分数乘法的意义与计算法则
分数乘法知识点
(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 1、 98×5表示( )。
2、83+83+83=( )×( )=( ) 83+83+83+83=( )×( )=( )=( )3、24个32是多少? 145吨的7倍是多少吨? 2、分数乘分数是求一个数的几分之几是多少。
例如1、98×43表示的意义是( )。
2、125吨的32是多少吨? 3、一根绳子长109米,3根这样的绳子共长( )米;这根绳子的31长( )米。
(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例如:1、72×3 53×6 214×9 103×5 2、52米=( )厘米 32时=( )分 107千克=( )克 算式:2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
例如:152×85 3914×2813 4532×2815 65×2512 2110×53 3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例如:32×143 83×154 2625×1513 6313×3914 (三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
例如:65×2 ○65 8×117○8 54×1 ○54 43×53 ○53 (五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c例如:1、53×61×5 32×41×3 94×5×18 54×97×852、(924 + 83 )× 124 ( 56 - 59 )×18 47 ×613 +37 ×6133、10063×101 677 × 78 12×613 + 613 14×137-137二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
《分数乘法》必背概念知识点整理
第二单元《分数乘法》必背知识点一、分数乘法的意义:1。
分数与整数相乘:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2。
整数乘分数的意义:求一个数的几分之几是多少.3.分数乘分数的意义:就是求一个分数的几分之几是多少。
二、分数乘法的计算方法:1.分数乘整数的计算方法:用分数的分子和整数相乘的积作分子,分母不变。
计算时,应该先约分再计算。
计算结果要约成最简分数。
2。
分数乘分数的计算方法:分子相乘的积做分子,分母相乘的积做分母,能约分的可以先约分。
(计算结果要求是最简分数。
)3.因为整数可以看成分母是1的分数,所以分数乘分数的计算法则也适用于分数和整数相乘。
4.带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三、乘法中乘数与积的大小关系的规律:一个数(0除外)乘小于1(真分数)(0除外)的数,积小于这个数。
一个数(0除外)乘1,积等于这个数.一个数(0除外)乘大于1(带分数)的数,积大于这个数。
四、分数混合运算的运算顺序与整数的运算顺序相同:整数加法的交换律结合律,对分数乘法同样适用。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)整数乘法的交换律、交换律和分配律,对分数乘法同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc五、分数乘法的解决问题:1。
求一个数的几分之几是多少,用乘法。
(即已知整体和部分量相对应的分率,求部分量,用乘法)2.画线段图:①两个量的关系:画两条线段图;②部分和整体的关系:画一条线段图。
3。
找单位“1”:①在分率句中分率的前面;②在“占”、“是”、“比”、“相当于”“等于”的后面。
4。
写数量关系式的技巧:①“的”相当于“×”,“占”、“是”、“比"相当于“=”.②分率前是“的”:单位“1”的量×分率=分率对应量③求一个数的几倍:一个数×几倍④求一个数的几分之几是多少:一个数×几分之几(分值)⑤分率前面是“多或少”的意思:单位“1”的量×分率=分率对应量六、倒数:1。
分数乘法和除法知识点概念总结
知识点概念总结(一)1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
知识点概念总结(一)2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
知识点概念总结(一)3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
知识点概念总结(一)4.倒数:乘积是1的两个数叫做互为倒数。
知识点概念总结(一)5.分数的倒数:找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4 的倒数。
知识点概念总结(一)6.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12 的倒数。
知识点概念总结(一)7.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1知识点概念总结(一)7.小数的倒数用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1 的两个数互为倒数。
分数、整数也都使用这种规律。
知识点概念总结(一)8.分数除法:分数除法是分数乘法的逆运算。
知识点概念总结(一)9.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点概念总结(一)10.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
知识点概念总结(一)11.分数除法应用题:先找单位1。
小学六年级上册数学定义+公式汇总
小学六年级上册数学定义+公式汇总1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数6.分数的倒数:找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1。
9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
第一讲 分数的乘法及简单的应用
第一讲 分数的乘法及简单的应用一、分数乘法的意义:1.分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 8 ×5 表示求 5 个 8 的和是多少? 也表示 8 的 5 倍是多少?9995× 8 表示求 5 的 8 是多少?992.分数乘分数是求一个数的几分之几是多少。
例如: 8 × 3 表示求 8 的 3 是多少?9494二、分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3.为了计算简便,能约分的要先约分,再计算。
▲(注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
)4.分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
三、规律:(乘法中比较大小时)一个数(0 除外)乘大于 1 的数,积大于这个数。
一个数(0 除外)乘小于 1 的数(0 除外),积小于这个数。
一个数(0 除外)乘 1,积等于这个数。
四、分数混合运算的运算顺序依据:分数混合运算的运算顺序和整数的运算顺序相同。
没有括号的混合运算:同级运算从左往右一次运算;两级运算先算乘、除法,后算加减法。
有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。
▲注:加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:a×b×c=(a×b)×c=a×(b×c)=(a×c)×b乘法分配律:a×(b+c)=a×b+a×c a×b+a×c= a×(b+c)1知识回顾1、整数乘法的意义:求几个的简便运算。
分数乘法概念
1、分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
表示求几个相同分数的和是多少;求一个分数的几倍是多少。
例如:32× 5的意义是:表示求5个32的和是多少:还表示求32的5倍是多少。
2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
为了计算简便,能约分的要先约分,然后再乘。
(分母和整数约分,计算结果必须是最简分数!)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、一个数与分数相乘,可以看作是求这个数的几分之几是多少。
例如:5×31的意义是:表示求5的31是多少。
21×31的意义是:表示求21的31是多少。
4、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
为了计算简便,可以先约分再乘。
(分子和分母约分,计算结果必须是最简分数!)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
5、分数乘法混合运算顺序与整数相同,先算乘、除后算加、减,有括号的先算括号里面的,再算括号外面的。
6、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
整数乘法的交换律、结合律和分配律、对分数乘法同样适用。
分数乘法的交换律:a ×b = b ×a分数乘法的结合律:a ×b ×c = a ×(b ×c) 分数乘法的分配律:(a+b)×c = a ×c + b ×c6、一个数(0除外)乘以一个大于1的数,所得的积大于它本身。
例如:92×23>92 一个数(0除外)乘以一个小于1的数,所得的积小于它本身。
例如:92×43<92 一个数(0除外)乘以一个等于1的数,所得的积等于它本身。
例如:92×1=92 7、偶数(也叫双数):能被2整除的整数叫做偶数。
分数乘法的意义1-1
分数乘法的意义对分数乘法的意义和法则的理解一、 分数乘法的意义:1. 分数乘整数得意义和整数乘法的意义一样,就是求几个相同加数的和的简便运算。
【整数乘分数的意义不再强调,原因是:乘法有交换率,】计算方法一样:用分子和整数相乘,积做分子,分母不变,能约分的要先约分再乘。
2. 分数乘分数的意义就是求一个数的几分之几是多少?计算方法:分数乘分数,分子乘分子,分母乘分母,能约分的要先约分再乘。
分数乘法的意义 1. 看图用两种方法列式计算。
①②2.3.95+95+95=( )×( ) =( )4.83+83+83+83=( )×( )=( )5. 154154+154+154+154=( ) ×( )=( )6. 112+112+112+116=( ) ×( )=( )或=( ) ×( )=( )7. 74+74+78=( ) ×( )=( ) 或=( ) ×( )=( )8. 72×4表示( ),或( ),得( )。
9. 4×72表示( )得( )。
10.85×6的意义是( )。
或( ).11. 64×85的意义是( )。
12.53×94的意义是( )。
13. 看图列式:( )×( )=( )( )×( )=( )( )×( )=( )( )×( )=( )14. 看算式画图:43×5331×43 54×4153×21 41×32 74×32 83×52 21×3215. 1米的43和3米的41都是( )米.16.1米的85和( )米的81一样长。
17. 3米的51和( )米的53一样长。
18. 241吨=( )千克 19.65小时=( )分20. 一根8米长的绳子平均剪成5段,其中每段占全长的( ),每段长( )米21. 修一条4千米长的水渠,5天修完,平均每天修( )千米,相当于1千米的( )。
分数乘法知识点
分数乘法知识点一分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算;注:“分数乘整数”指的是第二个因数必须是整数,不能是分数;例如:¾×7表示: 求7个¾的和是多少或表示:¾的7倍是多少2、一个数乘分数的意义就是求一个数的几分之几是多少;注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数;第一个因数是什么都可以例如:¾×½表示: 求¾的½是多少9 ×½表示: 求9的½是多少A ×½表示: 求a的½是多少二分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变;注:1为了计算简便能约分的可先约分再计算;整数和分母约分2约分是用整数和下面的分母约掉最大公因数;整数千万不能与分母相乘,计算结果必须是最简分数2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母;分子乘分子,分母乘分母注:1如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算;2分数化简的方法是:分子、分母同时除以它们的最大公因数;3在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数;约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数4分数的基本性质:分子、分母同时乘或者除以一个相同的数0除外,分数的大小不变;三积与因数的关系:一个数0除外乘大于1的数,积大于这个数;a×b=c,当b >1时,c>a.一个数0除外乘小于1的数,积小于这个数;a×b=c,当b <1时,c<a b≠0.一个数0除外乘等于1的数,积等于这个数;a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况;四分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的;2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便;乘法交换律:a×b=b×a乘法结合律:a×b×c=a×b×c乘法分配律:a×b±c=a×b±a×c五倒数的意义:乘积为1的两个数互为倒数;1、倒数是两个数的关系,它们互相依存,不能单独存在;单独一个数不能称为倒数;必须说清谁是谁的倒数2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”;例如:a×b=1则a、b互为倒数;3、求倒数的方法:①求分数的倒数:交换分子、分母的位置;②求整数的倒数:整数分之1;③求带分数的倒数:先化成假分数,再求倒数;④求小数的倒数:先化成分数再求倒数;4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母;5、任意数aa≠0,它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身;假分数的倒数小于或等于1;带分数的倒数小于1;六分数乘法应用题——用分数乘法解决问题1、求一个数的几分之几是多少用乘法“1”×b/a =b/a例如:求25的3/5是多少列式:25×3/5=15甲数的3/5等于乙数,已知甲数是25,求乙数是多少列式:25×3/5=15注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘;2、什么是什么的;= “1”×几/几例1: 已知甲数是乙数的3/5,乙数是25,求甲数是多少甲数=乙数×3/5 即25×3/5=15注:1“是”“的”字中间的量“乙数”是3/5的单位“1”的量,即3/5是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份;2“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”;3单位“1”的量×分率=分率对应的量例2:甲数比乙数多少3/5,乙数是25,求甲数是多少甲数=乙数±乙数×3/5 即25±25×3/5=25×1±3/5=40或103、巧找单位“1”的量:在含有分数分率的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”;4、什么是速度——速度是单位时间内行驶的路程;速度=路程÷时间时间=路程÷速度路程=速度×时间——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等;5、求甲比乙多少几分之几多:甲-乙÷乙少:乙-甲÷乙。
分数的乘法应该怎么乘分数的乘法法则和除法法则是什么分数的乘法怎么约分
分数乘法计算法则1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。
能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
分数的乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
做第一步时,就要想一个数的分子和另一个分母能不能约分。
分数与整数相乘就是把多个同样的数叠加,如2/3x2,就是指2个2/3相加,2/3x10是指10个2/3相加。
应用:求一个数的几分之几是多少,用乘法来计算。
“求一个数的几倍是多少”和“求一个数的几分之几是多少”的数量关系是相同的。
一个数乘分数实际也是求这个数的几分之几倍,习惯上把“倍”省去,就说求这个数的几分这几。
特征:已知条件表示单位“1”的量,单位“1”的几分之几。
所求问题:求单位“1”的几分之几。
分数乘法知识点归纳(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
分数乘法知识点总结
分数乘法知识点总结分数乘法知识点总结上学期间,是不是经常追着老师要知识点?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
相信很多人都在为知识点发愁,下面是小编为大家收集的分数乘法知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
一、分数乘法(一)分数乘法的意义1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少?1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少?(二)、分数乘法的计算法则1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a*c+b*c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
分数乘除法的知识点总结和归纳练习
分数乘除法的知识点归纳和总结练习一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少?2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少?(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
练一、分数与整数相乘。
512 ×4= 26×613 = 1115 ×5= 24×1348 = 221 ×7= 310×20= 425 ×15= 718 ×12= 16×920 = 练二、分数和分数相乘。
(注意:能约分的先约分,再计算。
) 25 ×34 = 67 ×78 = 59 ×815 = 911 ×715 = 1225 ×1516 = 45 ×910 = 1319 ×3839 = 910 ×5063 = 1234 ×1736 = (三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
练三、比较大小56 ×4○ 56 9×23 ○23 ×9 38 × 12 ○ 38(四)分数混合运算的运算顺序和整数的运算顺序相同。
练四、分数乘、加、减混合。
716 ×(5063 -27 ) 45 ×1516 ×14 56 ×34 +1 23 +512 ×415914 -59 ×2735 1 -1819 ×3845 615 ×(5-513 ) 1991 ×7+813(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
小学数学分数乘法知识点
小学数学分数乘法知识点
小学数学分数乘法的知识点包括:
1. 分数的乘法法则:分数相乘时,将分子与分子相乘,分母与分母相乘,然后将所得
的结果分子分母以最简形式写出。
2. 分数与整数相乘:将整数看作分数,分子为整数,分母为1,然后按照分数乘法法
则进行计算。
3. 分数乘分数:将两个分数分别按照分数乘法法则进行计算,然后将所得的结果分子
分母以最简形式写出。
4. 约分:如果一个分数的分子和分母都可以被同一个数整除,那么可以将这个数约去,得到一个与原来分数相等但分子和分母较小的分数。
5. 分数的乘法运算规律:分数的乘法是可交换的,即a×b=b×a,其中a和b代表分数。
6. 分数乘法的应用:分数乘法可以应用于解决一些实际问题,如求解面积、长度等问题。
需要注意的是,分数乘法需要注意保持分数的最简形式,并且在计算过程中要注意约
分的步骤。
分数乘除法的知识点总结和归纳练习
分数乘除法的知识点总结和归纳练习分数乘除法的知识点归纳和总结练一、分数乘法一)分数乘法的意义:1.分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
例如,88/9 × 5表示求5个9的和是多少。
2.分数乘分数是求一个数的几分之几是多少。
例如,83/83 × 4表示求9的4分之几是多少。
二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变(整数和分母约分)。
2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3.为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
练一、分数与整数相乘:5/12 × 4 = 2 6/11 × 6/13 = 15/24 × 13/48 = 2/21 × 7 = 6/10 ×20 = 4/25 × 15 = 79/18 × 12 = 16/20练二、分数和分数相乘:注意:能约分的先约分,再计算。
2/5 × 3/4 = 3/1067/58 × 7/8 = 469/2329/11 × 7/15 = 21/551215/49 × 16/25 = 972/2455/1 × 10/1 = 5013/19 × /1217 = 5070/221三)规律:(乘法中比较大小时)一个数(除外)乘大于1的数,积大于这个数。
一个数(除外)乘小于1的数(除外),积小于这个数。
一个数(除外)乘1,积等于这个数。
练三、比较大小:5/6 × 4 < 5/69/.3/98 × 2/86/3.5/四)分数混合运算的运算顺序和整数的运算顺序相同。
练四、分数乘、加、减混合:/155 × (63-7)/5 × 16/14 = 4608/2175/16 × 14 + 325/46 × 4 + 1/3 + 12 × 15/9 - 14/5 × 27/35 - (1-18/19) × 38/45 - 6/15 × (5-19/13) × 91 + 13/9 = -1005/46五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
分数乘法的意义和性质分数乘法法则整数乘法法则
分数乘法的意义和分数乘法的计算法则
•分数乘法有两个意义:
1.分数乘以整数:和整数乘法意义相同,就是求几个相同加数的运算
2.一个数乘以分数:是求一个数的几分之几是多少
分数乘法法则:
1.分数乘整数时,用分数的分子和整数相乘的积做分子,分母不变。
(要约成最简
分数)
2.分数乘分数,用分子相乘的积做分子,分母相乘的积做分母,能约分的要约成最简分
数(在计算中约分)。
但分子和分母不能为零。
•分数与整数乘法意义:
不完全相同:
分数乘以整数的意义就和整数乘法的意义相同;
分数乘以分数的意义就和整数乘法的意义不相同:
乘法的意义就是求几个相同加数和的简便运算。
小数乘法和分数乘法的意义之所以教材中出现两种说法(分数乘整数的意义和整数乘法的意义相同,一个数成分数的意义就是求这个数的几分之几是多少),实际上是“意义的扩展”比如:6*2/3表示6的2/3。
再在进一步理解:就是把6平均分成3份,表示这样2份的数。
实际上也就是2/3个6。
但基于说法不太符合常理,而改变成人们习惯的说法
整数乘法法则
1.一位数的乘法法则。
两个一位数相乘,可根据乘法定义用加法计算,通常可利用乘法表直接得出任意两个一位数的积。
2.多位数的乘法法则。
依次用乘数的各个数位上的数,分别去乘被乘数的每一数位上的数,然后将乘得的积加起来。
3.对于任意数a,有a×1=a,a×0=0×a=0。
分数乘法数学
分数乘法数学一、分数乘法的意义1. 分数乘整数- 意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:(2)/(3)×3表示3个(2)/(3)相加的和是多少,即(2)/(3)+(2)/(3)+(2)/(3)=(2 + 2+ 2)/(3)=(6)/(3) = 2。
2. 一个数乘分数- 意义:一个数乘分数,表示求这个数的几分之几是多少。
例如:3×(2)/(5)表示3的(2)/(5)是多少;(3)/(4)×(2)/(5)表示(3)/(4)的(2)/(5)是多少。
二、分数乘法的计算法则1. 分数乘整数的计算方法- 用分数的分子和整数相乘的积作分子,分母不变。
能约分的可以先约分,再计算。
例如:(3)/(5)×10=(3×10)/(5)= 6,或者先约分(3)/(5)×10=(3)/(1)×2 = 6。
2. 分数乘分数的计算方法- 用分子相乘的积作分子,分母相乘的积作分母。
能约分的先约分再计算。
例如:(2)/(3)×(3)/(4)=(2×3)/(3×4)=(6)/(12)=(1)/(2),先约分的话(2)/(3)×(3)/(4)=(1)/(1)×(1)/(2)=(1)/(2)。
三、分数乘法的简便运算1. 乘法交换律- 在分数乘法中,a× b=b× a。
例如:(2)/(3)×(3)/(4)=(3)/(4)×(2)/(3)。
2. 乘法结合律- (a× b)× c=a×(b× c)。
例如:((1)/(2)×(2)/(3))×(3)/(4)=(1)/(2)×((2)/(3)×(3)/(4))。
3. 乘法分配律- a×(b + c)=a× b+a× c。