初中数学知识点总结_9

合集下载

沪科版初中数学知识点总结 第9章 分式

沪科版初中数学知识点总结 第9章 分式

第9章 分式9.1 分式及其基本性质1.分式的辨别条件是什么? ①形如a b的式子; ②a ,b 均为整式;③分母b 中含有字母.2.分式有意义和无意义的条件是什么?①有意义:0b ≠时,a b有意义; ②无意义:0b =时,a b无意义.3.特殊分式值的讨论 ①0a b=,则0a =且0b ≠; ②0a b >,则0ab >或00a b >⎧⎨>⎩或00a b <⎧⎨<⎩; ③0a b <,则0ab <或00a b >⎧⎨<⎩或00a b <⎧⎨>⎩; ④1a b=,则a b =且0b ≠; ⑤1a b=-,则0a b +=且0b ≠;9.2 分式的运算1.分式的乘法公式是什么?a c a cb d b d⋅⋅=⋅2.分式的除法公式是什么?(0)a c a d a d c b d b c b c⋅÷=⋅=≠⋅3.分式的乘方公式是什么?1()n nn n n n a a ab a b b b --⎛⎫=== ⎪⎝⎭(n 是正整数)4.求最简公分母的步骤是什么?①系数:取各分母中系数的最小公倍数;②字母或公因式:相同部分的幂取指数最大的.5.异分母分式加减法的一般步骤是什么?①通分;②进行同分母分式的加减运算;③把结果化成最简分式.9.3 分式方程1.解分式方程的一般步骤是什么?①去分母;②解这个分式方程;③验根;④写出分式方程的解.2.什么是增根?使分母为零的根叫做分式方程的增根.。

(完整版) 初中数学必背知识点总结

(完整版) 初中数学必背知识点总结

(完整版) 初中数学必背知识点总结初中数学必背知识点总结(完整版)
初中数学是建立中学数学基础的重要阶段,掌握必背知识点对学生的数学研究起到关键性的作用。

以下是初中数学的必背知识点总结。

代数与函数
- 一次函数和二次函数的基本性质
- 幂的运算规律
- 根式的求值及简化
- 四则运算的规则与性质
- 方程与不等式的解法及应用
- 比例与相似的概念与计算
- 函数的定义与性质
几何
- 图形的基本要素和表示方法
- 二维图形的性质、分类和计算
- 三维图形的性质、分类和计算
- 直线、角及其性质的研究
- 圆及其性质的研究
- 三角形及其性质的研究
- 相交线、平行线和垂线的研究
- 平面中的几何关系和判定
- 同位角、对顶角、全等三角形的性质- 平行四边形和梯形的性质
概率与统计
- 实际问题中的统计方法和应用
- 随机事件及其概率计算
- 范围、均值和中位数的计算与分析- 正态分布及其应用
数据与函数
- 数据的收集、整理和表示方法
- 统计数据的分析和解读
- 相关性和回归线的探究
- 折线图、饼图和柱状图的构建与解读
- 函数的图像与性质
这些初中数学的必背知识点涵盖了代数、几何、概率与统计以及数据与函数等重要内内容,掌握这些知识点将为学生在数学学习中打下坚实的基础。

初中数学必背知识点归纳总结

初中数学必背知识点归纳总结

初中数学必背知识点归纳总结初中数学是中学数学的基础,是培养学生数学思维和解决问题能力的重要阶段。

下面将对初中数学的必备知识点进行归纳和总结。

一、整数和有理数运算1.整数的概念和性质:正整数、负整数、零、绝对值和相反数。

2.整数的运算规则:加法、减法、乘法、除法。

3.有理数的概念和性质:正有理数、负有理数、零、绝对值。

4.有理数的运算规则:加法、减法、乘法、除法。

二、平方根和实数1.平方根的概念和性质:正平方根、负平方根、零。

2.平方根的运算:化简、加减、乘除。

3.实数的概念和性质:有理数和无理数的结合。

4.实数的运算规则:加法、减法、乘法、除法。

三、代数式和方程式1.代数式的概念和性质:字母、常数和运算符号的组合。

2.代数式的运算:加法、减法、乘法、除法、化简。

3.方程式的概念和性质:等式、未知数、解。

4.方程式的解法:合并同类项、移项、化简、求解。

四、线性方程组1.线性方程组的概念和性质:多个方程式的组合。

2.线性方程组的解法:代入法、消元法、等价变换法。

3.线性方程组的应用:解实际问题。

五、百分数1.百分数的概念和性质:百分比、百分数与分数和小数的关系。

2.百分数的转化:百分数转化为分数和小数,分数和小数转化为百分数。

3.百分数的运算:百分数的加法、减法、乘法、除法。

4.百分数的应用:百分比调整、百分数关系、百分数应用问题。

六、利率和利息1.利率的概念和性质:利息、本金、利率。

2.利息的计算:简单利息、复利、连续复利。

3.利率的应用:求本金、求利息、求时间、求利率。

七、比例与比例方程1.比例的概念和性质:比例关系、比例比、比例常数。

2.比例的运算:比例的加法、减法、乘法、除法。

3.比例方程的概念和性质:比例式的两边成比例。

4.比例方程的解法:移项、化简、求解。

5.比例的应用:比率、合作、承包问题。

八、图形的性质和关系1.线段和角的概念和性质:长度、角度、角的大小。

2.图形的性质:线段、角、面积、体积。

初中生数学一次函数知识点总结9篇

初中生数学一次函数知识点总结9篇

初中生数学一次函数知识点总结9篇第1篇示例:初中数学是中学数学的起点,一次函数是数学学习的基础之一。

通过学习一次函数,初中生可以掌握数学思维和解决问题的能力,使其在学习数学的道路上更进一步。

下面将对初中生数学一次函数知识点进行总结。

一、一次函数的定义所谓一次函数,就是函数的自变量的最高次数为1的函数。

一次函数的一般形式为y=ax+b,其中a和b为常数,a≠0。

二、一次函数的图像一次函数的图像是一条直线,是通过两点确定的。

其中a决定了直线的斜率,斜率为正时,图像是上升的;斜率为负时,图像是下降的;斜率为0时,图像是水平的。

b决定了直线和y轴的交点。

三、一次函数的性质1. 一次函数的图像是一条直线;2. 一次函数的导数恒为常数,即该函数的增长速率恒定;3. 一次函数的解析式中的a决定了直线的斜率,b决定了与y轴的交点;4. 一次函数的定义域为一切实数,值域也为一切实数。

四、一次函数的运算1. 一次函数的加减运算:两个一次函数相加或相减仍然是一次函数;2. 一次函数的乘除运算:两个一次函数相乘或相除不一定是一次函数;3. 一次函数的复合运算:两个一次函数复合之后还是一次函数。

五、一次函数的应用1. 确定两点绘制直线:通过给定的两点,可以确定一条直线,进而解决相关问题;2. 求函数的零点:求一次函数的解析式中自变量为零时的函数值;3. 求函数的最值:通过一次函数的表达式求出极值点,可求出函数的最大值和最小值;4. 判断函数的单调性:通过分析一次函数的斜率,可得出函数的单调性。

初中生在学习一次函数时,应充分理解一次函数的定义、图像、性质和运算规律,灵活运用所学知识解决相关问题,提高数学思维和解决问题的能力。

多做练习、加强实践,不断巩固提升自己的数学水平,为将来更深入的学习打下坚实基础。

希望初中生能够在数学学习中取得更好的成绩,为未来的学习和发展打下良好的基础。

第2篇示例:初中生学习数学的一次函数是数学中的一个重要内容,也是数学知识体系中的基础部分。

初中九年级数学知识点总结

初中九年级数学知识点总结

初中九年级数学知识点总结初中九年级数学知识点总结一元二次方程1、认识一元二次方程只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。

把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。

2、用配方法求解一元二次方程①配方法<即将其变为(x+m)2=0的形式>配方法解一元二次方程的基本步骤:把方程化成一元二次方程的一般形式;将二次项系数化成1;把常数项移到方程的右边;两边加上一次项系数的一半的平方;把方程转化成的形式;两边开方求其根。

3、用公式法求解一元二次方程②公式法(注意在找abc时须先把方程化为一般形式)4、用因式分解法求解一元二次方程③分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。

(主要包括“提公因式”和“十字相乘”)5、一元二次方程的根与系数的关系①根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程无实数根。

②如果一元二次方程ax2+bx+c=0的两根分别为x1、x2,则有:③一元二次方程的根与系数的关系的作用:已知方程的一根,求另一根;不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:已知方程的两根x1、x2,可以构造一元二次方程:x2-(x1+x2)x+x1x2=0已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根6、应用一元二次方程在利用方程来解应用题时,主要分为两个步骤:设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。

数学知识点总结初中

数学知识点总结初中

数学知识点总结初中
一、数与代数
有理数:包括整数和分数,了解有理数的性质、运算规则和顺序。

实数:理解实数的概念、性质和分类,包括无理数。

代数式:学习整式、分式、根式等代数式的概念、性质和运算。

方程与不等式:掌握一元一次方程、一元二次方程、二元一次方程组的解法,以及不等式的性质和求解方法。

二、几何与图形
基本图形:熟悉点、线、面、角等基本概念,了解它们的性质和关系。

平面几何:学习平行线、三角形、四边形等基本图形的性质、判定和计算。

立体几何:了解基本立体图形的性质,如长方体、正方体、圆柱、圆锥等,掌握它们的表面积和体积的计算方法。

三、函数与图像
函数:理解函数的概念、表示方法和性质,掌握常见函数的图像和性质。

图像的变换:了解图像的平移、旋转、对称等基本变换,以及它们在解决实际问题中的应用。

四、概率与统计
概率:理解概率的基本概念,掌握概率的计算方法和应用。

统计:学习数据的收集、整理和分析方法,包括统计图表的绘制和解读。

此外,初中数学还包括锐角三角函数的定义和性质,以及整式的加减、单项式和多项式的概念和运算规则等知识点。

请注意,以上只是初中数学知识点的一个简要总结,具体的学习内容可能因教材版本和地区差异而有所不同。

在学习的过程中,建议结合教材和教辅资料,深入理解各个知识点的内涵和外延,并通过大量的练习来巩固和提高自己的数学能力。

初中数学九年级锐角三角函数知识点总结

初中数学九年级锐角三角函数知识点总结

锐角三角函数是初中九年级数学中的一个重要内容,其中包括对正弦、余弦和正切函数的理解和应用。

下面是对锐角三角函数知识点的详细总结:1.三角函数的定义:- 正弦函数(sin):对于单位圆上的一个角,其对边的长度与斜边的长度的比值。

- 余弦函数(cos):对于单位圆上的一个角,其邻边的长度与斜边的长度的比值。

- 正切函数(tan):对于单位圆上的一个角,其对边的长度与邻边的长度的比值。

2.锐角的定义:锐角是角度在0°到90°之间的角。

3.单位圆:单位圆指半径长度为1的圆,锐角三角函数可以通过单位圆来定义和理解。

4.三角函数的图像:正弦函数、余弦函数和正切函数的图像可以通过将单位圆绕过原点旋转得到。

5. 正弦函数(sin)的特点:-定义域:[0°,90°]或[0,π/2]-值域:[-1,1]-周期:360°或2π- 特殊值:sin0° = 0, sin30° = 1/2, sin45° = √2/2, sin60° = √3/2, sin90° = 1-图像特点:关于y轴对称6. 余弦函数(cos)的特点:-定义域:[0°,90°]或[0,π/2]-值域:[-1,1]-周期:360°或2π- 特殊值:cos0° = 1, cos30° = √3/2, cos45° = √2/2,cos60° = 1/2, cos90° = 0-图像特点:关于x轴对称7. 正切函数(tan)的特点:-定义域:(0°,90°)或(0,π/2)-值域:R(实数集)-周期:180°或π- 特殊值:tan30° = 1/√3, tan45° = 1, tan60° = √3, tan90° = 不存在(无限大)-图像特点:周期性递增8.三角函数之间的关系:- 正弦函数和余弦函数的关系:sinθ = cos(90° - θ)- 正切函数与正弦、余弦函数的关系:tanθ = sinθ / cosθ9.锐角三角函数的应用:-通过正弦函数、余弦函数和正切函数可以求解三角形的边长和角度大小。

初中三年数学知识点总结大全优秀9篇

初中三年数学知识点总结大全优秀9篇

初中三年数学知识点总结大全优秀9篇初中数学知识点总结篇一1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。

2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。

2.直角坐标系中,x轴上的任意点的横坐标为0。

3.直角坐标系中,点A(1,1)在第一象限。

4.直角坐标系中,点A(-2,3)在第四象限。

5.直角坐标系中,点A(-2,1)在第二象限。

3:已知自变量的值求函数值1.当x=2时,函数y=的值为1.2.当x=3时,函数y=的值为1.3.当x=-1时,函数y=的值为1.4:基本函数的概念及性质1.函数y=-8x是一次函数。

2.函数y=4x+1是正比例函数。

3.函数是反比例函数。

4.抛物线y=-3(x-2)2-5的开口向下。

5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线的顶点坐标是(1,2)。

7.反比例函数的图象在第一、三象限。

5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.6:特殊三角函数值1.cos30°=。

2.sin260°+cos260°=1.3.2sin30°+tan45°=2.4.tan45°=1.5.cos60°+sin30°=1.7:圆的基本性质1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆。

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

5.同弧所对的圆周角等于圆心角的一半。

人教最新版初中数学知识点总结

人教最新版初中数学知识点总结

人教最新版初中数学知识点总结一、整数:1.整数的概念和表示方法2.整数加法和减法的运算法则及应用3.整数乘法的运算法则及应用4.整数除法的运算法则及应用5.整数的混合运算及应用二、分数:1.分数的概念和表示方法2.分数的化简和约分3.分数的相加、相减的运算法则及应用4.分数的相乘、相除的运算法则及应用5.分数的混合运算及应用三、小数:1.小数的概念和表示方法2.小数与分数的互相转化3.小数的四则运算(加减乘除)及应用4.有限小数和循环小数的判断、化简和转化5.小数的混合运算及应用四、代数式:1.代数式的概念和基本性质2.代数式中的加减运算及应用3.代数式中的乘法运算及应用4.代数式的混合运算及应用5.代数式的应用解题五、一元一次方程:1.一元一次方程的概念和基本性质2.一元一次方程的解的判定和求解方法3.一元一次方程的应用解题4.一元一次方程组的概念、基本性质和解法5.一元一次方程组的应用解题六、图形的认识:1.直线、射线和线段的认识2.角的认识及基本性质3.三角形、四边形和多边形的认识及基本性质七、相似和全等:1.图形的相似性质及判定条件2.相似三角形的性质和判定条件3.全等三角形及其应用八、比例与变化:1.比例的概念、基本性质及其应用2.比例方程的概念和解法3.百分数的概念、基本性质及其应用4.增长率和减少率的概念及其应用九、数据与统计:1.数据的收集和整理2.数据的表示方法(列表、表格、图表)3.中心倾向度量(平均数、中位数、众数)4.数据的变异程度(极差、四分位数、方差)5.数据的分布形态(对称分布、偏态分布)十、平面几何:1.垂线、平行线和与平行线的交线的性质2.多边形的基本性质及分类3.圆的认识及基本性质4.圆的切线、弦和弧的性质5.同心圆和相切圆的性质及应用以上就是人教最新版初中数学的知识点总结,涵盖了整数、分数、小数、代数式、一元一次方程、图形的认识、相似和全等、比例与变化、数据与统计、平面几何等方面的知识。

初中数学知识点大全总结整理

初中数学知识点大全总结整理

初中数学知识点大全总结整理一、有理数1.有理数的概念与性质2.有理数的比较与排序3.有理数的运算(加减乘除)4.有理数的乘方与乘方根5.有理数的四则混合运算二、整数1.整数的概念与性质2.整数的比较与排序3.整数的加减法运算4.整数的乘法运算5.整数的除法运算6.整数的乘方与乘方根三、分数1.分数的概念与性质2.分数的化简与比较3.分数的加减法运算4.分数的乘法运算5.分数的除法运算6.分数的乘方与乘方根四、小数1.小数的概念与性质2.小数与分数的相互转换3.小数的加减法运算4.小数的乘法运算5.小数的除法运算6.小数的乘方与乘方根五、代数基础1.代数式的概念与性质2.代数式的加减法运算3.代数式的乘法运算4.代数式的整除运算5.代数式的分离与合并6.代数式的系数与次数六、一元一次方程1.一元一次方程的概念与性质2.一元一次方程的等价变形3.一元一次方程的解与解集4.解一元一次方程的应用问题七、一元一次不等式1.一元一次不等式的概念与性质2.一元一次不等式的解与解集3.一元一次不等式的解集的表示4.解一元一次不等式的应用问题八、平面图形1.平面图形的分类与性质2.三角形的性质与分类3.四边形的性质与分类4.特殊的四边形(平行四边形、矩形、正方形等)5.多边形的性质与分类6.圆的性质与判定九、图形的计算1.从图形中抽象出代数式2.根据已知条件解图形问题3.利用图形计算长度、面积、周长4.解决含图形的复合问题十、几何变换1.平移的概念与性质2.平移的性质与判定3.旋转的概念与性质4.旋转的性质与判定5.对称的概念与性质6.对称的性质与判定十一、统计与概率1.统计调查与统计数据的整理与表示2.抽样调查与统计数据的分析3.概率的基本概念与性质4.事件的相互排斥与相互独立5.概率计算与应用。

初中数学必背知识点及总结

初中数学必背知识点及总结

初中数学必背知识点及总结初中数学是学生在数学学科中的基础阶段,这一阶段的数学知识点较为基础,但却是后续学习的基础和支撑。

初中数学的主要知识点包括数与代数、函数与方程、几何与图形、数据与概率等。

以下是初中数学必背知识点及其总结。

一、数与代数1. 整数整数是由自然数、零和负整数组成,用于表示数量和大小。

整数的加、减、乘、除运算是初中数学的基础知识。

其中,求两个整数的和、差、积、商是初中数学必背知识点。

2. 分数分数是指由分母和分子组成的数,用来表示部分或比例。

分数的加减乘除是初中数学的基础知识,求和、差、积、商都是初中数学必须掌握的知识点。

3. 小数小数是表示不完整的数,小数点后的数字表示不完整的部分。

小数的加、减、乘、除同样也是初中数学的基础知识,求和、差、积、商也是初中数学必须掌握的知识点。

4. 数量关系数与量的关系包括数的大小比较、数的倍数、约数、公约数、最大公约数等关系。

这些知识点是初中数学必须掌握的基础知识。

5. 代数代数是数学中的一大分支,包括代数式、代数方程、代数不等式等。

代数式的展开与因式分解、代数方程的解、代数不等式的解是初中数学必须掌握的知识点。

二、函数与方程1. 函数函数是一种数学关系,可以用图像、公式、表格等形式表示。

初中数学要求学生了解函数的概念、图像和性质,并能够解决与函数相关的问题。

2. 方程与不等式方程是用字母表示的等式,包括一元一次方程、一元二次方程、二元一次方程等。

不等式是一种数学式子,包括一元一次不等式、一元二次不等式等。

求解方程与不等式是初中数学的重要知识点。

三、几何与图形1. 几何图形线段、角、三角形、四边形、圆等是初中数学中常见的几何图形。

了解几何图形的性质、计算面积和周长是初中数学必须掌握的知识点。

2. 合作问题平行线、相似三角形、直角三角形、全等三角形等是初中数学中的重要知识点。

掌握三角形的性质、判定方法和计算问题是初中数学的重要内容。

3. 圆理解圆的定义、性质、圆周率和计算问题是初中数学必须掌握的知识点。

初中生数学一次函数知识点总结9篇

初中生数学一次函数知识点总结9篇

初中生数学一次函数知识点总结9篇第1篇示例:初中生数学一次函数知识点总结一、一次函数的定义一次函数也称为线性函数,通常表示为y = kx + b,其中k 和b 是常数,且k 不等于0。

其中k 表示斜率,b 表示截距。

二、一次函数的图像及性质1. 一次函数的图像是一条直线,具有斜率和截距。

2. 斜率k 表示函数的增长速度,当k > 0 时,函数递增;当k < 0 时,函数递减;当k = 0 时,函数为常数函数。

3. 截距b 表示函数与y 轴的交点,当b > 0 时,函数图像在y 轴上方;当b < 0 时,函数图像在y 轴下方。

4. 一次函数的图像是一条直线,可以通过两个点确定一条直线,常用的方法有:用函数表达式求出两点,或者直接给出两个点的坐标。

三、一次函数的性质1. 一次函数是一种特殊的多项式函数,其最高次数为1。

2. 一次函数的图像永远是一条直线,不存在曲线段。

3. 一次函数的值域和定义域是所有实数。

4. 一次函数的斜率k 表示直线的倾斜程度,斜率越大,倾斜程度越大。

5. 一次函数的截距b 表示直线与y 轴的交点,也可以表示y 轴上的一个点。

四、一次函数的求解1. 求一次函数的斜率:通过函数表达式的系数k 求得斜率。

2. 求一次函数的截距:通过函数表达式的常数项b 求得截距。

3. 求一次函数的函数表达式:通过已知的点坐标和斜率求得函数方程。

4. 求一次函数的交点:当两条直线相交时,求出它们的交点坐标。

五、一次函数的应用1. 一次函数可以描述两个量的线性关系,如时间和距离的关系、价格和数量的关系等。

2. 一次函数可以用来解决实际问题,如刻画物体的直线运动、计算两直线的交点等。

3. 一次函数还可以用来描述事物的增长趋势,如人口增长问题、经济增长问题等。

初中生学习一次函数是数学学习的重要一环,通过学习和掌握一次函数的相关知识点,可以提高学生的数学素养和解决问题的能力。

希望通过以上的总结,能帮助初中生更好地理解和运用一次函数的知识。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)很多同学在复习初中数学时,因为没有对之前的知识进行梳理记忆,导致整体的复习效率不高。

下面是由编辑为大家整理的“初中数学知识点总结归纳(完整版)”,仅供参考,欢迎大家阅读本文。

初中数学知识点总结归纳1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 菱形的四条边都相等;⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

⑷ 菱形是轴对称图形。

提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

6、公因式确定方法:①系数是整数时取各项最大公约数。

②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

7、提取公因式步骤:①确定公因式。

②确定商式③公因式与商式写成积的形式。

8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。

a叫被开方数。

9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。

③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。

12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。

初中数学知识点总结

初中数学知识点总结

初中数学知识点总结•相关推荐初中数学知识点总结(精选5篇)在平平淡淡的学习中,大家对知识点应该都不陌生吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。

掌握知识点是我们提高成绩的关键!以下是小编整理的初中数学知识点总结(精选5篇),希望对大家有所帮助。

初中数学知识点总结1棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

棱锥的的性质:(1)侧棱交于一点。

侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。

且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。

各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形esp:a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。

且顶点在底面的射影为底面三角形的垂心。

初中数学知识点总结2幂函数的性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。

当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。

因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a 就不能是负数。

初中数学的知识点总结(精选9篇)

初中数学的知识点总结(精选9篇)

初中数学的知识点总结(精选9篇)初中数学的知识点总结第1篇二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

A定开口及大小,线轴交点叫顶点。

顶点非高即最低。

上低下高很显眼。

如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

A定开口及大小,开口向上是正数。

绝对值大开口小,开口向下A负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。

【注】基础抛物线初中数学的知识点总结第2篇一、角的定义“静态”概念:有公共端点的两条射线组成的图形叫做角。

“动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。

如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。

二、角的换算:1周角=2平角=4直角=360°;1平角=2直角=180°;1直角=90°;1度=60分=3600秒(即:1°=60′=3600″);1分=60秒(即:1′=60″).三、余角、补角的概念和性质:概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。

如果两个角的和是一个直角,那么这两个角叫做互为余角。

说明:互补、互余是指两个角的数量关系,没有位置关系。

性质:同角(或等角)的余角相等;同角(或等角)的补角相等。

四、角的比较方法:角的大小比较,有两种方法:(1)度量法(利用量角器);(2)叠合法(利用圆规和直尺)。

五、角平分线:从一个角的顶点引出的一条射线。

初中数学总结归纳知识点

初中数学总结归纳知识点

初中数学总结归纳知识点一、数与代数有理数:整数(正整数、零、负整数)、分数(正分数、负分数)的概念和性质;有理数的四则运算(加、减、乘、除)及其运算律(交换律、结合律、分配律)。

实数:无理数的概念(无限不循环小数),实数的分类(有理数和无理数),实数的大小比较和实数与数轴上的点的一一对应关系。

代数式:代数式的概念,整式(单项式、多项式)和分式的概念,代数式的值及其求法。

方程与不等式:一元一次方程、二元一次方程组、一元二次方程的解法及其应用题;不等式的性质,一元一次不等式的解法及其应用题。

二、空间与几何平面图形:点、线、面的基本性质,线段、角的概念和性质;相交线、平行线、三角形、四边形(平行四边形、矩形、菱形、正方形)、圆的基本性质和判定定理。

立体图形:长方体、正方体、圆柱、圆锥、球等立体图形的表面积和体积的计算公式。

图形的变换:平移、旋转、轴对称、中心对称等基本概念和性质。

三、函数函数的概念:常量、变量、函数的概念,函数的三种表示方法(列表法、解析式法、图象法)。

一次函数:一次函数的定义、图象和性质,利用一次函数解决实际问题。

二次函数:二次函数的定义、图象和性质,二次函数的顶点式、一般式及其转换,利用二次函数解决实际问题(如最值问题)。

四、概率与统计概率:概率的基本概念,等可能事件的概率计算,利用树状图或列表法求复杂事件的概率。

统计:数据的收集与整理(包括调查、普查、抽样等),数据的描述与分析(包括统计图、平均数、中位数、众数、方差等),利用统计知识解决实际问题。

以上是对初中数学主要知识点的简要总结归纳,每个知识点下都有许多具体的细节和子知识点需要学习和掌握。

在学习过程中,要注重理解和应用,通过练习和解题来巩固和提高自己的数学能力。

找初中数学知识点总结

找初中数学知识点总结

找初中数学知识点总结一、数与代数1. 有理数- 整数和分数的概念- 正数、负数、零- 有理数的加法、减法、乘法、除法- 绝对值的概念和性质- 有理数的大小比较2. 整数- 素数和合数- 奇数和偶数- 整数的因数和倍数- 质因数分解- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 同类项和合并同类项- 代数式的加减运算- 代数式的乘法运算- 代数式的除法运算4. 一元一次方程- 方程的概念和解法- 等式的性质- 解一元一次方程的应用题5. 二元一次方程组- 线性方程组的解法(代入法、消元法)- 三元一次方程组的解法- 方程组的应用题6. 不等式- 不等式的概念和性质- 解一元一次不等式- 解一元一次不等式组- 不等式的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念和分类(邻角、对角、同位角等)- 直线和射线- 角的度量和比较- 三角形的分类和性质(等边、等腰、直角三角形)- 四边形的分类和性质(正方形、长方形、菱形、梯形、平行四边形)2. 图形的变换- 平移、旋转、对称(轴对称和中心对称)- 坐标系中点的坐标变换3. 圆的基本性质- 圆的定义和性质- 圆的直径、半径、弦、弧、切线- 圆周角和圆心角的关系- 切线的性质和判定4. 面积和体积- 平面图形的面积计算(三角形、四边形、圆、扇形)- 空间图形的体积计算(长方体、正方体、圆柱、圆锥、球)5. 相似和全等- 全等三角形的判定条件- 相似三角形的判定条件- 相似多边形和相似比6. 解析几何- 坐标系的概念和性质- 直线的方程(点斜式、斜截式、两点式)- 圆的方程三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表(条形图、折线图、饼图)- 平均数、中位数、众数的计算和意义2. 概率- 随机事件的概念- 事件的可能性- 概率的计算- 独立事件和互斥事件的概念四、函数1. 函数的概念- 函数的定义- 函数的表示方法(表格、图形、解析式)- 函数的自变量和因变量2. 一次函数- 一次函数的定义和图像- 直线的斜率和截距- 一次函数的性质和运算3. 二次函数- 二次函数的定义和图像- 抛物线的开口方向、顶点、对称轴- 二次函数的性质和最值问题以上是初中数学的主要知识点总结,每个部分都包含了基础概念、性质、公式和解题方法。

初中数学知识点最完整的总结

初中数学知识点最完整的总结

初中数学知识点最完整的总结数学是一门重要的学科,对培养学生的逻辑思维能力和解决问题的能力具有重要作用。

初中数学是数学学科的基础,通过学习初中数学,可以为高中数学学习打下坚实的基础。

下面是初中数学知识点的最完整总结。

一、数的概念和计算1.自然数、整数、有理数和无理数的概念和性质;2.加减法、乘除法的运算规则;3.分数的概念、性质和运算;4.小数的概念、性质和运算;5.百分数的概念、性质和运算;6.混合运算的综合应用。

二、代数式和方程式1.代数式的概念和性质;2.代数式的展开和因式分解;3.一元一次方程的概念、性质和解法;4.方程的实际应用问题。

三、图形的认识和性质1.平面图形的性质和特征;2.三角形、四边形、五边形和六边形的特征与性质;3.平行线、垂直线和交叉线的特性;4.圆的性质和定理;5.平面图形的综合应用。

四、空间与图形的计量1.测量的基本概念和单位;2.长度、面积和体积的计算;3.平面图形与空间图形的计量;4.应用问题的解决。

五、函数与图像1.函数的概念和性质;2.一次函数、二次函数的图像和性质;3.直线、抛物线的图像和性质;4.函数的应用问题。

六、数据的统计分析1.统计数据的分类和整理;2.频数、频率、平均数的计算;3.统计图的绘制和分析;4.应用问题的解决。

七、概率与推理1.概率的概念和性质;2.事件、样本空间和概率的计算;3.排列、组合和逻辑推理问题;4.应用问题的解决。

初中数学知识点总结完整性课上基本都有学过并通过作业和考试来巩固。

所以,初中数学知识点的总结不会太长,但是每个知识点都是学生需要掌握的基本内容。

通过对这些知识的系统学习和实践训练,学生可以全面提高数学水平,为高中数学的学习打下坚实的基础。

初中数学中知识点总结

初中数学中知识点总结

初中数学中知识点总结一、数的读法和书写方法数的读法和书写方法是数学的基础,也是学生学习数学的第一步。

在初中数学中,学生需要掌握整数、分数、小数的读法和书写方法,学习如何用数字和符号书写和表示数值。

1. 整数的读法和书写方法整数是自然数、0和负整数组成的集合,用来表示收支、温度、距离等概念。

在初中数学中,学生需要掌握整数的读法和书写方法,包括正整数、负整数、绝对值等概念。

2. 分数的读法和书写方法分数是表示两个整数之间的比例关系,是数学中重要的概念之一。

在初中数学中,学生需要掌握分数的读法和书写方法,包括分子、分母、假分数、带分数以及分数的比较大小等概念。

3. 小数的读法和书写方法小数是将整数部分和小数部分组合而成的数,通常用于表示精确的数值。

在初中数学中,学生需要掌握小数的读法和书写方法,包括小数点、零的位值、小数的比较大小等概念。

二、整数的加减法整数的加减法是初中数学中的重要内容,学生需要掌握整数的加法和减法规则,包括同号相加、异号相减等概念,并能够灵活运用加减法解决实际问题。

1. 同号整数的加减法同号整数的加减法是指两个正整数或两个负整数相加或相减的规律。

在初中数学中,学生需要掌握同号整数相加和相减的规则,以及如何运用这些规则解决数学问题。

2. 异号整数的加减法异号整数的加减法是指一个正整数和一个负整数相加或相减的规律。

在初中数学中,学生需要掌握异号整数相加和相减的规则,包括取绝对值、比较大小、确定符号等步骤,并能够熟练运用这些规则解决实际问题。

三、分数的加减法分数的加减法是初中数学中的重要内容,学生需要掌握分数的加法和减法规则,包括相同分母的分数加减、不同分母的分数加减以及混合运算等内容。

1. 相同分母的分数加减相同分母的分数加减是指两个分数的分母相同,可以直接按分子相加或相减的规则进行运算。

在初中数学中,学生需要掌握相同分母的分数加减的规则,以及如何找到最小公倍数、合并同类项等方法解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。

那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。

也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。

在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c 4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;3、函数变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

二空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。

相关文档
最新文档