一元二次方程因式分解法
一元二次方程解法:因式分解法
x1 2; x2 4. 2.4 x2x 1 32x 1 0,
解下列方程:
2x 14x - 3 0,
2 x 1 0, 或4 x 3 0. 1 3 x1 , x2 . 2 4
1、因式分解:
(1)4 x 25; (2)9 x 6 x 1
1 .x2-4=0; 解:(x+2)(x-2)=0,
∴x+2=0,或x-2=0. ∴x1=-2, x2=2.
2.(x+1)2-25=0.
∴x+6=0,或x-4=0. ∴x1=-6, x2=4.
解:[(x+1)+5][(x+1)-5]=0
1.x 2x - 4 0, 2.4 x2 x 1 32 x 1. 解 :1.x 2 0,或x 4 0.
小颖是这样解的:
解 : x 3x 0.
2
小明是这样解的:
解 : 方程x 2 3 x两
3 9 x . 2
公 式 法
这个数是0或3.
小颖做得对吗?
漏 边都同时约去x, 得. x 3. 根 x≠0
这个数是3.
小明做得对吗?
你能解决这个问题吗
一个数的平方与这个数的3倍有可能相等吗?如果相 等,这个数是几?你是怎样求出来的? 小颖,小明,小亮都设这个数为x,根据题意得 x 2 3x.
(1) x 3 x 4 x 4 x 1
2
(2) x 3 x 18 x 6 x 3
2
1
6 3
4 4 (1) 3 4 (1)
6 3
常数项分解成两个因数的积, 这两个因数的和恰好是一次项系数。
解一元二次方程五种方法
解一元二次方程五种方法解一元二次方程五种方法解一元二次方程是初中数学中的基础知识,也是高中数学中的重要内容,掌握多种解法对于提高数学能力和解题能力有着重要作用。
下面介绍五种解一元二次方程的方法。
方法一:配方法(也称为配方根公式)配方法是一种常见的解一元二次方程的方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项分离出完全平方项;2. 将方程化为完全平方形式,即形如(x + a) = b;3. 对方程两边取平方根,得到x的两个解:x = -a ± b。
方法二:公式法公式法是解一元二次方程的常用方法之一,它的公式为:x = (-b ±√(b-4ac)) / 2a其中a、b、c分别为一次项系数、二次项系数和常数项。
方法三:图像法图像法是一种直观的解题方法,它的步骤如下:1. 将方程化为标准形式:ax+bx+c=0;2. 将方程左侧变形为y=ax+bx+c的二次函数的图像;3. 通过观察二次函数的图像,得到x的解。
方法四:因式分解法如果一元二次方程的左侧可以因式分解,那么可以使用因式分解法解题。
例如:x+5x+6=0,可以因式分解为(x+2)(x+3)=0。
因此,x的解为x=-2或x=-3。
方法五:完全平方公式完全平方公式是解一元二次方程的一种简便方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项计算出Δ=b-4ac;2. 如果Δ是完全平方数,那么方程的解为x=(-b±√Δ)/2a。
以上是解一元二次方程的五种方法,希望对大家有所帮助。
掌握多种解题方法可以提高数学思维和解题能力,也可以在考试中提高解题速度和准确性。
第4讲 一元二次方程的解法-因式分解法
第4讲 一元二次方程的解法(四)----因式分解法知识要点梳理:1.分解因式的方法有:提公因式法、利用平方差公式分解因式、利用完全平方公式分解因式、十字相乘法、分组分解法等2.因式分解法解一元二次方程的原理:000==⇔=b a ab 或预习引入:将下列各式分解因式(1)y y 22-(2)942-x (3)2222+-x x(4)862+-x x(5)y y x x 2422--+经典例题例1:用因式分解法解下列方程:(1) t (2t -1)=3(2t -1);(2) y 2+7y +6=0(3)(2x -1)(x -1)=1.(4)0)34()43(22=---x x例2:用适当方法解下列方程: (1)3(1-x )2=27; (2)x 2-6x -19=0;(3)3x 2=4x +1; (4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0; (6)4(3x +1)2=25(x -2)2.例3.解关于x 的方程:(1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6;(3)x 2-2mx -8m 2=0; (4)x 2+(2m +1)x +m 2+m =0.经典练习:一.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 *(8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .3二.填空题(1)方程(2x +1)2+3(2x +1)=0的解为__________.(2)方程t (t +3)=28的解为_______.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.三.用因式分解法解下列方程:(1)x 2+12x =0; (2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0; (2)(x-2)2=256; (3)x2-3x+1=0;(4)x2-2x-3=0; (5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9; (7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0; (9)2x2-8x=7(10)(x+5)2-2(x+5)-8=0.拓展练习1.已知x 2+3xy -4y 2=0(y ≠0),试求y x yx +-的值.2.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.3.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗巩固作业:1.分别用三种方法来解以下方程(1)x2-2x-8=0 (2)3x2-24x=0用因式分解法:用配方法:用公式法:用因式分解法:用配方法:用公式法:2.已知x2+3x+5的值为9,试求3x2+9x-2的值.3.当x取何值时,能满足下列要求?(1)3x2-6的值等于21;(2)3x2-6的值与x-2的值相等.4.一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.。
一元二次方程因式分解法的步骤
一元二次方程因式分解法的步骤一元二次方程是指只有一个未知数的二次方程,通常形式为ax^2+bx+c=0,其中a、b、c为已知常数,且a≠0。
求解一元二次方程的一个常见方法是因式分解法。
下面将介绍一元二次方程因式分解法的具体步骤。
步骤一:观察方程我们需要观察一元二次方程的形式,判断是否适合使用因式分解法。
一元二次方程可以写成两个一次因子相乘的形式,即(ax+m)(bx+n)=0,其中m、n为已知常数。
如果方程可以写成这种形式,那么我们就可以使用因式分解法来解方程。
步骤二:找出一次因子接下来,我们需要找到方程中的一次因子。
一次因子是指形如px+q 的一次多项式,其中p、q为已知常数。
为了找出一次因子,我们需要将方程的二次项和常数项进行拆分,并找到合适的一次因子。
步骤三:写出因式分解形式一旦找到了一次因子,我们就可以将方程写成因式分解的形式。
具体而言,我们可以将方程写成(ax+m)(bx+n)=0的形式。
步骤四:解方程现在,我们需要解方程。
根据因式分解的形式,我们可以得到两个一次方程:ax+m=0和bx+n=0。
我们可以分别解这两个一次方程,得到两个解x1和x2。
步骤五:验证解我们需要验证解是否符合原方程。
我们可以将解代入原方程,检查等式是否成立。
如果解符合原方程,那么我们就可以确定这个解是正确的。
通过以上五个步骤,我们可以使用一元二次方程因式分解法来解决一元二次方程问题。
这种方法在一些特定的情况下特别有效,例如方程的系数比较简单或者方程有特殊的形式。
需要注意的是,一元二次方程因式分解法并不是解决一元二次方程的唯一方法。
在实际应用中,我们可以根据具体情况选择适合的解法。
除了因式分解法,还有配方法、求根公式等方法可以用来解决一元二次方程。
总结起来,一元二次方程因式分解法是解决一元二次方程问题的一种常见方法。
通过观察方程、找出一次因子、写出因式分解形式、解方程和验证解等步骤,我们可以求解一元二次方程并得到正确的解。
用因式分解法解一元二次方程
用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A=0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6.(2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0.∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考?例2:用适当方法解下列方程: (1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27,∴x 1=3+27,x 2=3-27.(3)移项,得3x 2-4x -1=0,∵a =3,b =-4,c =-1, ∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0;∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0, ∴x -3=0或4x -1=0, ∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0,[2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0,(11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0.当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0.(2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程.分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0,∵a +b ≠0且a -b ≠0,∴x 1=b a a b +-,x 2=ba b a -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252y xy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y .当x =2y 时,135y13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--.当x =-y 时,21y4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11(8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______. (2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0;(2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0;(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0;(8)(x -1)2-4(x -1)-21=0.4.用适当方法解下列方程:(1)x 2-4x +3=0;(2)(x -2)2=256; (3)x 2-3x +1=0;(4)x 2-2x -3=0;(5)(2t +3)2=3(2t +3);(6)(3-y )2+y 2=9; (7)(1+2)x 2-(1-2)x =0;(8)5x 2-(52+1)x +10=0;(9)2x 2-8x =7(精确到0.01);(10)(x +5)2-2(x +5)-8=0.5.解关于x 的方程:(1)x 2-4ax +3a 2=1-2a ;(2)x 2+5x +k 2=2kx +5k +6;(3)x 2-2mx -8m 2=0; (4)x 2+(2m +1)x +m 2+m =0.6.已知x 2+3xy -4y 2=0(y ≠0),试求yx y x +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x4-3x2-4=0.(2)既然可以将x2-1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31; (7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2. 4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1; (5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3; (8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7. 5.(1)x 2-4ax +4a 2=a 2-2a +1,(x -2a )2=(a -1)2,∴x -2a =±(a -1),∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0, x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0,∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0,(x +m )[x +(m +1)]=0,∴x1=-m ,x 2=-m -16.(x +4y )(x -y )=0, x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=y y y y +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0,(x 2+y 2)2-(x 2+y 2)-12=0,(x 2+y 2-4)(x 2+y 2+3)=0,∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4, ∴3x 2+9x -2=3(x 2+3x )-2=3×4-2=1010.10=-5(t-2)(t+1),∴t=1(t=0舍去)x2=211.(1)x(2)(x2-2)(x2-5)=0,(x+2)(x-2)(x+5)(x-5)=0出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
第4讲 一元二次方程的解法-因式分解法
一元二次方程的解法(四)----因式分解法知识要点梳理:1.分解因式的方法有:提公因式法、利用平方差公式分解因式、利用完全平方公式分解因式、十字相乘法、分组分解法等2.因式分解法解一元二次方程的原理:000==⇔=b a ab 或预习引入:将下列各式分解因式(1)y y 22-(2)942-x (3)2222+-x x(4)862+-x x(5)y y x x 2422--+经典例题例1:用因式分解法解下列方程:(1) t (2t -1)=3(2t -1);(2) y 2+7y +6=0(3)(2x -1)(x -1)=1.(4)0)34()43(22=---x x例2:用适当方法解下列方程: (1)3(1-x )2=27; (2)x 2-6x -19=0;(3)3x 2=4x +1; (4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0; (6)4(3x +1)2=25(x -2)2.例3.解关于x 的方程:(1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6;(3)x 2-2mx -8m 2=0; (4)x 2+(2m +1)x +m 2+m =0.经典练习:一.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 *(8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .3二.填空题(1)方程(2x +1)2+3(2x +1)=0的解为__________.(2)方程t (t +3)=28的解为_______.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.三.用因式分解法解下列方程:(1)x 2+12x =0; (2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0; (2)(x-2)2=256; (3)x2-3x+1=0;(4)x2-2x-3=0; (5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9; (7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0; (9)2x2-8x=7(10)(x+5)2-2(x+5)-8=0.拓展练习1.已知x 2+3xy -4y 2=0(y ≠0),试求y x yx +-的值.2.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.3.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y , 则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗巩固作业:1.分别用三种方法来解以下方程(1)x2-2x-8=0 (2)3x2-24x=0用因式分解法:用配方法:用公式法:用因式分解法:用配方法:用公式法:2.已知x2+3x+5的值为9,试求3x2+9x-2的值.3.当x取何值时,能满足下列要求?(1)3x2-6的值等于21;(2)3x2-6的值与x-2的值相等.4.一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.。
一元二次次方程 因式分解法
一元二次次方程因式分解法一元二次方程是指形式为ax^2+bx+c=0的方程,其中a、b、c都是已知实数且a≠0。
解一元二次方程的方法之一是因式分解法。
因式分解法是将一元二次方程转化成二元一次方程,然后利用分解公式将方程因式分解为两个一次因式的乘积,并求解得到方程的解。
下面详细介绍一元二次方程的因式分解法。
1. 首先,将一元二次方程写成标准形式,即ax^2+bx+c=0。
2. 判断方程的判别式D=b^2-4ac的值。
- 若D>0,方程有两个不相等的实数根。
- 若D=0,方程有两个相等的实数根。
- 若D<0,方程没有实数根,但有复数根。
3. 根据判别式D的值,采取相应的方法进行因式分解。
- 若D>0,假设方程的解为x1和x2,则方程可以因式分解为(x-x1)(x-x2)=0。
- 若D=0,假设方程的解为x0,则方程可以因式分解为(x-x0)^2=0。
- 若D<0,假设方程的解为x1和x2,则方程可以因式分解为(x-x1+i√(-D))(x-x2-i√(-D))=0,其中i为虚数单位。
4. 将方程因式分解后的形式转化为二元一次方程,进行求解。
- 若D>0,将方程转化为两个一次方程进行求解。
分别令(x-x1)=0和(x-x2)=0,得到x1和x2的值。
- 若D=0,将方程转化为一个一次方程进行求解。
令(x-x0)^2=0,得到x0的值。
- 若D<0,将方程转化为一个一次方程进行求解。
令(x-x1+i√(-D))(x-x2-i√(-D))=0,分别令x-x1+i√(-D)=0和x-x2-i√(-D)=0,得到x1和x2的值。
5. 根据求解得到的x1、x2和x0的值,得到方程的解。
综上所述,一元二次方程可以通过因式分解法进行求解。
根据方程的判别式的值,将方程进行因式分解,并转化为二元一次方程进行求解。
这种方法在某些情况下可以简化求解过程,帮助我们更好地理解和解决一元二次方程的问题。
初中数学 如何将一元二次方程因式分解
初中数学如何将一元二次方程因式分解一元二次方程的因式分解是将一个二次方程表示为两个或更多个一次因式的乘积。
在本篇文章中,我将详细解释一元二次方程的因式分解方法,并提供相关的示例和解释。
一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b和c是实数,且a不等于0。
要进行一元二次方程的因式分解,我们可以按照以下步骤进行:步骤1:检查方程是否可以进行因式分解。
方程可因式分解的条件是,方程的系数a、b和c 必须能够被一个或多个公因式整除。
步骤2:确定方程的因式分解形式。
一元二次方程的因式分解形式可以表示为(x - p)(x - q) = 0,其中p和q是实数。
步骤3:找到p和q的值。
根据方程的系数和因式分解形式,我们可以使用下列公式来找到p和q的值:p + q = -b/ap * q = c/a步骤4:将p和q的值代入方程的因式分解形式。
将p和q的值代入因式分解形式(x - p)(x - q) = 0,我们就得到了方程的因式分解形式。
让我们通过一个例子来演示一元二次方程的因式分解。
假设我们有一个一元二次方程:2x^2 + 7x + 3 = 0。
现在我们来进行因式分解。
步骤1:检查方程是否可因式分解。
在这个例子中,方程的系数2、7和3没有明显的公因式,所以我们可以继续进行因式分解。
步骤2:确定方程的因式分解形式。
根据因式分解形式(x - p)(x - q) = 0,我们可以得到(x - p)(x - q) = 0。
步骤3:找到p和q的值。
根据公式p + q = -b/a和p * q = c/a,我们可以得到:p + q = -7/2p * q = 3/2解这个方程组,我们得到p = -1/2和q = -3/2。
步骤4:将p和q的值代入因式分解形式。
将p = -1/2和q = -3/2代入(x - p)(x - q) = 0,我们得到:(x - (-1/2))(x - (-3/2)) = 0(x + 1/2)(x + 3/2) = 0所以,该方程的因式分解形式为(x + 1/2)(x + 3/2) = 0。
一元二次方程8因式分解法
随着计算机技术的不断发展,未来可以将因式分 解法与计算机技术相结合,开发出更加高效、便 捷的算法和软件,为实际应用提供更加有力的支 持。
THANKS FOR WATCHING
感谢您的观看
方程8的表达式及判别式
方程8的表达式为:$ax^2 + bx + c = 0$
判别式 $Delta = b^2 - 4ac$,用于判断方程的根的情况。
利用因式分解法求解方程
当 $Delta > 0$ 时,方程有两个不相等的实根,可以进 行因式分解。
将方程改写为 $(x + p)(x + q) = 0$ 的形式。
探讨因式分解法的适用范围
适用情况
当一元二次方程可以容易地分解为两个一次因式的乘积时,因式分解法是一种有效的解法。这通常发 生在方程的系数具有特定关系(如和为0、积为常数等)的情况下。
不适用情况
对于不能轻易分解为两个一次因式的乘积的一元二次方程,因式分解法可能不适用。此时,可以考虑 使用其他方法(如配方法、公式法)来求解。
分析因式分解法的优缺点
优点
因式分解法是一种直观的解法,能够将复杂的 一元二次方程简化为两个一元一次方程,便于
求解。
在某些情况下,因式分解法比其他方 法(如配方法、公式法)更简便。
缺点
因式分解法需要一定的观察能力和经验,对于 某些不易分解的方程,可能难以应用该方法。
当一元二次方程的系数较大或较复杂 时,因式分解法可能变得繁琐。
01
02
03
判别式 $Delta = b^2 4ac$ 用于判断方程的根 的情况。
当 $Delta > 0$ 时,方 程有两个不相等的实根。
解一元二次方程--因式分解法
10.已知(x2+y2﹣3)(x2+y2+1)=12,求x2+y2的值.
3.灵活选用方法解一元二次方程
【例3】选择适当方法解下列方程:
(1)x2﹣5x+1=0;
(2)3(x﹣2)2=x(x﹣2);
(3)2x2﹣2 x﹣5=0;
(4)(y+2)2=(3y﹣1)2.
总结:解一元二次方程常用的方法有直接开平方法、配方法、公式法和因式分解法,根据一元二次方程的特征,灵活选用解方程的方法,可以起到事半功倍的作用.(1)一般地,当一元二次方程一次项系数为0时,即形如ax2+c=0形式的一元二次方程,应选用直接开平方法.
解一元二次方程---因式分解法
一、学习目标
1.会用因式分解法解一元二次方程;
2.会用换元法解一元二次方程;
3.灵活选用简便的方法解一元二次方程.
二、知识回顾
1.分解因式的常用方法有哪些?
(1)提取公因式法:
am+bm+cm=m(a+b+c)
(2)公式法:
Байду номын сангаас, ,
(3)十字相乘法:
三、新知讲解
1.因式分解法
③令每一个因式分别等于0,得到两个一元一次方程;
④解这两个一元一次方程,它们的解就是原方程的解.
3.因式分解法的条件、理论依据
因式分解法解一元二次方程的条件是:方程右边等于0,而左边易于分解;
理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零.
四、典例探究
1.用因式分解法解一元二次方程
【例1】用因式分解法解方程:
一元二次方程因式分解法的四种方法
一元二次方程因式分解法的四种方法【实用版3篇】目录(篇1)一、引言二、一元二次方程的概述三、因式分解法概述四、四种因式分解方法1.提取公因式法2.完全平方公式法3.平方差公式法4.完全平方公式与平方差公式的结合法五、每种方法的例题解析六、总结正文(篇1)一、引言在解决一元二次方程时,因式分解法是一种常用的方法,它可以帮助我们快速找到方程的解。
本文将为大家介绍四种因式分解的方法,以帮助大家更好地理解和运用这一方法。
二、一元二次方程的概述一元二次方程是指形如 ax+bx+c=0 的方程,其中 a、b、c 为常数,且 a≠0。
在这个方程中,a、b、c 分别称为二次项系数、一次项系数和常数项。
三、因式分解法概述因式分解法是将一元二次方程的左边化为两个一次因式的积的形式,从而得到方程的解。
通过因式分解,我们可以将一元二次方程转化为两个一元一次方程来求解,从而简化了解题过程。
四、四种因式分解方法1.提取公因式法提取公因式法是指在方程的两边同时提取公因式,以达到简化方程的目的。
这种方法适用于当方程的一次项系数 b 为零的情况。
2.完全平方公式法完全平方公式法是指利用完全平方公式 (a+b)=a+2ab+b将方程进行因式分解。
这种方法适用于当方程的二次项系数 a 为 1 的情况。
3.平方差公式法平方差公式法是指利用平方差公式 (a+b)(a-b)=a-b将方程进行因式分解。
这种方法适用于当方程的一次项系数 b 不等于零且二次项系数 a 不等于 1 的情况。
4.完全平方公式与平方差公式的结合法当方程的二次项系数 a 不为 1,一次项系数 b 不为 0 时,我们可以将完全平方公式和平方差公式结合使用,以达到因式分解的目的。
五、每种方法的例题解析这里我们分别对四种因式分解方法进行例题解析,以便大家更好地理解和掌握这些方法。
六、总结因式分解法是一种解决一元二次方程的有效方法,掌握四种因式分解方法有助于我们在解题过程中更加灵活地选择合适的方法。
一元二次方程的解法及应用
一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。
解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。
本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。
一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。
具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。
二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。
其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。
例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。
三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。
一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。
具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。
《用因式分解法解一元二次方程》
不是所有的一元二次方程都可以进行因式分解,需要判断是否可以 提取公因式或使用十字相乘法。
注意符号问题
在因式分解过程中,需要注意符号问题,确保结果的正确性。
限制条件
仅适用于一元二次方程
对符号敏感
因式分解法仅适用于一元二次方程, 不适用于其他类型的一元方程或多元 方程。
因式分解法对符号非常敏感,稍不注 意就会导致结果错误,因此需要特别 注意运算过程中的符号问题。
与开平方法比较
适用范围
开平方法和因式分解法都适用于 能够通过因式分解的一元二次方 程,但开平方法适用于开口向上
的二次方程。
简便性
对于能够通过因式分解的开口向 上的二次方程,开平方法相对简 单,因为不需要进行复杂的计算。
求解过程
开平方法需要找到方程的两个根, 然后进行开平方运算,而因式分 解法可以直接进行因式分解求解。
求解过程
因式分解法的求解过程相 对直观,而公式法需要使 用公式进行计算。
与配方法பைடு நூலகம்较
适用范围
配方法和因式分解法都适用于能 够通过因式分解的一元二次方程,
但配方法还可以用于其他形式的 一元二次方程。
简便性
配方法需要先进行配方,过程相对 复杂,而因式分解法相对简单。
求解过程
配方法需要先配方,然后使用公式 求解,而因式分解法可以直接进行 因式分解求解。
公式
ax^2+bx+c=a(x-x1)(x-x2),其中 x1、x2是一元二次方程的两个解。
因式分解法的应用范围
适用条件
适用于所有形式的一元二次方程,特 别是当方程可以轻易地分解为两个一 次因式时。
限制
对于某些特殊形式的一元二次方程, 如完全平方或平方差公式,因式分解 法可能不是最简便的方法。
一元二次方程(因式分解法)
一元二次方程(因式分解法)【知识要点】1、 分解因式法解一元二次方程:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的解,这种解一元二次方程的方法称为分解因式法。
2、分解因式法的理论依据是:若0=⋅b a ,则0=a 或0=b3、用分解因式法解一元二次方程的一般步骤: ①将方程的右边化为零;②将方程的左边分解为两个一次因式的乘积; ③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是一元一次方程的解。
【典型例题】例1、(1)方程)2(2)2)(1(+=+-x x x 的根是__________ (2)方程0)3)(2)(1(=-+-x x x 的根是__________ 例2、 用分解因式法解下列方程(1)0632=-x x (2))5(2)5(32x x -=-(3) 0122=+-x x (4)4842-=+x x(5) 0)3()23(22=+-+x x (6)22)6(16)3(49+=-x x(7)0625412=-+x x (8)(x -1)2-4(x -1)-21=0.例3、2-3是方程x 2+bx -1=0的一个根,则b =_________,另一个根是_________. 例4、已知a 2-5ab +6b 2=0,则abb a +等于 ( ) 21331D.2 31321C.2 31B.3 21A.2或或例5、解关于x 的方程:(a 2-b 2)x 2+4abx =a 2-b 2.例6、x 为何值时,等式0232222=--+--x x x x【经典练习】填空题1、用因式分解法解方程9=x 2-2x+1 (1)移项得 ;(2)方程左边化为两个数的平方差,右边为0得 ; (3)将方程左边分解成两个一次因式之积得 ; (4)分别解这两个一次方程得x 1 = , x 2= 。
2、(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.3、(1)用因式分解法解方程5(x+3)-2x (x+3)=0,可把其化为两个一元一次方程和 求解。
一元二次分解因式的方法
一元二次分解因式的方法一元二次分解因式的方法,首先需要判断该二次多项式是否可以分解成两个一次式相乘的形式。
其中,二次多项式的一般式为ax² + bx + c,a、b、c为常数且a≠0。
如果可以分解成两个一次式相乘的形式,即可写出分解式为(x+m)(x+n),其中m、n为常数,且满足m+n=b/a。
如果无法分解成两个一次式相乘的形式,则需要使用“配方法”或“变量代换法”进行分解。
具体可参考如下步骤:- 配方法将b项拆成两个常数p、q(满足p+q=b),然后在式子的两端同时加上p²、q²,得到:ax² + bx + c = ax² + px + qx + p² + q² - p² - q² + c将式子分组,并把第一组和第二组,以及第三组和第四组合并,得到:ax² + bx + c = a(x + p)² - (p² - cq)如果p²-cq=0,则可继续分解得:ax² + bx + c = a(x + p)²如果p²-cq≠0,则可写出分解式为:ax² + bx + c = a(x + p + √(p²-cq))(x + p - √(p²-cq)) - 变量代换法可以通过替换$x=\alpha t+\beta$的方式,将一元二次方程转化为一次方程,再进行分解。
具体步骤如下:令$\alpha=\pm\sqrt{a}$,则原方程可转化为:a(x² - $\frac{b}{a}$x + $\frac{c}{a}$) = 0令y=x² - $\frac{b}{a}$x + $\frac{c}{a}$,则原方程可转化为:ay = 0此时只需对y进行一次因式分解即可,再代回x即可得到原方程的分解式。
综上所述,一元二次分解因式的方法包括常规的“判断两个一次式相乘的形式”以及“配方法”、“变量代换法”等较为复杂的方法。
用因式分解法解一元二次方程详细
用因式分解法解一元二次方程【主体知识概括】1.因式分解法 若一元二次方程的一边是 0,而另一边易于分解成两个一次因式时,比如,x 2- 9=0,这个方程可变形为 ( + 3)( - 3) = 0,要 ( x + 3)( x -3) 等于 0,一定并且只需 ( x + 3) 等于 0 或( x - 3) 等于 0,x x所以,解方程 ( x + 3)( x - 3) = 0 就相当于解方程 x + 3= 0 或 x -3= 0 了,经过解这两个一次方程便可获得 原方程的解.这类解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的重点是将一元二次方程分解降次为一元一次方程.其理论依据是:若A ·B =0 A = 0 或B = 0.【基础知识解说】1.只有当方程的一边能够分解成两个一次因式,而另一边是0 的时候, 才能应用因式分解法解一元二 次方程.分解因式时,要依据状况灵巧运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法能够说是通法,即能解任何一个一元二次 方程.但对某些特别形式的一元二次方程,有的用直接开平方法简易,有的用因式分解法简易.所以,在碰到一道题时, 应选择适合的方法去解. 配方法解一元二次方程是比较麻烦的,在实质解一元二次方程时, 一般不用配方法.而在此后的学习中,会经常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例 1:用因式分解法解以下方程:(1)y 2+7 + 6= 0; (2)t (2 t - 1) = 3(2 t - 1) ;(3)(2 x -1)( x - 1) = 1.y解:(1) 方程可变形为 ( y + 1)( y + 6) = 0, y + 1= 0 或 y + 6= 0,∴ y 1=- 1, y 2=- 6. (2) 方程可变形为 t (2 t -1)-3(2 t -1)=0,(2 t -1)( t -3)=0,2t -1=0或 t -3=0,∴ t 1=1, t 22= 3.(3) 方程可变形为 2x 2- 3x =0.x (2 x - 3) = 0,x = 0 或 2x - 3= 0. ∴ x 1=0, x 2=3.2说明: (1) 在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,假如左侧的代数式能够 分解为两个一次因式的乘积,而右侧为零时,则可令每一个一次因式为零,获得两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如 ( x-a)( x-b) =c的方程,其左侧是两个一次因式之积,但右侧不是零,所以应转变为形如( x-e)( x-f ) =0 的形式,这时才有x1= e, x2= f ,不然会产生错误,如(3) 可能产生以下的错解:原方程变形为:2x- 1=1 或x- 1= 1.∴x1= 1,x2= 2.(3) 在方程 (2) 中,为何方程两边不可以同除以(2 t-1) ,请同学们思虑?例 2:用适合方法解以下方程:(1) 3 (1- x)2= 27 ;(2) x2-6x-19=0;(3)3 x2=4x+1;(4) y2-15=2y;(5)5 x( x-3)-( x-3)( x+1) = 0;(6)4(3 x+ 1) 2= 25( x- 2) 2.解析:方程 (1) 用直接开平方法,方程(2) 用配方法,方程(3) 用公式法,方程(4) 化成一般式后用因式分解法,而方程(5) 、 (6) 不用化成一般式,而直接用因式分解法就能够了.2 =9 ,( x-1) 2 = 3,x- 1=±3 ,∴ x =1+ 3 , x =1- 3 .解: (1)(1 - x)1 2(2) 移项,得x 2- 6 = 19,配方,得x2- 6x+ ( - 3) 2= 19+( - 3) 2, ( - 3) 2= 28,- 3=± 27,x x x∴ x1=3+2 7 , x2=3-2 7 .(3)移项,得 3x2-4x- 1=0,∵ a=3, b=-4, c=-1,∴ x=( 4)( 4)2 43 ( 1) 2 7 ,2 3 3∴ x1=2 7,x2=27 .3 3(4) 移项,得y2- 2y- 15=0,把方程左侧因式分解,得( y- 5)( y+ 3) = 0;∴ y-5=0或 y+3=0,∴ y1=5, y2=-3.(5)将方程左侧因式分解,得 ( x- 3) [ 5x-( x+ 1) ]= 0, ( x- 3)(4 x- 1) = 0,∴ x-3=0或4x-1=0,∴x1=3, x2=1.4(6)移项,得 4(3 x+ 1) 2- 25( x- 2) 2= 0,[ 2(3 x+ 1) ]2-[ 5( x- 2) ]2= 0,[2(3 x+ 1) + 5( x- 2) ]·[ 2(3 x+ 1) - 5( x-2) ]= 0,(11 x-8)( x+ 12) = 0,∴11x- 8= 0 或x+ 12= 0,∴x1=8,x2=- 12.11说明: (1) 对于无理系数的一元二次方程解法同有理数同样,只可是要注意二次根式的化简.(2) 直接因式分解就能转变成两个一次因式乘积等于零的形式,对于这类形式的方程就不用要整理成一般式了.例 3: 解对于x的方程: ( a2-b2) x2- 4abx=a2-b2.解: (1) 当a2-b2=0,即|a|=|b|时,方程为-4abx= 0.当 a=b=0时, x 为随意实数.当|a|=| b|≠0时, x=0.(2)当 a2- b2≠0,即 a+ b≠0且 a- b≠0时,方程为一元二次方程.分解因式,得[ ( a+b) x+ ( a-b) ][ ( a-b) x- ( a+b) ]= 0,∵ a+ b≠0且 a- b≠0,∴ x1=b a, x2=ab .a b a b说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不一样状况分别求解.此题其实是分三种状况,即①a= b=0;②| a|=| b|≠0;③| a|≠| b|.2 2x 2 2xy 5 y 2例 4: 已知x-xy- 2y= 0,且x≠ 0,y≠ 0,求代数式x 2 2xy 5 y 2 的值.解析:要求代数式的值,只需求出 x、y 的值即可,但从已知条件中明显不可以求出,要求代数式的分子、分母是对于 x、 y 的二次齐次式,所以知道x 与 y 的比值也可.由已知x2- xy-2y2=0因式分解即可得 x 与 y 的比值.解:由 x2- xy-2y2=0,得( x-2y)( x+y)=0,∴ x-2y=0或 x+y=0,∴ x=2y 或 x=- y.当 x=2y 时,x22xy 5y 2 (2y) 2 2 2y y 5y 2 5y 2 5 .x 2 2xy 5y 2 (2y ) 2 2 2y y 5y 2 13y 2 13当 x=- y 时,x 2 2xy 5y 2 ( y) 2 2 ( y ) y 5y 2 2y 2 1.x 2 2xy 5y 2 ( y) 2 2 ( y ) y 5y 4y 2 2说明:因式分解法表现了“降次”“化归”的数学思想方法,它不单可用来解一元二次方程,并且在解一元高次方程、二元二次方程组及相关代数式的计算、证明中也有着宽泛的应用.【同步达纲练习】 1.选择题(1) 方程 ( x - 16)(x +8)=0的根是 ()A .x 1=- 16,x 2= 8B .x 1= 16,x 2=- 8C .x 1=16,x 2= 8D .x 1=- 16,x 2=- 8(2) 以下方程 4x 2-3x - 1=0, 5x 2- 7x + 2= 0,13x 2- 15x +2= 0 中,有一个公共解是 ( )A .. x =1B . x = 2C . x = 1D .x =- 12(3) 方程 5 x ( x +3) = 3( x + 3) 解为 ( )1= 3 2B . x = 3A . x 5 , x = 35C . x 1=- 3, x 2=- 3D . x 1= 3, x 2=- 355(4) 方程 ( y - 5)( y + 2) =1 的根为 ( )A . y 1=5, y 2=- 2B . y = 5C . y =- 2D .以上答案都不对(5) 方程 ( x - 1) 2-4( x + 2) 2= 0 的根为 ( )A . x 1=1, x 2=- 5B . x 1=- 1, x 2=- 5C . x 1= 1, x 2= 5D . x 1=- 1, x 2= 5(6) 一元二次方程 x 2+ 5x = 0 的较大的一个根设为 m , x 2- 3x + 2= 0 较小的根设为 n ,则 m + n 的值为( )A . 1B . 2C .- 4D . 4(7) 已知三角形两边长为4 和 7,第三边的长是方程x 2- 16x + 55= 0 的一个根,则第三边长是( ) A . 5 B . 5 或 11 C . 6D . 11(8) 方程 x 2-3| x -1|=1的不一样解的个数是( ) A . 0B . 1C . 2D . 3 2.填空题(1) 方程 t ( t +3)=28的解为_______.(2) 方程 (2 x + 1) 2+ 3(2 x +1) = 0 的解为 __________ . (3) 方程 (2 y + 1) 2+ 3(2 y +1) + 2= 0 的解为 __________.(4)对于 x 的方程 x2+( m+n) x+ mn=0的解为__________.(5)方程 x( x- 5 )= 5 - x 的解为__________.3.用因式分解法解以下方程:(1) x2+12x= 0;(2)4 x2- 1= 0;(3) x2= 7x;(4) x2-4x- 21=0;(5)(x-1)( x+3)=12;(6)3 x2+ 2x- 1= 0;(7)10 x2-x- 3=0;(8)(x-1)2-4( x-1)-21=0.4.用适合方法解以下方程:(1) x2-4x+ 3= 0;(2)(x-2)2=256;(3) x2- 3x+ 1=0;(4) x2-2x- 3= 0;(5)(2 t+ 3) 2= 3(2 t+ 3) ;(6)(3 -y) 2+y2= 9;(7)(1 +2 ) x2-(1-2 ) x=0;(8) 5 x2- (5 2+ 1) x+10 =0;(9)2 x2-8x= 7( 精准到 0.01) ; (10)( x+ 5) 2-2( x+ 5) - 8= 0.5.解对于x 的方程:(1) x 2-4ax +3a 2=1-2a ;(2) x 2+5x +k 2=2kx +5k +6;2222(3) x -2mx - 8m = 0; (4) x + (2 m + 1) x + m + m =0. 6.已知x 2+ 3xy -4y 2= 0( y ≠ 0) ,试求x y的值.x y7.已知 ( x 2+y 2)( x 2- 1+y 2) - 12= 0.求x 2+y 2的值. 8.请你用三种方法解方程:x ( x +12)=864.9.已知x 2+ 3x + 5 的值为 9,试求 3x 2+ 9x - 2 的值.10.一跳水运动员从 10 米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系 式 h =-5( t -2)( t +1).求运动员起跳到入水所用的时间.11.为解方程 ( x 2- 1) 2- 5( x 2-1) + 4=0,我们能够将 x 2-1 视为一个整体,而后设x 2- 1= y ,则 y 2=( x 2- 1) 2,原方程化为2- 5 + 4=0,解此方程,得y 1= 1, y 2= 4.y y当 y =1时, x 2-1=1, x 2=2,∴ x =±2 .当 y=4时, x2-1=4, x2=5,∴ x=± 5 .∴原方程的解为 x1=- 2 , x2= 2 , x3=- 5 , x4= 5 .以上方法就叫换元法,达到了降次的目的,表现了转变的思想.(1)运用上述方法解方程: x4-3x2-4=0.(2)既然能够将 x2-1看作一个整体,你能直接运用因式分解法解这个方程吗参照答案【同步达纲练习】1. (1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2. (1) t 1=- 7,t 2= 4(2) x 1=-1 2, 2=-2(3) y 1=-1, y 2=-3 (4) x 1=- , 2=- n (5) x 1= 5 , 2=-1 x 2m x x3.(1) x 1=0,x 2=- 12;(2) x 1=-1,x 2=1;(3) x 1=0,x 2= 7;(4) x 1= 7,x 2=- 3;(5) x 1=- 5,x 2=3;(6) x 1=- 1,22x 2=1;3(7) x 1=3,x 2=-1;(8) x 1=8, x 2=-2.524. (1) x 1= 1, x 2= 3; (2) x 1= 18, x 2=- 14; (3) x 1=35, x 2 =35; (4) x 1 =3, x 2=- 1;22(5) t 1=0, t 2=-3; (6) y 1= 0,y 2 = 3; (7) x 1= 0,x 2= 22 - 3;2(8) x1=5 x2= 10; (9) x 1≈, x 2=-; (10)xx=- 7. ,1=- 1,255. (1) x 2- 4ax +4a 2=a 2-2a +1,( x - 2a ) 2= ( a - 1) 2, ∴ x -2a =±( a -1),∴ x 1=3a -1, x 2= a +1.(2) x 2+(5-2k ) x + k 2-5k -6=0, x 2+(5-2k ) x +( k +1)( k -6)=0, [ x -( k +1)][ x -( k -6)]=0, ∴ x 1= k +1,x 2=( k -6).(3) x 2-2 + 2= 9 2 ,( x - ) 2= (3 ) 2mx m m m m ∴ x 1=4m , x 2=-2m(4) x 2+(2 m +1) x +m ( m + 1) = 0, ( x +m ) [x + ( m + 1) ]= 0,∴ x 1=- m ,x 2=- m -16. ( x + 4y )( x -y ) = 0,x =-4y 或 x =y当 x=-4y 时,xy = 4 y y 5 ;x y 4 y y 3当 x= y 时,xy = yy= 0.x y y y7. ( x2+y2)( x2+y2- 1) - 12= 0,( x2+y2 ) 2- ( x2+y2) -12=0,( x2+y2- 4)( x2+y2+ 3) = 0,∴ x2+ y2=4或 x2+ y2=-3(舍去)8.x1=- 36,x2= 249.∵x2+ 3x+ 5=9,∴x2+ 3x= 4,∴3x2+9x-2= 3( x2+ 3x) - 2= 3×4- 2= 10 10. 10=- 5( t- 2)(t +1),∴ t =1( t =0舍去) 11. (1)x1=-2,x2=2(2)(x2-2)( x2-5)=0,( x+2 )(x- 2 )(x+ 5 )(x-5 )=0。
因式分解法解一元二次方程
理论依据:两个因式的乘积等于零,那么这两个因式的值就至少有一个等于零。
即:若ab=0, 则a=0 或b=0当方程的一边能够分解成两个一次因式的乘积而另一边等于0时,即可解这个一元二次方程。
这种方法叫做因式分解。
一般步骤:①移项,使方程的右边为零。
②将方程的左边分解为两个一次因式的乘积。
③令每个因式分别为零,得到两个一元一次方程。
④解这两个一元一次方程,它们的解都是原方程的解。
分解因式的方法:提公因式法 ma+mb+mc=m(a+b+c)公式法 a2-b2=(a+b)(a-b) a2±2ab+b2=(a±b)2示例:3x2=8x (x-4)2-3x+12=0移项,得: 3x2-8x = 0 整理,得:(x-4)2-3(x-4)=0因式分解,得:x(3x-8) =0 因式分解,得:(x-4)(x-4-3)=0 于是,得: x=0 或3x-8 =0 整理,得:(x-4)(x-7)=0X 1=0 , X2=8/3 于是,得:x-4=0 或 x-7=0X1=4, X2=71、用因式分解法解下列方程x(x-2)+(x-2)=0 5x2-2x-1/4=x2-2x+3/4(3x+1)2-5=0 x2-5x-6=02、用因式分解法解下列方程。
(2x-1)2+3(2x-1)+2=0 9(2x+3)2-4(2x-5)2=0 x2-√3x+√2x-√6=0 9x2-6x-399=03、已知X1,X2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根,(1)求X1,X2的值。
(2)若X1,X2是某直角三角形的两直角边的长,问当实数p、m满足什么条件时,此直角三角形的面积最大?并求出其最大值。
4、阅读题例,解答下题。
解方程x2-|x-1|-1=0解:(1)当x-1≧0时,x2-(x-1)-1=0 x2-x=0 (2)当x-1<0时,x2+(x-1)-1=0 x2+x-2=0由(1)解得X1=0,(不合题设,舍去) X2=1由(2)解得X1=1,(不合题设,舍去) X2=-2综上所述,原方程的解是x=1或x=-2依照上例解方程x2+2|x+2|-4=05、已知:关于x的方程2x2+k x-1=0(1)求证:方程有两个不相等的实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解一元二次方程(因式分解法)
教学内容
用因式分解法解一元二次方程.
教学目标
掌握用因式分解法解一元二次方程.
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.
重难点关键
1.重点:用因式分解法解一元二次方程.
2.•难点与关键:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便.
教学过程
一、复习引入
(学生活动)解下列方程.
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为1
2
,
1
2
的一半应为
1 4,因此,应加上(
1
4
)2,同时减去(
1
4
)2.(2)直接用公式求解.
二、探索新知
(学生活动)请同学们口答下面各题.
(老师提问)(1)上面两个方程中有没有常数项
(2)等式左边的各项有没有共同因式
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解:
2x2+x=x(2x+1),3x2+6x=3x(x+2)
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,
所以x1=0,x2=-1
2
.
(2)3x=0或x+2=0,所以x1=0,x2=-2.
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1.解方程
(1)4x2=11x (2)(x-2)2=2x-4
分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次式的乘积,•另一边为
0的形式
解:(1)移项,得:4x2-11x=0
因式分解,得:x(4x-11)=0
于是,得:x=0或4x-11=0
x1=0,x2=11 4
(2)移项,得(x-2)2-2x+4=0
(x-2)2-2(x-2)=0
因式分解,得:(x-2)(x-2-2)=0
整理,得:(x-2)(x-4)=0
于是,得x-2=0或x-4=0
x1=2,x2=4
例2.已知9a2-4b2=0,求代数式
22
a b a b
b a ab
+
--的值.
分析:要求
22
a b a b
b a ab
+
--的值,首先要对它进行化简,然后从已知条件入手,求出
a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误.
解:原式=
22222 a b a b b
ab a ---
=-
∵9a2-4b2=0
∴(3a+2b)(3a-2b)=0 3a+2b=0或3a-2b=0,
a=-2
3
b或a=
2
3
b
当a=-2
3
b时,原式=-
2
2
3
b
b
-
=3
当a=2
3
b时,原式=-3.
三、巩固练习
教材P45练习1、2.
四、应用拓展
例3.我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程.
(1)x2-3x-4=0 (2)x2-7x+6=0 (3)x2+4x-5=0
分析:二次三项式x2-(a+b)x+ab的最大特点是x2项是由x·x而成,常数项ab是由-a·(-b)而成的,而一次项是由-a·x+(-b·x)交叉相乘而成的.根据上面的分析,
•我们可以对上面的三题分解因式.
解(1)∵x2-3x-4=(x-4)(x+1)
∴(x-4)(x+1)=0
∴x-4=0或x+1=0
∴x1=4,x2=-1
(2)∵x2-7x+6=(x-6)(x-1)
∴(x-6)(x-1)=0
∴x-6=0或x-1=0
∴x1=6,x2=1
(3)∵x2+4x-5=(x+5)(x-1)
∴(x+5)(x-1)=0
∴x+5=0或x-1=0
∴x1=-5,x2=1
上面这种方法,我们把它称为十字相乘法.
五、归纳小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、•十字相乘法等解一元二次方程及其应用.(2)三种方法(配方法、公式法、因式分解法)的联系与区别:
联系①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次.
②公式法是由配方法推导而得到.
③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程.
区别:①配方法要先配方,再开方求根.
②公式法直接利用公式求根.
③因式分解法要使方程一边为两个一次因式相乘,另一边为0,•再分别使各一次因式等于0.
六、布置作业
教材P46复习巩固5 综合运用8、10 拓广探索11.
第六课时作业设计
一、选择题
1.下面一元二次方程解法中,正确的是().
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=2
5
,x2=
3
5
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x 两边同除以x,得x=1
2.下列命题①方程kx2-x-2=0是一元二次方程;②x=1与方程x2=1是同解方程;③方程x2=x与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有().
A.0个 B.1个 C.2个 D.3个
3.如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为().
A.-1
2
B.-1 C.
1
2
D.1
二、填空题
1.x2-5x因式分解结果为_______;2x(x-3)-5(x-3)因式分解的结果是______. 2.方程(2x-1)2=2x-1的根是________.
3.二次三项式x2+20x+96分解因式的结果为________;如果令x2+20x+96=0,那么它的两个根是_________.
三、综合提高题
1.用因式分解法解下列方程.
(1)3y2-6y=0 (2)25y2-16=0
(3)x2-12x-28=0 (4)x2-12x+35=0
2.已知(x+y)(x+y-1)=0,求x+y的值.
3.今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为150m2的长方形养鸡场.为了节约材料,鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少(其中a≥20m)
答案:
一、1.B 2.A 3.D
二、1.x(x-5),(x-3)(2x-5)
2.x1=1
2
,x2=1
3.(x+12)(x+8),x1=-12,x2=-8
三、1.(1)3y(y-2)=0,y1=0,y0=2
(2)(5y)2-42=0 (5y+4)(5y-4)=0,y1=-4
5
,y2=
4
5
(3)•(x-14)(x+2)=0 x1=14,x2=-2
(4)(x-7)(x-5)=0 x1=7,x2=5
2.x+y=0或x+y-1=0,即x+y=0或x+y=1
3.设宽为x,则长为35-2x,依题意,得x(35-2x)=150 2x2-35x+150=0
(2x-15)(x-10)=0,
x1=,x2=10,
当宽x1=时,长为35-2x=20,
当宽x=10时,长为15,
因a≥20m,两根都满足条件.。