos BDAB B==,12AD ==,∵5DC =,∴13AC ==,∵E 为AC 中点,∴12ED AC EC ==,∴EDA DAE ∠=∠,∴12cos cos 13AD EDA DAE AC ∠=∠==,故选:D .【点睛】题目主要考查勾股定理、锐角三角函数解三角形,等腰三角形的判定和性质,理解题意,综合运用解三角形方法是解题关键.9.C 【分析】先利用平行四边形的性质得AD BC ∥,AD=BC ,由AE BC ∥可判断△AEF ∽△CBF ,根据相似三角形的性质得12EF AF AE BF CF BC ===,然后根据三角形面积公式得16AEF ABC S S ∆∆=,,则=6=12ABC AEF S S ∆∆.【详解】∵平行四边形ABCD∴AD BC ∥,AD=BC∵E 为边AD 的中点∴BC=2AE∵AE BC∥∴∠EAC=∠BCA又∵∠EFA=∠BFC∴△AEF ∽△CBF如图,过点F 作FH ⊥AD 于点H ,FG ⊥BC 于点G ,则12EF AF AE HF BF CF BC FG ====,∴111221362AEF ABC AE FH BC FH S S BC FH BC HG ∆∆⋅⋅⋅===⋅⋅⋅,∵△AEF 的面积为2∴66212ABCAEF S S ∆∆==⨯=故选C .【点睛】本题考查了相似三角形的性质,属于同步基础题.10.A 【分析】作EH ⊥BD 于H ,根据折叠的性质得到EG =EA ,根据菱形的性质、等边三角形的判定定理得到△ABD 为等边三角形,得到AB =BD ,根据勾股定理列出方程,解方程即可.【详解】解:作EH ⊥BD 于H ,由折叠的性质可知,EG=EA,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=12∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=AD=6,设BE=x,则EG=AE=6﹣x,在Rt△EHB中,BH=12x,EH32,在Rt△EHG中,EG2=EH2+GH2,即(6﹣x)2=(32x)2+(4﹣12x)2,解得,x=5 2,∴BE=5 2,故选:A.【点睛】此题考查了菱形的性质,折叠的性质,等边三角形的判定及性质,勾股定理,熟记各知识点并综合运用是解题的关键.11.A【详解】∵菱形ABCD的周长为16,∠ABC=120°,∴∠BAD=60°,AC⊥BD,AD=AB=4∴△ABD为等边三角形,∴EB=11=2 22BD AB=在Rt△ABE中,2223AB BE-=故可得AC=2AE=3故选A.12.D【详解】试题分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴DN ADBM AB=,AD DEAB BC=,DO DEOC BC=,所以A、B、C正确;∵DE∥BC,∴△AEN∽△ACM,∴AE AN AC AM=,∴AE AN EC NM=,所以D错误.故选D.点睛:本题考查了相似三角形的判定与性质.注意平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;相似三角形对应边成比例.注意数形结合思想的应用.13.x1=0,x2=2【分析】先移项得到x2﹣2x=0,再把方程左边进行因式分解得到x(x﹣2)=0,方程转化为两个一元一次方程:x=0或x﹣2=0,即可得到原方程的解为x1=0,x2=2.【详解】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并能够根据方程的特征灵活选用合适的方法解答是解题的关键.14.42【分析】根据同一时刻物体的高度与影长成比例解答即可.【详解】解:设此建筑物的高度为x米,根据题意得:7530x=,解得:x=42.故答案为:42.【点睛】本题考查了平行投影,属于基础题型,明确同一时刻物体的高度与影长成比例是解题的关键.15.14009【分析】先利用待定系数法求出反比例函数的解析式,再求出9y =时,x 的值,然后根据反比例函数的增减性即可得.【详解】解:设反比例函数的解析式为(0)k y x x =>,将点(140,10)代入得:140101400k =⨯=,则反比例函数的解析式为1400y x =,当9y =时,14009x =, 反比例函数的1400y x=在0x >内,y 随x 的增大而减小,∴如果小明要在9min 内完成录入任务,则小明录入文字的速度至少为14009字/min ,故答案为:14009.【点睛】本题考查了反比例函数的图象与性质,熟练掌握待定系数法是解题关键.16.4【分析】由菱形的性质得出OA=OC=6,OB=OD ,AC ⊥BD ,则AC=12,由直角三角形斜边上的中线性质得出OH=12BD ,再由菱形的面积求出BD=8,即可得出答案.【详解】解:∵四边形ABCD 是菱形,∴OA=OC=6,OB=OD ,AC ⊥BD ,∴AC=12,∵DH ⊥AB ,∴∠BHD=90°,∴OH=12BD ,∵菱形ABCD 的面积=12AC•BD=12×12•BD=48,∴BD=8,∴OH=12BD=4,故答案为:4.【点睛】本题主要考查了菱形的性质,直角三角形的性质,菱形的面积公式,解题的关键是根据直角三角形斜边上的中线性质求得OH=12BD .17.AB x =,利用正切的定义以及特殊角的正切值,表示出BC 和CD ,然后求解即可.【详解】解:设AB x =米在Rt ABD △中,tan tan 60AB ADB BD ∠=︒==BD =在Rt ABC 中,tan tan 30AB ACB BC ∠=︒==BCCD BC BD =-8=,解得x =即AB =故答案为【点睛】本题考查了解直角三角形的实际应用,涉及正切的定义,解题的关键是掌握正切三角函数的定义以及特殊角的正切值.18.4m 【分析】根据面积比等于位似比的平方即可求得.【详解】 B (5,1),B 1(10,2)则2OB '==12OB OB '∴=,111:1:4ABC A B C S S ∴= ,△ABC 的面积为m ,则△A 1B 1C 1的面积为4m .故答案为4m .【点睛】本题考查了位似图形的性质,位似图形上任意一对对应点到位似中心的距离之比等于相似比,位似图形面积的比等于相似比的平方,掌握位似图形的性质是解题的关键.19.5【分析】根据题意求得A B C D 、、、四边的坐标,再根据OAC 与ABD △的面积之和为3,列方程求解即可.【详解】解:AC BD y ∥∥轴,点A ,B 的横坐标分别为2,4,点C ,D 的横坐标分别为2,4又∵点A ,B 在反比例函数()10y x x=>的图象上,点C ,D 在反比例函数()0k y k x =>的图像上∴1(2,)2A ,1(4,)4B ,(2,)2k C ,(4,)4k D∴12k AC -=,14k BD -=由图形可得,11222OAC k S AC AC -=⨯==△,11224ABD k S BD BD -=⨯==△由题意可得:3OAC ABD S S +=△△,即11342k k --+=解得5k =故答案为:5【点睛】此题考查了反比例函数的性质,解题的关键是掌握反比例函数的有关性质,根据题意正确列出方程.20.1x =2x =b 2-4ac 的值,再代入公式求出解即可.【详解】解:3x 2+5(2x+1)=0,整理得:3x 2+10x+5=0,∴a=3,b=10,c=5,∴22=410435400b ac ∆-=-⨯⨯=>,∴10563x -±-±=,则原方程的解为1x =,2x =21.(1)见解析(2)见解析【分析】(1)尺规作∠BCM 的角平分线CN 的作法:先以点C 为圆心,某一长度为半径作圆,交射线CM 、CN 于两点,再分别以这两点为圆心,大于这两点间距离的一半为半径作圆,在角的内部产生交点,连接交点与点C ,即为∠BCM 的角平分线CN ;尺规作过点B 作CN 的垂线段BE :先以点B 为圆心,某一长度为半径作圆,交CN 于两点,再分别以这两点为圆心,大于这两点间距离的一半为半径作圆,交CN 上方于一点,连接该点与点B ,与CN 交点即为点E .(2)由CD 是线段AB 的垂直平分线,可得AC =BC ,∠DCB =12∠ACB ,又因为CN 平分∠BCM ,易证∠DCN =12(∠ACB+∠BCM)=90°,再结合CD ⊥AB ,BE ⊥CN ,即可证明四边形BECD 是矩形.(1)如图所示,CN,BE为所求(2)证明:∵CD是AB的垂直平分线∴CD⊥BD,AD=BD∴∠CDB=90°,AC=BC∴∠DCB=12∠ACB∵CN平分∠BCM∴∠BCN=12∠BCM∵∠ACB+∠BCM=180°∴∠DCN=∠DCB+∠BCN=12(∠ACB+∠BCM)=90°∵BE⊥CN∴∠BEC=∠DCN=∠CDB=90°∴四边形BECD是矩形.【点睛】本题主要考查了尺规作图、矩形的判定,要求掌握5类基本尺规作图:作一条线段等于已知线段、作一个角等于已知角、作已知角的角平分线、作已知线段的垂直平分线、过一点作已知直线的垂线.22.(1)见解析;(2)小明获胜的概率大,见解析【分析】(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有12种等可能的结果数,m,n都是方程x2﹣5x+6=0的解的结果有4个,m,n都不是方程x2﹣5x+6=0的解的结果有2个,然后根据概率公式求解.【详解】(1)树状图如图所示:所有(m ,n)可能的结果有(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)共12种结果;(2)∵m ,n 都是方程x 2﹣5x+6=0的解,∴m =2,n =3,或m =3,n =2,由树状图得:共有12个等可能的结果,m ,n 都是方程x 2﹣5x+6=0的解的结果有4个(包括m =n =2,和m =n =3两种情况),m ,n 都不是方程x 2﹣5x+6=0的解的结果有2个,小明获胜的概率为41=123,小利获胜的概率为21=126,∴小明获胜的概率大.【点睛】本题考查了列表法与树状图法、一元二次方程的解法以及概率公式,画出树状图是解题的关键.23.(1)长为10米,宽为8米;(2)小路的宽为1米.【分析】(1)设与墙垂直的一面为x 米,然后可得另两面则为(26﹣2x+2)米,然后利用其面积为80,列出方程求解即可;(2)设小路的宽为a 米,利用去掉小路的面积为54平米列出方程求解即可得到答案.【详解】解:(1)设与墙垂直的一面为x 米,另一面则为(26﹣2x+2)米根据题意得:(282)80x x -=整理得:214400x x -+=解得4x =或10x =,当x =4时,28﹣2x =20>12,不符合题意,舍去当x =10时,28﹣5x =8<12,符合题意∴长为10米,宽为8米.(2)设宽为a 米,根据题意得:(8﹣2a )(10﹣a )=54,a 2﹣14a+13=0,解得:a =13>10(舍去),a =1,答:小路的宽为1米.【点睛】此题考查了一元二次方程与几何图形面积的应用,理解题意找到题中的等量关系是解题的关键.24.(1)见解析;(2)四边形AFCE 是菱形,理由见解析【分析】(1)由平行四边形的性质得AD =BC ,AD//BC ,则∠ADE =∠CBF ,再由SAS 证△ADE ≌△CBF 即可求解;(2)根据BD 平分∠ABC 和平行四边形的性质,可以证明▱ABCD 是菱形,从而可以得到AC ⊥BD ,然后即可得到AC ⊥EF ,再根据题目中的条件,可以证明四边形AFCE 是平行四边形,然后根据AC ⊥EF ,即可得到四边形AFCE 是菱形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD//BC ,∴∠ADB =∠CBD ,∵∠ADB+∠ADE=180°,∠CBD+∠CBF=180°∴∠ADE =∠CBF ,在△ADE 和△CBF 中,=AD CBADE CBF DE BF=⎧⎪∠∠⎨⎪=⎩,∴△ADE ≌△CBF (SAS ),∴CF=AE;(2)四边形AFCE 是菱形,理由如下:∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,AD//BC ,∴∠ADB=∠CBD ,∴∠ABD=∠ADB ,∴AB=AD ,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.【点睛】本题考查平行四边形的判定与性质、菱形的性质与判定判定、全等三角形的性质与判定,角平分线的定义,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)32yx-=,1102y x=-;(2)当4<x<16时,(3)(0,0),(15,0),P(10+或(10-.【分析】(1)将点A(4,﹣8),B(m,﹣2)代入反比例函数yax=(x>0)中,可求m、a;再将点A(4,﹣8),B(m,﹣2)代入y=kx+b中,列方程组求k、b即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值小于反比例函数的值时x的范围;(3)根据矩形形的性质,分类讨论,即可得出结论.【详解】解:(1)∵反比例函数yax=(x>0)的图象于A(4,﹣8),∴k=4×(﹣8)=﹣32.∵双曲线yax=过点B(m,﹣2),∴m=16.由直线y =kx+b 过点A ,B 得:48162k b k b +=-⎧⎨+=-⎩,解得,1210k b ⎧=⎪⎨⎪=-⎩,∴反比例函数关系式为32y x -=,一次函数关系式为1102y x =-.(2)观察图象可知,当4<x <16时,一次函数的值小于反比例函数的值.(3)在直线y 12=x ﹣10中,令y =0,则x =20,∴C (20,0),∴OC =20,AC ==BC ==AO==∴22280320400AO AC OC +=+==∴△OAC 为直角三角形∴OA ⊥AB四边形是矩形时分三种情况①当PA ⊥AB 时∵OA ⊥AB∴P 点以O 点重合∴P 点坐标为(0,0)②当PB ⊥AB 时设P (m ,0),则PC =20﹣m ,∵∠PBC=∠OAC=90°,∠PCB=∠OCA ∴△BCP ∽△ACO ,∴PCBC OC AC=,即2020m-=,,∴m =15,此时P (15,0),③当∠APB=90°时设P (m ,0),作AM ⊥OC ,BN ⊥OC∴∠AMP=∠BNP=90°∵()4,8A -,()16,2B -∴AM=8,BN=2,PM=m-4,NP=16-m∵∠APB=90°∴∠APM+∠BPN=90°∵∠MAP+∠APM=90°∴∠MAP=∠BPN∴△APM ∽△PBN ,∴AM PM PN BN=,即84162m m =--,解得:1025m =±此时P (105,0)+或(105,0)-综上,四边形是矩形时P 点的坐标为(0,0),(15,0),P (1025,0)+或(1025,0)-.【点睛】本题考查了用待定系数法求函数解析式以及反比例函数和一次函数的交点问题,这里体现了数形结合的思想.26.(1)见解析;(2)四边形BFGN 是菱形,理由见解析.【分析】(1)过F 作FH ⊥BE 于点H ,可证明四边形BCFH 为矩形,可得到BH =CF ,且H 为BE 中点,可得BE =2CF ;(2)由条件可证明△ABN ≌△HFE ,可得BN =EF ,可得到BN =GF ,且BN ∥FG ,可证得四边形BFGN 为菱形.【详解】(1)证明:过F 作FH ⊥BE 于H 点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四边形,∵EF=BF,∴NB=BF,∴平行四边NBFG是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.27.(1)证明见解析;(2)四边形AFBE是菱形【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGE和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.【点睛】考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.下列给出的几何体中,主视图和俯视图都是圆的是( )A .球B .正方体C .圆锥D .圆柱2.若锐角A 满足cos A =∠A 的度数为( ) A .30° B .45° C .60° D .75°3.菱形、矩形、正方形都具有的性质是( )A .对角线互相垂直B .对角线相等C .四条边相等,四个角相等D .两组对边分别平行且相等 4.关于x 的一元二次方程x 2+(k ﹣2)x+k 2﹣1=0的一个根是0,则k 的值是( ) A .1 B .﹣1 C .±1 D .25.在平面直角坐标系中,点P 的坐标为(),m n ,从2-,0,2这三个数中任取一个数作为m 的值,再从余下的两个数中任取一个数作为n 的值,则点P 在坐标轴上的概率是( )A .13B .12 C .23 D .346.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4)7.若点A (-1,1y ),B (2,2y ),C (3,3y )在反比例函数10y x =-图象上,则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .1y >3y >2yC .3y >2y >1yD .3y >1y >2y8.已知∠PAQ=36°,点B 为射线AQ 上一固定点,按以下步骤作图:∠分别以A ,B 为圆心,大于12AB 的长为半径画弧,相交于两点M ,N ;∠作直线MN 交射线AP 于点D ,连接 BD ;∠以B 为圆心,BA 长为半径画弧,交射线AP 于点C ; 根据以上作图过程及所作图形,下列结论中错误的是( )A.∠CDB=72°B.∠ADB∠∠ABCC.CD:AD=2:1 D.∠ABC=3∠ACB9.如图,矩形ABCD中,AB=3,BC=10,点P是AD上的一个动点,若以A,P,B为顶点的三角形与∠PDC相似,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个10.已知反比例函数y=abx的图象如图所示,则二次函数y =ax 2-2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题11.一幅比例尺为1:300000的地图上,某道路的长度为2cm,则它的实际长度为______ km.12.若方程230x x c-+=没有实数根,则c的取值范围是_____________.13.如图,ABC的顶点都在方格纸的格点上,则sin ABC∠=______.14.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同,小红通过多次试验发现,摸出红球的频率稳定在0.2左右,则袋子里红球的个数最有可能是__________.15.点P (m ,n )是函数3y x=和y =x +4图象的一个交点,则mn +n -m 的值为________.16.如图,二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0)且与y 轴交于负半轴,下列四个结论:∠abc <0;∠2a +b >0;∠a +b +c =0;∠a >1.其中正确的有________.(填序号)17.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题18.解方程:2233(1)x x x x --=-.19.如图所示,太阳光线AC 和A C ''是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.20.如图,直线l :34y x m =+与x 轴、y 轴分别交于点A 和点B (0,-1),抛物线212y x bx c =++经过点B ,且与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)P 是直线AC 下方的抛物线上一动点,设其横坐标为a .过点P 作PD∠y 轴交AC 于点D ,点D 在线段AC 上,当a 为何值时,∠APC 的面积最大,并求出其最大值.21.如图,矩形OABC 的顶点A ,C 分别落在x 轴,y 轴的正半轴上,顶点B (2,2,反比例函数k y x=(x >0)的图象与BC ,AB 分别交于D ,E ,BD =12. (1)求反比例函数关系式和点E 的坐标;(2)写出DE 与AC 的位置关系并说明理由;(3)点F 在直线AC 上,点G 是坐标系内点,当四边形BCFG 为菱形时,求出点G 的坐标并判断点G 是否在反比例函数图象上.22.如图,在矩形ABCD中,E为AD的中点,EF∠EC交AB于F,延长FE与直线CD 相交于点G,连接FC(AB>AE).(1)求证:∠AEF∠∠DCE;(2)∠AEF与∠ECF是否相似?若相似,证明你的结论;若不相似,请说明理由;(3)设ABkBC,是否存在这样的k值,使得∠AEF与∠BFC相似?若存在,证明你的结论并求出k的值;若不存在,请说明理由.23.如图,矩形ABCD中,点E在边CD上,将∠BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∠CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.24.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P.(1)分别求出抛物线和直线AB的函数表达式;(2)连接PA、PB,求∠PAB面积的最大值,并求出此时点P的坐标.(3)如图2,点E(2,0),将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.25.已知:如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:(1)∠AFD∠∠CEB;(2)四边形AECF是平行四边形.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC∠x轴,垂足为点C,且∠AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求∠AOB的面积.参考答案1.A【分析】主视图是从正面看,俯视图是从上往下看,分别进行判断即可.【详解】A.球的主视图和俯视图都是圆,故选项A正确;B.正方体主视图和俯视图都是正方形,故选项B错误;C.圆锥的主视图是三角形,俯视图是圆,故选项C错误;D.圆柱的主视图是长方形,俯视图是圆,故选项D错误;故选:A.【点睛】本题考查了几何体的三视图,解题关键是明确主视图、俯视图、左视图分别是从物体的正面、上面、左面看所得到的图形.2.A【分析】根据特殊的锐角三角比值可确定∠A的度数.【详解】∠cos A∠∠A=30°,故选:A.【点睛】本题主要考查了特殊角的三角函数值,熟记特殊角的三角函数值是解答关键.3.D【分析】根据菱形、矩形、正方形的性质,逐项判断即可求解.【详解】解:A、矩形的对角线不一定互相垂直,故本选项不符合题意;B、菱形的对角线不一定相等,故本选项不符合题意;C、矩形的四条边不一定相等,菱形的四个角不应当相等,故本选项不符合题意;D、菱形、矩形、正方形的两组对边分别平行且相等,故本选项符合题意;故选:D【点睛】本题主要考查了菱形、矩形、正方形的性质,熟练掌握菱形、矩形、正方形的性质是解题的关键.4.C【分析】把x=0代入方程计算即可求出k的值.【详解】解:把x=0代入方程得:k2﹣1=0,解得:k=1或k=﹣1,故选:C.【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握解一元二次方程的方法是解本题的关键.5.C【分析】利用树状图得出所有的情况,从中找到使点P落在坐标轴上的结果数,再根据概率公式计算可得.【详解】解:画树状图如下由树状图知,共有6种等可能结果,其中使点P 在轴上的有4种结果,∠点P 在坐标轴上的概率是4263= 故选:C【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.6.B 【详解】试题分析:在抛物线y =-3x 2-4中a<0,所以开口向下;b=0,对称轴为x=0,所以顶点坐标为(0,-4),故选B.7.B 【分析】根据反比例函数表达式中的k 值可以确定函数图象所在的象限,再根据象限内点的坐标特征及函数增减性即可求解.【详解】解:∠反比例函数10y x =-,k=-10<0, ∠此函数经过第二、四象限,在每一象限内,y 随x 的增大而增大.∠A (-1,1y ),B (2,2y ),C (3,3y ),∠点A 在第二象限,10y >,点B 、点C 在第四象限,∠3>2∠230y y <<∠1y ,2y ,3y 的大小关系是:1y >3y >2y .故选:B【点睛】本题考查了反比例函数比大小,熟练掌握象限内点的坐标特征及反比例函数的增减性是解决本题的关键.8.C 【分析】根据垂直平分线的性质、等腰三角形的性质及判定,相似三角形的判定一一判断即可.【详解】解:由作图可知,MN 垂直平分AB ,AB =BC ,∠MN 垂直平分AB ,∠DA=DB,∠∠A=∠DBA,∠∠PAQ=36°,∠∠CDB=∠A+∠DBA=72°,(A正确)∠AB=BC,∠∠A=∠ACB=36°,∠∠ABD=∠ACB,又∠∠A=∠A,∠∠ADB∠∠ABC,(B正确)∠∠A=∠ACB=36°,∠∠ABC=180°-∠A-∠ACB=108°,∠∠ABC=3∠ACB,(D正确)∠∠ABD=36°,∠ABC=108°,∠∠CBD=∠ABC-∠ABD=72°,∠∠CBD=∠CDB=72°,∠CD=BC,∠∠A=∠ACB=36°,∠AB=BC,∠CD=AB,∠AD+DB>AB,AD=DB∠2AD>AB∠2AD>CD,(C错误)故选:C【点睛】本题考查作图﹣复杂作图,线段的垂直平分线的性质,等腰三角形的性质及判定、相似三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.C【分析】设AP=x,则PD=AD﹣AP=10﹣x,然后分类讨论:若∠APB=∠DPC,则Rt∠APB∠Rt∠DPC,得到比例式,代入求出即可;若∠APB=∠PCD,则Rt∠APB∠Rt∠DCP,得到比例式,代入求出即可.【详解】∠四边形ABCD是矩形,∠AB=DC=3,AD=BC=10,∠A=∠D=90°,设AP=x,则PD=AD﹣AP=10﹣x,若∠APB=∠DPC,则Rt∠APB∠Rt∠DPC,∠APPD=ABCD,即3103xx=-,解得:x=5;若∠APB=∠PCD,则Rt∠APB∠Rt∠DCP,∠ABDP=APCD,即3103xx=-,解得:x=1或9;所以当AP=1或5或9时,以P,A,B为顶点的三角形与以P,D,C为顶点的三角形相似,即这样的P点有三个.故选:C.【点睛】本题考查了矩形的性质及相似三角形的判定和性质,分类讨论的思想是解决问题的关键.10.C【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】解:∠当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∠反比例函数y=abx的图象在第一、三象限,∠ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=1a<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.11.6【分析】根据比例尺=图上距离:实际距离即可求解.【详解】解:设实际距离为x厘米,则1:300000=2:x,解得:x=600000,600000厘米=6千米,故答案为:6.【点睛】本题考查了比例尺的定义、比例线段的性质,根据比例尺=图上距离:实际距离是解答的关键,注意单位的换算.12.94c >【分析】令方程230x x c -+=的0<即可. 【详解】230x x c -+=中a=1,b=-3,c=c则()22434194b ac c c =-=--⋅⋅=-△若方程230x x c -+=没有实数根则令940c =-<△ 即94c > 故答案为:94c >. 【点睛】本题考查了一元二次方程式根的判别式,使用一元二次方程根的判别式,应先将方程整理成一般形式,再确定a ,b ,c 的值.注意利用判别式可以判断方程的根的情况,反之,当方程有两个不相等的实数根时,0>;有两个相等的实数根时,0=;没有实数根时,0<.当240b ac =-=时,方程有两个相等的实数根,不能说方程只有一个根.13.35【分析】利用网格构造直角三角形,根据格点线段的长度求出斜边的长,再根据三角函数的意义求出答案.【详解】解:如图,由网格的特征可知,∠ADB 是直角三角形,∠AD=3,BD=4,∠由勾股定理得:5AB =, ∠3sin 5AD ABC AB ∠==, 故答案为:35. 【点睛】本题考查了直角三角形的边角关系,利用网格构造直角三角形是解题的关键.14.4【分析】设袋子中红球有x 个,根据摸出红球的频率稳定在0.2左右列出关于x 的方程,求出x 的值,从而得出答案.【详解】解:设袋子中红球有x 个, 根据题意,得:0.220=x 解得x=4,∠袋子中红球的个数最有可能是4个,故答案为:4.【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.15.7【分析】将点P (m ,n )分别代入3y x =和y =x +4得mn=3,n-m=4,再求值即可.【详解】解:∠点P (m ,n )是函数3y x =和y =x +4图象的一个交点, ∠3n m =,n=m+4, ∠mn=3,n-m=4,∠mn +n-m=3+4=7.故答案为:7.【点睛】本题考查反比例函数与一次函数图象的交点问题,解题关键是理解函数图象上点的坐标特征.16.∠∠∠【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:观察图象得:抛物线开口向上,对称轴02b a->,且与y 轴交于负半轴, ∠0,0a c ><,∠0b <,∠abc >0,故∠错误; 观察图象得:12b a-<,0a >, ∠2b a >-,∠20b a +>,故∠正确;观察图象得:当时x=1时,y=0,∠a +b +c =0,故∠正确;∠图象经过点(-1,2)和(1,0),∠a +b +c =0,a-b +c =2,∠2a+2c=2,即a=-c+1,∠0c <,∠0c ->,即11c -+>,∠a >1,故∠正确;∠正确的有∠∠∠.故答案为:∠∠∠【点睛】本题考查二次函数的图象与系数的关系,综合应用相关知识分析问题、解决问题的能力是关键.17.60.【分析】设∠OAC=x ,∠CAB=y ,根据等腰三角形的性质,则∠OCA=x ,∠OBA=x+y ,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x ,∠CAB=y ,∠OA=OC ,∠∠OCA=x ,∠OA=OB ,∠∠OBA=x+y ,∠OC=OB ,∠∠OBC=x+30°,∠30ACB ∠=︒,∠∠CAB+∠OBA+∠OBC=150°,∠y+x+y+ x+30°=150°,∠2(x+y)=120°,∠∠AOB=180°-2∠OBA=180°-2(x+y),∠∠AOB=180°-120°=60°,故答案为:60.【点睛】本题考查了等腰三角形的性质,三角形内角和定理,熟练应用性质,合理引进未知数,采用设而不求的思想计算是解题的关键.18.13x =,21x =-【分析】先把方程整理成一般形式,再用因式分解法解方程即可.【详解】解:2233(1)x x x x --=-整理2233(1)x x x x --=-得,2230x x --=,因式分解得,(x -3)(x +1)=0,∠x -3=0或x +1=0,解得13x =,21x =-.【点睛】此题考查了一元二次方程,熟练掌握一元二次方程的解法是解题的关键.19.一样高,理由见解析【分析】证明∠ABC =∠A B C ''',∠ACB =∠AC B ''',结合BC =B C '',推出∠ABC∠∠A B C ''',得到AB =A B ''.【详解】建筑物一样高.理由如下 :∠AB∠BC ,A B ''∠B C '',∠∠ABC =∠A B C '''=90°,∠AC∠A C '',∠∠ACB =∠AC B ''',又∠BC =B C ''∠∠ABC∠∠A B C '''∠AB =A B ''.即建筑物一样高.【点睛】本题主要考查了全等三角形,解决问题的关键是熟练掌握全等三角形的判定和性质.20.(1)n =2,215124y x x =--(2)a =2,最大值为83 【分析】(1)将点B 的坐标代入直线34y x m =+求出m ,得到直线解析式314y x =-,再将点C 的坐标代入求出n ,然后将点B 、C 的坐标代入二次函数表达求解;(2)先表示出点P 、D 、A 的坐标,进而求出PD ,再利用三角形面积公式求出∠APC 的面积=228(2)33a --+,再利用二次函数的性质求解. (1)解:∠直线l :34y x m =+过点B (0,-1),∠m = -1, ∠直线l :314y x =-, 将点C (4,n )代入314y x =-解得:n =2, ∠点C (4,2).将点B 、C 的坐标代入二次函数表达式得1216421b c c ⎧=⨯++⎪⎨⎪=-⎩, 解得:541b c ⎧=-⎪⎨⎪=-⎩, ∠抛物线的表达式为:215124y x x =--; (2)解:∠PD∠y 轴,点D 在线段AC 上,设其横坐标为a ,由题意得P (a ,215124a a --),则D (a ,314a -),A (43,0), ∠PD =314a -−2215112242a a a a ⎛⎫--=-+ ⎪⎝⎭. ∠A (43,0),C (4,2), ∠∠APC 的面积=214118(4)(2)23223PAD PDC S S PD a a ∆∆+=⨯⨯-=⨯-+⨯=228(2)33a --+, ∠a =2时,∠APC 的面积最大,最大值为83. 【点睛】本题主要考查了一次函数和二次函数解析式的求法,二次函数的最值,求出解析式是解答关键.21.(1)y E ⎛=⎝⎭;(2)//DE AC,理由见解析;(3)点G的坐标为(或(,这两个点都在反比例函数图象上【分析】(1)求出D(32,,再用待定系数法即可求解;(2)证明EB BDAB BC=,即可求解;(3)∠当点F在点C的下方时,求出FH=1,CHF(1,则点G (3,即可求解;∠当点F在点C的上方时,同理可解.【详解】解:(1)∠B(2,,则BC=2,而BD=12,∠CD=2﹣12=32,故点D(32,,将点D的坐标代入反比例函数表达式得:32K,解得k=故反比例函数表达式为y,当x=2时,yE(2;(2)由(1)知,D(32,,点E(2,点B(2,,则BD=12,BE故BDBC=122=14,EBAB=14=BDBC,∠DE∠AC;(3)∠当点F在点C的下方时,如下图,过点F 作FH∠y 轴于点H ,∠四边形BCFG 为菱形,则BC =CF =FG =BG =2,在RT∠OAC 中,OA =BC =2,OB =AB =则tan∠OCA =AOCO ∠OCA =30°,则FH =12FC =1,CH =CF•cos∠OCA =故点F (1,则点G (3,当x =3时,y G 在反比例函数图象上; ∠当点F 在点C 的上方时,同理可得,点G (1,,同理可得,点G 在反比例函数图象上;综上,点G 的坐标为(31,,这两个点都在反比例函数图象上.【点睛】本题主要考查反比例函数,解题关键是过点F 作FH∠y 轴于点H.22.(1)见解析(2)相似,证明见解析(3)存在,k 【分析】(1)由题意可得∠AEF +∠DEC =90°,又由∠AEF +∠AFE =90°,可得∠DEC =∠AFE ,据此证得结论;(2)根据题意可证得Rt∠AEF∠Rt∠DEG(ASA),可得EF =EG ,∠AFE =∠EGC ,可得CE 垂直平分FG ,∠CGF 是等腰三角形,据此即可证得∠AEF 与∠ECF 相似;(3)假设∠AEF 与∠BFC 相似,存在两种情况:∠当∠AFE =∠BCF ,可得∠EFC =90°,根据题意可知此种情况不成立;∠当∠AFE =∠BFC ,使得∠AEF 与∠BFC 相似,设BC =a ,则AB =ka ,可得AF =13ka ,BF =23ka ,再由∠AEF∠∠DCE ,即可求得k 值. (1)证明:∠EF∠EC ,∠∠FEC =90°,∠∠AEF +∠DEC =90°,∠∠AEF +∠AFE =90°,∠∠DEC=∠AFE,又∠∠A=∠EDC=90°,∠∠AEF∠∠DCE;(2)解:∠AEF∠∠ECF.理由:∠E为AD的中点,∠AE=DE,∠∠AEF=∠DEG,∠A=∠EDG,∠∠AEF∠∠DEG(ASA),∠EF=EG,∠AFE=∠EGC.又∠EF∠CE,∠CE垂直平分FG,∠∠CGF是等腰三角形.∠∠AFE=∠EGC=∠EFC.又∠∠A=∠FEC=90°,∠∠AEF∠∠ECF;(3)解:存在k∠AEF与∠BFC相似.理由:假设∠AEF与∠BFC相似,存在两种情况:∠当∠AFE=∠BCF,则有∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况不成立;∠当∠AFE=∠BFC,使得∠AEF与∠BFC相似,设BC=a,则AB=ka,∠∠AEF∠∠BCF,∠12 AF AEBF BC,∠AF=13ka,BF=23ka,∠∠AEF∠∠DCE,∠AE AFDC DE=,即113212kaaka a=,解得,k=.∠存在k=使得∠AEF与∠BFC相似.【点睛】本题考查了矩形的性质,相似三角形的判定及性质,全等三角形的判定与及性质,等腰三角形的判定及性质,采用分类讨论的思想是解决本题的关键.23.(1)见解析(2)四边形CEFG的面积为203.【分析】(1)根据题意和翻折的性质,可以得到∠BCE∠∠BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,∠BCE∠∠BFE,∠∠BEC=∠BEF,FE=CE,∠FG∠CE,∠∠FGE=∠CEB,∠∠FGE=∠FEG,∠FG=FE,∠FG=EC,∠四边形CEFG是平行四边形,又∠CE=FE,∠四边形CEFG是菱形;(2)解:∠矩形ABCD中,AB=6,AD=10,BC=BF,∠∠BAF=90°,AD=BC=BF=10,∠AF=8,∠DF=2,设EF=x ,则CE=x ,DE=6-x ,∠∠FDE=90°,∠22+(6-x )2=x 2,解得,x=103, ∠CE=103, ∠四边形CEFG 的面积是:CE•DF=103×2=203. 24.(1)239344y x x =-++,334y x =-+;(2)PAB S 最大值为6,点P 的坐标为(2,92);(3)E'A+23E'B【分析】(1)把点(-1,0),B (0,3)代入23y mx mx n =-+,即可求得m 的值,得到抛物线的解析式令0y =,求出抛物线与x 轴交点,根据待定系数法可以确定直线AB 的解析式;(2)设点P 的坐标为(a ,239344a a -++),则点N 的坐标为(a ,334a -+),利用PAB PBN PAN 12S S S PN OA =+=⨯,得到()2PAB 3262S a =--+,利用二次函数的性质即可求解;(3)在y 轴上 取一点M 使得OM′=43,构造相似三角形,可以证明AM′就是E'A+23E'B 的最小值.【详解】(1)∠抛物线23y mx mx n =-+(m≠0)与x 轴交于点(-1,0)与y 轴交于点B (0,3),则有303m m n n ++=⎧⎨=⎩, 解得:343m n ⎧=-⎪⎨⎪=⎩, ∠抛物线的解析式为:239344y x x =-++, 令0y =,得到2393044x x -++=, 解得:4x =或1-,∠A (4,0),B (0,3),设直线AB 解析式为y kx b =+,则403k b b +=⎧⎨=⎩, 解得343k b ⎧=-⎪⎨⎪=⎩,∠直线AB 解析式为334y x =-+;(2)如图,设点P 的坐标为(a ,239344a a -++),∠PE∠OA 交直线AB 于点N ,交x 轴于E ,∠点N 的坐标为(a ,334a -+), ∠PAB PBN PAN 111222S S S PN OE PN EA PN OA =+=⨯+⨯=⨯,∠2PAB 13933342444S a a a ⎛⎫=-+++-⨯ ⎪⎝⎭213933342444a a a ⎛⎫=-+++-⨯ ⎪⎝⎭()23262a =--+,∠302-<,∠当2a =时,PAB S 有最大值,最大值为6,此时点P 的坐标为(2,92);(3)如图中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∠OE′=2,OM′•OB=4343⨯=, ∠OE′2=OM′•OB , ∠O OB O O E M E =''', ∠∠BOE′=∠M′OE′,∠∠M′OE′∠∠E′OB , ∠O 2B OB 3M E E E ''=='', ∠M′E′=23BE′, ∠E'A+23E'B=AE′+E′M′=AM′,此时E'A+23E'B 最小(两点间线段最短,A 、M′、E′共线时),最小值=. 【点睛】本题属于二次函数综合题,考查了相似三角形的判定和性质、待定系数法、两点间线段最短等知识,第(3)问解题的关键是构造相似三角形,找到线段AM′就是E'A+23E'B 的最小值.25.(1)见解析(2)见解析【分析】(1)由SAS 证明AFD CEB ∆≅∆即可;(2)由(1)知AE CF =,AFD CEB ∆≅∆,则AF CE =,即可得出结论.(1)解:证明:四边形ABCD 是平行四边形,AB CD ∴=,AD BC =,B D ∠=∠,又E ,F 分别是AB ,CD 的中点,12AE BE AB ∴==,12CF DF CD ==,BE DF ∴=,AE CF =,在AFD ∆和CEB ∆中,AD CB D B DF BE =⎧⎪∠=∠⎨⎪=⎩,()AFD CEB SAS ∴∆≅∆; (2)解:由(1)知AE CF =,AFD CEB ∆≅∆,AF CE ∴=,∴四边形AECF 是平行四边形.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识,解题的关键是熟练掌握平行四边形的判定与性质.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式ky x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆=,24AOC k S ∆∴==;4y x ∴=;(2)解:0k >,∴函数y 的值在各自象限内随x 的增大而减小;0a >,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==, 4(,)A a a ∴,2(2,)B a a ; ()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。
北师大版数学九年级上册期末考试试卷含答案
北师大版数学九年级上册期末考试试卷含答案一、选择题(共20小题,每小题4分,共80分)1.已知函数f(x) = 2x + 5,则f(-3)的值是多少?A. 1B. -1C. -3D. 112.根据平行四边形的性质,以下说法正确的是:A. 其对角线相等B. 其对边平行且相等C. 其内角和为360°D. 其对边相等且对角线垂直3.已知a:b = 3:4,b:c = 4:5,则a:c = ?A. 12:20B. 15:12C. 12:15D. 15:204.在指数运算中,对于任意正数a和b,以下哪个等式成立?A. a^b = b^aB. (a^b)^c = a^(b+c)C. (a+b)^c = a^c + b^cD.(a*b)^c = a^c * b^c5.已知直线AB经过点C(2, 3),斜率为1/2,则直线AB的方程为:A. y = 2x - 1B. y = 2x + 1C. y = -2x + 1D. y = -2x - 16.若正方体的棱长为a,则其表面积为:A. 4a^2B. 5a^2C. 6a^2D. 8a^27.已知a + b = 7,a - b = 1,则a的值为多少?A. 3B. 4C. 5D. 68.如图,以B为圆心,BC为半径的圆与直线DE相切于点F,则∠BFC的度数为:(图略)9.已知集合A = {1, 2, 3, 4},B = {3, 4},C = {2, 4},则A ∩ (B ∪ C)等于:A. {2}B. {3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}10.解方程x^2 - 5x + 6 = 0的解为:A. x = 3或x = 2B. x = 3或x = -2C. x = -3或x = 2D. x = -3或x = -211.一件商品原价为500元,现在进行8折打折后再打9折,折后的价格为多少元?A. 360B. 365C. 400D. 44512.已知平行四边形ABCD,对角线AC的长为6 cm,对角线BD的长为8 cm,则平行四边形ABCD的面积为:A. 12 cm^2B. 20 cm^2C. 24 cm^2D. 30 cm^213.若sinα = 1/2,且α为第二象限角,则cosα的值为:A. -√3/2B. -1/2C. 1/2D. √3/214.若一个角的补角是30°,则这个角的度数为多少?A. 30°B. 60°C. 120°D. 150°15.已知一个圆的半径为5 cm,则其周长为多少?A. 10 cmB. 15 cmC. 20 cmD. 25 cm16.已知函数y = 2x^2 + 3x - 1,求其对应的图象在x轴上的截距。
北师大版九年级上册数学期末试卷及答案【完整版】
北师大版九年级上册数学期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<8.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A.44°B.40°C.39°D.38°9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.1910.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+=⎪⎝⎭____________.2.分解因式:3x-x=__________.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加__________m.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=__________cm .三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、C6、C7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、x (x+1)(x -1)3、30°或150°.4、-45、x=26、9三、解答题(本大题共6小题,共72分)1、x=12、(1)k ≤58;(2)k=﹣1.3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 112-),P 2(352,2),P 3,2),P 412-). 4、河宽为17米 5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
北师大版九年级上册数学期末试卷及答案
北师大版九年级上册数学期末试卷及答案一、选择题1.下列说法正确的是() A. 直角三角形的斜边比直角边长 B. 等腰直角三角形的斜边是直角边的倍数 C. 直角三角形两直角边互为倒数 D. 不等腰直角三角形的斜边比直角边长2.已知m∠BAC = 90°,下列结论错误的是()A. ∠BAC是锐角B. ∠BCA 是钝角C. ∠CAB是直角D. ∠ABC是锐角3.平面内有两个互不相交的直角三角形,它们两个直角边的长分别相等,那么它们的斜边长 A. 一定相等 B. 一定不等 C. 可能相等 D. 斜边决不相等…二、填空题1.直角三角形一边长为3cm,另一边长为4cm,则斜边长为______cm。
2.等腰直角三角形的直角边长为5m,则斜边长为______m。
3.已知∠ABC和∠ADC互为补角,且AB = 6cm,AD = 8cm,则∠ADA的度数为______°。
4.平面内的直线可以继续延长,直线外部可以继续延生,我们把直线还有延长线和延生线统称为______。
…三、解答题1.一辆汽车经过一座高塔时,汽车离塔底的距离是400m,从汽车到高塔的顶端的仰角是30°,求高塔的高度。
2.在某个平面上,已知一条直线l和一点A,求与直线l距离为4cm的A点的集合。
3.已知一个等腰直角三角形,直角边长为5cm,求这个等腰直角三角形的面积。
4.某个角的大小等于其补角的2倍,求该角的度数。
…四、答案1.选择题答案:A、C、B、…2.填空题答案:5cm、7m、48°、…3.解答题答案:高塔的高度是200m、直线距离为4cm的A点的集合是直线l两侧各4cm的区域、等腰直角三角形的面积是10cm²、… …以上是北师大版九年级上册数学期末试卷及答案,希望对你的学习有所帮助!。
北师大版九年级上册数学期末考试试卷附答案
北师大版九年级上册数学期末考试试题一、单选题1.下列方程中没有实数根的是( ) A .2220x x +=-B .2440x x -+=C .()20x x -=D .()213x -=2.矩形、菱形都具有的性质是( ) A .对角线互相垂直 B .对角线互相平分 C .对角线相等 D .对角线互相垂直且相等3.已知反比例函数ky x=经过点A ()3,2、B ()1,m -,则m 的值为( ) A .6-B .23-C .23D .64.身高1.6m 的小刚在阳光下的影长是1.2m ,在同一时刻,阳光下旗杆的影长是l5m ,则旗杆高为( ) A .14米B .16米C .18米D .20米5.在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之积为偶数的概率为( )A .14B .13C .12 D .346.如图,D 为△ABC 中AC 边上一点,则添加下列条件不能..判定△ABC△△BDC 的是A .2BC AC CD =⋅B .AB BDAC BC= C .△ABC=△BDC D .△A=△CBD 7.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为a ,最多需要正方体个数为b ,则a+b 的值为( )A .14B .15C .16D .178是一元二次方程20x x m -+=的一个根,则方程的另外一根为( )AB 352CD9.赵爽画的“弦图”(如图),体现了数学研究的继承和发展,弦图中四边形ABCD 与EFGH 均为正方形,若,AG BH CE DF a ====,AF BG CH DE b ====且正方形EFGH 的面积为正方形ABCD 的面积的一半,则a :b 的值为( )A.2 BC .2 D.2+10.如图,已知E ,F 分别为正方形ABCD 的边AB 、BC 的中点,AF 与DE 交于点M ,则下列结论:△AF△DE ;△AE EG =;△AM=23MF ;△14AEM ADM S S ∆∆=.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题 11.已知32a b =,则a b a b +-=_______.12.矩形ABCD 的对角线AC 和BD 相交于点O ,△ACB=40°,则△AOB=_________°. 13.一个不透明的袋子中放有若干个红球,小亮往其中放入10个黑球,并采用以下实验方式估算其数量:每次摸出一个小球记录下颜色并放回,实验数据如下表:则袋中原有红色小球的个数约为__________个.14.正比例函数12y x =-和反比例函数2ky x=的图象都经过点A(-1, 2),若12y y >,则x 的取值范围是__________________. 15.已知22320x x --=.则221x x+=_______. 16.如图,菱形ABCD 边长为4,△B=60°,14DE AD =,14BF BC =,连接EF 交菱形的对角线AC 于点O ,则图中阴影部分面积等于________________.17.如图,△ABC 中AB=AC ,A (0,8),C (6,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A→D→C ,点P 在AD 上的运动速度是在CD 上的53倍,要使整个运动时间最少,则点D 的坐标应为____________.18.如图,在平面直接坐标系中,将反比例函数()320y x x =>的图象绕坐标原点O 逆时针旋转45°得到的曲线l ,过点(A ,2B 的直线与曲线l 相交于点C 、D ,则sin△COD=___ .19.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题20.解方程:()(3x x x +=21.小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,按下任意一个开关均可打开对应的一盏电灯,因刚搬进新房不久,不熟悉情况. (1)若小明任意按下一个开关,则小明打开走廊灯的概率是多少?(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.22.如图,△ABC 中,△ACB=90°,CA=CB=D 、E 为AB 上两点,且△DCE=45°,(1)求证:△ACE△△BDC . (2)若AD=1,求DE 的长.23.如图,一次函数y=ax+b的图像与反比例函数kyx=的图像交于C、D两点,与x、y轴分别交于B、A两点,CE△x轴,且OB=4,CE=3,12 CE BE=(1)求一次函数的解析式和反比例函数的解析式.(2)求△OCD的面积.24.商场购进一批国产高档服装,进价为500元/件,售价为1000元/件时,每天可以出售40件,经市场调查发现每降价50元,一天可以多售出10件.(1)售价为850元时,当天的销售量为多少件?(2)如果每天的利润要比原来多4000元,并使顾客得到更大的优惠,问每件售价为多少元?25.如图,公路旁有两个高度相等的路灯AB、CD,小明上午上学时发现路灯AB在太阳光下的影子恰好落在路牌底部E处,他自己的影子恰好落在路灯CD的底部C处;晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在E处.(1)在图中画出小明的位置(用线段FG表示).(2)若上午上学时,高1米的木棒的影子为2米,小明身高为1.5米,他距离路牌底部E恰好2米,求路灯高.26.如图,四边形OABC 为正方形,反比例函数ky x=的图象过AB 上一点E ,BE=2,35AE OE =.(1)求k 的值.(2)反比例函数的图象与线段BC 交于点D ,直线y=ax+b 过点D 及线段AB 的中点F ,探究直线OF 与直线DF 的位置关系,并证明.(3)点P 是直线OF 上一点,当PD +PC 的值最小时,求点P 的坐标.27.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A 、B 、C 、D 四个等次,绘制成如图所示的不完整的统计图,请回答下列问题.(1)a = ,b = ;(2)请将条形统计图补充完整,并计算表示C 等次的扇形所对的圆心角的度数为 ; (3)学校决定从A 等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲乙两名男生同时被选中的概率.28.如图,矩形ABCD 中,点E 在边CD 上,将BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FGCD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若6,10AB AD ==,求四边形CEFG 的面积.参考答案1.A 【分析】分别计算四个方程的根的判别式的值,然后根据根的判别式的意义判断各方程根的情况即可.【详解】解:A .△2(2)4240=--⨯=-<,则方程没有实数解,所以选项符合题意; B .△2(4)440=--⨯=,则方程有两个相等的实数解,所以选项不符合题意;C .方程化为220x x -=,△2(2)4040=--⨯=>,则方程有两个不相等的实数解,所以选项不符合题意;D .方程化为2220x x --=,△2(2)4(2)120=--⨯-=>,则方程有两个不相等的实数解,所以选项不符合题意. 故选:A .【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程20(a 0)++=≠ax bx c 的根与△=-24b ac 有如下关系:当△0>时,方程有两个不相等的实数根;当△0=时,方程有两个相等的实数根;当△0<时,方程无实数根. 2.B 【分析】由矩形的性质和菱形的性质可直接求解.【详解】解:菱形的对角线互相垂直平分,矩形的对角线互相平分且相等, ∴矩形、菱形都具有的性质是对角线互相平分,故选:B .【点睛】本题考查了矩形的性质,菱形的性质,灵活运用这些性质解决问题是解题的关键.3.A 【分析】根据反比例函数图象上点的坐标的特征即可得出答案. 【详解】解:反比例函数ky x=经过点(3,2)A , 326k ∴=⨯=,6y x∴=, 将点(1,)B m -代入反比例函数解析式得:6m =-,故选:A .【点睛】本题主要考查了反比例函数图象上点的坐标的特征,明确同一反比例函数图象上的点的坐标符合=k xy 是解题的关键.4.D 【分析】利用同一时刻身高和影长之比等于旗杆与其影长之比列式计算即可. 【详解】解:设旗杆高为x 米,根据同一时刻身高和影长之比等于旗杆与其影长之比可得: 1.6 1.215x= ,解得:20x ,故旗杆高20米, 故选:D .【点睛】本题考查了相似三角形的应用,能够把实际问题抽象到相似三角形中,利用相似三角形的相似比列出方程计算出结果,是解决本题的关键.5.D 【分析】根据题意画出树状图,共有4种等可能的情况,数出其中两次摸出的数字之积为偶数的情况数,求出概率即可. 【详解】解:画树状图如下:△共有4种等可能的结果,两次摸出的数字之积为偶数的结果有3种,△两次摸出的数字之积为偶数的概率为34,故D 正确.故选:D .【点睛】本题主要考查了画树状图和列表求概率,根据题意画出树状图和列出表格是解题的关键.6.B 【分析】由相似三角形的判定方法依次进行判断,即可得到答案. 【详解】解:△BC 2=AC•CD , △BC CDAC BC=, 又△△C=△C ,△△ABC△△BDC ,故选A 不合题意, △△ABC=△BDC ,△C=△C , △△ABC△△BDC ,故选C 不合题意, △△A=△CBD ,△C=△C ,△△ABC△△BDC ,故选D 不合题意, 故选:B .【点睛】本题考查了相似三角形的判定,掌握相似三角形判定方法是关键.7.C 【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数. 【详解】解:由俯视图可得最底层有5个小正方体,由主视图可得第一列和第三列最少有2个正方体,最多有4个正方体, 那么最少需要527+=个正方体,即7a =. 最多需要549+=个正方体,即9b =. 则7916a b +=+=. 故选:C .【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解题的关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8.C 【分析】利用一元二次方程根与系数的关系求出两根之和,再将已知解代入求出另一解即可.【详解】解:x =是一元二次方程20x x m -+=的一个根,设方程的另一个根为n , △两根的和为:111b a --=-=,1n =,解得:n = 故选:C .【点睛】本题考查一元二次方程根与系数的关系,一次一元二次方程的解,数量掌握根与系数的关系式解决本题的关键.9.D 【分析】根据题意可得正方形EFGH 的面积为2()a b -,正方形ABCD 的面积为22()a b +,然后列出方程求解即可.【详解】解:AG BH CE DF a ====,AF BG CH DE b ====,∴正方形EFGH 的面积为2()a b -,正方形ABCD 的面积为22()a b +,正方形EFGH 的面积为正方形ABCD 的面积的一半,2221()()2a b a b ∴-=+,2240a ab b ∴-+=,∴40a bb a-+=, 设a x b=, 140x x∴-+=, 2410x x ∴-+=,解得12x =22x =,0a b >>,∴1ab>,:a b ∴的值为2故选:D.【点睛】本题考查了勾股定理的应用,正方形的面积,一元二次方程,解题的关键是掌握勾股定理.10.B【分析】先由E,F分别为正方形ABCD的边AB、BC的中点得到AE=BE=BF、△DAE=△ABF=90°、AD=AB,从而得证△DAE△△ABF,进而利用全等三角形的性质得到△BAM+△AEM=90°判定△;假设AE=EG,则AE=BE=EG,则△EBG=△EGB,△EAG=△EGA,从而推出△EAG=45°判定△;由BF=AE=BE得到,然后证明△AEM△△AFB,进而利用相似三角形的性质得到AM=23MF判定△;先证明△AEM△△DAM,然后利用AD=2AE得到14AEMADMSS∆∆=判定△.【详解】解:△E,F分别为正方形ABCD的边AB、BC的中点,△AE=BE=BF,△DAE=△ABF=90°,AD=AB,△△DAE△△ABF(SAS),△△BAF=△ADE,△△ADE+△AED=90°,△△BAM+△AEM=90°,△△AME=90°,故△正确,符合题意;假设AE=EG,则AE=BE=EG,△△EBG=△EGB,△EAG=△EGA,△四边形ABCD是正方形,△△ABD=45°,△△EBG=△EGB=45°,△△BEG=△EAG+△EGA=90°,△△EAG=45°,又△△EAG≠45°,△AE≠EG,故△错误,不符合题意△BF=AE=BE,AB=2AE,△AF =,△△EAM+△AEM=90°,△BAF+△AFB=90°,△△AEM=△AFB ,△△AME=△ABF=90°,△△AEM△△AFB , △AM AE EM AB AF BF==,即2AM AE ,, △MF=AF --AE , △AM=23MF ,故△正确,符合题意;△△AEM+△EAM=90°,△EAM+△DAM=90°,△△AEM=△DAM ,△△EMA=△AMD=90°,△△AEM△△DAM , △2211()()24AEM ADM S AE S AD ∆∆===,故△正确,符合题意; 故选:B .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理,解题的关键是熟知相关知识.11.5【分析】根据比例设a=3k ,b=2k ,然后代入比例式进行计算即可得解.【详解】解:△32a b =, △设a=3k ,b=2k , 则32532a b k k a b k k++==--, 故答案为:5.【点睛】本题考查了比例的性质,利用“设k 法”求解更简便.12.80【分析】根据矩形的对角线互相平分且相等可得OB OC =,再根据等边对等角可得OBC ACB ∠=∠,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:矩形ABCD 的对角线AC ,BD 相交于点O ,OB OC ∴=,40OBC ACB ∴∠=∠=︒,404080AOB OBC ACB ∴∠=∠+∠=︒+︒=︒.故答案为:80.【点睛】本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质,解题的关键是熟记各性质.13.40【分析】先根据表格中的数据求出摸出红球概率,设袋中原有红色小球的个数为x ,根据求概率公式列出方程求解即可. 【详解】解:由表可知,摸出红球的概率约为45, 设袋中原有红色小球的个数为x , 根据题意,得:4105x x , 解得:x=40,经检验,x=40是所列分式方程的解,故设袋中原有红色小球的个数为40,故答案为40.【点睛】本题考查用频率估计概率、简单的概率计算、解分式方程,求得摸出红球的概率是解答的概率.14.1x <-或01x <<##0<x<1或x<-1【分析】先利用待定系数法求出反比例函数的解析式,再画出两个函数的图象,然后根据正比例函数和反比例函数的图象与性质可得两个函数图象的另一个交点的坐标为(1,2)-,据此结合函数图象即可得出答案.【详解】解:将点(1,2)A -代入反比例函数2k y x =得:122k =-⨯=-, 则反比例函数的解析式为22y x =-, 画出两个函数的图象如下:由函数图象的对称性得:正比例函数12y x =-和反比例函数22y x=-的图象的另一个交点的坐标为(1,2)-,所以结合函数图象得:若12y y >,则x 的取值范围是1x <-或01x <<,故答案为:1x <-或01x <<.【点睛】本题考查了正比例函数和反比例函数的综合,熟练掌握正比例函数和反比例函数的图象与性质是解题关键.15.174【分析】根据22320x x --=.可得2223x x -= ,且0x ≠ ,从而得到132x x -=,再利用完全平方公式,即可求解. 【详解】解:△22320x x --=.△2223x x -= ,且0x ≠ , △223x x -= , △132x x -=, △2213924x x ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭, 即221924x x +-= , △221174x x += . 故答案为:174【点睛】本题主要考查了分式的混合运算,完全平方公式,根据题意得到132x x -=是解题的关键.16AD CD =,//AD BC ,60ABC ADC ∠=∠=︒,由“AAS ”可证AEO CFO ∆≅∆,可得AO CO =,由面积的和差关系可求解.【详解】解:连接CE ,四边形ABCD 是菱形,AD CD ∴=,//AD BC ,60ABC ADC ∠=∠=︒,ADC ∴∆是等边三角形,DAC ACB ∠=∠,24ADC S AD ∆∴=⨯=, 14DE AD =,14BF BC =,AE CF ∴=,在AEO ∆和CFO ∆中,AOE COFEAC BCA AE CF∠=∠⎧⎪∠=∠⎨⎪=⎩,()AEO CFO AAS ∴∆≅∆,AO CO ∴=, 14DE AD =,14CDE ADC S S ∆∆∴==ACE S ∆=,AO CO =,2AOE COE S S ∆∆∴==,∴阴影部分面积=【点睛】本题考查了菱形的性质,等边三角形的性质,灵活运用这些性质解决问题是解题的关键.17.90,2⎛⎫ ⎪⎝⎭【分析】过B 点作BH AC ⊥交于H 点,交AO 于D 点,连接CD ,设P 点的运动时间为t ,在CD 上的运动速度为v ,1()53AD t CD v =+,只需53ADCD +最小即可,再证明ADH ACO ∆∆∽,可得53ADDH =,则当B 、D 、H 点三点共线时,此时t 有最小值,再由BDO ADH ∆∆∽,求出OD 即可求坐标.【详解】解:过B 点作BH AC ⊥交于H 点,交AO 于D 点,连接CD ,AB AC =,BD CD ∴=,设P 点的运动时间为t ,在CD 上的运动速度为v ,点P 在AD 上的运动速度是在CD 上的53倍,1()5533ADCD AD t CD v v v ∴=+=+,90AHD AOC ∠=∠=︒,ADH ACO ∴∆∆∽, ∴ADDHAC CO =,(0,8)A ,(6,0)C ,6OC ∴=,8OA =,10AC ∴=, ∴106AD DH=,53ADDH ∴=,1()t DH CD v∴=+, 当B 、D 、H 点三点共线时,1t BH v=⨯,此时t 有最小值, BDO ADH ∠=∠,DBO OAC ∴∠=∠,BDO ADH ∴∆∆∽, ∴DO OC BO AO=,即668DO =, 92DO ∴=, 9(0,)2D ∴, 故答案为:(90,2). 【点睛】本题考查轴对称求最短距离,三角形相似的判定及性质、解题的关键是熟练掌握轴对称求最短距离和胡不归求最短距离的方法.18【分析】由题(A,(B ,可得OA△OB ,建立如图新的坐标系,OB 为x′轴,OA 为y′轴,利用方程组求出C 、D 的坐标,根据勾股定理求得OC 、OD 的长,根据S △OCD =S △OBC -S △OBD 计算求得△OCD 的面积,根据三角形面积公式求得CE 的长,然后解直角三角形即可求得sin△COD 的值.【详解】△((A B ,, △A ,,△222AO +BO =AB ,△OA△OB ,建立如图新的坐标系,OB 为x′轴,OA 为y′轴.在新的坐标系中,A(0,2),B(4,0),△直线AB解析式为y′=-12x′+2,由1'223'2y xyx⎧=-+⎪⎪⎨⎪=⎩'⎪,解得'13'2xy=⎧⎪⎨=⎪⎩或'31'2xy=⎧⎪⎨=⎪⎩,△C(1,32),D(3,12),△S△OCD=S△OBC-S△OBD=1311442 2222⨯⨯-⨯⨯=,△C(1,32),D(3,12),作CE△OD于E,△S△OCD=12OD•CE=2,【点睛】本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.19.60.【分析】设△OAC=x,△CAB=y,根据等腰三角形的性质,则△OCA=x,△OBA=x+y,△OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设△OAC=x ,△CAB=y ,△OA=OC ,△△OCA=x ,△OA=OB ,△△OBA=x+y ,△OC=OB ,△△OBC=x+30°,△30ACB ∠=︒,△△CAB+△OBA+△OBC=150°,△y+x+y+ x+30°=150°,△2(x+y)=120°,△△AOB=180°-2△OBA=180°-2(x+y),△△AOB=180°-120°=60°,故答案为:60.【点睛】本题考查了等腰三角形的性质,三角形内角和定理,熟练应用性质,合理引进未知数,采用设而不求的思想计算是解题的关键.20.1x =22x =-【分析】先把等号右边的项移到等号左边,再利用因式分解法求解.【详解】解:(3)((0x x x +--=,(3)1]0x x -+-=.即(2)0x x +=.△0x =或20x +=,△1x 22x =-.21.(1)13;(2)13.【分析】(1)直接利用概率公式求解,即可求得答案; (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与正好客厅灯和走廊灯同时亮的情况,再利用概率公式即可求得答案.【详解】解:(1)小明任意按下一个开关,正好楼梯灯亮的概率是:13;, (2)画树状图得:△共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,△正好客厅灯和走廊灯同时亮的概率是:2163=. 22.(1)见解析 (2)53DE = 【分析】(1)由等腰直角三角形的性质得出A B ∠=∠,可证明ACE BDC ∽; (2)由勾股定理求出4AB =,由相似三角形的性质得出AC AE BD BC=,可求出DE 的长,则可得出答案.(1)解:证明:90ACB ∠=︒,CA CB =,1(18090)452A B ∴∠=∠=︒-︒=︒, 又45CDB A ACD ACD ACE ACD DCE ∠=∠+∠=︒+∠=∠=∠+∠,ACE BDC ∴∽;(2)解:由勾股定理得4AB =,设DE 长为x ,1AD =,3BD ∴=,1AE x =+,ACE BDC ∽,∴AC AE BD BC=,=, 解得53x =, 即53DE =. 23.(1)一次函数的解析式为122y x =-+,反比例函数的解析式为6y x =- (2)8【分析】(1)根据已知条件求出B 、C 点坐标,用待定系数法求出直线AB 和反比例函数的解析式;(2)由一次函数解析式求得A 的坐标,然后联立一次函数的解析式和反比例的函数解析式可得交点D 的坐标,从而根据三角形面积公式求解.(1) 解:12CE BE =,3CE =, 26BE CE ∴==,4OB =2OE BE OB ∴=-=,(2,3)C ∴-,(4,0)B将(2,3)C -代入k y x=得:236k =-⨯=-; 将(2,3)C -,(4,0)B 代入y ax b =+得2340a b a b -+=⎧⎨+=⎩,解得122a b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为122y x =-+,反比例函数的解析式为6y x =-; (2) 解:122y x =-+ (0,2)A ∴ 由1226y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩,解得1123x y =-⎧⎨=⎩,2261x y =⎧⎨=-⎩,(2,3)C -(6,1)D ∴-, ∴114143822COD BOD BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=. 24.(1)售价为850元时,当天的销售量为70件(2)800元【分析】(1)降低50元增加10件,可知若售价为850元时,降低(1000850)50-÷元,进而即可列出算式求解.(2)利润=售价-进价,根据一件商品的利润乘以销售量得到总利润,列出方程求解即可.(1)解:40(1000850)501070+-÷⨯=(件).答:售价为850元时,当天的销售量为70件;(2)解:设每件服装售价x 元,10(500)[(40(1000)]40(1000500)400050x x -⨯+-=⨯-+, 化简得2170072000x x -+=,解得:1800x =,2900x =,使顾客得到尽可能大的实惠,800x ∴=,答:每件应定价800元.25.(1)见解析(2)路灯高3.75米【分析】(1)作出太阳光线BE ,过点C 作BE 的平行线,与DE 的交点即为小明的位置; (2)易得小明的影长,利用EFG EDC ∆∆∽可得路灯CD 的长度.(1)解:如图,FG 就是所求作的线段.(2)上午上学时,高1米的木棒的影子为2米,23CG FG∴==,//FG CD,EFG D∴∠=∠,EGF ECD∠=∠,EFG EDC∴∆∆∽,∴FG EGCD EC=,∴1.525CD=,解得 3.75CD=,∴路灯高3.75米.【点睛】综合考查了中心投影和平行投影的运用,注意平行投影的光线是平行的;用到的知识点为:在相同时间段,垂直于地面的物高与影长是成比例的;两三角形相似,对应边成比例.26.(1)48(2)OF△DF,见解析(3)4080, 1313⎛⎫ ⎪⎝⎭【分析】(1)设AE=3x,则OE=5x,由勾股定理得AO=4x,则3x+2=4x,求出x即可求点E坐标为(6,8),再由E点坐标即可求k 值;(2)求出D(8,6),证明△AOF△△BFD,则△AOF=△BFD,可得△OFD=180°-(△AFO+△BFD)=90°,即可得到OF△DF;(3)延长DF交y轴于点G,连接CG交OF于点P,则点P为所求作点,证明△AFG△△BFD(AAS),得到OF为线段DG的垂直平分线,C(8,0),G(0,10),求出直线CG解析式为y=-54x+10,直线OF为y=2x,联立,即可求出点P的坐标.(1)证明:△四边形OABC是正方形,△AO=AB,△OAB=90°,△35 AEOE=,设AE=3x,则OE=5x,由勾股定理得AO=4x,△3x+2=4x,△x=2,△AE=3x=6,AO=4x=8,△点E坐标为(6,8),△k=6×8=48;(2)解:OF△DF,理由如下:将x=8代入y=48x得y=6,△D(8,6),△BD=BC-CD=8-6=2,△点F是线段AB的中点,△AF=BF=4,△12AF BDAO BF==,△OAF=△FBD=90°,△△AOF△△BFD,△△AOF=△BFD,△△AFO+△BFD=△AFO+△AOF=90°,△△OFD=180°-(△AFO+△BFD)=90°,△OF△DF;(3)(3)延长DF交y轴于点G,连接CG交OF于点P,则点P为所求作点,△四边形OABC 为正方形,△AFG=△BFD ,AF=BF ,△△AFG△△BFD (AAS ),△AG=BD=2,GF=DF ,由(2)得OF△DF ,△OF 为线段DG 的垂直平分线,△PD +PC 的最小值=PG +PC=CG ,△OC=OA=8,△C (8,0),G (0,10),设直线CG 解析式为y=mx+n ,代入C (8,0),G (0,10),得8010m n n +=⎧⎨=⎩,解得5410m n ⎧=-⎪⎨⎪=⎩, △5104y x =-+ 设直线OF 为y=ax ,代入F (4,8),△a=2,△y=2x ,联立直线OF 、CG 得25104y x y x =⎧⎪⎨=-+⎪⎩,解得40138013x y ⎧=⎪⎪⎨⎪=⎪⎩, △点P 的坐标为(4013,8013). 【点睛】本题是反比例函数的综合题,熟练掌握反比例函数的图象及性质,三角形相似的判定与性质,线段垂直平分线的性质是解题的关键.27.(1)2,45;(2)条形统计图补充见解析;72°;(3)甲、乙两名男生同时被选中的概率为16.【分析】(1)用A等次的人数除以它所占的百分比得到调查的总人数,再分别求出a和B等次的人数,然后计算出b的值;(2)先补全条形统计图,然后用360°乘以C等次所占的百分比得到C等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解.【详解】(1)△被调查的总人数为12÷30%=40(人),△a=40×5%=2;b%=40128240---×100%=45%,即b=45;故答案为:2、45;(2)表示C等次的扇形所对的圆心角的度数为360°×840=72°,B等次人数为40﹣12﹣8﹣2=18(人),条形统计图补充为:故答案为:72°;(3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2,所以甲、乙两名男生同时被选中的概率为21 126=.【点睛】本题考查了条形统计图和扇形统计图,概率的求法,解题关键是准确从统计图中获取信息,熟练运用树状图求概率.28.(1)详见解析;(2)203【分析】(1)根据题意可得BCE BFE ≌,因此可得FG EC =,又FG CE ,则可得四边形CEFG 是平行四边形,再根据,CE FE =可得四边形CEFG 是菱形.(2)设EF x =,则,6CE x DE x ==-,再根据勾股定理可得x 的值,进而计算出四边形CEFG 的面积.【详解】(1)证明:由题意可得,BCE BFE ∴≌,△,BEC BEF FE CE ∠=∠=,△FG CE ,△FGE CEB ∠=∠,△FGE FEG ∠=∠,△FG FE =,△FG EC =,△四边形CEFG 是平行四边形,又△,CE FE =△四边形CEFG 是菱形;(2)△矩形ABCD 中,6,10,AB AD BC BF === ,△90,10BAF AD BC BF ∠=︒===,△8AF =,△2DF =,设EF x =,则,6CE x DE x ==-,△90FDE ∠=︒,△()22226x x +-=, 解得,103x =, △103CE =, △四边形CEFG 的面积是:1020233CE DF ⋅=⨯=.。
北师大版数学九年级上册期末考试试卷含答案
北师大版数学九年级上册期末考试试题一、选择题(本大题共14个小题,每题2分,共28分)1.□ABCD中,AC、BD是两条对角线,如果添加一个条件,可推出□ABCD是菱形,那么这个条件可以是()A.AB=CD B.AC=BD C.AC⊥BD D.AB⊥BD2.下列四组线段中,不能成比例的是( )A.a=3,b=6,c=2,d=4B.a=1,b=3,c=2,d=6C.a=4,b=6,c=5,d=10D.a=2,b=5,c=4,d=103.下列相似图形不是位似图形的是( )A.B.C.D.4.用配方法解一元二次方程22310x x--=,配方正确的是( )A.231324x⎛⎫-=⎪⎝⎭B.23142x⎛⎫-=⎪⎝⎭C.2317416x⎛⎫-=⎪⎝⎭D.2131124x⎛⎫-=⎪⎝⎭5.如图,在平行四边形纸片ABCD中,点O为对角线AC与BD的交点,若随机向平行四边形纸片ABCD内投一粒米,则米粒落在图中阴影部分的概率为()A.12B.13C.14D.166.如图,要使ABC ACD ∆∆,需补充的条件不能是( )A .ADC ACB ∠=∠B .ABC ACD ∠=∠ C .AD AC AC AB = D .AD BC AC DC ⋅=⋅7.若反比例函数21k y x +=的图象位于第一、三象限,则k 的取值可以是( ) A .﹣3 B .﹣2 C .﹣1 D .08.如图,直线12//l l ,:2:3AF FB =,:2:1BC CD =,则:AE EC 是( )A .1:2B .1:4C .2:1D .3:29.在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同.小刚每次换出一个球后放回,通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是( )A .8个B .15个C .12个D .16个10.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长 D .线段DF 的长11.如图,在四边形ABCD 中,//AD BC ,DE BC ⊥,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,2ACD ACB ∠=∠.若3DG =,1EC =,则DE 的长为( )AB C D12.如图1,有一张长32cm,宽16cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2所示的有盖纸盒.若纸盒的底面积是2130cm,则纸盒的高为( )A.2cm B.2.5cm C.3cm D.4cm13.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=bx在同一坐标系中的图象的形状大致是( )A.B.C.D.14.如图,四边形ABCD为菱形,BF⊥AC,DF交AC的延长线于点E,交BF于点F,且CE:AC=1:2.则下列结论:⊥⊥ABE⊥⊥ADE;⊥⊥CBE=⊥CDF;⊥DE=FE;⊥S⊥BCE:S四边形ABFD =1:10.其中正确结论的个数是()A .1个B .2个C .3个D .4个二、填空题(本题共3个小题;每个小题4分,共12分)15.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有__________个16.方程()()130x x --=的解是__________.17.已知在Rt ABC ∆中,90,3,4C BC cm AC cm ︒∠===,点,M N 分别在边AC AB 、上,将ABC ∆沿直线MN 对折后,点A 正好落在对边BC 上,且折痕MN 截ABC ∆所成的小三角形(即对折后的重叠部分)与ABC ∆相似,则折折痕MN =__________cm三、解答题(本题共8道题,18-20每题6分,21-245每题8分,25题10分,满分60分) 18.我们定义一种关于“⊥”的新运算:a ⊥b ab a b =+-,试根据条件回答问题.(1)计算:2⊥()=3-_____;(2)若x ⊥()11x +=,求x 的值.19.己知:如图,点A 在反比例函数()0k y x x =>的图像上,且点A 的横坐标为2,作AH 垂直于x 轴,垂足为点H ,3AOHS =.(1)求AH 的长;(2)求k 的值;(3)若()11,M x y 、()22,N x y 在该函数图像上,当120x x <<时,比较1y 与2y 的大小关系.20.2019年,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______;扇形统计图中的圆心角 等于______;补全统计直方图.(2)被抽取的学生还要进行一次50米跑测试,每4人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.21.一批发市场某服装批发价为240元/件.为拉动消费,该批发市场规定:当批发数量超过10件时,给予降价优惠,但批发价不得低于150元/件.经市场调查发现,优惠时批发价y(元/件)与x(件)之间成一次函数关系,当批发数量为15件时,批发价为210元/件;当批发数量为22件时,批发价为168元/件.(1)求批发价y(元/件)与x(件)之间的一次函数表达式;(2)在该市场降价优惠期间,某顾客一次性支付了3600元,求该顾客批发了多少件服装?22.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG=6时,求⊥FCG的面积;(3)求⊥FCG的面积的最小值.23.如图是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)在小亮由B沿OB所在的方向行走的过程中,他在地面上的影子的变化情况为______;(2)请你在图中画出小亮站在AB处的影子;(3)当小亮离开灯杆的距离 4.2OB m =时,身高(AB )为1.6m 的小亮的影长为1.6m ,问当小亮离开灯杆的距离6OD m =时,小亮的影长是多少m ?24.饮水机中原有水的温度为20⊥,通电开机后,饮水机自动开始加热,此过程中水温y (⊥)与开机时间x (分)满足一次函数关系,当加热到100⊥时自动停止加热,随后水温开始下降,此过程中水温y (⊥)与开机时间x (分)成反比例关系,当水温降至20⊥时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当0≤x <8时,求水温y (⊥)与开机时间x (分)的函数关系式.(2)求图中t 的值;(3)若在通电开机后即外出散步,请你预测散步42分钟回到家时,饮水机内的温度约为多少⊥?25.如图所示,在⊥ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,设运动时间为x 秒.(1)当x 为何值时,PQ //BC ;(2)当13BCQABC S S ∆∆=时,求S ⊥BPQ :S ⊥ABC 的值;(3)⊥APQ 能否与⊥CQB 相似?若能,求出时间x 的值;若不能,说明理由.答案一、选择题1.C.2.C .3.D .4.C.5.C.6.D.7.D .8.C .9.B . 10.B.11.C .12.C .13.C .14.D .二、填空题15.516.11x =,23x =17.32或158.三、解答题18.解:(1)根据题中的新定义得:2⊥()()36231-=-+--=-; 故答案为: 1-;(2)根据题中的新定义得:x ⊥()()()111x x x x x +=++-+=21x x +- ⊥21x x +-=1⊥220x x +-=⊥(2)(1)0x x +-=⊥122,1x x =-=故答案是:-2或1.19.解:(1)⊥点A 的横坐标为2,⊥OH=2⊥3AOH S = ⊥12OH·AH=3解得:AH=3(2)⊥OH=2,AH=3⊥点A 的坐标为(2,3)将点A 的坐标代入ky x =中,得32k=解得:k=6(3)⊥k=6>0⊥反比例函数在第一象限内,y 随x 的增大而减小 ⊥()11,M x y 、()22,N x y 在该函数图像上,且120x x << ⊥1y >2y .20.(1)34-小时的人数有6人,占总人数20%, ⊥总人数有:620÷%30=(人),23-小时的人数有:30376212----=(人), 占总人数为:1210030⨯%40=%,36040α=︒⨯%144=︒.补全直方图如下:;(2)列表法:122P ==.21.解:(1)根据题意,则设一次函数的解析式为:y kx b =+,⊥1521022168k b k b +=⎧⎨+=⎩,解得:6300k b =-⎧⎨=⎩,⊥6300y x =-+;(2)根据题意,则可列方程:(6300)3600x x -+=, 解得:1220,30x x ==当20x 时,6300180x -+=>150当30x =时,6300120x -+=<150,不合题意,舍去 答:该顾客批发了20件服装.22.解:(1)⊥四边形EFGH 为正方形,⊥HG=HE ,⊥EAH=⊥D=90°,⊥⊥DHG+⊥AHE=90°,⊥DHG+⊥DGH=90°,⊥⊥DGH=⊥AHE ,⊥⊥AHE⊥⊥DGH(AAS),⊥DG=AH=2;(2)过F 作FM⊥DC ,交DC 延长线于M ,连接GE ,⊥AB⊥CD,⊥⊥AEG=⊥MGE,⊥HE⊥GF,⊥⊥HEG=⊥FGE,⊥⊥AEH=⊥MGF,在⊥AHE和⊥MFG中,⊥A=⊥M=90°,HE=FG,⊥⊥AHE⊥⊥MFG(AAS),⊥FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此S⊥FCG=12×FM×GC=12×2×(7-6)=1;(3)设DG=x,则由(2)得,S⊥FCG=7-x,在⊥AHE中,AE≤AB=7,⊥HE2≤53,⊥x2+16≤53,⊥x≤37,⊥S⊥FCG的最小值为7-37,此时DG=37,⊥当DG=37时,⊥FCG的面积最小为(7-37).23. (1)因为光是沿直线传播的,所以当小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE 即为所求(3)先设OP=x,则当OB=4.2米时,BE=1.6米, ⊥ 1.61.6, 4.2 1.6ABBEOP OE x ==+即⊥x=5.8米当OD=6米时,设小亮的影长是y 米, ⊥DFCDDF OD OP =+ ⊥ 1.66 5.8yy =+ y=167 (米) 即小亮的影长是167米。
(必刷题)北师大版九年级上册数学期末测试卷及含答案
北师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B,C不重合),连结AE,作EF⊥AE交正方形的外角∠DCG的平分线于点F,设BE=x,△ECF的面积为y,下列图象中,能大致表示y与x的函数关系的是()A. B. C.D.2、沿一张矩形纸较长两边中点将纸一分为二,所得两张矩形纸与原来的矩形纸相似,那么原来那张纸的长和宽的比是()A. B. C.2:1 D.3:13、如图,Rt△ABC内接于⊙O,AB=3,BC=4,点D为的中点,连结AD与BC 相交于点E,则DE:AE等于().A.3:4B.1:3C.2:3D.2:54、如图,在ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB 的面积比为()A. B. C. D.5、将一个矩形纸片ABCD沿AD和BC的中点的连线对折,要使矩形DMNC与原矩形相似,则原矩形的长和宽的比应为().A.2:1B. :1C. :1D.1:16、如图,已知⊙O是△ABC的外接圆,AB=AC,D是直线BC上一点,直线AD交⊙O于点E,AE=9,DE=3,则AB的长等于()A.7B.C.D.7、如图,AD∥BE∥CF,直线m,n与这三条平行线分别交于点A、B、C和点D、E、F,已知AB=5,BC=10,DE=4,则DF的长为()A.12.5B.12C.8D.48、如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m,旗杆底部与平面镜的水平距离为16m.若小明的眼睛与地面距离为1.5m,则旗杆的高度为(单位:m)()A. B.9 C.12 D.9、由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的左视图为()A. B. C. D.10、如图,平面直角坐标系xOy中,线段BC∥x轴、线段AB∥y轴,点B坐标为(4,3),反比例函数y=(x>0)的图像与线段AB交于点D,与线段BC 交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,则点B'的纵坐标是()A. B. C. D.11、如图,在△ABC中,点D,E分别在边BA,CA的延长线上,=2,那么下列条件中能判断DE∥BC的是()A. B. C. D.12、图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过点C,M为EF的中点,则下列结论正确的是( )A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,BE•DF 的值增大D.当x变化时,四边形BCDA的面积不变13、下列说法不一定正确的是()A.所有的等边三角形都相似B.有一个角是100°的等腰三角形相似 C.所有的正方形都相似 D.所有的矩形都相似14、在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似()A.①处B.②处C.③处D.④处15、如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD的各边上,EF∥AC∥HG,EH∥BD∥FG,则四边形EFGH的周长是()A. B.13 C. D.二、填空题(共10题,共计30分)16、在正方形ABCD中,点E为BC边上一点且CE=2BE,点F为对角线BD上一点且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,连结CH、CF,若HG=2cm,则△CHF的面积是________cm2.17、如图,正方形ABCD中,P,Q是BC边上的三等分点,连接AQ、DP交于点R.若正方形ABCD的面积为144cm2,则△PQR的面积为________cm2.18、篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,一共打45场比赛.设有个球队参赛,根据题意,所列方程为________.19、地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而________(增大、变小)20、菱形ABCD中,AE⊥BC于E,交BD于F点,下列结论:(1)BF为∠ABE的角平分线;(2)DF=2BF;(3)2AB2=DF•DB;(4)sin∠BAE= .其中正确的结论为________(填序号)21、如图,已知矩形纸片ABCD中,AB=1,剪去正方形ABEF,得到的矩形ECDF 与矩形ABCD相似,则AD的长为________.22、如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A 的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为________.23、如图,△ABC,∠ACB=90°,点D,E分别在AB,BC上,AC=AD,∠CDE=45°,CD与AE交于点F,若∠AEC=∠DEB,CE= ,则CF=________24、如图,在正方形网格中,∠1+∠2+∠3=________度.25、若点P1(﹣1,m),P2(﹣2,n)在反比例函数()的图象上,则m________n.(填“>”,“<”或“=”)三、解答题(共5题,共计25分)26、解方程:27、若方程(m-2) +(3-m)x-2=0是关于x的一元二次方程,试求代数式m2+2m-4的值.28、解方程:x2+5x+3=0.29、如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,S△DEF ∶S△ABF=4∶25,求DE∶EC的值.30、参加足球联赛的每两队之间都要进行一场比赛,共要比赛28场,共有多少个队参加足球联赛?参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、D5、C6、D7、B8、C9、B10、B11、D12、D13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、</div>22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
北师大版九年级上册数学期末考试卷及答案【必考题】
北师大版九年级上册数学期末考试卷及答案【必考题】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为()A.2±D.2±B.2C.22.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x+4)2+7C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣253.已知m=4+3,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<64.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.已知正多边形的一个外角为36°,则该正多边形的边数为(). A.12 B.10 C.8 D.66.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.22﹣2 C.22+2 D.227.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A →B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A .B .C .D .8.如图,AB 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________. 2.分解因式:34x x -=________.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=+.3.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、B6、B7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、x(x+2)(x﹣2).3、x≥-3且x≠24、425、12.6、454353 x yx y+=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、2x=2.3、详略.4、(1)略;(2)78°.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)4元或6元;(2)九折.。
北师大版九年级数学上册期末考试及答案【完整】
北师大版九年级数学上册期末考试及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与 )A B C D 2.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k ≠0C .k ≥﹣1且k ≠0D .k >﹣1且k ≠07.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .9.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.如图,点A ,B 在双曲线y=3x (x >0)上,点C 在双曲线y=1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC=BC ,则AB 等于( )A 2B .2C .4D .2二、填空题(本大题共6小题,每小题3分,共18分)12712.2.因式分解:3269a a a -+=_________.3.若式子x 2-在实数范围内有意义,则x 的取值范围是__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:2211(1)m m m m +--÷,其中3.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、A5、D6、D7、A8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)12、2(3)a a -3、x 2≥4、﹣2<x <25、40°6、10三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、33、(1)相切,略;(2).4、(1)略;(2)45°;(3)略.5、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。
北师大版九年级上学期数学《期末测试卷》及答案
A.25°B.50°C.65°D.75°
[答案]C
[解析]
[分析]
根据圆周角定理得出∠AOC=2∠ABC,求出∠AOC=50°,再根据等腰三角形的性质和三角形内角和定理求出即可.
[详解]解:∵根据圆周角定理得:∠AOC=2∠ABC,
∵∠ABC+∠AOC=75°,
∴∠AOC= ×75°=A= (180°﹣∠AOC)=65°,
故选C.
[点睛]本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识点,能求出∠AOC是解此题的关键.
5.如图,线段AB两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的 后,得到线段CD,则点C的坐标为()
16.如图,抛物线y=﹣ (x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则 的最大值为_______.
三.解答题
17.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.
24.已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F
(1)如图1,求证:BD平分∠ADF;
(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;
(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3 ,DN=9.求sin∠ADB的值.
答案与解析
一.选择题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学第三次阶段性检测题
一、选择题( 每题3分共24分)
1、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化 2.方程 x (x +3)= 0的根是( ) A .x =0 B .x =-3 C .x 1=0,x 2 =3 D .x 1=0,x 2 =-3 3.下列命题中,不正确...的是( ) A .对角线相等的平行四边形是矩形. B .有一个角为60°的等腰三角形是等边三角形. C .直角三角形斜边上的高等于斜边的一半. D .正方形的两条对角线相等且互相垂直平分. 4.下列函数中,属于反比例函数的是( )
A .2x y =
B .1
2y x = C .23y x =+ D .223y x =+ 5.函数x
k
y =的图象经过(1,-1),则函数2y kx =+的图象是( )
6. (1)已知菱形的周长为40,一条对角线长为16,则这个菱形的面积是( )
A .92 B. 94 C. 96 D.100
7.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是( )
A .38
B .1
2
C .1
4
D .13
8. 长方体的主视图、俯视图如图所示(单位:m ), 则其左视图面积是( )
A .42m
B .122m
C .12m
D .32
m
2
2 2 2 -2
-2 -2
-2
O
O
O
O
y
y y y x
x
x
x A
B
C D
二、填空题( 每题3分共21分)
9.在一个有10万人的城市,随机调查了2000人,其中有250人看中央电视台的早间新闻
——朝闻天下.在该城市随便问一个人,他看中央电视台朝闻天下的概率大约是 . 10.若反比例函数x
k
y =
的图象经过点(-3, 4),则此函数在每一个象限内 y 随x 的增大而 .
11.在△ABC 中,D 、E 、F 分别是AB 、BC 、AC 的中点,若△ABC 的周长为30 cm ,则△DFE
的周长为 cm .
12.一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树
顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的身高为1.65米,由此可推断出树高是_______米.
13、2005年某市人均GDP 约为2003年的1.2倍,如果该市每年的人均GDP 增长率相同,那么增长率为 .
14.如图,点A 、B 在反比例函数(00)k
y k x x
=
>,>的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为
____. y
x
N M O
C
B
A
15、在ABC ∆中,若90C ∠=︒,1
sin 2
A =
,2AB =,则ABC ∆的周长为
M
A
B
C
D
N
E
16.解下列方程:(每小题4分,共8分)
(1) 01282=+-x x (2)0045sin 230cos 3+
17.(9分)一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同. (1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球这两个事件是等可能的. 你同意他的说法吗?为什么?
(2)搅均后从中一把摸出两个球,请通过树状图或列表,求两个球都是白球的概率.
18.(9分)已知:如图,在ΔABC 中,AB=AC ,AD ⊥BC ,垂足为点D ,AN 是ΔABC 外角
∠CAM 的平分线,CE ⊥AN ,垂足为点E . (1)求证:四边形ADCE 是矩形.
(2)当ΔABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.
19、(9分)如图,防洪大堤的横断面是梯形ABCD ,其中AD ∥BC ,坡角α=600,汛期来临前对其进行了加固,改造后的背水面坡角β=450,若原坡长AB=20m ,求改造后的坡长AE (结果保留根号)
20、(9分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
B
C D A β E α
第19题图
21.(10分)如图,已知直线y =-x+4与反比例函数y
k
x
的图象相交于点A(-2,a),并且
与x轴相交于点B.
(1)求a的值.(2分)
(2)求反比例函数的表达式.(3分)(3)求△AOB的面积.(4分)
y
A
O
B
x
22、已知函数24
(2)m m y m x +-=+是关于
23.(11分)如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点.点M 是AB 边上一
动点(不与点A 重合),延长ME 交射线CD 于点N ,连接MD 、AN .
(1)求证:四边形AMDN 是平行四边形;
E
A M
B C
D
N
(2)填空:①当AM的值为_______时,四边形AMDN是矩形;
②当AM的值为________时,四边形AMDN是菱形.
、。