第二十讲平面向量的概念及线性运算

合集下载

平面向量的线性运算知识点总结

平面向量的线性运算知识点总结

平面向量的线性运算知识点总结平面向量是数学中的重要概念之一,它们具有方向和大小,并且可以进行线性运算。

本文将对平面向量的线性运算相关知识进行总结,包括加法、数乘和线性组合三个方面。

一、平面向量的加法平面向量的加法是指将两个向量合成为一个新向量的运算。

具体而言,设有两个向量A和B,它们的加法运算符号为"+",则其加法公式为:A +B = (Aₓ + Bₓ, Aᵧ + Bᵧ)其中,Aₓ和Aᵧ分别表示向量A在坐标系中的x轴和y轴上的分量,Bₓ和Bᵧ分别表示向量B在坐标系中的x轴和y轴上的分量。

需要注意的是,向量的加法满足交换律和结合律。

即:A +B = B + A(A + B) + C = A + (B + C)二、平面向量的数乘数乘是指将向量与一个实数相乘得到一个新向量的运算。

具体而言,设有一个向量A和一个实数k,它们的数乘运算符号为"·",则其数乘公式为:k·A = (k·Aₓ, k·Aᵧ)其中,Aₓ和Aᵧ分别表示向量A在坐标系中的x轴和y轴上的分量。

数乘的运算法则如下:1. 若k>0,则k·A的方向与A的方向相同。

2. 若k<0,则k·A的方向与A的方向相反。

3. 若k=0,则k·A的方向为零向量。

4. |k·A| = |k|·|A|三、平面向量的线性组合线性组合是指将多个向量按一定比例相加得到一个新向量的运算。

具体而言,设有n个向量A₁、A₂、...、Aₙ和n个实数k₁、k₂、...、kₙ,它们的线性组合公式为:k₁A₁ + k₂A₂ + ... + kₙAₙ线性组合的运算法则如下:1. 线性组合的次序不影响结果,即k₁A₁ + k₂A₂ + ... + kₙAₙ =kₙAₙ + ... + k₂A₂ + k₁A₁。

2. 向量的线性组合满足数乘与加法的结合律,即k₁(A₁ + A₂) =k₁A₁ + k₁A₂。

高一必修4平面向量的概念及线性运算

高一必修4平面向量的概念及线性运算

平面向量的概念及线性运算一、知识要点梳理 知识点一:向量的概念1.向量:既有大小又有方向的量叫做向量. 2.向量的表示方法: (1)字母表示法:如,,,a b c →→→等.(2)几何表示法:用一条有向线段表示向量.如,AB CD →→等. (3)向量的有关概念向量的模:向量的大小叫向量的模(就是用来表示向量的有向线段的长度). 零向量:长度为零的向量叫零向量. 单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量. 相反向量: 长度相等且方向相反的向量.共线向量:方向相同或相反的非零向量,叫共线向量(共线向量又称为平行向量). 规定:0→与任一向量共线. 知识点二:向量的加(减)法运算1.运算法则:三角形法则、平行四边形法则2.运算律:①交换律:a b b a →→→→+=+;②结合律:()()a b c a b c →→→→→→++=++ 知识点三:数乘向量1.实数与向量的积:实数λ与向量a →的积是一个向量,记作:a λ→(1) ||||||a a λλ→→=;(2)①当λ>0时,a λ→的方向与a →的方向相同; ②当λ<0时,a λ→的方向与a →的方向相反; ③当0λ=时,0a λ→→=. 2.运算律 设,λμ为实数结合律:()()a a λμλμ→→=;分配律:(),()a a a a b a b λμλμλλλ→→→→→→→+=++=+ 3.共线向量基本定理非零向量a →与向量b →共线的充要条件是当且仅当有唯一一个非零实数,λ使b a λ→→=. 经典例题类型一:向量的基本概念1.判断下列各命题是否正确: (1)若||||,a b →→=则a b →→=;(2)若,,,A B C D 是不共线的四点,则AB DC →→=是四边形ABCD 为平行四边形的充要条件; (3)若,,a b b c →→→→==,则.a c →→=(4)两向量,a b →→相等的等价条件是||||a b →→=且//a b →→. 类型二:向量的线性运算2.如图所示,ABCD 的两条对角线相交于点,M 且,,AB a AD b →→→→==用,a b →→表示,,,MA MB MC MD →→→→【变式1】如图,ABC ∆中,点M 是BC 的中点,点N 在边AC 上,且2,AN NC AM =与BN 相交于点,P 求:AP PM 的值.【答案】解:(如图)设则和分别共线,∴存在使故,而∴由基本定理得即类型三:共线向量与三点共线问题 3.设两非零向量1e →和2e →不共线,(1)如果121212,28,3(),AB e e BC e e CD e e →→→→→→→→→=+=+=-求证,,A B D 三点共线. (2)试确定实数,k 使12k e e →→+和12e k e →→+共线. 类型四:综合应用4.如图,已知点,,D E F 分别是ABC ∆三边的中点, 求证:0EA FB DC →→→→++=. 测评 基础达标:1.下面的几个命题:①若||||,a b →→=则,a b →→共线;②长度不等且方向相反的两向量不一定是共线向量; ③若,a b →→满足||a →>||,b →且,a b →→同向,则a →>b →; ④由于0→方向不定,故0→不能与任何向量平行;⑤对于任意向量,a b →→必有||||||a b →→-≤||a b →→+≤||||a b →→+. 其中正确命题的序号是:( )A.①②③B.⑤C.③⑤D.①⑤2.在正六边形ABCDEF 中,O 为其中心,则2FA AB BO ED →→→→+++= ( ) A.FE → B. AC → C. DC → D. FC →3.如图所示,,,D E F 分别是ABC ∆的边,,AB BC CD 的中点,则AF DB →→-= ( ) A. FD → B. FC → C. FE → D. BE →4.若,,O E F 是不共线的任意三点,则以下各式中成立的是( ) A.B.C.D.5.已知向量,,a b →→且2,56,72,AB a b BC a b CD a b →→→→→→→→→=+=-+=-则一定共线的三点是( ) A.A 、B 、D B.A 、B 、C C.B 、C 、D D.A 、C 、D 6.下列命题中,真命题的个数为( )①||||||a b a b a →→→→→+=+⇔与b →方向相同 ②||||||a b a b a →→→→→+=-⇔与b →方向相反 ③||||a b a b a →→→→→+=-⇔与b →有相等的模 ④||||||a b a b a →→→→→-=-⇔与b →方向相同 A.0 B.1 C.2D.37.在ABC ∆中,已知D 是AB 边上一点1,2,,3AD DB CD CA CB λ→→→→→==+则λ= ( )A.23B. 13C. 13-D. 23-8.设12,e e →→是两个不共线的向量,则向量12()m e k e k R →→→=-+∈与向量212n e e →→→=-共线的条件是 ( ) A. 0k = B. 1k = C. 2k = D. 12k =9.已知正方形ABCD 边长为1,,,,AB a BC b AC c →→→→→→===则||a b c →→→++=( )A.0B.3C.D.10.如图,在平行四边形ABCD 中,,M N 分别是,DC BC 中点,已知1,,,AM c AN d →→→→==用,c d →→表示=___________,___________.11.若1212,,,OP a OP b PP PP λ→→→→→→===则OP →= (用,a b →→表示) 12.已知在ABC ∆中,,,D E F 分别是,,BC CA AB 的中点,求证:(1)//DE AB →→;(2) 1||||2DE AB →→=; (3)0AD BE CF →→→→++=.13.已知OAB ∆中,点C 是以A 为中心的B 的对称点,D 是将OB →分成2:1的一个内分点,DC 与OA 交于,E 设,OA a OB b →→→→==. (1)用,a b →→表示,OC DE →→; (2)若,OE OA λ→→=求实数λ的值.。

平面向量的概念及线性运算(优质课)教案

平面向量的概念及线性运算(优质课)教案

1.6平面向量的基本概念与线性运算(优质课)教案教学目标:1、了解向量、向量的相等、共线向量等概念;2、掌握向量、向量的相等、共线向量等概念.3、熟练掌握向量的线性运算法则:加法法则,减法法则,数乘法则.教学过程:*创设情境兴趣导入如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗?图7-1一、平面向量的概念:1、平面向量:在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等.平面上带有指向的线段(有向线段)叫做平面向量,线段的指向就是向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作AB.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作a.BaA图7-22、向量的模长:向量的大小叫做向量的模.向量a,AB的模依次记作a,AB.3、零向量:长度为0的向量叫做零向量,其方向是任意的.4、单位向量:长度等于1个单位长度的向量叫做单位向量.5、平行向量:方向相同或相反的非零向量叫做平行向量.平行向量又称为共线向量,任一组平行向量都可以移到同一直线上.规定:0与任一向量平行.6、 相等向量:长度相等且方向相同的向量叫做相等向量.7、相反向量:与向量a 长度相等且方向相反的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.二、平面向量的基本运算:一般地,λa +μb 叫做a , b 的一个线性组合(其中λ,μ均为系数).如果l =λa +μ b ,则称l 可以用a ,b 线性表示.向量的加法、减法、数乘运算都叫做向量的线性运算.1、三角形法则:位移AC 叫做位移AB 与位移BC 的和,记作AC =AB +BC .一般地,设向量a 与向量b 不共线,在平面上任取一点A (如图7-6),依次作AB =a , BC =b ,则向量AC 叫做向量a 与向量b 的和,记作a +b ,即 a +b =AB +BC =AC (7.1)求向量的和的运算叫做向量的加法.上述求向量的和的方法叫做向量加法的三角形法则. 2、平行四边形法则:如图7-9所示, ABCD 为平行四边形,由于AD =BC ,根据三角形法则得AB +AD =AB +BC =AC这说明,在平行四边形ABCD 中, AC 所表示的向量就是AB 与AD 的和.这种求和方法叫做向量加法的平行四边形法则.平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质: (1)a +0 = 0+a = a ; a +(−a )= 0; (2)a +b =b +a ;图7-7ACBaba +bab图7-9ADCB(3)(a +b )+ c = a +(b +c ). 3、平面向量减法法则:与数的运算相类似,可以将向量a 与向量b 的负向量的和定义为向量a 与向量b 的差.即a −b = a +(−b ).设a =OA ,b =OB ,则()= OA OB OA OB OA BO BO OA BA −=+−+=+=.即 OA OB −=BA (7.2)观察图7-13可以得到:起点相同的两个向量a 、 b ,其差a -b 仍然是一个向量,叫做a 与b 的差向量,其起点是减向量b 的终点,终点是被减向量a 的终点.一般地,实数λ与向量a 的积是一个向量,记作λa ,它的模为||||||a a λ=λ (7.3)若||λ≠a 0,则当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反.由上面定义可以得到,对于非零向量a 、b ,当0λ≠时,有 λ⇔=a b a b ∥ (7.4) 一般地,有 0a = 0,λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a , b 及任意实数λμ、,向量数乘运算满足如下的法则:()()111=−=−a a a a , ;()()()()2a a a λμλμμλ== ;()()3a a a λμλμ+=+ ;()()a b a b λλλ+=+4 .aAa -bBbO图7-13题型1 平面向量的基本概念 例1 给出下列六个命题:① 两个向量相等,则它们的起点相同,终点相同; ② 若|a |=|b |,则a =b ;③ 若AB →=DC →,则A 、B 、C 、D 四点构成平行四边形; ④ 在ABCD 中,一定有AB →=DC →;⑤ 若m =n ,n =p ,则m =p ; ⑥ 若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号) 答案:①②③⑥解析:两向量起点相同,终点相同,则两向量相等;但两相等向量,不一定有相同的起点和终点,故①不正确;|a |=|b |,由于a 与b 方向不确定,所以a 、b 不一定相等,故②不正确;AB →=DC →,可能有A 、B 、C 、D 在一条直线上的情况,所以③不正确;零向量与任一向量平行,故a ∥b ,b ∥c 时,若b =0,则a 与c 不一定平行,故⑥不正确.例2 在平行四边形ABCD 中(图7-5),O 为对角线交点. (1)找出与向量DA 相等的向量; (2)找出向量DC 的负向量; (3)找出与向量AB 平行的向量.分析 要结合平行四边形的性质进行分析.两个向量相等,它们必须是方向相同,模相等;两个向量互为负向量,它们必须是方向相反,模相等;两个平行向量的方向相同或相反.解 由平行四边形的性质,得 (1)CB =DA ;(2)BA =DC −,CD DC =−; (3)BA //AB ,DC //AB ,CD //AB .练习:1. 如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写出ADCB图7-5O(1)与EF 相等的向量;(2)与AD 共线的向量.2.如图,O 点是正六边形ABCDEF 的中心,试写出 (1)与OC 相等的向量; (2)OC 的负向量; (3)与OC题型2 向量的线性表示例3 一艘船以12 km/h 的速度航行,方向垂直于河岸,已知水流速度为5 km/h ,求该船的实际航行速度.解 如图7-10所示,AB 表示船速,AC 为水流速度,由向量加法的平行四边形法则,AD 是船的实际航行速度,显然22AD AB AC =+=22125+=13.又512tan =∠CAD ,利用计算器求得6723CAD '∠≈︒1. 即船的实际航行速度大小是13km/h ,其方向与河岸线(水流方向)的夹角约6723'︒.*例4 用两条同样的绳子挂一个物体(图7-11).设物体的重力为k ,两条绳子与垂线的夹角为θ,求物体受到沿两条绳子的方向的拉力1F 与2F 的大小.分析 由于两条同样的绳子与竖直垂线所成的角都是θ,所以12F F =.解决问题不考虑其它因素,只考虑受力的平衡,所以12F F k +=−.解 利用平行四边形法则,可以得到1212cos F F F k +==θ,所以12cos k F =θ.练习:1. 如图,已知a ,b ,求a +b .F AD BE C(练习题第1题图EFAB C DO (图1-8)第2题图 A BDC图7-10F 1F 2kθ 图7-112.填空(向量如图所示):(1)a +b =_____________ ,答案:→AC (2)b +c =_____________ ,答案:→BD (3)a +b +c =_____________ .答案:→AD 3.计算:(1)AB +BC +CD ; (2)OB +BC +CA . 答案:(1)→AD (2)→OA例5 已知如图7-14(1)所示向量a 、b ,请画出向量a -b .解 如图7-14(2)所示,以平面上任一点O 为起点,作OA =a ,OB =b ,连接BA ,则向量BA 为所求的差向量,即BA = a -b . 练习:1.填空:(1)AB AD −=_______________,答案:→DABbOaAba(1)(2)图7-14(图1-15)bbaa(1)(2)第1题图(2)BC BA −=______________,答案:→AC (3)OD OA −=______________.答案:→AD2.如图,在平行四边形ABCD 中,设AB = a ,AD = b ,试用a , b 表示向量AC 、BD 、DB .解:AC =a+b ,BD =b-a,DB =a -b例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .分析 因为12AO AC =,12OD BD =,所以需要首先分别求出向量AC 与BD . 解 :AC =a +b ,BD =b −a , 因为O 分别为AC ,BD 的中点,所以 1122==AO AC (a +b )=12a +12b ,OD =12BD =12(b −a )=−12a +12b .练习:1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).解:(1)3(a −2 b )-2(2 a +b )=3a -6b-4a-2b=4 b-a (2)3 a −2(3 a −4 b )+3(a −b )=-11b2.设a , b 不共线,求作有向线段OA ,使OA =12(a +b ). 解:如图所示。

高考数学专题复习《平面向量的概念及线性运算》PPT课件

高考数学专题复习《平面向量的概念及线性运算》PPT课件

向量
模等于 1
的向量
a
向量为±|a|
名称
相等的
向量
定 义
备 注
大小 相等 、方向 相同
的向量
两个向 如果两个 非零 向量的方向 相同或相反 ,则
量平行 称这两个向量平行.两个向量平行也称为两个向
两向量只有相等或不相
等,不能比较大小
规定零向量与任一向量
平行(共线)
(共线)
量共线
相反
给定一个向量,把与这个向量方向 相反 、大 零向量的相反向量仍是
.
,而且λa的方向如下:
,
(ⅱ)当λ=0或a=0时,λa= 0
.
实数λ与向量a相乘的运算简称为数乘向量.
(2)数乘向量的定义说明
如果存在实数λ,使得b=λa,则b∥a.
(3)数乘向量的几何意义
数乘向量的几何意义是,把向量沿着它的方向或反方向放大或缩小.特别地,
一个向量的相反向量可以看成-1与这个向量的乘积,即-a=(-1)a.
D.
3.(多选)(2020山东郓城第一中学高三模拟)若点G是△ABC的重心,BC边的
中点为D,则下列结论正确的是(
A.G 是△ABC 的三条中线的交点
B. + + =0
C. =2
D. =
)
答案 ABC
解析 对于 A,△ABC 三条中线的交点就是重心,故 A 正确;对于 B,根据平行四
(4)数乘向量的运算律
设λ,μ为实数,则λ(μa)=(λμ)a;
特别地,我们有(-λ)a=-(λa)=λ(-a).
5.向量的运算律
一般地,对于实数λ与μ,以及向量a,有
(1)λ(μa)= (λμ)a ;(2)λa+μa= (λ+μ)a

平面向量的概念及线性运算

平面向量的概念及线性运算

平面向量的概念及线性运算【考点梳理】1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 【考点突破】考点一、平面向量的有关概念【例1】给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( )A .②③B .①②C .③④D .②④ [答案] A[解析] ①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|,AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →.③正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③. 【类题通法】1.相等向量具有传递性,非零向量的平行也具有传递性.2.共线向量即为平行向量,它们均与起点无关.3.向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.4.非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量. 【对点训练】 给出下列六个命题:①若|a |=|b |,则a =b 或a =-b ; ②若AB →=DC →,则ABCD 为平行四边形; ③若a 与b 同向,且|a |>|b |,则a >b ; ④λ,μ为实数,若λa =μb ,则a 与b 共线; ⑤λa =0(λ为实数),则λ必为零;⑥a ,b 为非零向量,a =b 的充要条件是|a |=|b |且a ∥b . 其中假命题的序号为________. [答案] ①②③④⑤⑥[解析] ①不正确.|a |=|b |.但a ,b 的方向不确定,故a ,b 不一定是相等或相反向量;②不正确.因为AB →=DC →,A ,B ,C ,D 可能在同一直线上,所以ABCD 不一定是四边形.③不正确.两向量不能比较大小.④不正确.当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线.⑤不正确.当λ=1,a =0时,λa =0.⑥不正确.对于非零向量a ,b ,a =b 的充要条件是|a |=|b |且a ,b 同向.考点二、平面向量的线性运算【例2】(1) 设D 为△ABC 所在平面内一点,AD →=-13AB →+43AC →,若BC →=λDC →(λ∈R ),则λ=( )A .2B .3C .-2D .-3(2)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.[答案] (1)D (2)12 -16[解析] (1)由AD →=-13AB →+43AC →,可得3AD →=-AB →+4AC →,即4AD →-4AC →=AD →-AB →,则4CD →=BD →,即BD →=-4DC →,可得BD →+DC →=-3DC →,故BC →=-3DC →,则λ=-3.(2)由题中条件得,MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,所以x =12,y =-16.【类题通法】1.解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.2.用几个基本向量表示某个向量问题的基本技巧:(1)观察各向量的位置;(2)寻找相应的三角形或多边形;(3)运用法则找关系;(4)化简结果.【对点训练】1.已知D 为三角形ABC 边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.[答案] -2[解析] 因为D 是BC 的中点,则AB →+AC →=2AD →.由P A →+BP →+CP →=0,得BA →=PC →. 又AP →=λPD →,所以点P 是以AB ,AC 为邻边的平行四边形的第四个顶点,因此AP →=AB →+AC →=2AD →=-2PD →,所以λ=-2.2.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.[答案] 12[解析] DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →,∴λ1=-16,λ2=23,因此λ1+λ2=12.考点三、共线向量定理的应用【例3】(1)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线 D .B ,C ,D 三点共线(2)已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( )A .1B .-12C .1或-12 D .-1或-12[答案] (1) B (2) B[解析] (1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →,AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B.(2)由于c 与d 共线反向,则存在实数k 使 c =k d (k <0),于是λa +b =k [a +(2λ-1)b ]. 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎨⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.【类题通法】 共线向量定理的应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB →=λAC →,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值. 【对点训练】1.向量e 1,e 2不共线,AB →=3(e 1+e 2),CB →=e 2-e 1,CD →=2e 1+e 2,给出下列结论:①A ,B ,C 共线;②A ,B ,D 共线;③B ,C ,D 共线;④A ,C ,D 共线,其中所有正确结论的序号为________.[答案] ④[解析] 由AC →=AB →-CB →=4e 1+2e 2=2CD →,且AB →与CB →不共线,可得A ,C ,D 共线,且B 不在此直线上.2.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. [答案] 12[解析] ∵λa +b 与a +2b 平行,∴λa +b =t (a +2b ),即λa +b =t a +2t b ,∴⎩⎨⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.。

25平面向量的概念及线性运算

25平面向量的概念及线性运算

P
O A
ห้องสมุดไป่ตู้ 题 型一
【例 1】给出下列命题:
平面向量的概念辨析
①若|a|=|b|,则 a=b; → → ②若 A,B,C,D 是不共线的四点,则AB=DC是四边形 ABCD 为 平行四边形的充要条件; ③若 a=b,b=c,则 a=c; ②③ ④a=b 的充要条件是|a|=|b|且 a∥b.其中正确命题的序号是______.
B O A
OP OA OB ( 1)
❷向量的中点公式 当 1 时, 2 OP= 1 (OA OB ). + 2
B
OP OA AB
忆一忆知识要点
法则(或几何意义)
a
ka ( k 0)
运算律
( a ) ( )a | || a | 求实数λ (1)|λa|=________. 与向量a (2)当λ>0时, λa与a的方 数乘 ( )a = a + a 的积的 向_______; 相同 运算 (3)当λ<0时, λa 与 a 的 (a + b ) a + b 相反 方 向_______; (4)当λ=0时,λa=__.0
→ =1a+5b,ON=2a+2b,MN=1a-1b. → → 综上,OM 6 6 3 3 2 6
题 型三
和△OBC 的面积之比为( A.3∶2 B.5∶2
平面向量的共线问题
) C.4∶1 D.5∶1
→ → 例 3.设 O 是△ABC 内部的一点, → +2OB+2OC=0, 且OA 则△ABC
→ → → → → 解析:如下图:∵OA+2OB+2OC=0,∴OA=-2(OB+ → → 而OE → ∴OA → ∴|OA → OC)=-2OE, → =2OD, → =-4OD, → |=4|OD h1 1 |.设 A、O 到 BC 的距离分别是 h,h1,则 h =5.又∵△ABC S△ABC 与△OBC 同底,∴ =5∶1,故选 D. S△OBC

平面向量的概念及其线性运算

平面向量的概念及其线性运算
Page 12
答案 ②③
12
探究提高 关键. 关键.
(1)正确理解向量的相关概念及其含义是解题的 正确理解向量的相关概念及其含义是解题的
(2)相等向量具有传递性,非零向量的平行也具有传递性. 相等向量具有传递性,非零向量的平行也具有传递性 . 相等向量具有传递性 (3)共线向量即为平行向量,它们均与起点无关. 共线向量即为平行向量,它们均与起点无关. 共线向量即为平行向量 (4)向量可以平移,平移后的向量与原向量是相等向量.解 向量可以平移,平移后的向量与原向量是相等向量. 向量可以平移 题时,不要把它与函数图象移动混为一谈. 题时, 不要把它与函数图象移动混为一谈. a a (5)非零向量 a 与 的关系是: 是 a 方向上的单位向量. 的关系是: 方向上的单位向量. 非零向量 |a| |a|
Page 17
17
→ =2AB, → 变式训练 2 △ ABC 中,AD 3 DE∥BC 交 AC 于 E,BC 边上的中 ∥ , 线 AM 交 DE 于 N.设AB= a,AC= b, 设→ ,→ , 用 a、b 表示向量 → 、BC、DE、DN、 、 表示向量AE → → → → → AM、AN.
Page 6
6
基础自测 → 的结果等于________. → 1.化简 → - QP+MS-MQ的结果等于 OS .化简OP → → .
→ → → → → → → → 解析 OP-QP+MS-MQ=OP+PQ-(SM+MQ) → → → → → =OQ-SQ=OQ+QS=OS.
2.下列命题:①平行向量一定相等;②不相等的向量一定 不平行;③平行于同一个向量的两个向量是共线向量;
记作 0 非零向量 a 的单位向 a 量为± 量为 |a| 0 与任一向量平行或

平面向量的线性运算

平面向量的线性运算

平面向量的线性运算平面向量是解决平面几何问题的重要工具。

平面向量之间可以进行线性运算,包括加减法、数量乘法和应用特殊运算规则的向量乘法。

本文将详细介绍平面向量的线性运算及其应用。

一、平面向量的基本概念在平面直角坐标系中,向量由两个有序实数对表示,分别表示向量在 x 轴和 y 轴上的分量。

设向量 a 的分量为 (a1, a2),则向量 a 可表示为 a = a1i + a2j,其中 i 和 j 分别是 x 轴和 y 轴的单位向量。

二、平面向量的加法设有两个平面向量 a = a1i + a2j, b = b1i + b2j,其和为 c = (a1 +b1)i + (a2 + b2)j。

向量的加法满足交换律、结合律和零向量的存在性。

三、平面向量的减法设有两个平面向量 a = a1i + a2j, b = b1i + b2j,其差为 c = (a1 - b1)i + (a2 - b2)j。

向量的减法也满足交换律和结合律。

四、平面向量的数量乘法设有平面向量 a = a1i + a2j,实数 k,k与向量 a 的数量积为 k * a =ka1i + ka2j。

数量乘法满足结合律、分配律和对数乘法的分布律等性质。

五、平面向量的线性运算应用1. 向量共线与平行若有两个非零向量 a 和 b,当且仅当存在实数 k,使得 a = kb,称向量 a 和 b 共线。

若向量 a 和 b 共线且方向相同或相反,则称向量 a 和b 平行。

2. 向量的线性组合设有向量组 a1, a2, ..., an,其中每个向量的形式为 ai = ai1i + ai2j。

对于任意给定的实数 k1, k2, ..., kn,向量 b = k1a1 + k2a2 + ... + knan 称为向量组 a1, a2, ..., an 的线性组合。

3. 向量的共面性若存在不全为零的实数 k1, k2, k3,使得 k1a1 + k2a2 + k3a3 = 0,称向量组 a1, a2, a3 共面。

平面向量的概念及线性运算

平面向量的概念及线性运算

平面向量的概念及线性运算一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●了解向量的实际背景.●理解平面向量和向量相等的含义.●理解向量的几何表示.●掌握向量加、减、数乘运算,并理解其几何意义.●理解两个向量共线的含义.●了解向量的线性运算性质及其几何意义.重点难点:●重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.●难点:平行向量、相等向量和共线向量的区别和联系.学习策略:●要学好本专题内容,可从原有的位移、力等物理概念来引入向量有关概念,通过复习物理学中矢量加法的三角形法则和平行四边形法则,类比向量的加法与减法.向量的线性运算法则在形式上很像实数的加法、减法、乘法满足的运算法则,但它们在具体含义上是不同的.不过由于它们在形式上相类似,因此,实数运算中的去括号、移项、合并同类项等变形方法在向量的线性运算中都可以使用.二、学习与应用(一)列举一些既有大小又有方向的量:(二)力的合成(填空画图)知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

知识点一:向量的概念(一)向量:既有又有的量叫做向量.(二)向量的表示方法:(1)字母表示法:如,,,a b c等.(2)几何表示法:用一条表示向量.如,AB CD等.(3)向量的有关概念向量的模:向量的叫向量的模(就是用来表示向量的有向线段的).零向量:长度为的向量叫零向量.单位向量:长度等于个单位的向量.相等向量:长度且方向的向量.相反向量:长度且方向的向量.共线向量:方向或的向量,叫共线向量(共线向量又称为向量).规定:0与共线.要点诠释:(1)数量与向量的区别:数量只有,是一个量,可以进行代数、比知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。

平面向量的概念及线性运算

平面向量的概念及线性运算
平面向量的概念及线性运算
一、平面向量的线性运算(三角形重心问题)
例 1、在△ABC 中,D、E 分别为 BC,AC 边上的中点,G 为 BE 上一点,且 GB=2GE,设
AB a , AC b ,试用 a , b 表示 AD , AG 。
变式 1: (2007 年高考北京卷)已知 O 是△ABC 所在平面内一点,D 为 BC 边中点,且
2OA OB OC 0 ,那么(
A、 AO OD
) C、 AO 3OD D、 2 AO OD )
B、 AO 2OD
变式 2:G 为△ABC 内一点,且满足 GA GB GC 0 ,则 G 为△ABC 的( A、外心 B、内心 C、垂心 D、重心
变式 3:若 OA OB OC 0 ,且 OA OB OC ,则△ABC 是
D、
4 3 a b 5 5
AB AC m AM 成立,则 m=
A、5 B、4 C、3 D、2 变式 6:在△ABC 中,点 D 在边 AB 上,CD 平分∠ACB,若 CB a , CA b , a 1 ,
b 2 ,则 CD =(
A、 a
) B、
1 3
2 b 3
2 1 a b 3 3
C、
3 4 a b 5 5
三角形;
变 式 4 : 设 G 是 ABC 的 重 心 , a, b, c 分 别 是 角 A, B, C 的 对 边 , 若
3 aGA bGB cGC 0 则角 A ( 3 A、 90 B、 60
) C、 45


D、 30

变 式 5 : 已 知 △ ABC 和 点 M 满 足 MA MB MC 0 , 若 存 在 实 数 m 使 得

2024年中考重点之平面向量的线性运算

2024年中考重点之平面向量的线性运算

2024年中考重点之平面向量的线性运算一、平面向量的定义与表示平面向量是指在平面内具有大小和方向的量,一般表示为箭头形式。

通常用有序数对表示平面向量,如AB表示起点为A、终点为B的平面向量。

二、平面向量的加法平面向量的加法满足以下运算规律:1. 交换律:AB+CD=CD+AB2. 结合律:(AB+CD)+EF=AB+(CD+EF)3. 平移性质:向量的平移不影响其大小和方向,即若P、Q为平面上两点,则PQ=QR,其中R为PQ的平移向量。

三、平面向量的数乘平面向量的数乘是指一个向量与一个实数相乘的运算。

设k为实数,AB为平面向量,则kAB为平面向量,其大小为|k|·|AB|,方向与AB相同(k>0)或相反(k<0)。

四、平面向量的线性运算平面向量的线性运算包括加法和数乘。

根据向量运算规律,我们可以得出以下结论:1. 乘法分配律:k(AB+CD)=kAB+kCD,(k+m)AB=kAB+mAB,其中k、m为实数。

2. 结合律:k(mAB)=(km)AB,其中k、m为实数。

3. 零向量:0AB=O,其中O为原点。

4. 相反向量:(-1)AB=-AB。

五、平面向量的应用平面向量的线性运算在几何学和物理学中有广泛的应用,尤其是解决平面几何问题和力学问题时。

其中一些常见的应用包括:1. 平面向量的模运算:通过向量的数乘和加法,我们可以求解平面向量的模和方向角。

2. 平面向量的共线与垂直判定:设有两个非零向量AB和CD,若存在实数k,使得CD=kAB,则称向量CD与向量AB共线;若CD·AB=0,则称向量CD与向量AB垂直。

3. 平面向量的平行判定:设有两个非零向量AB和CD,若存在实数k,使得CD=kAB或CD=k(-AB),则称向量CD与向量AB平行。

4. 向量的投影:向量的投影是指将一个向量沿另一个向量的方向分解的过程,用于求解向量的分解与合成问题。

5. 平面向量的线性方程组:由平面向量的线性运算性质,我们可以建立平面向量的线性方程组,用于求解几何和物理问题。

平面向量的线性运算

平面向量的线性运算

平面向量的线性运算在数学中,平面向量是向量的一种,它在平面内具有长度和方向,可以用有向线段表示。

平面向量之间可以进行线性运算,包括加法和数乘。

本文将详细介绍平面向量的线性运算及其性质。

一、平面向量的定义平面向量是指具有大小和方向的向量,它们通常用加粗的小写字母表示,如a、a等。

平面向量可以用有向线段表示,线段的起点表示向量的起点,线段的方向表示向量的方向,线段的长度表示向量的大小。

二、平面向量的加法平面向量的加法是指将两个向量相加得到一个新的向量。

设有两个平面向量a和a,它们的加法定义为:a + a = a + a这意味着向量的加法满足交换律,顺序不影响结果。

加法的几何解释为将两个向量的起点相连,然后将它们的箭头相连,新向量的起点与第一个向量的起点相同,终点与第二个向量的终点相同。

三、平面向量的数乘平面向量的数乘是指将一个向量与一个实数相乘得到一个新的向量。

设有一个平面向量a和一个实数a,它们的数乘定义为:aa = aa数乘有以下性质:1. 数乘满足结合律:(aa)a = a(aa),其中a和a为实数。

2. 数乘满足分配律:(a + a)a = aa + aa,其中a和a为实数。

3. 数乘满足分配律:a(a + a) = aa + aa,其中a为实数,a和a为平面向量。

四、线性组合线性组合是指将一组向量与一组实数相乘并求和得到一个新的向量。

设有a个平面向量a₁、a₂、...、aa和a个实数a₁、a₂、...、aa,它们的线性组合定义为:a₁a₁ + a₂a₂ + ... + aaaa线性组合是向量加法和数乘的联合运算,这个概念在线性代数中具有重要的应用。

五、线性运算的性质1. 交换律:向量加法满足交换律,即a + a = a + a。

2. 结合律:向量加法满足结合律,即(a + a) + a = a + (a + a),其中a、a和a为平面向量。

3. 分配律:向量加法和数乘满足分配律,即a(a + a) = aa + aa,(a + a)a = aa + aa,其中a、a为实数,a和a为平面向量。

认识简单的平面向量向量的线性运算与位置关系

认识简单的平面向量向量的线性运算与位置关系

认识简单的平面向量向量的线性运算与位置关系平面向量是数学中的重要概念,它在几何学、物理学等多个领域中都有广泛应用。

本文将着重介绍平面向量的线性运算和位置关系,帮助读者更好地理解和运用向量的相关知识。

一、平面向量的定义和表示方法在平面上,向量可以用有序数对表示。

设有两个点A(x₁, y₁)和B(x₂, y₂),向量AB可以表示成(a, b),其中a = x₂ - x₁,b = y₂ - y₁。

这里(a, b)称为向量的坐标表示。

二、向量的线性运算向量的线性运算包括向量的加法和数乘两种运算。

1. 向量的加法设有两个向量A(a₁, a₂)和B(b₁, b₂),则它们的和可以表示为C(a₁ + b₁, a₂ + b₂)。

向量的加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A + (B + C)。

2. 向量的数乘设有一个向量A(a₁, a₂)和一个数k,向量A的数乘可以表示为kA(ka₁, ka₂)。

向量的数乘满足分配律,即k(A + B) = kA + kB,(k +l)A = kA + lA,k(lA) = (kl)A。

三、向量的位置关系向量的位置关系包括共线、平行和垂直三种情况。

1. 共线向量若两个非零向量A和B在同一直线上或反向同一直线上,则称它们为共线向量。

共线向量具有如下性质:- 若A和B共线,则存在一个实数k,使得A = kB。

- 若A和B同向共线,则k为正数;若A和B反向共线,则k为负数。

2. 平行向量若两个非零向量A和B的方向相同或相反,则称它们为平行向量。

平行向量具有如下性质:- 若A和B平行,则存在一个实数k,使得A = kB。

- 若A和B同向平行,则k为正数;若A和B反向平行,则k为负数。

3. 垂直向量若两个非零向量A和B的数量积为0,则称它们为垂直向量。

即A·B = 0。

垂直向量具有如下性质:- 若A和B垂直,则它们不共线。

- 若A和B分别是x轴和y轴的单位向量,则A和B垂直。

平面向量的线性运算

平面向量的线性运算

平面向量的线性运算平面向量是解析几何中的重要概念,它不仅可以表示方向和大小,还可以进行各种运算。

其中,线性运算是指向量之间基于线性关系进行的运算,包括向量的加法、减法和数量乘法。

下面将详细介绍这些线性运算。

1. 向量的加法向量的加法是指将两个向量相加得到一个新的向量。

设有向量A和向量A,它们的加法运算是指将向量A的终点与向量A的起点重合,将向量A的终点与此位置的终点相连接得到一个新的向量A。

表示为:A = A + A。

2. 向量的减法向量的减法是指将一个向量减去另一个向量得到一个新的向量。

设有向量A和向量A,它们的减法运算是指将向量A取反后与向量A进行加法运算,即A = A - A,等价于A = A + (-A)。

3. 数量乘法数量乘法是指将一个向量与一个实数相乘得到一个新的向量。

设有向量A和实数A,它们的数量乘法运算是指将向量A拉长或缩短,与实数A的绝对值成正比。

当A > 0时,方向与原向量相同;当A < 0时,方向与原向量相反。

表示为:AA。

在进行向量的线性运算时,需要特别注意以下几点:1. 矢量的起点和终点在进行向量的线性运算时,需要明确矢量的起点和终点。

起点表示向量的起始位置,终点表示向量的结束位置。

2. 向量的方向向量的方向是指从起点指向终点的方向。

加法和减法运算中,可以通过将向量的起点重合来确定新向量的方向。

3. 向量的大小向量的大小是指向量的长度或模。

表示为 |A|,可以通过勾股定理来计算:|A| = √(A²+A²),其中A和A分别为向量的水平和垂直分量。

4. 向量的单位向量单位向量是指长度为1的向量。

可以通过将向量除以它的模来得到单位向量。

表示为:A = A/|A|。

5. 向量的平行和垂直性向量A与向量A平行等价于A = AA(A为实数),向量A与向量A垂直等价于A ·A = 0(·表示向量的数量积)。

通过以上介绍,我们了解了平面向量的线性运算和相关概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十讲平面向量的概念及线性运算■考试要求1.向量的实际背景,A级要求;2.平面向量的概念、两向量相等的含义、向量的几何表示,B级要求;3.向量加法、减法及数乘运算,B级要求;4.两个向量共线的含义,B级要求;5.向量线性运算的性质及其几何意义,A级要求.课前准备区回扣教材夯实基础■知识梳理1.向量的有关概念(1)向量:既有大小,又有的量叫向量;向量的大小叫做向量的.(2)零向量:长度为的向量,其方向是任意的.(3)单位向量:长度等于的向量.(4)平行向量:方向相同或的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且相同的向量.(6)相反向量:长度相等且相反的向量.2.向量的线性运算法则向量a(a≠0)与b共线的充要条件是存在一个实数λ,使得.4.向量的中线公式:若P为线段AB的中点,O为平面内一点,则OP=.5.三点共线等价关系A ,P ,B 三点共线⇔AP =λAB (λ≠0)⇔ OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP =x OA +y OB (O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).■回归课本1.已知四边形ABCD 的对角线AC 与BD 交于点O ,且,AO OC BO OD ==,则四边形ABCD 是________四边形.2.设D 为△ABC 所在平面内一点,BC →=3CD →,则AD →用AB →和AC →表示为________.3.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=______,BC →=________(用a ,b 表示).4. 设向量a 与b 是两个不共线的向量,且a +λb 与3a -b 共线,则λ=________.5. 在△ABC 中,BD →=2DC →,若AD →=λ1AB →+λ2AC →,则λ1λ2的值为________.6. 如果AB →=e 1+e 2,BC →=2e 1-3e 2,AF →=3e 1-k e 2,且A ,C ,F 三点共线,则k =________.课堂活动区 突破考点 研析热点■考点突破◇考点一:平面向量的有关概念【例1】 给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c .其中正确命题的序号是________.◇考点二:平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a ·b =0,|a |=1,|b |=2,则AD →=________.(2)如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF →等于________(用AD →,AB →表示).(3)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则AD →+BE →+CF →=________.◇考点三:共线向量定理的应用【例3】 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.■课堂总结1.向量的加、减法运算,要在所表达的图形上多思考,多联系相关的几何图形,比如平行四边形、菱形、三角形等,可多记忆一些有关的结论.2.对于向量共线定理及其等价定理,关键要理解向量a 与b 共线是指a 与b 所在的直线平行或重合.3.要证明三点共线或直线平行都是先探索有关的向量满足向量等式b =λa ,再结合条件或图形有无公共点证明几何位置.课后练习区 精题精练 规范答题■基础练习1.设a 是非零向量,λ是非零实数,给出下列结论:①a 与λa 的方向相反;②a 与λ2a 的方向相同;③|-λa |≥|a |;④|-λa |≥|λ|·a .其中正确的是________(填序号).2.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________(用a ,b 表示).3. 边长为1的正三角形ABC 中,|AB →-BC →|的值为________.4. 已知|a |=8,|b |=6,且|a +b |=|a -b |,则|a -b |=_______..5. 在△ABC 中,点D 是BC 边上的点,AD →=λAB →+μAC →(λ,μ∈R ),则λμ的最大值为________.6. 设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅= .7.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p8.向量e 1,e 2不共线,AB →=3(e 1+e 2),CB →=e 2-e 1,CD →=2e 1+e 2,给出下列结论:①A ,B ,C 共线;②A ,B ,D 共线;③B ,C ,D 共线;④A ,C ,D 共线,其中所有正确结论的序号为________.■能力提升9.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.10.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.11.已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数λ,μ,使向量d =λa +μb 与c 共线?12.如图,四边形ABCD 是一个等腰梯形,AB ∥DC ,M ,N 分别是DC , AB 的中点,已知AB →=a ,AD →=b ,DC →=c ,试用a ,b ,c 表示BC →,MN →,DN →+CN →.第二十讲平面向量的概念及线性运算■考试要求1.向量的实际背景,A级要求;2.平面向量的概念、两向量相等的含义、向量的几何表示,B级要求;3.向量加法、减法及数乘运算,B级要求;4.两个向量共线的含义,B级要求;5.向量线性运算的性质及其几何意义,A级要求.课前准备区回扣教材夯实基础■知识梳理1.向量的有关概念(1)向量:既有大小,又有的量叫向量;向量的大小叫做向量的.(2)零向量:长度为的向量,其方向是任意的.(3)单位向量:长度等于的向量.(4)平行向量:方向相同或的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且相同的向量.(6)相反向量:长度相等且相反的向量.2.向量的线性运算法则向量a(a≠0)与b共线的充要条件是存在一个实数λ,使得.4.向量的中线公式:若P为线段AB的中点,O为平面内一点,则OP=.5.三点共线等价关系A ,P ,B 三点共线⇔AP =λAB (λ≠0)⇔ OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP =x OA +y OB (O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).■回归课本1.已知四边形ABCD 的对角线AC 与BD 交于点O ,且,AO OC BO OD ==,则四边形ABCD 是________四边形.2.设D 为△ABC 所在平面内一点,BC →=3CD →,则AD →用AB →和AC →表示为________. 解析 由题意得AD →=AC →+CD →=AC →+13BC →=AC →+13AC →-13AB →=-13AB →+43AC →.3.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=______,BC →=________(用a ,b 表示).解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .4. 设向量a 与b 是两个不共线的向量,且a +λb 与3a -b 共线,则λ=________.[解析] 设α+λb =t (3a -b ),则⎩⎪⎨⎪⎧1=3t ,λ=-t ,∴λ=-13. [答案] -135. 在△ABC 中,BD →=2DC →,若AD →=λ1AB →+λ2AC →,则λ1λ2的值为________.[解析] AD →=AC →+CD →=AC →+13CB →,而CB →=AB →-AC →,所以AD →=13AB →+23AC →,所以λ1=13,λ2=23,则λ1λ2=29. [答案] 296. 如果AB →=e 1+e 2,BC →=2e 1-3e 2,AF →=3e 1-k e 2,且A ,C ,F 三点共线,则k =________.[解析] ∵AB →=e 1+e 2,BC →=2e 1-3e 2,∴AC →=AB →+BC →=3e 1-2e 2. ∵A ,C ,F 三点共线, ∴AC →∥AF →,从而存在实数λ,使得AC →=λAF →. ∴3e 1-2e 2=3λe 1-λk e 2,又e 1,e 2是不共线的非零向量,∴⎩⎪⎨⎪⎧3=3λ,-2=-λk ,因此k =2. [答案]2课堂活动区 突破考点 研析热点■考点突破◇考点一:平面向量的有关概念【例1】 给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c .其中正确命题的序号是________.解析 ①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|,AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →.③正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c . ④不正确.当b =0时,a ,c 可能不平行. 综上所述,正确命题的序号是②③.◇考点二:平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a ·b =0,|a |=1,|b |=2,则AD →=________.(2)如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF →等于________(用AD →,AB →表示).解析 (1)∵a ·b =0,∴∠ACB =90°,∴AB =5,CD =255,∴BD =55,AD =455,∴AD ∶BD =4∶1.∴AD →=45AB →=45(CB →-CA →)=45a -45b .(2)在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 的一个三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →.(3)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则AD →+BE →+CF →=________.解析:由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0.◇考点三:共线向量定理的应用【例3】 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →.∴AB →,BD →共线,又它们有公共点B ,∴A ,B ,D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ, 使k a +b =λ(a +k b ),即k a +b =λa +λk b , ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1.■课堂总结1.向量的加、减法运算,要在所表达的图形上多思考,多联系相关的几何图形,比如平行四边形、菱形、三角形等,可多记忆一些有关的结论.2.对于向量共线定理及其等价定理,关键要理解向量a 与b 共线是指a 与b 所在的直线平行或重合.3.要证明三点共线或直线平行都是先探索有关的向量满足向量等式b =λa ,再结合条件或图形有无公共点证明几何位置.课后练习区 精题精练 规范答题■基础练习1.设a 是非零向量,λ是非零实数,给出下列结论:①a 与λa 的方向相反;②a 与λ2a 的方向相同;③|-λa |≥|a |;④|-λa |≥|λ|·a .其中正确的是________(填序号).解析 对于①,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反,②正确;对于③,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于④,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小. 答案 ②2.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________(用a ,b 表示).解析 由AN →=3NC →,得4AN →=3 AC →=3(a +b ),AM →=a +12b ,所以MN →=34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . 答案 -14a +14b 3. 边长为1的正三角形ABC 中,|AB →-BC →|的值为________. 答案: 34. 已知|a |=8,|b |=6,且|a +b |=|a -b |,则|a -b |=_______..解 设AB →=a ,AD →=b ,以AB ,AD 为邻边作平行四边形ABCD ,如下图所示:则AC →=a +b ,DB →=a -b ,所以|AC →|=|DB →|.又因为四边形ABCD 为平行四边形,所以四边形ABCD 为矩形,故AD ⊥AB .在Rt △DAB 中,|AB →|=8,|AD →|=6,由勾股定理得 |DB →|=|AB →|2+|AD →|2=82+62=10.所以|a -b |=10. 答案:105. 在△ABC 中,点D 是BC 边上的点,AD →=λAB →+μAC →(λ,μ∈R ),则λμ的最大值为________.[解析] ∵D 在边BC 上,且AD →=λAB →+μAC →,∴λ>0,μ>0,且λ+μ=1,∴λμ≤⎝ ⎛⎭⎪⎫λ+μ22=14,当且仅当λ=μ=12时,取“=”号.[答案] 146. 设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅= .【答案】97.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为________.解析 ∵BC →=a +b ,CD →=a -2b ,∴BD →=BC →+CD →=2a -b . 又∵A ,B ,D 三点共线,∴AB →,BD →共线. 设AB →=λBD →,∴2a +p b =λ(2a -b ),∴2=2λ,p =-λ,∴λ=1,p =-1. 答案 -18.向量e 1,e 2不共线,AB →=3(e 1+e 2),CB →=e 2-e 1,CD →=2e 1+e 2,给出下列结论:①A ,B ,C 共线;②A ,B ,D 共线;③B ,C ,D 共线;④A ,C ,D 共线,其中所有正确结论的序号为________.解析 由AC →=AB →-CB →=4e 1+2e 2=2CD →,且AB →与CB →不共线,可得A ,C ,D 共线,且B 不在此直线上. 答案 ④■能力提升9.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.解析 由题中条件得,MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB→+yAC →,所以x =12,y =-16. 答案 12 -1610.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________. 解析:设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线,得存在实数λ使得PQ →=λPG →,即n b -m a =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ,得1n +1m=3.11.已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数λ,μ,使向量d =λa +μb 与c 共线? 解 ∵d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(-3λ+3μ)e 2,学而不思则惘,思而不学则殆要使d 与c 共线,则应有实数k ,使d =k c ,即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2,即⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ. 故存在这样的实数λ,μ,只要λ=-2μ,就能使d 与c 共线.12.如图,四边形ABCD 是一个等腰梯形,AB ∥DC ,M ,N 分别是DC ,AB 的中点,已知AB →=a ,AD →=b ,DC →=c ,试用a ,b ,c 表示BC →,MN →,DN →+CN →.解 BC →=BA →+AD →+DC →=-a +b +c .因为MN →=MD →+DA →+AN →,MN →=MC →+CB →+BN →,所以2MN →=MD →+MC →+DA →+CB →+AN →+BN →=-AD →-BC →=-b -(-a +b +c )=a -2b -c .所以MN →=12a -b -12c . DN →+CN →=DM →+MN →+CM →+MN →=2MN →=a -2b -c .。

相关文档
最新文档