APT_ArcelorMittal[1]
bugzilla安装教程
Bugzilla的安装一.需要安装的软件:MySQL数据库,Perl解析器,bugzilla安装包,web服务器(IIS或apache)二.安装环境操作系统OS:windows7Bugzilla:bugzilla 4.2.1Per解析器:activeperl 5.14.2XAMPP:1.8.0(Apache 2.4.2 + MySQL 5.5.25a)三.具体的安装A.我用的是XAMPP软件包,XAMPP 是一个易于安装且包含MySQL、PHP 和Perl的Apache 发行版。
1. 双击xampp-win32-1.8.0-VC9-installer.exe,默认安装路径c:\xampp:单击Next,进入如下界面,勾上Install Apache as service和Install MySQL serbvice 然后安装即可。
2.配置MySQL在浏览器地址栏中输入http://localhost/phpmyadmin/,管理MySQL,在Databases中Create database为bugzilla。
点击Create即可。
B. 安装ActivePerl双击打开安装文件,默认安装即可。
默认安装路径为:C:\Perl\检查Perl是否安装成功:在命令提示窗口输入perl -v,出现如下图示,则安装成功。
将perl加入注册表,可通过如下方式:1. 新建一个文本文档,在其中输入如下内容:Windows Registry Editor Version 5.00[HKEY_CLASSES_ROOT\.cgi][HKEY_CLASSES_ROOT\.cgi\Shell][HKEY_CLASSES_ROOT\.cgi\Shell\ExecCGI][HKEY_CLASSES_ROOT\.cgi\Shell\ExecCGI\Command]@="c:\\Perl\\bin\\perl.exe -T"2. 将文件名称改为cgi.reg3. 双击运行,添加注册表。
Matlab安装出错问题的解决
不久前,我在网上下了MATLAB7.0,解压后,运行setup.exe,出现了以下安装问题: The installer cannot read the mwinstall.dll file, This is probably due to a CD reader which can only read files with an eight.three naming convention. 然后在网上找了很久,终于找到了解决方法,我想肯定还有很多人遇到过同样的麻烦,所以现在本人将解决方法帖出来:对于压缩文件不要解压(这个很重要),而应直接双击压缩文件,再在内部双击setup文件,而安装前还需要做一道工作才能成功进行安装,即右键单击我的电脑,属性,高级,环境变量,将其中的系统变量temp,tmp的值改为c:\temp,并在c盘根目录下建立文件夹temp,这是由于matlab解压的默认缓存文件是c盘根目录的temp,做完这些便可以进行安装了,记住不要解压文件。
安装过程中基本是按默认的一路next下去,有一个叫输入pla,相当于注册码,输入13-22955-32678-26249-06848-40366-39620-03472-09765-20949-30945-19673-43738-3895 0-44548完成后你会发现打开后一会就自动关闭,不要惊慌,你的机器cpu一定是amd的,在你的安装文件夹下找到atlas_Athlon.dll文件,是用来让amd芯片进行正常工作的。
因为当初mathwork公司是以intel芯片为目标的。
找到这个文件比如路径是D:MATLAB7 \bin\win32\atlas_Athlon.dll,再次右键单击我的电脑属性,高级,环境变量,系统变量新建变量名:BLAS_VERSION,值为D:MATLAB7 \bin\win32\atlas_Athlon.dll到此整个过程完成matlab7.0安装详细教程matlab7.0安装,详细步骤。
FESTO 电动系统操作手册说明书
Todos los documentos disponibles sobre el producto→/pk→ Instrucciones de utilización del reductor→ Instrucciones de utilización del motor→ Instrucciones de utilización del eje2.Instrucciones de seguridad y notas para el montaje∙Desconectar la alimentación de red antes de realizar trabajos de montaje. ∙Observar las instrucciones de seguridad (→ Documentos aplicables).∙Limpiar los ejes. Los casquillos de apriete 3/4 solamente se sujetan a los pivotes de los ejes, sin deslizarse, cuando estos últimos están secos y libres de grasa.∙Realizar un recorrido de referencia de los ejes después de soltar o de girar el motor.∙Respetar los pares de apriete. Si no hay indicaciones especiales, la tolerancia es de ±20 %.o previstoConjunto paralelo EAMM-U-...-D...-...G/H-S1:Conexión en paralelo de un eje con un motor (→ Sección 14).rmación adicionalAccesorios →/catalogue5.Incluido en el suministro1 Parte inferior2Tornillo3Casquillo de aprieteeje4Casquillo de aprietemotor5 Correa dentada6Disco para correadentada7Parte superior8 Tornillo9 Tuerca cuadradaaJ TornilloaB Tapón de cierre1)aC Placa adaptadoraaD TornilloaE Junta tórica de eje2)aF Anillo de juntapara aJaH Junta para aC 3)aI Anillo dejuntapara 2bJ Junta para 7bA Junta tórica dereductor2)bB Junta para aC(1x)(4x)(1x)(1x)(1x)(2x)(1x)(7x)(4x)(4x)(1x)(1x)(4x)(1x)(4x)(1x)(4x)(1x)(1x)(1x)dA Grasa lubricanteLUB-KC1(sin silicona)dB Elemento tensor4)EADT-E-U1-110(1x)(1x)∙Introducir la junta tórica aEen el collar de centrado dela culata del actuador deleje.∙Colocar los anillos dejunta aF en los tornillos aJ.∙Fijar la parte inferior 1 en eleje con los tornillos aJ5).ConjuntaaH3):∙Colocar la junta aH en elrebaje de la parteinferior 1.Comprobación: Lasmuescas (X) de la junta aH seencuentran por encima de losagujeros (Y).∙Engrasar la junta tórica bAcon grasa lubricante dA.∙Introducir la junta tórica bAen el reductor del motor.∙Fijar la placa adaptadora aCen el reductor del motor conlos tornillos aD.∙Presionar la junta tórica bApara introducirla en laranura (Z) de la placaadaptadora aC. No estirar lajunta tórica bA.Utilizar únicamenteherramientas romas.∙Colocar la junta bB en laplaca adaptadora aC.∙Colocar los anillos dejunta aI en los tornillos 2.∙Fijar la placa adaptadora aCcon los tornillos 2 y lastuercas cuadradas 9 en laparte inferior 1.Comprobaciones: se puedeajustar la posición del motormoviéndolo en los agujerosalargados.∙Desplazar el motor, hastahacer tope, en el sentido deleje.∙Engrasar los casquillos deapriete 3/4 con grasalubricante dA en la rosca ypor el exterior del cono.Los casquillos de apriete 3/4engrasados pueden apretarseuniformemente.∙Enroscar los casquillos de apriete 3/4 en las roscas de los discos paracorrea dentada 6. No apretar.∙Colocar los discos 6 en la correa dentada 5.∙Insertar los casquillos de apriete 3/4 en los pivotes de los ejes.referencia (B).Razón: el disco para correa dentada 6 se mueve hacia dentro cuando se∙Seleccionar el par de apriete necesario para los discos para correadentada 6 (→ Sección 10).∙Apretar los discos para correa dentada 6. Para ello, sujetar con unaherramienta los casquillos de apriete 3/4.Comprobación: las superficies (A) de los discos para correa dentada 6 estánal ras de la superficie de referencia (B) (tolerancia: ± 0,5 mm).8.Tensado de la correa dentadaLa correa dentada 5 estará tensada cuando los ramales (C) discurran máso menos en paralelo.8a.Con EAMM-U-60/-70/-86∙Desplazar el motor con la mano hasta que, sobre la correa 5, se ejerza lafuerza elástica Fv (→ Tabla).∙Apretar los tornillos 2.∙Colocar el elementotensor dB en el orificio (D)de la parte inferior 1.∙Girar el elemento tensor dBcon una llave para tuercashexagonales (ß 8).Respetar el momento degiro recomendado(→ Tabla).∙Apretar los tornillos 2.∙Presionar el tapón decierre aB en el orificio (D).Continúa en la página al dorso.1) El EAMM-U-110/-145 incluye el tapón de cierre aB en el suministro.2)Para diferenciar las juntas tóricas aE y bA: → Sección 13.3) La conexión del motor 80G incluye la junta aH en el suministro.4) El EAMM-U-110/145 requiere el elemento tensor dB como herramienta.5) Si se exceden los pares de apriete, los tornillos de la tapa del eje se sueltan durante eldesmontaje.Instrucciones para el montaje (Manual original)80640931704c[8065927]†‡Conjunto paraleloEAMM-U-...-D...-...G/H-S1Festo SE & Co. KGRuiter Straße 8273734 EsslingenAlemania+49 711 347-09. Desmontaje de la correa dentada ∙ Aflojar ligeramente los tornillos 2.Comprobaciones: se puede ajustar la posición del motor moviéndolo en los agujeros alargados.∙ Desenroscar los discos para correa dentada 6. Paraello, sujetar con unaherramienta los casquillosde apriete 3/4.∙ Seguir girando la tuercahexagonal (E) en sentido antihorario.Comprobación: los discos para correa dentada 6 se pueden retirar del cono de loscasquillos de apriete 3/4.∙ Sacar los casquillos deapriete 3/4 de los pivotes de los ejes.∙ Retirar la correa dentada 5 de los discos para correa dentada 6. ∙ Colocar la junta bJ en la parte inferior 1.∙ Fijar la parte superior 7 con los tornillos 8 en la parte inferior 1 antes de lapuesta en funcionamiento.11. Pares de apriete de los discos para correa dentadaEl momento de giro transmisible depende del par de apriete de los discos para correa dentada 6.∙ Seleccionar el par de apriete de los discos para correa dentada 6 del rango admisible (→ Tabla).Comprobaciones: el momento de giro transmisible es mayor que el par de accionamiento del motor (→ Especificaciones técnicas del motor).EAMM-U- Disco para correa dentada Par de apriete Conjunto paraleloMomento de giro transmisible6[Nm] [Nm]60 máx. 153 mín. 101,5 70 máx. 35 7 mín. 22 3,5 86 máx. 409,5 mín. 254,8 110 máx. 8025 mín. 6512,5 145 máx. 180 50 mín. 12025EAMM-U- Disco para correa dentada Casquillo de apriete63/460 ß 22 ß 8 70/86 ß 30 ß 8 110/145ß 36ß 1012. Tamaño de tornillos y pares de apriete M AEAMM-U-...-S12[Nm] 8[Nm] aJ 5)[Nm]aD[Nm]60-D32-40G M5x18 6 M5x25 6 M6x18 6/56)M4x10 360-D40-40G70-D32-60G M4x18 3 M5x35 6 M6x18 6/56)M5x12 670-D32-60H70-D40-60G70-D40-60H86-D40-60G M5x18 6 M6x40 10 M6x18 6/56)M5x12 686-D40-60H 86-D50-60G M5x20 6M8x20 12 86-D50-60H 86-D60-60G M8x20 12/97)86-D60-60H 110-D50-60G M6x20 10 M8x50 18 M8x20 12M5x12 6110-D50-60H110-D50-80G M8x25 18 M6x12 10110-D60-60G M6x20 10 M8x20 12/97)M5x12 6110-D60-60H 110-D60-80G M8x25 18M6x12 10110-D80-80GM10x20 25145-D100-120G M10x55 30 M8x50 18 M10x2025M10x20 3013. Juntas tóricas según ISO 3601EAMM-U-...-S1 Junta tórica de eje aEJunta tórica de reductor bA 60-D32-40G B-30x1,5 B-35x2,5 60-D40-40G B-38x1,5 70-D32-60G B-30x1,5 B-54x3 70-D32-60H 70-D40-60G B-38x1,5 70-D40-60H 86-D40-60G B-38x1,5 B-54x3 86-D40-60H 86-D50-60G B-45x2 86-D50-60H 86-D60-60G B-55x2 B-54x3 86-D60-60H 110-D50-60G B-45x2 B-54x3 110-D50-60H 110-D50-80G B-74x3 110-D60-60G B-55x2 B-54x3 110-D60-60H 110-D60-80G B-74x3 110-D80-80G B-78x2 145-D100-120G B-96x2B-105x314. Ejes y motores admisibles∙ Deducir el eje y el motor de los códigos de conexión del código delproducto.Ejemplo: EAMM-U-60-D40-42B/C -91-S1– Conexión del eje D40– Conexión de reductor-motor 42B /42CConexión Eje 8)del ejeD32 DNCE-32, ESBF-32 D40 DNCE-40, ESBF-40 D50 ESBF-50D60 DNCE-63, ESBF-63 D80 ESBF-80 D100 ESBF-100Conexión Reductordel reductor40G EMGA-40, EMGC-4060G EMGA-60-...-SAS, EMGA-60-...-SST 60H EMGA-60-...-EAS, EMGC-60 80G EMGA-80 120G EMGA-12015. Funcionamiento16. MantenimientoLa correa dentada 5 es una pieza de desgaste (→ /spareparts ).∙ Comprobar la correa dentada 5 periódicamente:– cuando se cumplen los plazos de mantenimiento de la máquina – cuando se sustituye un eje.∙ Sustituir la correa dentada 5 cuando aparezcan los siguientes indicios de desgaste:– fuerte acumulación de partículas de desgaste en la carcasa – grietas en el dorso de la correa dentada– hilado de tracción de fibra de vidrio visible en la base de los dientes.6) Con el eje ESBF: 6 NmCon el eje DNCE: 5 Nm 7) Con el eje ESBF: 12 Nm Con el eje DNCE: 9 Nm8)Cilindro eléctrico DNCE, cilindro eléctrico ESBF.。
Operetta实验数据导出方法
实验数据导出方法实验数据导出有2种方式:
1.setting-Data Management-Export Data:
点击页面右上角的Setting选项,出现如下界面:
点击Data Management选项:
点击Export Data选项:
注:
Analysis Sequences: 导出.aas文件,可以导入columbus使用
Measurement index and images:导出图片结果,可以在个人电脑上用Image J软件打开。
也可以上传Columbus软件进行分析。
选择存储路径,最后点击Start。
2.setting-Data Management-Write Archive:
点击页面右上角的Setting选项,出现如下界面:
点击Data Management选项:
点击Write Archive:
点击选择框:
点击OK,则数据被选中,系统计算数据大小;选择存储路径;最后点击Start。
archive文件的生存需要一定时间,请耐心等候。
生成的archive文件,可以拷走,包含全部的原始数据,如果日后有需要,可以再用Read Archive选项读取回来。
注:可以保存所有的原始数据并带走,archive文件可以重新用harmony软件读取再次分析,但是不能直接传上Columbus 进行分析。
推荐数据存储方式:
A 若不需要保留原始数据,实验完毕请及时导出并清理自己的实验数据。
B 导出的实验数据可以上传到Columbus服务器进行分析处理。
C 若需要保留原始数据,请及时生成archive文件拷走并清理自己的实验数据。
APT15DQ120KG 1200V 15A 超快软恢复直流恢复矩阵体芯片数据手册说明书
Product OverviewThe APT15DQ120KG is a1200V,15A Ultrafast Soft Recovery Rectifier Si Diode in a TO-220package.FeaturesThe following are key features of the APT15DQ120KG device:•Ultrafast recovery times•Soft recovery characteristics•Low forward voltage•Low leakage current•Avalanche-energy rated•RoHS compliant•AEC-Q101qualifiedBenefitsThe following are benefits of the APT15DQ120KG device:•High switching frequency•Low switching losses•Low noise(EMI)switching•Higher reliability systems•Increased system power densityApplicationsThe APT15DQ120KG device is designed for the following applications:•Power factor correction(PFC)•Anti-parallel diode◦Switch-mode power supply◦Inverters/converters◦Motor controllers•Freewheeling diode◦Switch-mode power supply◦Inverters/converters•Snubber/clamp diodeThis section shows the specifications of the APT15DQ120KG device.Absolute Maximum RatingsThe following table shows the absolute maximum ratings of the APT15DQ120KG device.T C=25°C,unless otherwise specified.Table1•Absolute Maximum RatingsSymbolRatingParameterUnit V R1200V Maximum DC reverse voltageV RRMMaximum peak repetitive reverse voltageMaximum working peak reverse voltageV RWMI F(AV)15Maximum average forward current(T C=127°C,duty cycle=0.5)AI FSMNon-repetitive forward surge current(T J=45°C,8.3ms)110E AVLAvalanche-energy(1A,40mH)mJ20The following table shows the thermal and mechanical characteristics of the APT15DQ120KG device. Table2•Thermal and Mechanical CharacteristicsUnitMaxSymbolCharacteristicTypMinRθJCJunction-to-case thermal resistance1.18°C/WT J,T STGOperating and storage temperature range−55°C175T L300Lead temperature for10secondsWtPackage weight0.07oz1.9glbf•m Mounting torque,6-32or M3screw101.1N•mElectrical PerformanceThe following table shows the static characteristics of the APT15DQ120KG device.T J =25°C,unless otherwise specified.Table 3•Static CharacteristicsUnit Max Typ MinTest Conditions Characteristic Symbol V3.32.8I F =15A Forward voltageV F3.4I F =30A2.5I F =15A,T J =125°CµA100V R =1200VMaximum reverse leakage currentI RM500V R =1200V,T J =125°CpF 17V R =200VJunction capacitanceC JThe following table shows the dynamic characteristics of the APT15DQ120KG device.Table 4•Dynamic CharacteristicsUnit MaxTyp MinTest ConditionsCharacteristic Symbol ns21I F =1A;di F /dt =–100A/µs V R =30VReverse recovery timet rrns240I F =15A;di F /dt =–200A/µs V R =800VReverse recovery time t rr nC 260Reverse recovery chargeQ rr A 3Maximum reverse recovery current I RRM ns290I F =15A;di F /dt =–200A/µs V R =800V;T J =125°CReverse recovery time t rr nC 960Reverse recovery chargeQ rr A 6Maximum reverse recovery current I RRM ns130I F =15A;di F /dt =–1000A/µs V R =800V;T J =125°CReverse recovery time t rr nC 1340Reverse recovery chargeQ rr A19Maximum reverse recovery currentI RRMTypical Performance CurvesThis section shows the typical performance curves of the APT15DQ120KG device.Figure 1•Maximum Transient Thermal ImpedanceFigure 3•Reverse Recovery Time vs.Current Rate of ChangeFigure 2•Forward Current vs.Forward VoltageFigure 5 • Reverse Recovery Current vs. Current Rate of ChangeFigure 4 • Reverse Recovery Charge vs. Current Rate of ChangeFigure 7•Maximum Average Forward Current vs.Case TemperatureFigure 6 • Dynamic Parameters vs. Junction Temperature Figure 8•Junction Capacitance vs.Reverse VoltageThe following figure illustrates the diode test circuit of the APT15DQ120KG device.Figure9•Diode Test CircuitThe following figure illustrates the diode reverse recovery waveform and definitions of the APT15DQ120KGdevice.Figure10•Diode Reverse Recovery Waveform and Definitions1.I F—Forward conduction current.2.di F/dt—Rate of diode current change through zero crossing.3.I RRM—Maximum reverse recovery current.4.t rr—Reverse recovery time,measured from zero crossing where diode current goes from positive tonegative,to the point at which the straight line through I RRM and0.25•I RRM passes through zero.5.Q rr—Area under the curve defined by I RRM and t rr.This section shows the package specification of the APT15DQ120KG device. Package Outline DrawingThe following figure illustrates the TO-220package outline of the APT15DQ120KG device.Figure11•Package Outline DrawingThe following table shows the TO-220dimensions and should be used in conjunction with the package outline drawing.Table5•TO-220DimensionsMINSYMBOLMINMAXMAX[mm][mm][INCH][INCH]A4.320.1804.570.170B1.141.400.0550.0452.50C2.740.1080.098D0.360.0210.0140.53E2.650.1203.050.104F3.600.1563.960.14214.50G15.600.5710.614H2.390.1443.650.094I6.006.800.2680.2368.40J9.000.3540.33113.00K14.000.5510.512L1.231.390.0480.055M0.690.880.0350.027N10.0010.360.4080.394O7.570.3117.900.298P12.200.48013.100.516Q2.54BSC0.100BSCTERMINAL1CATHODEANODETERMINAL2CATHODETERMINAL3Microsemi's product warranty is set forth in Microsemi's Sales Order Terms and rmation contained in this publication is provided for the sole purpose of designing with and using Microsemi rmation regarding device applications and the like is provided only for your convenience and may be superseded by updates.Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi.It is your responsibility to ensure that your application meets with your specifications.THIS INFORMATION IS PROVIDED "AS IS."MICROSEMI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,WRITTEN OR ORAL,STATUTORY OR OTHERWISE,RELATED TO THE INFORMATION,INCLUDING BUT NOT LIMITED TO ITS CONDITION,QUALITY ,PERFORMANCE,NON-INFRINGEMENT,MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.IN NO EVENT WILL MICROSEMI BE LIABLE FOR ANY INDIRECT,SPECIAL,PUNITIVE,INCIDENTAL OR CONSEQUENTIAL LOSS,DAMAGE,COST OR EXPENSE WHATSOEVER RELATED TO THIS INFORMATION OR ITS USE,HOWEVER CAUSED,EVEN IF MICROSEMI HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE.TO THE FULLEST EXTENT ALLOWED BY LAW,MICROSEMI’S TOTAL LIABILITY ON ALL CLAIMS IN RELATED TO THIS INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES,IF ANY ,YOU PAID DIRECTLY TO MICROSEMI FOR THIS e of Microsemi devices in life support,mission-critical equipment or applications,and/or safety applications is entirely at the buyer’s risk,and the buyer agrees to defend and indemnify Microsemi from any and all damages,claims,suits,or expenses resulting from such use.No licenses are conveyed,implicitly or otherwise,under any Microsemi intellectual property rights unless otherwisestated.Microsemi2355W.Chandler Blvd.Chandler,AZ 85224USAWithin the USA:+1(480)792-7200Fax:+1(480)792-7277 ©2020Microsemi and its corporate affiliates.All rights reserved.Microsemi and the Microsemi logo are trademarks of Microsemi Corporation and its corporate affiliates.All other trademarks and service marks are the property of their respective owners.Microsemi Corporation,a subsidiary of Microchip Technology Inc.(Nasdaq:MCHP),and its corporate affiliates are leading providers of smart,connected and secure embedded control solutions.Their easy-to-use development tools and comprehensive product portfolio enable customers to create optimal designs which reduce risk while lowering total system cost and time to market.These solutions serve more than 120,000customers across the industrial,automotive,consumer,aerospace and defense,communications and computing markets.Headquartered in Chandler,Arizona,the company offers outstanding technical support along with dependable delivery and quality.Learn more at .053-4222|April 2020|ReleasedLegal。
Infoprint 250 導入と計画の手引き 第 7 章ホスト
SUBNETMASK
255.255.255.128
Type of service...............: TOS
*NORMAL
Maximum transmission unit.....: MTU
*LIND
Autostart.....................:
AUTOSTART
*YES
: xx.xxx.xxx.xxx
: xx.xxx.xxx.xxx
*
(
)
IEEE802.3
60 1500
: xxxx
48 Infoprint 250
31. AS/400
IP
MTU
1
1
IPDS TCP
CRTPSFCFG (V3R2)
WRKAFP2 (V3R1 & V3R6)
RMTLOCNAME RMTSYS
MODEL
0
Advanced function printing............:
AFP
*YES
AFP attachment........................:
AFPATTACH
*APPC
Online at IPL.........................:
ONLINE
FORMFEED
*CONT
Separator drawer......................:
SEPDRAWER
*FILE
Separator program.....................:
SEPPGM
*NONE
Library.............................:
爱特梅尔推出全球最小的快闪微控制器封装产品
度更快 、功耗更低 , 从而使得功能强大的 A U能够集 VRMC
成 进 在 某 些 超 小 型 设 计- 包 括 电气 引脚 和 微 型 连 接 器 的 内 I 卜,
部结构 、打印头 ,以及衣里布料 、塑料盖板或塑料罩壳等其
他应用产 品。
( 刊通 讯 员) 本
作为我 国近年来在政、产、学 、 、用结合中涌现 出的 研
第 1 卷第7 0 期
电
子
与
封
装
为北斗卫星导航 技术领域 内的新秀企业 , 泰斗微 电子与 国内
一
p dU N 封 装 ,大小 仅 为 2 a DF mm m ×06 m ,重 量 不 X2 m . a r
流的大院大所和成功企业并肩参与了这次行业盛会 。 公司
到8 , mg 其尺寸只有 目前 市面上最小封装的 5 %。 5 这些新产
欧 胜 微 电子 日前 宣 布 :该 公 司 的先 进 电 源 管 理 和 音 频 解决 方 案 WM 8 5 3 2已被 H l S f选 用 ,用 于 其超 低 功 耗 互 el ot o 联 网协 议 语 音 ( oPW ii 话 参 考 设计 的 An ri 版 本 。 V I) F 电 dod 通 过 将 欧 胜 世 界 领 先 的 WM8 5 3 2电源 管 理 和 音 频 解 决 方 案 与 HelS f独 创的 H 10I 合 处 理 器 相 结 合 ,该 参 l ot o S 0 P融
微 控制 器 和触 摸 解决 方案 领 导 厂 商 爱特 梅 尔公 司
( me C roa o宣 布 , 球 最 小 的 快 闪 A 微 控 制 器 封 At l op rt ) 。 i 全 V
( 刊 通 讯 员) 本
XPSPEAK 说明书
Using XPSPEAK Version 4.1 November 2000Contents Page Number XPS Peak Fitting Program for WIN95/98 XPSPEAK Version 4.1 (1)Program Installation (1)Introduction (1)First Version (1)Version 2.0 (1)Version 3.0 (1)Version 3.1 (2)Version 4.0 (2)Version 4.1 (2)Future Versions (2)General Information (from R. Kwok) (3)Using XPS Peak (3)Overview of Processing (3)Appearance (4)Opening Files (4)Opening a Kratos (*.des) text file (4)Opening Multiple Kratos (*.des) text files (5)Saving Files (6)Region Parameters (6)Loading Region Parameters (6)Saving Parameters (6)Available Backgrounds (6)Averaging (7)Shirley + Linear Background (7)Tougaard (8)Adding/Adjusting the Background (8)Adding/Adjusting Peaks (9)Peak Types: p, d and f (10)Peak Constraints (11)Peak Parameters (11)Peak Function (12)Region Shift (13)Optimisation (14)Print/Export (15)Export (15)Program Options (15)Compatibility (16)File I/O (16)Limitations (17)Cautions for Peak Fitting (17)Sample Files: (17)gaas.xps (17)Cu2p_bg.xps (18)Kratos.des (18)ASCII.prn (18)Other Files (18)XPS Peak Fitting Program for WIN95/98 XPSPEAKVersion 4.1Program InstallationXPS Peak is freeware. Please ask RCSMS lab staff for a copy of the zipped 3.3MB file, if you would like your own copyUnzip the XPSPEA4.ZIP file and run Setup.exe in Win 95 or Win 98.Note: I haven’t successfully installed XPSPEAK on Win 95 machines unless they have been running Windows 95c – CMH.IntroductionRaymond Kwok, the author of XPSPEAK had spent >1000 hours on XPS peak fitting when he was a graduate student. During that time, he dreamed of many features in the XPS peak fitting software that could help obtain more information from the XPS peaks and reduce processing time.Most of the information in this users guide has come directly from the readme.doc file, automatically installed with XPSPEAK4.1First VersionIn 1994, Dr Kwok wrote a program that converted the Kratos XPS spectral files to ASCII data. Once this program was finished, he found that the program could be easily converted to a peak fitting program. Then he added the dreamed features into the program, e.g.∙ A better way to locate a point at a noise baseline for the Shirley background calculations∙Combine the two peaks of 2p3/2 and 2p1/2∙Fit different XPS regions at the same timeVersion 2.0After the first version and Version 2.0, many people emailed Dr Kwok and gave additional suggestions. He also found other features that could be put into the program.Version 3.0The major change in Version 3.0 is the addition of Newton’s Method for optimisation∙Newton’s method can greatly reduce the optimisation time for multiple region peak fitting.Version 3.11. Removed all the run-time errors that were reported2. A Shirley + Linear background was added3. The Export to Clipboard function was added as requested by a user∙Some other minor graphical features were addedVersion 4.0Added:1. The asymmetrical peak function. See note below2. Three additional file formats for importing data∙ A few minor adjustmentsThe addition of the Asymmetrical Peak Function required the peak function to be changed from the Gaussian-Lorentzian product function to the Gaussian-Lorentzian sum function. Calculation of the asymmetrical function using the Gaussian-Lorentzian product function was too difficult to implement. The software of some instruments uses the sum function, while others use the product function, so both functions are available in XPSPEAK.See Peak Function, (Page 12) for details of how to set this up.Note:If the selection is the sum function, when the user opens a *.xps file that was optimised using the Gaussian-Lorentzian product function, you have to re-optimise the spectra using the Gaussian-Lorentzian sum function with a different %Gaussian-Lorentzian value.Version 4.1Version 4.1 has only two changes.1. In version 4.0, the printed characters were inverted, a problem that wasdue to Visual Basic. After about half year, a patch was received from Microsoft, and the problem was solved by simply recompiling the program2. The import of multiple region VAMAS file format was addedFuture VersionsThe author believes the program has some weakness in the background subtraction routines. Extensive literature examination will be required in order to revise them. Dr Kwok intends to do that for the next version.General Information (from R. Kwok)This version of the program was written in Visual Basic 6.0 and uses 32 bit processes. This is freeware. You may ask for the source program if you really want to. I hope this program will be useful for people without modern XPS software. I also hope that the new features in this program can be adopted by the XPS manufacturers in the later versions of their software.If you have any questions/suggestions, please send an email to me.Raymund W.M. KwokDepartment of ChemistryThe Chinese University of Hong KongShatin, Hong KongTel: (852)-2609-6261Fax:(852)-2603-5057email: rmkwok@.hkI would like to thank the comments and suggestions from many people. For the completion of Version 4.0, I would like to think Dr. Bernard J. Flinn for the routine of reading Leybold ascii format, Prof. Igor Bello and Kelvin Dickinson for providing me the VAMAS files VG systems, and my graduate students for testing the program. I hope I will add other features into the program in the near future.R Kwok.Using XPS PeakOverview of Processing1. Open Required Files∙See Opening Files (Page 4)2. Make sure background is there/suitable∙See Adding/Adjusting the Background, (Page 8)3. Add/adjust peaks as necessary∙See Adding/Adjusting Peaks, (Page 9), and Peak Parameters, (Page 11)4. Save file∙See Saving Files, (Page 6)5. Export if necessary∙See Print/Export, (Page 15)AppearanceXPSPEAK opens with two windows, one above the other, which look like this:∙The top window opens and displays the active scan, adds or adjusts a background, adds peaks, and loads and saves parameters.∙The lower window allows peak processing and re-opening and saving dataOpening FilesOpening a Kratos (*.des) text file1. Make sure your data files have been converted to text files. See the backof the Vision Software manual for details of how to do this. Remember, from the original experiment files, each region of each file will now be a separate file.2. From the Data menu of the upper window, choose Import (Kratos)∙Choose directory∙Double click on the file of interest∙The spectra open with all previous processing INCLUDEDOpening Multiple Kratos (*.des) text files∙You can open up a maximum of 10 files together.1. Open the first file as above∙Opens in the first region (1)2. In the XPS Peak Processing (lower) window, left click on 2(secondregion), which makes this region active3. Open the second file as in Step2, Opening a Kratos (*.des) text file,(Page 4)∙Opens in the second region (2)∙You can only have one description for all the files that are open. Edit with a click in the Description box4. Open further files by clicking on the next available region number thenfollowing the above step.∙You can only have one description for all the files that are open. Edit with a click in the Description boxDescriptionBox 2∙To open a file that has already been processed and saved using XPSPEAK, click on the Open XPS button in the lower window. Choose directory and file as normal∙The program can store all the peak information into a *.XPS file for later use. See below.Saving Files1. To save a file click on the Save XPS button in the lower window2. Choose Directory3. Type in a suitable file name4. Click OK∙Everything that is open will be saved in this file∙The program can also store/read the peak parameter files (*.RPA)so that you do not need to re-type all the parameters again for a similar spectrum.Region ParametersRegion Parameters are the boundaries or limits you have used to set up the background and peaks for your files. These values can be saved as a file of the type *.rpa.Note that these Region Parameters are completely different from the mathematical parameters described in Peak Parameters, (Page 11) Loading Region Parameters1. From the Parameters menu in the upper window, click on Load RegionParameters2. Choose directory and file name3. Click on Open buttonSaving Parameters1. From the Parameters menu in the XPS Peak Fit (Upper) window, clickon Save Region Parameters2. Choose directory and file name3. Click on the Save buttonAvailable BackgroundsThis program provides the background choices of∙Shirley∙Linear∙TougaardAveraging∙ Averaging at the end points of the background can reduce the time tofind a point at the middle of a noisy baseline∙ The program includes the choices of None (1 point), 3, 5, 7, and 9point average∙ This will average the intensities around the binding energy youselect.Shirley + Linear Background1. The Shirley + Linear background has been added for slopingbackgrounds∙ The "Shirley + Linear" background is the Shirley background plus astraight line with starting point at the low BE end-point and with a slope value∙ If the slope value is zero , the original Shirley calculation is used∙ If the slope value is positive , the straight line has higher values atthe high BE side, which can be used for spectra with higher background intensities at the high BE side∙ Similarly, a negative slope value can be used for a spectrum withlower background intensities at the high BE side2. The Optimization button may be used when the Shirley background is higher at some point than the signal intensities∙ The program will increase the slope value until the Shirleybackground is below the signal intensities∙ Please see the example below - Cu2p_bg.xps - which showsbackground subtraction using the Shirley method (This spectrum was sent to Dr Kwok by Dr. Roland Schlesinger).∙ A shows the problematic background when the Shirley backgroundis higher than the signal intensities. In the Shirley calculation routine, some negative values were generated and resulted in a non-monotonic increase background∙ B shows a "Shirley + Linear" background. The slope value was inputby trial-and-error until the background was lower than the signal intensities∙ C was obtained using the optimisation routineA slope = 0B slope = 11C slope = 15.17Note: The background subtraction calculation cannot completely remove the background signals. For quantitative studies, the best procedure is "consistency". See Future Versions, (Page 2).TougaardFor a Tougaard background, the program can optimise the B1 parameter by minimising the "square of the difference" of the intensities of ten data points in the high binding energy side of the range with the intensities of the calculated background.Adding/Adjusting the BackgroundNote: The Background MUST be correct before Peaks can be added. As with all backgrounds, the range needs to include as much of your peak as possible and as little of anything else as possible.1. Make sure the file of interest is open and the appropriate region is active2. Click on Background in the upper window∙The Region 0 box comes up, which contains the information about the background3. Adjust the following as necessary. See Note.∙High BE (This value needs to be within the range of your data) ∙Low BE (This value needs to be within the range of your data) NOTE: High and Low BE are not automatically within the range of your data. CHECK CAREFULLY THAT BOTH ENDS OF THE BACKGROUND ARE INSIDE THE EDGE OF YOUR DATA. Nothing will happen otherwise.∙No. of Ave. Pts at end-points. See Averaging, (Page 7)∙Background Type∙Note for Shirley + Linear:To perform the Shirley + Linear Optimisation routine:a) Have the file of interest openb) From the upper window, click on Backgroundc) In the resulting box, change or optimise the Shirley + LinearSlope as desired∙Using Optimize in the Shirley + Linear window can cause problems. Adjust manually if necessary3. Click on Accept when satisfiedAdding/Adjusting PeaksNote: The Background MUST be correct before peaks can be added. Nothing will happen otherwise. See previous section.∙To add a peak, from the Region Window, click on Add Peak ∙The peak window appears∙This may be adjusted as below using the Peak Window which will have opened automaticallyIn the XPS Peak Processing (lower) window, there will be a list of Regions, which are all the open files, and beside each of these will be numbers representing the synthetic peaks included in that region.Regions(files)SyntheticPeaks1. Click on a region number to activate that region∙The active region will be displayed in the upper window2. Click on a peak number to start adjusting the parameters for that peak.∙The Processing window for that peak will open3. Click off Fix to adjust the following using the maximum/minimum arrowkeys provided:∙Peak Type. (i.e. orbital – s, p, d, f)∙S.O.S (Δ eV between the two halves of the peak)∙Position∙FWHM∙Area∙%Lorenzian-Gaussian∙See the notes for explanations of how Asymmetry works.4. Click on Accept when satisfiedPeak Types: p, d and f.1. Each of these peaks combines the two splitting peaks2. The FWHM is the same for both the splitting peaks, e.g. a p-type peakwith FWHM=0.7eV is the combination of a p3/2 with FWHM at 0.7eV anda p1/2 with FWHM at 0.7eV, and with an area ratio of 2 to 13. If the theoretical area ratio is not true for the split peaks, the old way ofsetting two s-type peaks and adding the constraints should be used.∙The S.O.S. stands for spin orbital splitting.Note: The FWHM of the p, d or f peaks are the FWHM of the p3/2,d5/2 or f7/2, respectively. The FWHM of the combined peaks (e.g. combination of p3/2and p1/2) is shown in the actual FWHM in the Peak Parameter Window.Peak Constraints1. Each parameter can be referenced to the same type of parameter inother peaks. For example, for four peaks (Peak #0, 1, 2 and 3) with known relative peak positions (0.5eV between adjacent peaks), the following can be used∙Position: Peak 1 = Peak 0 + 0.5eV∙Position: Peak 2 = Peak 1 + 0.5eV∙Position: Peak 3 = Peak 2 + 0.5eV2. You may reference to any peak except with looped references.3. The optimisation of the %GL value is allowed in this program.∙ A suggestion to use this feature is to find a nice peak for a certain setting of your instrument and optimise the %GL for this peak.∙Fix the %GL in the later peak fitting process when the same instrument settings were used.4. This version also includes the setting of the upper and lower bounds foreach parameter.Peak ParametersThis program uses the following asymmetric Gaussian-Lorentzian sumThe program also uses the following symmetrical Gaussian-Lorentzian product functionPeak FunctionNote:If the selection is the sum function, when the user opens a *.xps file that was optimised using the Gaussian-Lorentzian product function, you have to re-optimise the spectra using the Gaussian-Lorentzian sum function with a different %Gaussian-Lorentzian value.∙You can choose the function type you want1. From the lower window, click on the Options button∙The peak parameters box comes up∙Select GL sum for the Gaussian-Lorentzian sum function∙Select GL product for the Gaussian-Lorentzian product function. 2. For the Gaussian-Lorentzian sum function, each peak can have sixparameters∙Peak Position∙Area∙FWHM∙%Gaussian-Lorentzian∙TS∙TLIf anyone knows what TS or TL might be, please let me know. Thanks, CMH3. Each peak in the Gaussian-Lorentzian product function can have fourparameters∙Peak Position∙Area∙FWHM∙%Gaussian-LorentzianSince peak area relates to the atomic concentration directly, we use it as a peak parameter and the peak height will not be shown to the user.Note:For asymmetric peaks, the FWHM only refers to the half of the peak that is symmetrical. The actual FWHM of the peak is calculated numerically and is shown after the actual FWHM in the Peak Parameter Window. If the asymmetric peak is a doublet (p, d or f type peak), the actual FWHM is the FWHM of the doublet.Region ShiftA Region Shift parameter was added under the Parameters menu∙Use this parameter to compensate for the charging effect, the fermi level shift or any change in the system work function∙This value will be added to all the peak positions in the region for fitting purposes.An example:∙ A polymer surface is positively charged and all the peaks are shifted to the high binding energy by +0.5eV, e.g. aliphatic carbon at 285.0eV shifts to 285.5eV∙When the Region Shift parameter is set to +0.5eV, 0.5eV will be added to all the peak positions in the region during peak fitting, but the listed peak positions are not changed, e.g. 285.0eV for aliphatic carbon. Note: I have tried this without any actual shift taking place. If someone finds out how to perform this operation, please let me know. Thanks, CMH.In the meantime, I suggest you do the shift before converting your files from the Vision Software format.OptimisationYou can optimise:1. A single peak parameter∙Use the Optimize button beside the parameter in the Peak Fitting window2. The peak (the peak position, area, FWHM, and the %GL if the "fix" box isnot ticked)∙Use the Optimize Peak button at the base of the Peak Fitting window3. A single region (all the parameters of all the peaks in that region if the"fix" box is not ticked)∙Use the Optimize Region menu (button) in the upper window4. All the regions∙Use the Optimize All button in the lower window∙During any type of optimisation, you can press the "Stop Fitting" button and the program will stop the process in the next cycle.Print/ExportIn the XPS Peak Fit or Region window, From the Data menu, choose Export or Print options as desiredExport∙The program can export the ASCII file of spectrum (*.DAT) for making high quality figures using other software (e.g. SigmaPlot)∙It can export the parameters (*.PAR) for further calculations (e.g. use Excel for atomic ratio calculations)∙It can also copy the spectral image to the system clipboard so that the spectral image can be pasted into a document (e.g. MS WORD). Program Options1. The %tolerance allows the optimisation routine to stop if the change inthe difference after one loop is less that the %tolerance2. The default setting of the optimisation is Newton's method∙This method requires a delta value for the optimisation calculations ∙You may need to change the value in some cases, but the existing setting is enough for most data.3. For the binary search method, it searches the best fit for each parameterin up to four levels of value ranges∙For example, for a peak position, in first level, it calculates the chi^2 when the peak position is changed by +2eV, +1.5eV, +1eV, +0.5eV,-0.5eV, -1eV, -1.5eV, and -2eV (range 2eV, step 0.5eV) ∙Then, it selects the position value that gives the lowest chi^2∙In the second level, it searches the best values in the range +0.4eV, +0.3eV, +0.2eV, +0.1eV, -0.1eV, -0.2eV, -0.3eV, and -0.4eV (range0.4eV, step 0.1eV)∙In the third level, it selects the best value in +0.09eV, +0.08eV, ...+0.01eV, -0.01eV, ...-0.09eV∙This will give the best value with two digits after decimal∙Level 4 is not used in the default setting∙The range setting and the number of levels in the option window can be changed if needed.4. The Newton's Method or Binary Search Method can be selected byclicking the "use" selection box of that method.5. The selection of the peak function is also in the Options window.6. The user can save/read the option parameters with the file extension*.opa∙The program reads the default.opa file at start up. Therefore, the user can customize the program options by saving the selectionsinto the default.opa file.CompatibilityThe program can read:∙Kratos text (*.des) files together with the peak fitting parameters in the file∙The ASCII files exported from Phi's Multiplex software∙The ASCII files of Leybold's software∙The VAMAS file format∙For the Phi, Leybold and VAMAS formats, multiple regions can be read∙For the Phi format, if the description contains a comma ",", the program will give an error. (If you get the error, you may use any texteditor to remove the comma)The program can also import ASCII files in the following format:Binding Energy Value 1 Intensity Value 1Binding Energy Value 2 Intensity Value 2etc etc∙The B.E. list must be in ascending or descending order, and the separation of adjacent B.E.s must be the same∙The file cannot have other lines before and after the data∙Sometimes, TAB may cause a reading error.File I/OThe file format of XPSPEAK 4.1 is different from XPSPEAK 3.1, 3.0 and 2.0 ∙XPSPEAK 4.1 can read the file format of XPSPEAK 3.1, 3.0 and 2.0, but not the reverse∙File format of 4.1 is the same as that of 4.0.LimitationsThis program limits the:∙Maximum number of points for each spectrum to 5000∙Maximum of peaks for all the regions to 51∙For each region, the maximum number of peaks is 10. Cautions for Peak FittingSome graduate students believe that the fitting parameters for the best fitted spectrum is the "final answer". This is definitely not true. Adding enough peaks can always fit a spectrum∙Peak fitting only assists the verification of a model∙The user must have a model in mind before adding peaks to the spectrum!Sample Files:gaas.xpsThis file contains 10 spectra1. Use Open XPS to retrieve the file. It includes ten regions∙1-4 for Ga 3d∙5-8 for Ga 3d∙9-10 for S 2p2. For the Ga 3d and As 3d, the peaks are d-type with s.o.s. = 0.3 and 0.9respectively3. Regions 4 and 8 are the sample just after S-treatment4. Other regions are after annealing5. Peak width of Ga 3d and As 3d are constrained to those in regions 1 and56. The fermi level shift of each region was determined using the As 3d5/2peak and the value was put into the "Region Shift" of each region7. Since the region shift takes into account the Fermi level shift, the peakpositions can be easily referenced for the same chemical components in different regions, i.e.∙Peak#1, 3, 5 of Ga 3d are set equal to Peak#0∙Peak#8, 9, 10 of As 3d are set equal to Peak#78. Note that the %GL value of the peaks is 27% using the GL sum functionin Version 4.0, while it is 80% using the GL product function in previous versions.18 Cu2p_bg.xpsThis spectrum was sent to me by Dr. Roland Schlesinger. It shows a background subtraction using the Shirley + Linear method∙See Shirley + Linear Background, (Page 7)Kratos.des∙This file shows a Kratos *.des file∙This is the format your files should be in if they have come from the Kratos instrument∙Use import Kratos to retrieve the file. See Opening Files, (Page 4)∙Note that the four peaks are all s-type∙You may delete peak 2, 4 and change the peak 1,3 to d-type with s.o.s. = 0.7. You may also read in the parameter file: as3d.rpa. ASCII.prn∙This shows an ASCII file∙Use import ASCII to retrieve the file∙It is a As 3d spectrum of GaAs∙In order to fit the spectrum, you need to first add the background and then add two d-type peaks with s.o.s.=0.7∙You may also read in the parameter file: as3d.rpa.Other Files(We don’t have an instrument that produces these files at Auckland University., but you may wish to look at them anyway. See the readme.doc file for more info.)1. Phi.asc2. Leybold.asc3. VAMAS.txt4. VAMASmult.txtHave Fun! July 1, 1999.。
薛定谔linux版本命令
薛定谔linux版本命令摘要:一、薛定谔理论简介1.薛定谔方程2.薛定谔的猫二、薛定谔Linux 版本命令1.安装薛定谔Linux 版本2.薛定谔Linux 常用命令a.创建和删除量子态b.测量和计算量子态c.演化量子态d.可视化量子态三、薛定谔Linux 版本的应用领域1.量子化学2.量子物理3.量子计算正文:薛定谔理论是量子力学的重要理论之一,由奥地利物理学家埃尔温·薛定谔在20 世纪20 年代提出。
薛定谔方程是薛定谔理论的核心,它描述了一个量子系统的状态随时间演化的规律。
薛定谔的猫是薛定谔理论的一个著名思想实验,用以说明量子系统的叠加态和测量问题。
薛定谔Linux 版本是基于量子力学的薛定谔方程,提供了一组命令,用于创建、测量、计算和可视化量子态。
用户可以通过安装薛定谔Linux 版本,利用这些命令进行量子计算和模拟。
安装薛定谔Linux 版本的过程相对简单,只需按照官方提供的教程进行操作即可。
安装完成后,用户可以开始使用薛定谔Linux 版本的命令进行量子计算。
薛定谔Linux 版本的常用命令包括:1.创建和删除量子态:使用`qnew`命令创建一个新的量子态,使用`qdel`命令删除已有的量子态。
2.测量和计算量子态:使用`qmeasure`命令对量子态进行测量,使用`qcompute`命令计算量子态的某些物理量,如能量、动量等。
3.演化量子态:使用`qtimeevolve`命令演化量子态,模拟量子系统在特定时间尺度上的行为。
4.可视化量子态:使用`qplot`命令将量子态的可视化结果以图形的形式展示出来。
薛定谔Linux 版本的应用领域非常广泛,包括量子化学、量子物理和量子计算等。
在量子化学领域,薛定谔Linux 版本可以用于计算分子的结构和性质;在量子物理领域,薛定谔Linux 版本可以用于模拟量子系统的行为;在量子计算领域,薛定谔Linux 版本可以用于研究和设计量子算法。
PNOZ s30 24-240VACDC 2 n o 2 n c 750330说明书
CE;cULus Listed;EAC (Eurasian);TÜV;CCC Supervisión de revoluciones;Supervisión de parada monocanal;Rearme automático;bicanal;Rearme manual;Rearme manual con superv. EN 1088;EN 60204-1;EN 62061;EN ISO 10218-1;EN ISO 13849-1;VDI 2854 24,0 - 240,0 AC/DC Borne de tornillo 4.0 A 45.0 mm 98.0 mm 120.0 mm 425 g 405 g -20 - 55 °C
PNOZ msi1Ap Adapter Si/Ha 25/25 2,5m PNOZ msi1Bp Adapter Si/Ha 25/25 2,5m PNOZ msi3Ap Adapter Si/Ha 15/15 2,5m PNOZ msi3Bp Adapter Si/Ha 15/15 2,5m PNOZ msi1AP Adapter Si/Ha 25/25 5m PNOZ msi b4 Box PNOZ msi10p Adapter Cable 2,5m PNOZ msi11p Adapter Cable 1,5m PNOZ msi 9p adapter cable 5m
Accesorios opcionales
773839
PNOZ msi1 Bp Adapter Si/Ha 25/25 5m
Pilz GmbH & Co. KG, Felix-Wankel-Strasse 2, 73760 Ostfildern, Germany
Página 1/7
小凡模拟器教程
现在新手学cisco的,基本都在用Dynamips和PT ,但是很多新手不会使用Dynamips,或许你看了这篇文章之后,至少会对Dynamips有点认识,应该基本都会用了。
Now,Follow Me 。
看图说话:按照图中用数字标出的序号来解释该区域:区域1:这里是选择路由器和交换机的个数的,这个地球人应该都知道吧。
区域2:这里可以选择一些不需要Cisco IOS的模拟设备。
如:FrameRelay交换机ATM交换机。
区域3:这里是选择设备类型的,以上都是Dynamips目前所支持的设备类型。
区域4:这里是选择设备类型、IOS存放路径、idle-pc值、NPE类型、虚拟内存(表示虚拟设备的RAM所占的内存大小,因为dynamips在模拟时候需要将主机的物理内存模拟成模拟设备的RAM)、寄存器。
区域5:这里是配置分布式的dynamips的设置区域区域6:这里是设置可以和主机(就是你的物理机)通信的。
区域7:可以直接读取真实设备里的NVRAM里的配置文件(.ini格式)区域8:输入目录是指生成的bat文件保存路径,自己建立哦。
下面根据拓扑来介绍:根据这个拓扑,需要模拟出3个路由器和1个交换机。
下面我们用DynamipsGUI 来配置脚本文件。
(Ps:DynamipsGUI和Dynamipsee都是可视化的写Dynamips的脚本程序。
不是模拟器!!真正的模拟器是Dynamips 。
)下面模拟上面的拓扑全过程:1.打开DynamipsGUI。
然后在[区域1]那里选择3个路由器和1个交换机。
并且选择[桥接到PC](桥接到PC的作用就是用物理机telnet到模拟出来的设备,然后就可以对设备进行配置),在这里路由器我用的IOS是7200的,交换机用的是3640的(IOS网上很多,可以自己去找。
),所以总的来说我只需要2个IOS文件既可,所以在设备类型这里我只需要勾选7200和3640这2个复选框既可。
如图:2.接着就是在[区域2]那里选择设备的类型和IOS文件路径,选择好之后,需要计算idle值,点击[计算idle]按钮(idle-pc只是为了解决在开启模拟设备的时候不至于你的物理机CPU占有率达到100%,所以这个值很重要)3.点击[计算idle]按钮之后,会弹出一个提示,选择确定即可:4.接着就会弹出一个窗口。
ArcelorMittal Bremen 成功安装和启动 Millmate Roll Force S
—”The latest set of Millmate Roll Force load cells were installed in 2008 and so far we have not had any problems whatsoever. The Profibus connection works very well in our optimization project and we feel very secure with the robust and reliable load cells.”Andreas Meyer, Electrical Engineer, Flat Carbon, Cold Rolling Mill, at ArcelorMittal in Bremen, Germany.—M E A SU R EM ENT & A N A LY TI C SArcelorMittal in Bremen, Germany has successfully installed and commissioned Millmate Roll Force SystemsArcelorMittal Bremen’s temper mill is running with ABB’s Millmate Roll Force Systems.Measurement made easyBackgroundIn the 1980’s Bremen Steelworks and ABB’sPressductor technology load cells started a success-ful cooperation leading to a good development with high quality results. As a matter of curiosity the two partners started its operations in the same year more than half a century ago, in 1954.Since a year back ArcelorMittal Bremen is conducting an optimization project in the temper mill. The main reasons for optimizing the temper mill are to control the properties of the material, increasing productivity and improving mill performance.In this optimization process the ABB load cells have an important part being a contributor of good roll force measurement results.What has been achieved?We ask Mr. Mario Mahnke, Manager Electrical Maintenance, Flat Carbon, Cold Rolling Mill,about the Millmate Roll Force System installation:”ArcelorMittal Bremen is and has been a loyal ABB load cell customer since some 30 years and we appreciate the load cell characteristics such as robustness, reliability and accuracy.”“Ever since the Millmate Roll Force load cells were installed and commissioned in our rolling mills they have been running very well without any problems. We feel secure with the roll force measurements and we get an even and continuous strip quality. That is very important to us.”We are also experiencing a continuous reduction of scrap and we have better control of the strip head and tail ends of the coils. The ABB load cells are con-nected to the control system and working very well in the elongation and gap control.”Mr. Andreas Meyer, Electrical Engineer, Flat Carbon, Cold Rolling Mill, expresses his opinion about the Millmate Roll Force System installation:”The latest set of Millmate Roll Force load cells were installed in 2008 and so far we have not had any problems whatsoever. The Profibus connection works very well in our optimization project and we feel very secure with the robust and reliable load cells.Our customers are happy with our deliveries of high and continuous strip quality and especially the improvements of the bending and deep drawing qualities.”Company profile – ArcelorMittal groupArcelorMittal Bremen has been a part of Arcelor corporation group since 2001. Arcelor corporation group was launched as a result of the merger of ARBED, Aceralia and Usinor.Mittal Steel was founded in 2004 by the LNH Holdings and SPAT International. Mittal Steel and Arcelor merged to ArcelorMittal corporate group in 2006. Its head office is located in Luxembourg City.With more than 190,000 employees, with steelmanufacturing in 18 countries and with customers in 160 countries, ArcelorMittal is the world’s largest steel group. It produces steel for automotive, construction, packaging, engine building and appliance industries.Due to its worldwide presence and remarkable productive power, ArcelorMittal is able to react swiftly in all strategic regions and provide its customers with an optimal service.For more information visit:/bremenSupplied equipmentABB Force Measurement has supplied the following equipment to ArcelorMittal in Bremen, Germany:• Temper mill-One Millmate Roll Force System-Two rectangular load cells, PFVL 141V-20 MN • Hot strip mill-11 Millmate Roll Force Systems-22 circular load cells, PFVL 141C-20 MN • Tandem cold mill and pickling line-6 Millmate Strip Tension load cells, PFBL 141 - 63 kN -6 PillowBlock strip tension load cells, PFTL 201—Mill data 2-hi Temper mill Supplier DEMAG Blaw-Knox Rolled material Flat carbon steelStrip qualities Critical exposed automotive stripTonnage 375 000 tons/yearCoil weight45 tonsStrip thickness min./max. 0.35 to 4.00 mm Strip width min./max. 600 to 2080 mm Work roll diameter 540 to 580 mm Backup roll diameter 1320 to 1420 mmMaximum roll force 1500 tons Motor, drive power 2 x 700 kW Max. rolling speed1200 m/min3B S E 066837R 0001 R e v C 2020.04—We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.—ABB ABMeasurement & Analytics Elektronikgatan 35S-721 36 Västerås, Sweden/measurement /rollforceWe reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB. Copyright© 2020ABB.All rights reserved.—01—02—01 ArcelorMittal in Bremen, Germany.—02 The Profibusconnection works very well in our optimization project and we feel very secure with the robust and reliable load cells.—03 Temper mill.—04 ABB’s MillmateOperator Unit.—04—03。
单片机非RTOS时,临界区保护的实现办法
单片机非RTOS时,临界区保护的实现办法嵌入式专栏153篇原创内容公众号来源 | 痞子衡嵌入式今天给大家分享的是Cortex-M裸机环境下临界区保护的三种实现。
搞嵌入式玩过 RTOS 的朋友想必都对 OS_ENTER_CRITICAL()、OS_EXIT_CRITICAL() 这个功能代码对特别眼熟,在 RTOS 里常常会有多任务(进程)处理,有些情况下一些特殊操作(比如XIP 下Flash 擦写、低功耗模式切换)不能被随意打断,或者一些共享数据区不能被无序访问(A 任务正在读,B 任务却要写),这时候就要用到临界区保护策略了。
所谓临界区保护策略,简单说就是系统中硬件临界资源或者软件临界资源,多个任务必须互斥地对它们进行访问。
RTOS 环境下有现成的临界区保护接口函数,而裸机系统里其实也有这种需求。
在裸机系统里,临界区保护主要就是跟系统全局中断控制有关。
痞子衡之前写过一篇《嵌入式MCU中通用的三重中断控制设计》,文中介绍的第三重也是最顶层的中断控制是系统全局中断控制,今天痞子衡就从这个系统全局中断控制使用入手给大家介绍三种临界区保护做法:一、临界区保护测试场景关于临界区保护的测试场景无非两种。
第一种场景是受保护的多个任务间并无关联,也不会互相嵌套,如下面的代码所示,task1 和task2 是按序被保护的,因此 enter_critical() 和 exit_critical() 这两个临界区保护函数总是严格地成对执行:void critical_section_test(void){// 进入临界区enter_critical();// 做受保护的任务1do_task1();// 退出临界区exit_critical();// 进入临界区enter_critical();// 做受保护的任务2,与任务1无关联do_task2();// 退出临界区exit_critical();}第二种场景就是多个任务间可能有关联,会存在嵌套情况,如下面的代码所示,task2 是 task1 的一个子任务,这种情况下,你会发现实际上是先执行两次enter_critical(),然后再执行两次exit_critical()。
Unit 24 Computerized Numerical Control 计算机化数字控制
In 1949 the U.S. Air Force commissioned(委 托) the servomechanisms Laboratory at the Massachusetts Institute of Technology to develop a workable NC system based on Parsons’ concept. 1949年,美国空军委托麻省理工学院的伺服机构 实验室研制一种以Parson的设想为基础可工作的 数控系统。 Scientists and engineers at M.I.T. selected perforated paper tape as the communication medium and initially built a two-axis point-topoint system which positioned the drilling head over the coordinate.
数控技术的研究在两个主要领域进行。 Hardware development concentrated on improved control system and machine tools. 硬件开发集中在改进控制系统和机床刀具上。
Sophisticated NC machines and control systems were available by 1965 for every major machine tool configuration. 到1965年,精密的数控机床和控制系统可适应 各种机床的刀具结构。 Software development concentrated on improvements to the APT language as well as the origination(开创) of other NC programming systems.
固尔苏使用方法
固尔苏使用方法固尔苏使用方法1. 简介固尔苏(GPIO)是一种通用输入/输出 (GPIO) 扩展板,可以将Raspberry Pi 上的 GPIO 引脚扩展到更多的可用引脚上。
本文将介绍如何正确使用固尔苏扩展板并进行基本的操作。
2. 安装固尔苏扩展板和驱动- 步骤1: 将固尔苏扩展板插入 Raspberry Pi 的 GPIO 引脚排针上。
- 步骤2: 开启树莓派,确保 Raspberry Pi 已正常启动。
- 步骤3: 打开终端,输入以下命令安装固尔苏驱动:shell$ sudo apt-get install wiringpi$ git clone$ cd WiringPi/$ ./build3. 打开固尔苏示例程序- 步骤1: 在终端中输入以下命令克隆固尔苏示例程序的代码库:shell$ git clone- 步骤2: 进入代码库目录:shell$ cd SunFounder_22/GUI/- 步骤3: 输入以下命令运行固尔苏示例程序:shell$ sudo python3 sunfounder.py4. 使用固尔苏扩展板在运行固尔苏示例程序后,您可以使用键盘上的按键和鼠标实现与固尔苏扩展板的交互,具体操作如下:- 使用 W、A、S、D 键控制小车的移动。
- 使用鼠标单击按钮,可以控制小车的进一步移动。
- 按下空格键可以停止小车的运动。
- 按下 ESC 键可以退出固尔苏示例程序。
5. GPIO 引脚布局- 固尔苏扩展板有 26 个可用的 GPIO 引脚。
下表列出了固尔苏扩展板上每个引脚的有关信息。
- 引脚编号 - BCM 编号 - 功能 -- -- - -- - -- -- 0 - 17 - GPIO 0 -- 1 - 18 - GPIO 1 -- 2 - 27 - GPIO 2 -- 3 - 22 - GPIO 3 -- 4 - 23 - GPIO 4 -- 5 - 24 - GPIO 5 -- 6 - 25 - GPIO 6 -- 7 - 4 - GPIO 7 -- 8 - 2 - SDA -- 9 - 3 - SCL -- 10 - 8 - CE0 -- 11 - 7 - SPI_CE1 -- 12 - 10 - SPI_MISO -- 13 - 9 - SPI_MOSI -- 14 - 11 - SPI_SCLK -- 15 - 14 - TxD -- 16 - 15 - RxD -- 17 - 28 - GPIO 17 -- 18 - 29 - GPIO 18 -- 19 - 30 - GPIO 19 -- 20 - 5 - MOSI -- 21 - 6 - MISO -- 22 - 13 - SCLK -- 23 - 19 - CE1 -- 24 - 26 - CE2 -- 25 - 12 - PWM0 -- 26 - 16 - PWM1 -6. 注意事项- 在连接或断开固尔苏扩展板时,确保 Raspberry Pi 处于断电状态,并遵循正确的插入和拔出步骤,以防止引脚损坏。
platform烧录命令
platform烧录命令在软件开发中,平台烧录命令是一种重要的工具,用于将程序或固件烧录到硬件平台上。
通过平台烧录命令,开发人员可以将应用程序或操作系统等软件安装到特定的硬件设备上,使设备能够正常运行。
平台烧录命令的使用方法因不同的硬件平台而异。
下面将分别介绍两种常见的平台烧录命令,即针对Arduino和Raspberry Pi平台的烧录命令。
一、Arduino平台烧录命令Arduino是一种开源的电子平台,用于构建各种物联网设备和交互式项目。
在Arduino开发中,平台烧录命令用于将程序烧录到Arduino板上。
要使用Arduino平台烧录命令,首先需要将Arduino开发环境安装到计算机上。
然后,连接Arduino板和计算机,并打开Arduino开发环境。
接下来,选择正确的Arduino板类型和串口,然后打开要烧录的程序文件。
点击“上传”按钮,Arduino开发环境将自动编译程序并将其烧录到Arduino板上。
二、Raspberry Pi平台烧录命令Raspberry Pi是一种基于Linux系统的小型单板计算机,广泛应用于物联网和嵌入式系统开发。
在Raspberry Pi开发中,平台烧录命令用于将操作系统安装到Raspberry Pi上。
要使用Raspberry Pi平台烧录命令,首先需要准备一个SD卡,并将要安装的操作系统镜像文件写入该SD卡。
然后,将SD卡插入Raspberry Pi的SD卡槽中,并连接鼠标、键盘和显示器到Raspberry Pi。
接下来,打开终端窗口,使用命令行界面进入Raspberry Pi的操作系统。
运行烧录命令,将操作系统镜像文件写入Raspberry Pi的SD卡中。
烧录完成后,重新启动Raspberry Pi,系统将自动加载新安装的操作系统。
总结平台烧录命令是软件开发中常用的工具,用于将程序或固件烧录到硬件平台上。
本文介绍了针对Arduino和Raspberry Pi平台的烧录命令的基本使用方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
Main properties after Hot-Stamping热成形后主要特性
Yield Strength屈服强度
1400
No spring-back无回弹
Complex geometries复杂几何形状
(MPa)
1300 1200
1100 1000
Very high Strength (1500 MPa)超高强度
No need of shot-blasting or pickling无需喷丸或酸洗 High accuracies / tolerances 高精度/公差 (no deformation by shot-blasting, especially for thin parts < 1.5mm没有由喷丸造成的变形,特别是厚度小于1.5mm薄零件) Corrosion protection防腐蚀
Global trends全球趋势
Extension towards energy absorption and platform parts 向着能量吸收和平台零件扩展
Rear rail Audi A4 China produced at AMTB Gent 在AMTB Gent生产的中国奥迪A4后边梁
14/04/2010
Confidential
7
Evolution of coated Boron Steel镀层硼钢的发展
in Europe, China + Korea and USA在欧洲,中国+韩国和美国
Hot Stamping Evolution
800 700 600 500 Europe NA China + Korea (partial) Total 345
900 800
700 600 500 400 300 300 500 700 900 1100 1300 Trip Steels
相变诱导塑性钢
Hot-stamped “Boron steels” 热成形后的硼钢
Martensitic Steels
马氏体钢
Multiphase Steels多相钢
双相钢
door beam 车门防撞梁
Confidential
4
Which parts?
哪种零件?
Volkswagen PASSAT B6大众帕萨特B6 - Weight reduction ~ 25 kg重量减轻25千克 - 5 ***** Euro NCAP碰撞测试5星 - B-Pillar cheaper than conventional solution B柱比传统方案成本更低
2008
2009
2010
2011
2012
2013
8
USIBOR Production sites USIBOR钢产地
TKS Finnentrop
AM Dudelange AM Chicago AM Mouzon
NSC Yawata
14/04/2010
TKS and NSC produce USIBOR under AM license. TKS和NSC有安赛乐USIBOR钢的生产授权。 The product is protected by an AM patent. Confidential 产品受到安赛乐专利保护。
Hot stamping with USIBOR1500P® 使用USIBOR1500P ®热成形
Why Hot-stamping ?
为什么选择热成形?
Standard requirements 标准要求
CO2 emission 二氧化碳排放 Weight reduction 重量减少 Security安全
Scale formation on uncoated material
无镀层材料上的氧化皮形成
Photos Volkswagen AG照片取自德国大众
The avoidance and management of scale formation is the major know how of stampers who offer “uncoated” material today. Production of uncoated Boron steel is much more complicated than production with USIBOR1500P. 避免和处理氧化皮形成是现今提供无镀层材料冲压厂商的主要专业经验。使用 无镀层硼钢生产比使用USIBOR1500P要更加复杂。
Main advantages of USIBOR 1500P USIBOR 1500P的主要优点
No need of inert gas in the furnaces加热炉无需惰性气体 No surface decarburization无需表面脱碳处理
No scale during heating加热过程中无氧化皮
The AlSi coating makes part production much easier and leads to an impressive increase in hot stamping lines and hot stamped parts for automotive application. Some OEM started to do hot stamping themselves. 铝硅镀层使零件生产更加简单,使热成形生产线和 热成形零件在汽车行业的应用显著增加。很多 13 OEM 厂商开始自己做热成形。
Properties in-use 特性使用
TS= 1400-1600 MPa YS = 1000-1200 MPa E% = 5 %
Dualphase Steels
1500
1700
Ultimate Tensile Strength (MPa)极限抗拉强度
14/04/2010 Confidential 3
Which parts?
哪种零件?
Anti intrusion parts防侵入零件 Lightening potential 30 % 轻量化潜力30% Increase in vehicle safety 提高车体安全性
B- pillar B柱 A-pillar A柱
Bumper 保险杠
பைடு நூலகம்
14/04/2010
14/04/2010 Confidential 12
Direct hot stamping process直接热冲压工艺
with pre-coated USIBOR1500P®使用预镀层USIBOR1500P®
Direct hot stamping process with pre-coated USIBOR1500P, first realized by French Company SOFEDIT (today TKS-SOFEDIT). 使用预镀层USIBOR1500P进行直接热成形最早由法国公司SOFEDIT(今TKS-SOFEDIT)实际应用。 ARCELOR MITTAL developed the first serial hot stamping steel with metallic coating. 安赛乐最早开发出金属镀层的热成形钢系列。
+ Ti +…
Typical Mechanical Properties典型机械特性
At delivery After hot forming
YS MPa 400 1000
UTS MPa 600 1500
E % 25 (ISO) 6 (ISO)
Precoated (continuous hot-dip Al-Si coating : Alusi) 预镀层(连续热镀铝-硅层: Alusi) Aluminium (90%) and Silicon铝(90%)和硅 Special thickness : Average 80 g/m²/side (25 µm) 14/04/2010 Confidential 特殊厚度:平均80克/平方米 /面(25微米)
324
热成形发展
697 605 480
477 415
Total
Europe
kt 400
300 221 200 100 93 5
82 11 0 15 12
239 173 100 56 120 70 135 85
China + Korea USA
168
141 26
61 22 45
0 5 2006
2007
Customers expectations 客户期望
Security安全
Durability耐用性
Ultra High Strength Steels 超高强度钢(UHSS)
Corrosion protection防腐蚀
Comfort 舒适性 Pre-coated Steels 预镀层钢
14/04/2010
Heating加热 880 -930°C 3 – 10 min
AlSi coating铝硅镀层
Transfer传送 < 7 sec
Stamping 冲压(600 -800°C) + Hardening淬火 (>> 50 K/s )
-No cold forming无冷成形 -No scale formation无氧化皮生成 -No sandblasting无喷砂 -Excellent geometrical accuracy 优秀的几何精度 -Very good corrosion protection 14/04/2010 Confidential 优良的防腐保护
Coldstamping 冷冲压