八年级数学第一次月考试题

合集下载

八年级上学期第一次月考(数学)试题含答案

八年级上学期第一次月考(数学)试题含答案

八年级上学期第一次月考(数学)(考试总分:120 分)一、单选题(本题共计6小题,总分18分)1.(3分)下列图形中,具有不稳定性的是()A. 钝角三角形B. 锐角三角形C. 直角三角形D. 长方形2.(3分)下列长度的三条线段能组成三角形的是()A.1,2,1B.2,2,4C.3,4,5 D.3,4,8 3.(3分)若一个三角形三个内角度数的比为3:4:7,则这个三角形的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.无法确定4.(3分)一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是()A.360度B.540度C.180或360度D.540或360或180度5.(3分)如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,S△ABC=4平方厘米,则S△BEF的值为()A.2平方厘米B.1平方厘米C.平方厘米D.平方厘米6.(3分)如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68二、 填空题 (本题共计6小题,总分18分)7.(3分)等腰三角形的两边长分别为3cm 和6cm ,则周长为 .8.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于 .9.(3分)如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于 .10.(3分)将一副三角板按如图所示的位置摆放,则图中∠1= °.11.(3分)如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线,2CA 是1ACD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________12.(3分)在平面直角坐标系中,已知点A(1,2),B(3,3),C(3,2),若存在一点E,使△ACE和△ACB全等,请写出所有满足条件的点E的坐标:.三、解答题(本题共计11小题,总分84分)13.(6分)已知一个多边形,过一个顶点处可以引6条对角线,问(1)这是一个几边形?(2)这个多边形的内角和是多少?14.(6分)已知:如图,点B,D在线段AE上,AD=BE,AC//EF,∠C=∠F,求证:△ABC≌△EDF.15.(6分)如图,在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB的度数.16.(6分)(1)在图1中,沿图中的虚线画线,把下面的图形划分为两个全等的图形.(2)图2为边长为1个单位长度的小正方形组成的网格在△ABC的下方画出与△ABC全等的△EBC.图1图217.(6分)如图,AB=CB,AD=CD.AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE= OF.18.(8分)证明命题:全等三角形对应边上的中线相等,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证。

2024-2025学年北师大版八年级数学上册第一次月考测试卷及答案

2024-2025学年北师大版八年级数学上册第一次月考测试卷及答案

第一次月考测试卷(满分120分,时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1. 在ABC 中,6AB =,8AC =,10BC =,则该三角形为( )A 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 等腰直角三角形 2. 下列各数﹣12,0,π,13中是无理数的有( )个. A. 1B. 2C. 3D. 4 3. 4平方根是( )A. 2B. 2±C. D.4. 在下列四组数中,不是勾股数的是( ).A. 7,24,25B. 3,5,7C. 8,15, 17D. 9,40,415. 下列计算正确的是( )A.B.C. =D. 6. 如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )A 32B.C. D. 1.47. 如图所示,要在离地面5m 处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2m ,L 2=6.2m ,L 3=7.8m ,L 4=10m 四种备用拉线材料中,拉线AC 最好选用( )A. L 1B. L 2C. L 3D. L 4.的.8. 在△ABC 中,AB=15,AC=13,BC 上的高AD 长为12,则△ABC 的面积为( )A 84 B. 24 C. 24或84 D. 42或849. 实数,a ba +的化简结果为()A. 2a b +B. b −C. bD. 2a b −10. 有一个数值转换器,原理如图所示:当输入的x=64时,输出的y 等于( )A. 2B. 8二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)11. 若是m 的一个平方根,则m+13的平方根是______.12. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为___________.13. ≈1.910042_______,____. 14. 已知a、b 为两个连续的整数,且a b >>,则a b +=________. 15. 如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________. 16. 如图,每个小正方形的边长为1,剪一剪,拼成一个正方形,那么这个正方形的边长是___________.17. 若的小数部分是a ,的小数部分是b ,则ab +5b=______.18. 如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是__________..三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤) 19. (1)在边长为1的正方形网格中,以AB 为边作一个正方形.(2)以点O 为顶点作一个面积为10的正方形.20. 化简:(1+(2))11−21. 先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +0)a b ±> ..这里7m =,12n =,由于437+=,4312×=,所以22+=,2=+..22. 清朝康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》,对“三边长为3,4,5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现代的数学语言表述是:“若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S ,则求其边长的方法为:第一步:6S =m=k ;第三步:分别用3,4,5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.23.阅读下面的解题过程∶化简∶=+请回答下列问题.(1; (2)请认真分析化简过程,然后找出规律,写成一般形式.24. 如图(1),是两个全等的直角三角形(直角边分别为a ,b ,斜边为c ).(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a 2+b 2=c 2;(2)用这样的两个三角形可以拼出多种四边形,画出周长最大的四边形;当a =2,b =4时,求这个四边形的周长.的第一次月考测试卷(满分120分,时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1. 在ABC 中,6AB =,8AC =,10BC =,则该三角形为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形【答案】B【解析】【分析】本题考查勾股定理逆定理的运用,根据勾股定理逆定理即可判断该三角形形状.【详解】解: 6AB =,8AC =,10BC =, ∴236AB =,264AC =,2100BC =,有2223664100AB AC BC +=+==,∴该三角形为直角三角形.故选:B .2. 下列各数﹣12,0,π ,13 中是无理数的有( )个. A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.是开方开不尽的根式,π 是无限不循环小数,和π 是无理数,共两个,故选B.【点睛】本题考查了对无理数的定义的应用,注意:无理数包括:①开方开不尽的根式,②含π的,③无理数是指无限不循环小数.熟练掌握无理数的定义是解题关键.3. 4的平方根是( )A. 2B. 2±C.D.【答案】B【解析】【分析】根据平方根的定义,即可求解.【详解】解:2=±.故选:B .【点睛】本题考查了求一个数的平方根,熟练掌握平方公式的定义是解题的关键.4. 在下列四组数中,不是勾股数的是( ).A. 7,24,25B. 3,5,7C. 8,15, 17D. 9,40,41 【答案】B【解析】【分析】求是否为勾股数,这里给出三个数,利用勾股定理,只要验证两小数的平方和等于最大数的平方即可.【详解】解:A 、72+242=252,是勾股数的一组;B 、32+52≠72,不是勾股数的一组;C 、82+152=172,是勾股数的一组;D 、92+402=412,是勾股数的一组.故选B【点睛】考查了勾股数,理解勾股数的定义,并能够熟练运用.5. 下列计算正确的是( )A. B. C. = D. 【答案】A【解析】【详解】试题分析:本题主要考查的就是二次根式的计算.B 和D 中的两个二次根式不是同类二次根式,则无法进行加减法计算;C 选项中的二次根式为最简二次根式,无法进行化简.6. 如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )A. 32B.C.D. 1.4【答案】B【解析】【详解】根据勾股定理可得:正方形的对角线的长度为√2,则点A所表示的数为√2.故选B.7. 如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用()A. L1B. L2C. L3D. L4【答案】B【解析】【详解】由题意可知,在Rt△ADC中,∠ADC=90°,CD=5米,∠CAD=60°,∴∠ACD=30°,∴AD=12 AC,设AC=x,则AD=12x,由勾股定理可得:2221()52x x=+,解得x=,∵0x>,∴AC= 5.77x≈(米),∵考虑既要符合设计要求,又要节省材料,∴选L2,故选B.8. 在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A. 84B. 24C. 24或84D. 42或84 【答案】C【解析】【分析】由于高的位置不确定,所以应分情况讨论.【详解】(1)△ABC为锐角三角形,高AD在三角形ABC的内部,∴,,∴△ABC 的面积为195122×+×()=84,(2)△ABC 为钝角三角形,高AD 在三角形ABC 的外部,∴,,∴△ABC 的面积为195122×−×()=24, 故选C.【点睛】此题主要考查勾股定理应用,解题的关键是根据三角形的形状进行分类讨论.9. 实数,a ba +的化简结果为()A. 2a b +B. b −C. bD. 2a b −【答案】B【解析】【分析】由数轴得出b<0<a ,原式化简为|a+b|+a ,去掉绝对值符号得出-a-b+a ,合并同类项即可.【详解】∵由数轴可知:b<0<a ,的a=|a+b|+a=−a−b+a=−b.故选B.【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于结合数轴进行解答.10. 有一个数值转换器,原理如图所示:当输入的x=64时,输出的y等于()A. 2B. 8【答案】D【解析】【分析】根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.【详解】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【点睛】本题考查了算术平方根的定义,看懂图表的原理,正确利用平方根的定义是解决本题的关键.二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)11. 若是m的一个平方根,则m+13的平方根是______.±【答案】4【解析】【分析】根据平方根的定义求解即可.【详解】∵是m的一个平方根,∴m=()2=3,∴m+13=16,±,∴m+13的平方根是:4±故答案为4【点睛】本题考查平方根的定义,一个正数的平方根有两个,它们互为相反数,而算术平方根只有一个.熟练掌握平方根的定义是解题关键.12. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为___________.【答案】6,8,10【解析】【分析】根据连续偶数相差是2,设中间的偶数是x ,则另外两个是2x −,2x +根据勾股定理即可解答.【详解】解:设中间的偶数是x ,则另外两个是2x −,2x +根据勾股定理,得 222(2)(2)x x x −+=+,解得8x =或0(0不符合题意,应舍去), 所以它三边是6,8,10.故答案为:6,8,10【点睛】本题考查的是连续偶数的特征和勾股定理,熟练掌握相关知识是解题的关键 13.≈1.910042_______,____.【答案】 ①. 604.2 ②. ±0.0191【解析】【分析】根据被开方数扩大100倍,算术平方根扩大10倍,可得答案.≈6.042,,.故答案为604.2,±0.0191.【点睛】本题考查了算术平方根,利用被开方数与算术平方根的关系是解题关键. 14. 已知a 、b为两个连续的整数,且a b >>,则a b +=________. 【答案】11【解析】【分析】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.根据无理数的性质,得出接近无理数的整数,即可得出a ,b 的值,即可得出答案.【详解】解:∵362825>>∴65>>∵a 、b为两个连续的整数,且a b >>,∴6a =,5b =∴6511a b +=+=. 的故答案为:11.15. 如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________.【答案】16【解析】【详解】设这个三角形三个内角的度数分别为: 2?3x x x 、、,根据三角形内角和定理可得:23180x x x ++= ,解得30x = ,∴这个三角形三个内角分别为:30°、60°、90°,又∵这个三角形的最短边是8,∴根据在直角三角形中30°的角所对的边是斜边的一半可知:其最长边斜边长为:16.16. 如图,每个小正方形的边长为1,剪一剪,拼成一个正方形,那么这个正方形的边长是___________.【解析】【分析】本题考查了平方根的概念,图形的剪拼,剪拼图形是解题的关键.将图形剪拼成正方形,根据正方形的面积求出其边长即可.【详解】解:分割图形如下:这个正方形的面积为5,..17. 若的小数部分是a ,的小数部分是b ,则ab +5b=______.【答案】2【解析】【分析】由23<<可得758<+<,253<−<,进行可得a ,b 的值,从而可得结论.【详解】∵23<<,∴25535+<+<+,23−>>−,∴758<+<,52553−>>−,∴253<−<,∴2a =,3b =−将a 、b 的值,代入可得52ab b +=.故答案为2.18. 如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是__________.【答案】76【解析】【分析】本题考查了勾股定理的应用,根据题意可知ACB ∠为直角,利用勾股定理求得外围中一条边,又由AC 延伸一倍,从而求得风车的一个轮子,进一步求得四个即风车的外围周长.【详解】解:依题意,可得“数学风车”中的四个大直角三角形的两条直角边长分别为5和12,∴“数学风车”13=,∴这个风车的外围周长是()136476+×=, 故答案为:76.三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤) 19. (1)在边长为1的正方形网格中,以AB 为边作一个正方形.(2)以点O 为顶点作一个面积为10的正方形.【答案】(1)画图见解析;(2)画图见解析.【解析】【详解】试题分析:(1)直接利用网格结合勾股定理得出正方形边长进而得出答案;(2)直接利用网格结合勾股定理得出正方形边长进而得出答案.试题解析: (1)如图所示:四边形ABCD 即为所求;(2)如图所示:四边形EGCF 即为所求.20. 化简:(1+(2))11−【答案】(1)(2)1−【解析】【分析】本题考查二次根式的混合运算,熟练掌握运算规则是关键.(1)先进行乘法计算去掉分母,再逐项计算即可;(2)先分项相除和利用平方差公式进行化简,再逐项计算即可.【小问1详解】+=++=;小问2详解】)11−+−()31=−32=−1=21. 先阅读下面的解题过程,然后再解答.a,b,使a b m+=,ab n=,即22m+0)a b±> ..这里7m=,12n=,由于437+=,4312×=,所以22+=,2=+..【【答案】见解析【解析】【分析】应先找到哪两个数和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642×=,所以2213+,−【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.22. 清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》,对“三边长为3,4,5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现代的数学语言表述是:“若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S ,则求其边长的方法为:第一步:6S=m =k ;第三步:分别用3,4,5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”正确性吗?请写出证明过程.【答案】(1)15,20,25;(2)详见解析.【解析】【详解】试题分析: 先由题中所给的条件找出字母所代表的关系,然后套用公式解题.试题解析:(1)当s =150时,m =s 6=25,k =5. ∴3×5=15,4×5=20,5×5=25,∴直角三角形的三边长分别为15,20,25.(2)正确,设直角三角形的三边长分别为3k,4k ,5k ,∴s=12×3k×4k=6k²,,∴三边长分别为,,. 的的点睛: 此题信息量较大,解答此类题目的关键是要找出所给条件,然后解答.23.阅读下面的解题过程∶化简∶=+请回答下列问题.(1; (2)请认真分析化简过程,然后找出规律,写成一般形式.【答案】(1(2)见解析【解析】【分析】本题考查了分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.(1)参照例子进行化简;(2)根据上面的解题思路分析可得出这个式子的值.【小问1详解】解:原式====【小问2详解】===−;)0,0a b =>>. 24. 如图(1),是两个全等的直角三角形(直角边分别为a ,b ,斜边为c ).(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a 2+b 2=c 2;(2)用这样的两个三角形可以拼出多种四边形,画出周长最大的四边形;当a =2,b =4时,求这个四边形的周长.【答案】(1)证明见解析;(2)见解析. 【解析】【详解】试题分析:(1)观察图形可知,梯形的面积等于三个直角三角形的面积之和,用字母表示出来,化简后,即可证明勾股定理;(2)已知a 与b 的值,根据勾股定理求出c 的值,把最短的直角边重合在一起,拼成一个平行四边形,如图1所示,这个平行四边形的周长最大,求出最大周长即可. 试题解析:(1)由图可得:()()211112222a b a b ab c ab ++=++, 整理得:2222222aab b ab c+++=,整理得:a 2+b 2=c 2; (2)当a =2,b =4时,根据勾股定理得:c ;如图1:则四边形的最大周长为8+点睛:本题考查了勾股定理的证明,用数形结合来证明勾股定理,这是典型的数形结合思想方法得运用.。

人教版2024-2025学年八年级数学上册第一次月考模拟试题(解析版)

人教版2024-2025学年八年级数学上册第一次月考模拟试题(解析版)

2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选:B .【点睛】本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或4【答案】C【解析】【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【详解】①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边4;②4是底边时,三角形的三边分别为2、2、4, 224+= ,∴不能组成三角形,综上所述,第三边为4.故选C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )为.A50o B. 80o C. 50o或80o D. 不能确定【答案】C【解析】【分析】已知中没有明确该角为顶角还是底角,所以应分两种情况进行分析.【详解】分两种情况:若该角为底角,则顶角为180°−2×50°=80°;若该角为顶角,则顶角为50°.∴顶角是50°或80°.故选C.【点睛】此题考查等腰三角形的性质,解题关键在于分情况讨论.4. 若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm 和13 cm),结合选项可知:9 cm符合题意.故选C.角形的两边的差一定小于第三边.5. 一个多边形的内角和是900°,则这个多边形的边数为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.6. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6【答案】D【解析】【分析】根据三角形的三边关系逐一判断即可得答案.【详解】A .∵1+2=3,故不能组成三角形,不符合题意,B .∵1+3<5,故不能组成三角形,不符合题意,C .∵3+3=6,故不能组成三角形,不符合题意,D .∵4+5>6;5-4<6,故能组成三角形,符合题意,.故选:D .【点睛】本题考查三角形的三边关系,任意三角形的两边之和大于第三边,两边之差小于第三边,熟练掌握三角形的三边关系是解题关键.7 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确【答案】C【解析】 【分析】本题要判定AED CEB ≌,已知EA EC =,DE BE =,具备了两组边对应相等,由于对顶角相等可得AED CEB ∠=∠,可根据SAS 能判定AED CEB ≌.【详解】解:在AED 与CEB 中,EA EC AED CEB DE BE = ∠=∠ =,(SAS)AED CEB ∴ ≌,∴不用补充条件即可证明AED CEB ≌,.故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F【答案】D【解析】【分析】三角形全等的判定定理中,常见的不能判定三角形全等的条件为SSA ,AAA ,通过对条件的对比很容易得出结论.【详解】A 选项对应判定定理中的SSS ,故正确;B 选项对应判定定理中的AAS ,故正确;C 选项对应判定定理中的ASA ,故正确;D 选项则为SSA ,两边加对角是不能判定三角形全等的,故错误.故选D .【点睛】本题考查三角形全等判定定理,能熟记并掌握判定定理是解题关键.9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】根据题意易得1PM PM =,2P N PN =,然后根据三角形的周长及线段的数量关系可求解. 【详解】解:由轴对称的性质可得:OA 垂直平分1PP ,OB 垂直平分2P P ,∴1PM PM =,2P N PN =, ∵1212PMN C PM PN MN PM P N MN PP =++=++=△,12PP =6,∴6PMN C = ;故选C .【点睛】本题主要考查轴对称的性质及线段垂直平分线的性质定理,熟练掌握轴对称的性质及线段垂直平分线的性质定理是解题的关键.10. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】 【分析】此题考查了平行线的性质,三角形外角的性质,首先根据AB CD ∥得到170A ∠=∠=°,然后利用三角形外角的性质求解即可.解题的关键是熟练掌握三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.【详解】如图所示,∵AB CD ∥,70A ∠=°,∴170A ∠=∠=°,∵40C ∠=°∴1704030E C ∠=∠−∠=°−°=°.故选A .11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°【答案】B【解析】 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=°,∴90ADC ∠=°,∵48C ∠=°,∴904842DAC ∠=°−°=°,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=°是解题的关键. 12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80【答案】C【解析】 【分析】由30B ∠= ,70ADC ∠= ,利用外角的性质求出BAD ∠,再利用AD 平分BAC ∠,求出BAC ∠,再利用三角形的内角和,即可求出C ∠的度数.【详解】∵30B ∠= ,70ADC ∠=, ∴703040BAD ADC B ∠=∠−∠=−= ,∵AD 平分BAC ∠,∴280BAC BAD ∠=∠= ,∴180180308070C B BAC ∠=−∠−∠=−−= .故选C .【点睛】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,熟练掌握相关性质和定理是解题关键.二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.【答案】2【解析】【分析】由中线定义,得AD CD =,根据周长定义,进行线段的和差计算求解.【详解】∵BD 是ABC 的中线,∴AD CD =,∴ABD △和BCD △的周长的差()()AB BD AD BC BD CD AB BC =++−++=−,∵53AB BC ==,, ∴ABD △和BCD △的周长的差532=−=.故答案为:2.【点睛】本题考查中线的定义;由中线得到线段相等是解题的关键.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.【答案】1620°【解析】【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n−3)条对角线可得n−3=8,计算出n 的值,再根据多边形内角和(n−2)•180 (n ≥3)且n 为整数)可得答案.【详解】解:设多边形边数为n ,由题意得:n−3=8,n=11,内角和:180°×(11−2)=1620°.故答案为1620°.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n边形从一个顶点出发可引出(n−3)条对角线,多边形内角和公式(n−2)•180 (n≥3)且n为整数).中,∠C=90°,∠B=2∠A,BC=3cm,AB=____cm.15. Rt ABC【答案】6【解析】【详解】试题分析:根据直角三角形的性质即可解答.解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为6.考点:直角三角形的性质.∆中,∠B=90 ,AB=3cm,AC=5cm,将ΔΔΔΔΔΔΔΔ折叠,使点C与点A重合,折痕为DE,16. 如图,Rt ABC则CE=____cm.【答案】258【解析】 【分析】在Rt △ABC 中,由勾股定理可得BC4= cm ,设AE =x cm ,由折叠的性质可得CE =x cm ,BE = (4)x −cm ,从而由勾股定理可得:2223(4)x x =+−,即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,∴由勾股定理可得:BC4=cm ,设AE =x cm ,则由折叠的性质可得:CE =x cm ,BE =BC -CE =(4)x −cm ,∴在Rt △ABE 中,由勾股定理可得:2223(4)x x =+−,解得:258x =(cm ). 即CE 的长为258cm . 故答案是:258. 【点睛】本题考查了折叠性质以及勾股定理的应用,熟练掌握勾股定理的内容是解题的关键. 17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.【答案】8##八【解析】【分析】本题考查的是多边形的内角和,以及多边形的外角和,解答本题的关键是熟练掌握任意多边形的外角和是360°,与边数无关. 先根据内角的度数与和它相邻的外角的度数比为3:1,求得每一个外角的度数,再根据任意多边形的外角和是360°,即可求得结果.【详解】解:设每一个外角的度数为x ,则每一个内角的度数3x ,则3180x x +=°,解得45x =°,∴每一个外角的度数为45°,∴这个多边形的边数为360458°÷°=,故答案为:8.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度. 的【答案】50【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,由等腰三角形的性质可得B C ∠=∠,进而可证明()SAS BDE CFD ≌,得到BED CDF ∠=∠,即可得130BDE CDF BDE BED ∠+∠=∠+∠=°,最后根据平角的定义即可求解,掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【详解】解:∵AB AC =,∴B C ∠=∠,又∵BE CD =,BD CF =,∴()SAS BDE CFD ≌,∴BED CDF ∠=∠,∵50B ∠=°,∴18050130BDE BED ∠+∠=°−°=°,∴130BDE CDF ∠+∠=°,∴()18018013050EDF BDE CDF ∠=°−∠+∠=°−°=°, 故答案为:50.三.解答题(本大题满分62分)19. 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .【答案】证明见解析.【解析】【分析】由HL 证明Rt △ABE ≌Rt △CDF ,得出对应边相等AE =CF ,由AE ﹣EF =CF =EF ,即可得出结论.详解】∵DF ⊥AC ,BE ⊥AC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △CDF 中,{AB CDBE DF ==,∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴AE ﹣EF =CF =EF ,∴AF =CE .【点睛】本题考查了全等三角形的判定与性质.掌握全等三角形的判定方法是解题的关键.20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.【答案】∠A=36°,∠ABC=∠C=72°【解析】【分析】设∠A=x ,根据等腰三角形的性质和三角形的外角性质、三角形的内角和定理即可求得各个角的度数.【详解】解:设∠A=x ,∵AD=BD ,∴∠ABD=∠A=x ,∴∠BDC=∠ABD+∠A=2x ,∵BD=BC ,∴∠C=∠BDC=2x ,∵AB=AC ,∴∠ABC=∠C=2x ,∴在△ABC 中,x+2x+2x=180°,∴x=36°,2x=72°,【即∠A=36°,∠ABC=∠C=72°.【点睛】本题考查了等腰三角形的性质、三角形的外角性质、三角形内角和定理,熟练掌握等腰三角形的性质和外角性质是解答的关键.21. 如图,点D E ,分别在AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查三角形全等的判定与性质,熟记三角形全等的判定定理:SSS SAS ASA AAS 、、、是解决问题的关键.(1(2)根据三角形全等的判定定理找条件证明即可得证.【小问1详解】证明:在ABE 和ACD 中,AD AE A A AB AC = ∠=∠ =()SAS ABE ACD ∴≌ ,∴B C ∠=∠;【小问2详解】证明: AD AE =,AB AC =,BD CE ∴=,由(1)知,B C ∠=∠,在BOD 和COE 中,BOD COE B C DB EC ∠=∠ ∠=∠ =()AAS ≌BOD COE ∴△△,∴OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?【答案】点C 是路段ΔΔΔΔ的中点,理由见解析.【解析】【分析】本题考查了全等三角形的判定和性质,利用HL 证明Rt Rt ACD BCE ≌得到AC BC =即可求解,掌握全等三角形的判定和性质是解题的关键.【详解】解:点C 是路段ΔΔΔΔ的中点,理由如下:∵两人从点C 同时出发,以相同的速度同时到达D E ,两地,∴CD CE =,∵DA AB ⊥,EB AB ⊥,∴90A B ∠=∠=°,又∵DA EB =,∴()Rt Rt HL ACD BCE ≌, ∴AC BC =,∴点C 是路段ΔΔΔΔ的中点.23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.【答案】(1)见解析 (2)①;②32【解析】【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)①由在ABC 中,AB AC =,40A ∠=°,利用等腰三角形的性质,即可求得ABC ∠的度数,利用等边对等角求得DBA ∠的度数,则可求得DBC ∠的度数;②将ABC 的周长转化为AB AC BC ++的长即可求得.【小问1详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴DB DA =,∴ABD △是等腰三角形;【小问2详解】解:①在ABC 中,∵AB AC =,40A ∠=°, ∴180180407022AABC C −∠°−∠=∠=°==°°, 由(1)得DA DB =,40DBA A ∠=∠=︒,∴704030DBC ABC DBA ∠=∠−∠=°−°=°;故答案为:30°;②∵AB 的垂直平分线MN 交AC 于点D ,6AE =,∴212AB AE ==,∵CBD △的周长为20,∴20BD CD BC AD CD BC AC BC ++=++=+=,∴ABC 的周长122032AB AC BC =++=+=. 【点睛】此题考查了线段的垂直平分线的性质及等腰三角形的判定与性质,解题的关键是熟练掌握以上知24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =, ∴PBD PCE ≌,∴PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .【答案】证明见解析【分析】过M作ME⊥AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得△MCD≌△MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∴CDM EDMC DEMCM EM∠=∠∠=∠=,∴△MCD≌△MED(AAS),∴CD=DE,∵BAM EAMB AEMBM EM∠=∠∠=∠=∴△ABM≌△AEM(AAS),∴AE=AB,∴AD=AE+DE=CD+AB.【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.26. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)见解析;(2)AD ⊥MC ,理由见解析【解析】【分析】(1)由已知可以证得△DFC ≌△AFM ,从而得到CF =MF ,最后得到∠FMC =∠FCM ; (2)由(1)可以证得DE ∥CM ,再根据AD ⊥DE 可得AD ⊥MC .【详解】解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF =AF =EF ,又∵∠ABC =90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF =∠AMF ,在△DFC 和△AFM 中,DCF AMF CFD MFA DF AF∠=∠ ∠=∠ = , ∴△DFC ≌△AFM (AAS ),∴CF =MF ,∴∠FMC =∠FCM ;(2)AD ⊥MC ,理由:由(1)知,∠MFC =90°,FD =FA =FE ,FM =FC ,∴∠FDE =∠FMC =45°,∴DE ∥CM ,∴AD ⊥MC .【点睛】本题考查全等三角形的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的性质、同角余角相等的性质、平行线的判定与性质、垂直的判定并灵活运用是解题关键.。

八年级上册数学第一次月考试题及答案

八年级上册数学第一次月考试题及答案

八年级上册数学第一次月考试题及答案(考试时间100分钟:试卷满分120分)一、选择题(本大题共有8小题:每小题3分:共24分。

在每小题所给出的四个选项中:只有一项是符合题目要求的:请将正确选项的字母代号填写在表格相应的位置)题号 1 2 3 4 5 6 7 8答案2.如图:已知AB=AD:那么添加下列一个条件后:仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DACC.∠BCA=∠DCA D.∠B=∠D=90°3.如图:某同学把一块三角形的玻璃打碎了三块:现在要到玻璃店配一块完全一样的玻璃:那么最省事的办法是带( )去( )A.①B.②C.③ D. ①和②4如图:△ABC≌△DEF:则此图中相等的线段有()A.1对B.2对C.3对D.4对5.如图:△ABC≌△CDA:并且AB=CD:那么下列结论错误的是()A.∠1=∠2 B.A C=CA C.∠D=∠B D.A C=BC6.如图:AD=BC :AC=BD :则下列结论中:不正确的是( ) A . OA=OB B . ∠AOB=∠C+∠DC .CO=DOD . ∠C=∠D7.如图:已知△ABC ≌△CDA :A 和C :D 和B 分别是对应点:如果AB=7cm :AD=6cm :AC=4cm :则DC 的长为( ) A . 6cmB . 7cmC . 4cmD . 不确定8. 如图:点B 、C 、E 在同一条直线上:△ABC 与△CDE 都是等边三角形:则下列结论不一定成立的是( )A .△ACE ≌△BCDB .△BGC ≌△AFC C .△DCG ≌△ECFD .△ADB ≌△CEA二、填空题(本大题共有8小题:每小题3分:共24分。

不需写出解答过程:请将答案直接写在横线上)9. 如果△ABC ≌△DEC :∠B=60度:那么∠E= 度。

10.角是轴对称图形:则对称轴是 .11.如图:△ABD ≌△CBD :若∠A=80°:∠ABC=70°:则∠BDC 的度数为 _________.12.如图所示:AB=AD :∠1=∠2:添加一个适当的条件:使△ABC ≌△ADE :则需要添加的条件是 _________.第12题第5题图第8题图第11题第13题13.如图:△ABC中:AD⊥BC于D:要使△ABD≌△ACD:若根据“HL”判定:还需要加条件:若加条件∠B=∠C:则可用判定三、作图题(本大题共2小题:共14分)17.(本题满分8分)按下列要求作图:(1)用直尺和圆规作线段BC的垂直平分线(2)画△ABC出关于L的对称图形(不写作法:保留作图痕迹)AB CBCL18、(本题满分6分)请用三种不同的方法把一个平行四边形分割成四个全等的图形。

2024年9月份济南天桥区泺口实验学校八年级上学期数学第一次月考试卷(含答案)

2024年9月份济南天桥区泺口实验学校八年级上学期数学第一次月考试卷(含答案)

泺口实验学校2024—2025学年度第一学期八年级数学质量检测试题本试题分第I卷(选择题)和第II卷(非选择题)两部分,共4页.满分150分,考试时间120分钟.第I卷(选择题共40分).一.选择题.(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个最符合题目要求。

)1.下列各数中是无理数的是()A.3.1415B.√5C.13D.√832.在平面直角坐标系中,点(3,-4)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限3.下列说法中正确的是( )A.√16=±4B.0.09的平方根是0.3C.1的立方根是±1D.0的立方根是04.根据下列表述,能确定准确位置的是( )A.万达影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°5.下列运算正确的是( )A.√2+√3=√5B.2×√3=√6C.3√2﹣√2=3D.√12÷√3=26.已知点P在第四象限,且点P到x轴的距离为3,到y轴的距离为4,则点P坐标为( )A.(3,﹣4)B.(-3,4)C.(-4,3)D.(3,-4)7.如图,湖的两岸有A,C两点,在与AC成直角的BC方向上的点C处测得AB=15米,BC=12米,则A,C两点间的距离为()A.3米B.6米C.9米D.10米8.已知P点坐标为(3,2a+2),且点P在x轴上,则a的值是()A.0B.-1C.-2D.-39.已知直线MN∥x轴,M点的坐标为(2,3),并且线段MN=3,则点N的坐标为()A.(-1,3)B.(5,3)C.(1,3)或(5,3)D.(-1,3)或(5,3)10.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)…,那么点A2022的坐标为()A.(1011,0)B.(1011,1)C.(2022,0)D.(2022,1)第II卷(非选择题共110分)二.填空题:(每题4分,共20分)11.如果用有序数对(1,4)表示第一单元4号的住户,那么第二单元8号的住户用有序数对表示为。

八年级数学第一学期第一次月考试题

八年级数学第一学期第一次月考试题

第一学期第一次月考试卷八年级数学题号 一 二 三 总分 得分题号 1234 5678910答案A.-2B.±2C.-4D.±4 2.下列算式正确的是( )A.-√(−3)2=-3B.(-√6)2=36C.√16=±4D.√121=±√11 3.如图,矩形ABCD 恰好可分成7个形状大小相同的小矩形,如果小矩形的面积是3,则矩形ABCD 的周长是( ) A.7 B.9 C.19 D.21 4.已知整数m 满足m <√38<m +1,则m 的值为( ) A.4 B.5 C.6 D.7 5.在-√4,3.14,π,√10,1.5⋅5⋅,27中无理数的个数是( ) A.2个 B.3个 C.4个 D.56.若25x 2-mxy +81y 2是一个完全平方式,那么m 的值为( ) A.±45 B.90 C.±90 D.-907.下列运算正确的是( )A.a 6÷a 3=a 2B.2a 3+3a 3=5a 6C.(-a 3)2=a 6D.(a +b )2=a 2+b 2 8.若(x 3)m =x 9,则m 的值为( )A.1B.2C.3D.4 9.计算(-xy 2)3的结果是( )A.x 3y 6B.-x 3y 6C.-x 4y 5D.x 4y 5 10.如果设5a =m ,5b =n ,那么5a -b 等于( ) A.m +n B.mn C.m -n D.mn二、填空题(本大题共10小题,共30分)11.若m 是√16的算术平方根,则m +3= ______ .12.在5,0.1,227,-√3,3π.,√16中,无理数有 ______ 个. 13.实数a 在数轴上的位置如图,则|a -√3|= ______ . 14.若a m =2,a n =3,则a m -n 的值为 ______ .15.已知2m -3n =-4,则代数式m (n -4)-n (m -6)的值为 ______ . 16.计算:(43)2014×(-34)2015= ______ . 17.计算:(-2a 2)•3a 的结果是 ______ . 18.计算2a 2b (2a -3b +1)= ______ . 19.计算(3x +9)(6x +8)= ______ .20.若a +2是一个数的算术平方根,则a 的取值范围是 ______ .三、解答题(本大题共6小题,21题20分,22、23每题6分,24题8分,25、26每题10分) 21. 计算(1)(x -2y )(x +2y -1)+4y 2(2)(a 2b )[(ab 2)2+(2ab )3+3a 2].(3)√4+√−13-√925×√1+(43)2 (4)(-a 2)3•(b 3)2•(ab )422. 求式中的x 的值: 3(x -1)2=12.23.已知一个数的平方根是3a +2和a +10,求a 的值.24.化简求值:(2x -1)2-(3x +1)(3x -1)+5x (x -1),x =-19.25.已知(x 3+mx +n )(x 2-3x +1)展开后的结果中不含x 3和x 2项. (1)求m 、n 的值; (2)求(m +n )(m 2-mn +n 2)的值.26.已知a x=5,a x+y=30,求a x+a y的值.。

2022-2023学年度第一学期八年级第一次月考 (数学)(含答案)063108

2022-2023学年度第一学期八年级第一次月考 (数学)(含答案)063108

2022-2023学年度第一学期八年级第一次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列各组数不能构成一个三角形的三边长的是( )A.,,B.,,C.,,D.,,2. 如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.都有可能3. 如图,从下列四个条件:①;②;③;④中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )A.B.C.D.4. 若正多边形的一个外角是,则该正多边形的内角和为 A.B.C.D.5. 在中,,则( )A.B.C.D.123234345456BC =C B ′AC =C A ′∠CA =∠CB A ′B ′AB =A ′B ′123472∘()360∘540∘720∘900∘Rt △ABC ∠C =,∠B =90∘35∘∠A =45∘55∘65∘75∘6. 如图,中,则下列结论正确的是( )A.B.C.D.7. 如图,已知为中点,,,,那么下列结论中不正确的是( )A.B.C.D.8. 如图,在中,,平分于点,,则的长为 ( )A.B.C.D. 9.以下四种沿折叠的方法中,不一定能判定纸带两条边线,互相平行的是 A.图,展开后测得B.图,展开后测得且C.图,测得△ABC ∠B =∠C,BD =CF,BE =CD,∠EDF =α,2α+∠A =180∘α+∠A =90∘2α+∠A =90∘α+∠A =180∘2D AB EA ⊥AB CB ⊥AB AE =AB =2BC ∠E =30∘∠EAF =∠ADEDE =AC∠C +∠E =90∘△ABC ∠C =90∘AD ∠BAC ,DE ⊥AB E DE =3,BD =2CD BC 78910AB a b ()1∠1=∠22∠1=∠2∠3=∠43∠1=∠2D.图,展开后再沿折叠,两条折痕的交点为,测得,10. 如图所示,在中,分别是,的角平分线,且交于点,于,下列结论:①;②;③;④.其中正确的结论是( )A.①②③B.①②④C.②③④D.①②③④二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11. 如图,点在线段上,若在的同侧作等边 和等边 ,连接、,若 ,则的度数为________.12. 一个三角形的两边长为和,则第三边的取值范围是________.13. 如图,在中,,平分.若,则________.14. 如图,在中,点,,分别是,,的中点,若的面积等于,则的面积为________.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15. 已知:如图,点,,,在同一条直线上, ,,求证: .4CD O OA =OB OC =OD△ABC AD ,CF ∠BAC ,∠ACB AD ,CF I IE ⊥BC E ∠BIE =∠CID =IE(AB+BC +AC)S △ABC 12BE =(AB+BC −AC)12AC =AF +DC C AB AB △ACM △BCN AN BM ∠MBA =28∘∠ANC 57a △ABC AD ⊥BC AE ∠BAC ∠1=,∠2=30∘20∘∠B =△ABC D E F BC AD EC △ABC 36△BEF A E F C DF =BE ∠B =∠D AD//BC.AE =CF16.【操作】填写下表:正边形内角和每一个内角的度数【猜想】根据上表数据猜想,正边形的每一个内角的度数都是________;(用含的代数式表示)【应用】是否存在一个正边形,它的每一个内角都是?若存在,求出的值;若不存在,请说明理由. 17. 在平面直角坐标系中,描出以下各点:.在平面直角坐标系中画出.计算的面积. 18.如图,是的直径,是的切线,切点为,交于点,点是的中点.试判断直线与的位置关系,并说明理由;若的直径为,,,求图中阴影部分的面积. 19. 如图,在中,是边上的高,平分,,.你会求的度数吗?你能发现与,之间的关系吗?20. 如图,正方形的边长为,边上有一动点,连结,线段绕点顺时针旋转后,得到线段,且交于,连结,过点作的延长线于点.求证:;(1)n n =4360∘90∘n =5n =6(2)n n (3)n 130∘n A(−2,−1),B(−4,2),C(3,5)(1)△ABC (2)△ABC AB ⊙O AC ⊙O A BC ⊙O D E AC (1)DE ⊙O (2)⊙O 4∠B =50∘AC =5△ABC AD BC AE ∠BAC ∠B =80∘∠C =46∘(1)∠DAE (2)∠DAE ∠B ∠C ABCD 1AB P PD PD P 90∘PE PE BC F DF E EQ ⊥AB Q (1)PQ =AD求证:;问:点在何处时,,并说明理由.在条件下,求的值.21.如图,,,,,垂足为.求证:;求的度数.22. 如图,在中,是边上的中线,是边上一点,过点作交的延长线于点.求证:;当,,时,求的长.23. 如图,直线,点是,之间(不在直线,上)的一个动点.若与都是锐角,如图甲,写出与,之间的数量关系并说明原因;若把一块三角尺(,)按如图乙方式放置,点,,是三角尺的边与平行线的交点,若,求的度数;将图乙中的三角尺进行适当转动,如图丙,直角顶点始终在两条平行线之间,点在线段上,连接,且有,求与之间的数量关系.(1)PQ =AD (2)P △PFD ∼△BFP (3)(2)cos ∠DFP ∠BAD =∠CAE =90∘AB =AD AE =AC AF ⊥CB F (1)△ABC ≅△ADE (2)∠FAE △ABC AD BC E AB C CF //AB ED F (1)△BDE ≅△CDF (2)AD ⊥BC AE =1CF =2AC PQ//MN C PQ MN PQ MN (1)∠1∠2∠C ∠1∠2(2)∠A =30∘∠C =90∘D E F ∠AEN =∠A ∠BDF (3)C G CD EG ∠CEG =∠CEM ∠GEN ∠BDF参考答案与试题解析2022-2023学年度第一学期八年级第一次月考 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】A【考点】三角形三边关系【解析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:,因为,所以本组数不能构成三角形.故本选项符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意.故选.2.【答案】C【考点】三角形的高【解析】【解答】解:因为直角三角形的三条高线的交点是直角顶点,而其他三角形三条高线的交点都不在顶点上,所以如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是直角三角形.故选.3.【答案】B【考点】全等三角形的性质与判定【解析】根据全等三角形的判定定理,可以推出当①②③为条件,④为结论时 ,根据判断出,根据全等三角形的性质得出;当①②④为条件,③为结论时:由判断出,根据全等三角形的性质得出, 从而得出.【解答】A 1+2=3B 2+3>4C 4+3>5D 4+5>6A C SAS △A'CB'≅△ACB AB =A'B'SSS △A'CB'≅△ACB ∠A'CB'=∠ACB ∠A'CA =∠B'CB解:当①②③为条件,④为结论时:∵,∴,即,∵,,∴,∴;当①②④为条件,③为结论时:∵,,,∴,∴,∴,即.若②③④为条件,通过两边及其一边的对角无法判定三角形相似,从而无法得出结论.故选.4.【答案】B【考点】多边形内角与外角【解析】外角和是,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.【解答】解:∵正多边形的每一个外角都是,∴正多边形的边数为:,∴该正多边形的内角和为:.故选.5.【答案】B【考点】三角形内角和定理【解析】此题暂无解析【解答】解:因为三角形内角和为,所以.故选.6.【答案】A【考点】全等三角形的判定∠CA =∠CB A ′B ′∠CA+∠AC =∠CB+∠AC A ′B ′B ′B ′∠C =∠ACB A ′B ′BC =C B ′AC =C A ′△C ≅△ACB(SAS)A ′B ′AB =A ′B ′BC =C B ′AC =C A ′AB =A ′B ′△C ≅△ACB(SSS)A ′B ′∠C =∠ACB A ′B ′∠C −∠AC =∠ACB−∠AC A ′B ′B ′B ′∠CA =∠CB A ′B ′B 360∘72∘=536072(5−2)×=180∘540∘B 180∘∠A =−∠B−∠C180∘=−−180∘35∘90∘=55∘B【解答】解:在和中,,∴,∴,∵,∴,∵,∴.故选.7.【答案】A【考点】全等三角形的性质与判定【解析】本题条件较为充分,,,,为中点可得两直角三角形全等,然后利用三角形的性质问题可解决.做题时,要结合已知条件与全等的判定方法对选项逐一验证.【解答】解:,,,∵为中点,∴,又,,∴,,,,故正确;∵,∴,∴,即,∴,,∴,,,,故,正确.故选.8.【答案】C【考点】角平分线的性质全等三角形的判定【解析】△BDE △CFD BE =CD∠B =∠C BD =CF△BDE ≅△CFD(SAS)∠BED =∠CDF ∠EDC =∠B+∠BED =∠EDF +∠FDC∠B =∠EDF =α∠B =∠C =α2a +∠A =180∘A EA ⊥AB BC ⊥AB EA =AB =2BC D AB ∵EA ⊥AB BC ⊥AB ∴∠EAB =∠ABC =90∘D AB AB =2AD EA =AB =2BC ∴AD =BC Rt △EAD ≅Rt △ABC ∴DE =AC ∠C =∠ADE ∠E =∠FAD C ∠EAF +∠DAF =90∘∠EAF +∠E =90∘∠EFA =−=180∘90∘90∘DE ⊥AC ∠EAF +∠DAF =90∘∠C +∠DAF =90∘∠C =∠EAF ∠C =∠ADE ∴∠EAF =∠ADE ∠C +∠E =90∘B D A解:∵在和中,,∴,∴.∵,∴.故选.9.【答案】C【考点】全等三角形的性质与判定平行线的判定【解析】根据平行线的判定定理,进行分析,即可解答.【解答】解:、,根据内错角相等,两直线平行进行判定,故正确;、∵且,由图可知,,∴,∴(内错角相等,两直线平行),故正确;、测得,∵与即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;、在和中,,∴,∴,∴(内错角相等,两直线平行),故正确.故选.10.【答案】A【考点】全等三角形的性质与判定三角形内角和定理角平分线的性质【解析】①由为三条角平分线的交点,于,得到,由于,即,由已知条件得到,于是得到;即①成立;②由△ADE △ADC ∠DAE =∠DACDA =DA ∠AED =∠ACD△ADE ≅△ADC CD =DE BD =2CD BC =BD+CD =3DE =9C A ∠1=∠2B ∠1=∠2∠3=∠4∠1+∠2=180∘∠3+∠4=180∘∠1=∠2=∠3=∠4=90∘a//b C ∠1=∠2∠1∠2D △AOC △BOD OA =OB∠AOC =∠BOD OC =OD△AOC ≅△BOD ∠CAO =∠DBO a//b C I △ABC IE ⊥BC E ∠ABI =∠IBD ∠CID+∠ABI =90∘∠CIE+∠DIE+∠IBD =90∘∠IBD+∠BID+∠DIE =90∘∠BIE =∠CID是三内角平分线的交点,得到点到三边的距离相等,根据三角形的面积即可得到即②成立;③如图过作于,于,有是三内角平分线的交点,得到,通过,得到,同理,,于是得到即③成立;④由③证得,,于是得到与不一定全等,即④错误.【解答】解:①,故正确,②∵是三内角平分线的交点,∴点到三边的距离相等,∴,即②正确;③如图过作于,于,∵是三内角平分线的交点,∴,在与中,,∴,∴,同理,,∴,∴,即③正确;④只有在 的条件下, ,即④错误.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11.【答案】【考点】全等三角形的性质【解析】此题暂无解析【解答】此题暂无解答12.【答案】【考点】I △ABC I △ABC I IH ⊥AB H IG ⊥AC G I △ABC IE =IH =IG △AHT ≅△AGI R t R t AH =AG BE =BF CE =CG IH =IE ∠FHI =∠IED =90∘△IHF △DEI ∠ABC +∠ACB+∠BAC =,180∘∠IBE =∠ABC ,12∠IAC =∠BAC 12∠ICA =∠ACB ,12∠IBE +∠IAC +∠ICA =,90∘∠CID =∠IAC +∠ICA =−∠IBE =∠BIE.90∘①I △ABC I △ABC =++S △ABC S △ABI S △BCI S △ACI =⋅AB ⋅IE+BC ⋅IE+AC ⋅IE 121212=IE(AB+BC +AC)12I IH ⊥AB H IG ⊥AC G I △ABC IE =IH =IG Rt △AHI Rt △AGI {AI =AI ,IH =IG ,Rt △AHI ≅Rt △AGI AH =AG BE =BH CE =CG BE+BH =AB+BC −AH−CE =AB+BC −ACBE =(AB+BC −AC)12∠ABC =60∘AC =AF +DCA 28∘2<a <12三角形三边关系【解析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边即可求解.【解答】解:三角形的两边长分别为,,则第三边的取值范围是,即.故答案为:.13.【答案】【考点】三角形的外角性质三角形内角和定理【解析】此题暂无解析【解答】解:∵平分,∴,∴,在 中,,故答案为:.14.【答案】【考点】三角形的面积【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15.【答案】证明:∵,∴,且,,∴(),∴,∴,57a 7−5<a <7+52<a <122<a <1250∘AE ∠BAC ∠1=∠EAD+∠2∠EAD =∠1−∠2=−30∘20∘=1Rt △ABD ∠B =−∠BAD 90∘=−−=90∘30∘10∘50∘50∘9AD//BC ∠A =∠C ∠B =∠D DF =BE △ADF ≅△CBE AAS AF =CE AF −EF =CE−EF∴.【考点】全等三角形的性质与判定平行线的性质【解析】【解答】证明:∵,∴,且,,∴(),∴,∴,∴.16.【答案】解:填表如下:正边形内角和每一个内角的度数根据可得,,解得.因为为整数,所以不存在一个正边形,它的每一个内角都是.【考点】多边形的内角和多边形内角与外角【解析】根据得,正边形的每一个内角度数为.故答案为:.【解答】解:填表如下:正边形内角和每一个内角的度数根据得,正边形的每一个内角度数为.AE =CF AD//BC ∠A =∠C ∠B =∠D DF =BE △ADF ≅△CBE AAS AF =CE AF −EF =CE−EF AE =CF (1)n n =4360∘90∘n =5540∘108∘n =6720∘120∘(n−2)×180∘n (3)(2)=(n−2)×180∘n 130∘n =7.2n n 130∘(2)(1)n (n−2)×180∘n (n−2)×180∘n(1)n n =4360∘90∘n =5540∘108∘n =6720∘120∘(2)(1)n (n−2)×180∘n(n−2)×180∘故答案为:.根据可得,,解得.因为为整数,所以不存在一个正边形,它的每一个内角都是.17.【答案】解:如图所示:的面积.【考点】网格中点的坐标三角形的面积【解析】无无【解答】解:如图所示:的面积.18.【答案】解:直线与相切.理由如下:(n−2)×180∘n (3)(2)=(n−2)×180∘n 130∘n =7.2n n 130∘(1)△ABC (2)△ABC =7×6−×2×312−×3×712−×5×612=42−3−10.5−15=13.5(1)△ABC (2)△ABC =7×6−×2×312−×3×712−×5×612=42−3−10.5−15=13.5(1)DE ⊙O连接,,如图,∵是的切线,∴,∴.∵点是的中点,点为的中点,∴,∴,.∵,∴,∴.在和中,∴,∴,∴,∵为的半径,∴直线与相切.∵,是的切线,∴,∵点是的中点,∴ ,,∴图中阴影部分的面积为.【考点】全等三角形的性质与判定切线的判定三角形中位线定理扇形面积的计算求阴影部分的面积三角形的面积【解析】连接、,根据切线的性质得到根据三角形中位线定理得到,证明根据全等三角形的性质、切线的判定定理证明;【解答】解:直线与相切.理由如下:连接,,如图,OE OD AC ⊙O AB ⊥AC ∠OAC =90∘E AC O AB OE//BC ∠1=∠B ∠2=∠3OB =OD ∠B =∠3∠1=∠2△AOE △DOE OA =OD ,∠1=∠2,OE =OE ,△AOE ≅△DOE(SAS)∠ODE =∠OAE =90∘DE ⊥OD OD ⊙O DE ⊙O (2)DE AE ⊙O DE =AE E AC AE =AC =1252∠AOD =2∠B =2×=50∘100∘S =+−S △AOE S △DOE S 扇形AOD =2−S △AOE S 扇形AOD=2××2×−1252100×π×22360=5−π109(1)OE OD ∠OAC =90∘OE//BC△AOE ≅△DOE (1)DE ⊙O OE OD∵是的切线,∴,∴.∵点是的中点,点为的中点,∴,∴,.∵,∴,∴.在和中,∴,∴,∴,∵为的半径,∴直线与相切.∵,是的切线,∴,∵点是的中点,∴ ,,∴图中阴影部分的面积为.19.【答案】解:在中,,,∴.∵平分,∴.∵是边上的高,∴,∴;∵是的高,∴,∵,∴,∵,,∴,∵是的角平分线,∴,∵,∴当时,;∴.AC ⊙O AB ⊥AC ∠OAC =90∘E AC O AB OE//BC ∠1=∠B ∠2=∠3OB =OD ∠B =∠3∠1=∠2△AOE △DOE OA =OD ,∠1=∠2,OE =OE ,△AOE ≅△DOE(SAS)∠ODE =∠OAE =90∘DE ⊥OD OD ⊙O DE ⊙O (2)DE AE ⊙O DE =AE E AC AE =AC =1252∠AOD =2∠B =2×=50∘100∘S =+−S △AOE S △DOE S 扇形AOD =2−S △AOE S 扇形AOD=2××2×−1252100×π×22360=5−π109(1)△ABC ∠B =80∘∠C =46∘∠BAC =−−=180∘80∘46∘54∘AE ∠BAC ∠BAE =∠BAC =1227∘AD BC ∠BAD =−∠B =−=90∘90∘80∘10∘∠DAE =∠BAE−∠BAD =−=27∘10∘17∘(2)AD △ABC ∠ADC =90∘∠C =β∠DAC =−β90∘∠B =α∠C =β∠BAC =−∠B−∠C =−α−β180∘180∘AE △ABC∠EAC =∠BAC =(−α−β)=−α−β1212180∘90∘1212∠B >∠C α>β∠DAE =∠DAC −∠EAC=−β−(−α−β)90∘90∘1212=(α−β)12∠DAE =(∠B−∠C)12【考点】三角形的外角性质三角形内角和定理【解析】(1)先根据三角形内角和定理求出的度数,再根据平分求出的度数,根据求出的度数,由即可得出结论;(2)设,,,同(1)即可得出结论;【解答】解:在中,,,∴.∵平分,∴.∵是边上的高,∴,∴;∵是的高,∴,∵,∴,∵,,∴,∵是的角平分线,∴,∵,∴当时,;∴.20.【答案】证明:根据题意得:,,∴,∵四边形是正方形,∴,∴,∴,∵,∴,在和中,,∴,∴;解:∵,∴,∵,,∴,∴,∴,∴,∠BAC AE ∠BAC ∠BAE AD ⊥BC ∠BAD ∠DAE =∠BAE−∠BAD ∠C =α∘∠B =β∘α>β(1)△ABC ∠B =80∘∠C =46∘∠BAC =−−=180∘80∘46∘54∘AE ∠BAC ∠BAE =∠BAC =1227∘AD BC ∠BAD =−∠B =−=90∘90∘80∘10∘∠DAE =∠BAE−∠BAD =−=27∘10∘17∘(2)AD △ABC ∠ADC =90∘∠C =β∠DAC =−β90∘∠B =α∠C =β∠BAC =−∠B−∠C =−α−β180∘180∘AE △ABC∠EAC =∠BAC =(−α−β)=−α−β1212180∘90∘1212∠B >∠C α>β∠DAE =∠DAC −∠EAC=−β−(−α−β)90∘90∘1212=(α−β)12∠DAE =(∠B−∠C)12(1)PD =PE ∠DPE =90∘∠APD+∠QPE =90∘ABCD ∠A =90∘∠ADP +∠APD =90∘∠ADP =∠QPE EQ ⊥AB ∠A =∠Q =90∘△ADP △QPE ∠A =∠Q∠ADP =∠QPE PD =PE△ADP ≅△QPE(AAS)PQ =AD (2)△PFD ∼△BFP =PB BF PD PF ∠ADP =∠EPB ∠CBP =∠A △DAP ∼△PBF=PD PF AP BF=AP BF PB BF PA =PB A =AB =11∴∴当,即点是的中点时,.解:∵为的中点,,,,,,,在中,,在中在中.【考点】相似三角形的性质与判定锐角三角函数的定义正方形的性质全等三角形的性质【解析】(1)由题意得:,,又由正方形的边长为,易证得,然后由全等三角形的性质,求得线段的长;(2)易证得,又由,根据相似三角形的对应边成比例,可得证得,则可求得答案.【解答】证明:根据题意得:,,∴,∵四边形是正方形,∴,∴,∴,∵,∴,在和中,PA =AB =1212PA =12P AB △PFD ∼△BFP (3)P AB ∴PA =PB =AB =1212∵△DAP ∼△PBF ∴=BF PB AP AD ∴=BF 12121∴BF =14∴CF =CB−BF =1−=1434Rt △PBF PF =P +B B 2F 2−−−−−−−−−−√===+()122()142−−−−−−−−−−−−√516−−−√5–√4Rt △DCF DF =+CD 2CF 2−−−−−−−−−−√==+12()342−−−−−−−−−√54Rt △DPF cos ∠DFP =PF DF ==5–√4545–√5PD =PE ∠DPE =90∘ABCD 1△ADP ≅△QPE PQ △DAP ∽△PBF △PFD ∽△BFP PA =PB (1)PD =PE ∠DPE =90∘∠APD+∠QPE =90∘ABCD ∠A =90∘∠ADP +∠APD =90∘∠ADP =∠QPE EQ ⊥AB ∠A =∠Q =90∘△ADP △QPE,∴,∴;解:∵,∴,∵,,∴,∴,∴,∴,∴∴当,即点是的中点时,.解:∵为的中点,,,,,,,在中,,在中在中.21.【答案】证明:∵,∴,,∴,在和中,∴.解:∵,,∴.由知,∴. ∠A =∠Q∠ADP =∠QPE PD =PE△ADP ≅△QPE(AAS)PQ =AD (2)△PFD ∼△BFP =PB BF PD PF ∠ADP =∠EPB ∠CBP =∠A △DAP ∼△PBF =PD PF AP BF=AP BF PB BFPA =PB PA =AB =1212PA =12P AB △PFD ∼△BFP(3)P AB∴PA =PB =AB =1212∵△DAP ∼△PBF ∴=BF PB AP AD ∴=BF 12121∴BF =14∴CF =CB−BF =1−=1434Rt △PBF PF =P +B B 2F 2−−−−−−−−−−√===+()122()142−−−−−−−−−−−−√516−−−√5–√4Rt △DCF DF =+CD 2CF 2−−−−−−−−−−√==+12()342−−−−−−−−−√54Rt △DPF cos ∠DFP =PF DF==5–√4545–√5(1)∠BAD =∠CAE =90∘∠BAC +∠CAD =90∘∠CAD+∠DAE =90∘∠BAC =∠DAE △ABC △ADE AB =AD,∠BAC =∠DAE,AC =AE,△ABC ≅△ADE(SAS)(2)∠CAE =90∘AC =AE ∠E =45∘(1)△ABC ≅△ADE ∠BCA =∠E =45∘∵,∴,∴,∴.【考点】全等三角形的判定全等三角形的性质三角形内角和定理【解析】此题暂无解析【解答】证明:∵,∴,,∴,在和中,∴.解:∵,,∴.由知,∴.∵,∴,∴,∴.22.【答案】证明:∵,∴,.∵是边上的中线,∴,∴.解:∵,∴,∴.∵,,∴.【考点】全等三角形的判定全等三角形的性质平行线的性质【解析】(1)根据平行线的性质得到=,=,由是边上的中线,得到=,于是得到结论;(2)根据全等三角形的性质得到==,求得===,于是得到结论.【解答】证明:∵,AF ⊥BC ∠CFA =90∘∠CAF =45∘∠FAE =∠FAC +∠CAE =+=45∘90∘135∘(1)∠BAD =∠CAE =90∘∠BAC +∠CAD =90∘∠CAD+∠DAE =90∘∠BAC =∠DAE △ABC △ADE AB =AD,∠BAC =∠DAE,AC =AE,△ABC ≅△ADE(SAS)(2)∠CAE =90∘AC =AE ∠E =45∘(1)△ABC ≅△ADE ∠BCA =∠E =45∘AF ⊥BC ∠CFA =90∘∠CAF =45∘∠FAE =∠FAC +∠CAE =+=45∘90∘135∘(1)CF //AB ∠B =∠FCD ∠BED =∠F AD BC BD =CD △BDE ≅△CDF(AAS)(2)△BDE ≅△CDF BE =CF =2AB =AE+BE =1+2=3AD ⊥BC BD =CD AC =AB =3∠B ∠FCD ∠BED ∠F AD BC BD CD BE CF 2AB AE+BE 1+23(1)CF //AB∴,.∵是边上的中线,∴,∴.解:∵,∴,∴.∵,,∴.23.【答案】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.【考点】平行线的判定与性质平行线的性质角的计算【解析】无无无【解答】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∠B =∠FCD ∠BED =∠F AD BC BD =CD △BDE ≅△CDF(AAS)(2)△BDE ≅△CDF BE =CF =2AB =AE+BE =1+2=3AD ⊥BC BD =CD AC =AB =3(1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∴,∴.设,则,由可得,,∴,∴,∴.即.∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF。

人教版八年级数学上册第一次月考试题(偏难)

人教版八年级数学上册第一次月考试题(偏难)

人教版八年级数学上册第一次月考试题(偏难)(考试内容:三角形全等三角形)第I 卷(选择题)一、单选题1.要求画△ABC 的边AB 上的高.下列画法中,正确的是()A. B. C.D2.在△ABC 和△DEF 中,下列条件不能判断这两个三角形全等的是()A .A D ∠=∠,BC EF =,AB DE=B .A D ∠=∠,AB DE =,AC DF =C .AB DE =,AC DF =,BC EF =D .90C F ∠=∠=︒,AB DE =,AC DF=3.若一个多边形截去一个角后,变成四边形,则原来的多边形的边数可能为()A .4或5B .3或4C .3或4或5D .4或5或64.已知直线a ∥b ,把Rt △ABC 如图所示放置,点B 在直线b 上,∠ABC =90°,∠A =30°,若∠1=28°,则∠2等于()A .28°B .32°C .58°D .60°4题5题8题5.如图所示,点H 是△ABC 内一点,要使点H 到AB 、AC 的距离相等,且ABHBCH S S =△△,点H 是()A .BAC ∠的角平分线与AC 边上中线的交点B .BAC ∠的角平分线与AB 边上中线的交点C .ABC ∠的角平分线与AC 边上中线的交点D .ABC ∠的角平分线与BC 边上中线的交点6.多边形的每一个内角都等于它相邻外角的5倍,则该多边形的边数是()A .13B .12C .11D .107.具备下列条件的ABC V 中,不是直角三角形的是()A .A B C∠∠=∠+B .A B C ∠-∠=∠C .123A B C ∠∠∠=::::D .2A B C∠=∠=∠8.如图,将三角形纸片ABC 沿DE 折叠使点A 落在点A '处.且BA '平分ABC ∠,CA '平分ACB ∠.若107BA C ∠='︒,则12∠+∠=()A .44︒B .82︒C .88︒D .68︒9.如图,点D 是△ABC 的边BC 上的中线,6AB =,4=AD ,则AC 的取值范围为()A .214AC <<B .212AC <<C .14AC <<D .18AC <<10.如图,Rt ABC △中,90ACB ∠=︒,20A ∠=︒,A ABC B C '''≌△△,若A B ''恰好经过点B ,A C ''交AB 于D ,则BDC ∠的度数为()A .50︒B .60︒C .62︒D .64︒9题10题11题12题11.如图,四边形ABCD 中,AB CD ∥,C DAB ∠=∠,点E 在线段BC 上,DF 平分EDC ∠,交BC 于点M ,交AE 延长线于点F ,若90C ∠=︒,180AED AEC ∠+∠=︒,设AED x ∠=,FDC y ∠=,则x 与y 的数量关系是()A .90x y +=︒B .290x y +=︒C .4x y =D .45x y -=︒12.如图,在△ABC 中,BAC ∠和ABC ∠的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O 作OD BC ⊥于D ,下列三个结论:①90AOB C ∠=︒+∠;②若4AB =,1OD =,则2ABO S =△;③当60C ∠=︒时,AF BE AB +=;④若OD a =,2AB BC CA b ++=,则ABC S ab = .其中正确的个数是()A .1B .2C .3D .4二、填空题13.过n 边形的一个顶点可以画出10条对角线,将它分成m 个小三角形,则m n +的值是.14.如图,在△ABC 中,2BF FD =,EF FC =,若BEF △的面积为4,则四边形AEFD 的面积为.15.如图,CA AB ⊥,垂足为点A ,射线BM AB ⊥,垂足为点B ,15cm AB =,6cm AC =.动点E 从A 点出发以3cm/s 的速度沿射线AN 运动,动点D 在射线BM 上,随着E 点运动而运动,始终保持ED CB =.若点E 的运动时间为t 秒()0t >,则当t =秒时,△DEB 与△BAC 全等.14题15题16题16.把△ABC 和△ADE 如图放置,B ,D ,E 正好在一条直线上,AB =AC ,AD =AE ,∠BAC =∠DAE .则下列结论:①△BAD ≌△CAE ;②BE =CE +DE ;③∠BEC =∠BAC ;④若∠ACE +∠CAE +∠ADE =90°,则∠AEC =135°.其中正确的是.三、解答题17.(1)若两个多边形的边数之比为1∶2,两个多边形所有内角的和为1980°,求这两个多边形的边数.(2)在△ABC 中,9,2AB AC ==,若△ABC 的周长为偶数,求BC 的值及△ABC 的周长18.如图所示,在△ABC 中,AD 是高,AE BF 、是角平分线,它们相交于点O ,5070BAC C ∠=︒∠=︒,,求DAC BOA ∠∠、的度数.19.如图,在四边形OACB 中,CM OA ⊥于M ,12∠=∠,CA CB =.求证:(1)34180∠+∠=︒;(2)2OA OB OM +=.20.定义:如果一个三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC 是“准互余三角形”,90C ∠>︒,56A ∠=︒,则B ∠=_____°;(2)若△ABC 是直角三角形,90ACB ∠=︒.①如图,若AD 是BAC ∠的角平分线,请你判断ABD △是否为“准互余三角形”?并说明理由.②点E 是边BC 上一点,ABE 是“准互余三角形”,若28B ∠=︒,求AEB ∠的度数.21.如图1,在△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于点A 1,(1)分别计算:当∠A 分别为700、800时,求∠A 1的度数.(2)根据(1)中的计算结果,写出∠A 与∠A 1之间的数量关系___________________.(3)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于点A 2,∠A 2BC 的角平分线与∠A 2CD 的角平分线交于点A 3,如此继续下去可得A 4,…,∠A n ,请写出∠A 5与∠A 的数量关系_________________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.22.(12分)在平面直角坐标系中,点A的坐标为(3,3),AB=BC,AB⊥BC,点B在x 轴上.(1)如图1,AC交x轴于点D,若∠DBC=10 ,则∠ADB=.(2)如图1,若点B在x轴正半轴上,点C(1,﹣1),求点B坐标;(3)如图2,若点B在x轴负半轴上,AE⊥x轴于点E,AF⊥y轴于点F,∠BFM=45°,MF交直线AE于点M,若点B(﹣1,0),BM=5,求EM的长.。

人教版八年级上册数学《第一次月考》考试题(及答案)

人教版八年级上册数学《第一次月考》考试题(及答案)

人教版八年级上册数学《第一次月考》考试题(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .10C .8或10D .6 3.式子12a a +-有意义,则实数a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >24.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .115.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A.4 B.3 C.2 D.18.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a、b为两个连续的整数,且11a b<<,则a b+=__________.2.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为_______cm.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。

八年级数学上学期第一次月考试题及答案

八年级数学上学期第一次月考试题及答案

八年级数学月考试卷 班级 姓名 分数一、选择题 (每题3分)1. 如图1,在①AB=AC ②AD=AE ③∠B=∠C ④BD=CE 四个条件中,能证明△ABD 与△ACE 全等的条件顺序是( )A. ① ② ③B. ② ③ ④C. ① ② ④D. ③ ② ④DCB AE(3图)2. 下列条件中,能让△ABC ≌△DFE 的条件是( )A. AB=DE ,∠A=∠D ,BC=EF; B. AB=BC ,∠B=∠E ,BE=EF; C. AB=EF ,∠A=∠D , AC=DF; D. BC=EF ,∠C=∠F , AC=DF.3. 如图,CD ⊥AB,BE ⊥AC,垂足为D 、E ,BE 、CD 相交于O 点,∠1=∠2,图中全等的三角形共有( )A.1对B.2对C. 3对D.4对4. 两个直角三角形全等的条件是( )A.一个锐角对应相等 ;B.一条对边对应相等;C .两直角边对应相等;D.两个角对应相等5. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处D.4处(7图)(5图)6. 在△ABC 和△A ′B ′C ′中,AB=A ′B ′,∠B=∠B ′,补充条件后仍不一定能保证△ABC ≌△A ′B ′C ′,则补充的这个条件是:( )A 、BC=B ′C ′ B 、∠A=∠A ′ C 、AC=A ′C ′D 、∠C=∠C ′DC B A21OEA7. 如图,OA=OC ,OB=OD ,则图中全等三角形共有( )A 、2对B 、3对C 、4对D 、5对8. 两个三角形有两个角对应相等,正确的说法是( )A 、两个三角形全等B 、如果一对等角的角平分线相等,两三角形就全等C 、两个三角形一定不全等D 、如果还有一个角相等,两三角形就全等9. 已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y 轴对称,那么点A 的对应点A'的坐标为( ).A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)10. 在△ABC 中,∠B 的平分线与∠C 的平分线相交于O ,且∠BOC=130°,则∠A=[ ]A 50°B 60°C 80°D 100°二、填空题 (每题3分)11. 如图,已知AB =AD ,需要条件_________可得△ABC ≌△ADC ,根据是________.12. 已知线段AB ,直线CD ⊥AB 于O ,AO =OB ,若点M 在直线CD 上,则MA =______,若NA =NB ,则N 在___________上.13. 如图,已知∠CAB=∠DBA 要使△ABC ≌△BAD,只要增加的一个条件是________ (只写一个)。

八年级数学第一次月考阶段性测试(考试范围:苏科版第1-2章,培优卷) (解析版)

八年级数学第一次月考阶段性测试(考试范围:苏科版第1-2章,培优卷) (解析版)

八年级数学第一次月考阶段性测试(江苏专用,10月份培优卷)班级:____________姓名:____________得分:____________注意事项:本试卷满分120分,试题共26题,其中选择6道、填空10道、解答10道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(24-25八年级上·江苏宿迁·阶段练习)下列图形中,不是轴对称图形是()A. B. C. D.【答案】C【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选:C.2.(24-25八年级上·江苏无锡·阶段练习)下列说法中,正确说法的个数有()①三个角对应相等的两个三角形全等;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④一个锐角和一条边相等的两个直角三角形全等.A.1个B.2个C.3个D.4个【答案】B【分析】本题主要考查了全等三角形的判定,等腰三角形的性质以及轴对称图形的性质,根据全等三角形的判定,等腰三角形的性质以及轴对称的图形的性质一一判断即可.【详解】解:三个角对应相等的两个三角形不能判定两个三角形全等,故①错误,等腰三角形至少有1条对称轴(等腰三角形有1条对称轴),至多有3条对称轴(等边三角形有3条对称轴),故②正确;关于某直线对称的两个三角形一定是全等三角形,故③正确;一个锐角和一条边相等的两个直角三角形不一定全等,故④错误.综上,正确说法的有②,③故选:B.3.(23-24八年级上·江苏无锡·期中)如图,点B、C、D共线,AC=BE,AC⊥BE,∠ABC=∠D=90°,AB=13,DE=6,则CD的长是()A.7B.8C.9D.10【答案】A【分析】本题主要考查了全等三角形的性质和判定,利用AAS证明△ABC≌△BDE是解题的关键.先证明△ABC≌△BDE可得BC=DE=6,AB=BD=13,然后根据线段的和差即可解答.【详解】解:∵AC⊥BE,∠ABC=∠D=90°,∴∠A+∠ABE=∠ABE+∠EBD=90°,∴∠A=∠EBD,在△ABC与△BDE中,∠ABC=∠BDE=90°,∠A=∠EBD,AC=BE,∴△ABC≌△BDE AAS,∴BC=DE=6,AB=BD=13,∴CD=BD-BC=13-6=7.故选:A.4.(23-24八年级上·山东临沂·期中)如图,已知等边三角形ABC,点D为线段BC上一点,△ADC沿AD折叠得△ADE,连接BE,若∠ADB=70°,则∠DBE的度数是()A.10°B.20°C.30°D.40°【答案】A【分析】本题考查了折叠的性质,等腰及等边三角形的性质、三角形内角和定理,等边三角形的三个内角都相等,且都等于60°.由折叠性质可得△ADC≌△ADE得到AC=AE,∠CAD=∠EAD,再求出∠BAE,利用等腰三角形的性质和三角形内角和即可求出∠DBE的度数,熟记三角形相关几何性质是解决问题的关键.【详解】解:∵等边△ABC,∴∠C=∠ABC=∠BAC=60°,AC=AB,∵∠ADB=70°,∠ADB=∠C+∠CAD,∴∠CAD=10°,由折叠性质可得△ADC≌△ADE,∴AC=AE,∠CAD=∠EAD=10°,∴∠BAE=∠BAC-∠CAD-∠EAD=40°,∵AB=AE,∴∠AEB =∠ABE =180°-∠BAE 2=180°-40°2=70°,∴∠DBE =∠ABE -∠ABC =70°-60°=10°,故答案为:A .5.(2024八年级上·江苏·专题练习)在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在直线的夹角为50°,则这个等腰三角形的顶角为()A.40°B.50°C.40°或140°D.50°或130°【答案】C【分析】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.根据题意分两种情况,当△ABC 是锐角三角形时,当△ABC 是钝角三角形时,讨论求解即可;【详解】解:分两种情况:当△ABC 是锐角三角形时,如图:∵DE 是AB 的垂直平分线,∴∠ADE =90°,∵∠AED =50°,∴∠A =90°-∠AED =40°;当△ABC 是钝角三角形时,如图:∵DE 是AB 的垂直平分线,∴∠ADE =90°,∵∠AED =50°,∴∠DAE =90°-∠AED =40°,∴∠DAC =180°-∠DAE =140°;综上所述:这个等腰三角形的顶角为40°或140°,故选:C .6.(22-23八年级上·湖南株洲·期末)如图,AB =6cm ,AC =BD =4cm ,∠CAB =∠DBA =60°,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动,它们运动的时间为t s ,当点Q 的运动速度为( )cm/s 时,在某一时刻,A 、C 、P 三点构成的三角形与B 、P 、Q 三点构成的三角形全等.A.1或43B.1或45C.2或43D.1【答案】A【分析】本题考查了全等三角形的判定的应用,一元一次方程的应用,设点Q 的运动速度是xcm /s ,有两种情况:①AP =BP ,AC =BQ ,②AP =BQ ,AC =BP ,列出方程,求出方程的解即可,采用分类讨论的思想是解此题的关键.【详解】解:设点Q 的运动速度是xcm /s ,∵∠CAB =∠DBA =60°,∴A、C、P三点构成的三角形与B、P、Q三点构成的三角形全等,有两种情况:①AP=BP,AC=BQ,则1×t=6-1×t,解得:t=3,则4=3x,解得:x=4 3;②AP=BQ,AC=BP,则1×t=tx,6-1×t=4,解得:t=2,x=1,故选:A.二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上7.(22-23八年级上·江苏南京·阶段练习)如图,小明不小心把一块三角形的玻璃摔成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第③块去配,其全等的依据是.(可以用字母简写)【答案】ASA【分析】本题考查全等三角形的判定,根据第③块玻璃的特点可知:有2个角以及两角的夹边是确定,利用ASA即可判定三角形全等.【详解】解:由图可知:第③块玻璃有2个角以及两角的夹边确定,只能得到唯一确定的三角形,即利用ASA 可判定三角形全等.故答案为:ASA8.(22-23八年级上·江苏无锡·阶段练习)如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,要使得△ABC≌△FDE,还要添加一个条件,这个条件可以是(只需填写一个即可).【答案】∠C=∠E(答案不唯一)【分析】本题考查的是添加条件判定三角形全等,本题先分析已有条件AC=FE,BC=DE,再根据SAS可添加夹角相等或第三边相等即可判定三角形全等;熟记三角形全等的判定方法是解本题的关键.【详解】解:增加一个条件:∠C=∠E,在△ABC和△FDE中,AC=FE∠C=∠EBC=DE,∴△ABC≌△FDE SAS,故答案为:∠C=∠E(答案不唯一).9.(2024八年级上·全国·专题练习)如图,△AOD≌△BOC,∠A=30°,∠C=50°,∠AOC=145°,则∠COD=.【答案】45°/45度【分析】本题主要考查了全等三角形的性质,三角形内角和定理,有全等三角形的性质可得出∠D=∠C= 50°,再利用三角形内角和定理可得出∠AOD=100°,最后再根据角的和差关系即可得出答案.【详解】解:∵△AOD≌△BOC,∠C=50°,∴∠D=∠C=50°,∵∠A=30°,∴∠AOD=180°-∠A-∠D=180°-30°-50°=100°,∵∠AOC=145°,∴∠COD=∠AOC-∠AOD=145°-100°=45°,故答案为:45°.10.(22-23八年级上·广东韶关·期末)如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为cm.【答案】3【分析】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,过点D作DE ⊥AB于E,根据角平分线性质得到DE=CD,即可得到答案.【详解】解:如图,过点D作DE⊥AB于E,∵∠C=90°,BD平分∠ABC,∴DE=CD,∵CD=3cm,∴DE=3cm,即点D到AB的距离为3cm.故答案为:3.11.(22-23八年级上·江苏南通·阶段练习)如图,在等边△ABC中,BD平分∠ABC,BD=BF,则∠CDF的度数是度.【答案】15【分析】本题主要考查了等边三角形的性质,等边对等角,三角形内角和定理,先由三线合一定理得到BD ⊥AC ,∠CBD =12∠ABC =30°,再由等边对等角得到∠BDF =∠BFD =180°-∠DBF 2=75°,则∠CDF =∠CDB -∠BDF =15°.【详解】解:∵在等边△ABC 中,BD 平分∠ABC ,∴BD ⊥AC ,∠CBD =12∠ABC =30°,∴∠BDC =90°,∵BD =BF ,∴∠BDF =∠BFD =180°-∠DBF 2=75°,∴∠CDF =∠CDB -∠BDF =15°,故答案为:15.12.(19-20八年级上·河北唐山·期中)如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字的格子内.【答案】3【分析】本题考查了轴对称图形的性质,根据轴对称的定义,沿着虚线进行翻折后能够重合,所以阴影应该涂在标有数字3的格子内.【详解】解:根据轴对称的定义,沿着虚线进行翻折后能够重合,∴根据题意,阴影应该涂在标有数字3的格子内;故答案为:3.13.(24-25八年级上·江苏镇江·阶段练习)如图,AD 垂直平分BC 于点D ,EF 垂直平分AB 于点F ,点E 在AC 上,BE +CE =20cm ,则AB =.【答案】20cm/20厘米【分析】本题考查了线段垂直平分线的性质,根据线段垂直平分线的性质得出AE=BE,AB=AC,求出AC =20cm即可.【详解】∵EF垂直平分AB于点F,∴AE=BE,∵BE+CE=20cm,∴AE+CE=20cm,即AC=20cm,∵AD垂直平分BC于点D,∴AB=AC=20cm,故答案为:20cm.14.(2024八年级上·江苏·专题练习)如图,在△ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一点,将△ACD沿CD翻折后得到△CED,边CE交AB于点F.若△DEF是直角三角形,则∠ACD=.【答案】25°或5°【分析】本题主要考查了三角形内角和定理,图形的折叠,利用分类讨论思想解答是解题的关键.先求出∠A =40°,∠B=50°,再根据折叠的性质可得∠E=∠A=40°,∠ACD=∠ECD,然后分两种情况讨论:当∠DFE=90°时,当∠EDF=90°时,结合三角形内角和定理,即可求解.【详解】解:∵在△ABC中,∠ACB=90°,∴∠A+∠B=90°,又∵∠B-∠A=10°,∴∠A=40°,∠B=50°,由折叠的性质得:∠E=∠A=40°,∠ACD=∠ECD,当∠DFE=90°时,则∠CFB=90°,∴∠BCF=90°-∠B=40°,∴∠ACE=∠ACB-∠BCF=50°,∠ACE=25°;∴∠ACD=12当∠EDF=90°时,∵∠E=40°,∴∠CFB=∠DFE=50°,∴∠BCF=180°-∠CFB-∠B=80°,∴∠ACE=∠ACB-∠BCF=10°,∠ACE=5°;∴∠ACD=12综上所述,∠ACD度数为25°或5°.故答案为:25°或5°.15.(23-24八年级·江苏南通·阶段练习)如图,在∠AOB的内部有一点P,点M、N分别是点P关于OA,OB的对称点,MN分别交OA,OB于C,D点,若△PCD的周长为30cm,则线段MN的长为cm.【答案】30【分析】本题考查轴对称的性质,对称轴上的任何一点到两个对应点之间的距离相等.利用对称性得到CM =PC,DN=PD,把求MN的长转化成△PCD的周长,问题得解.【详解】解:∵点P关于OA、OB的对称点分别为C、D,∴MC=PC,ND=PD,∴MN=CM+CD+ND=PC+CD+PD=30cm.故答案为:30.16.(23-24八年级·江苏无锡·阶段练习)如图,已知点P(2m-1,6m-5)在第一象限角平分线OC上,一直角顶点P在OC上,角两边与x轴y轴分别交于A点,B点,则:(1)点P的坐标为;(2)OA+BO=.【答案】(1,1)2【分析】(1)作PE⊥y轴于E,PF⊥x轴于F,由角平分线的性质得出PE=PF,得出方程2m-1=6m-5,解方程求出m=1,即可得出P点坐标;(2)由ASA 证明ΔBEP ≅ΔAFP ,得出BE =AF ,则OA +OB =OE +OF =2.【详解】解:(1)作PE ⊥y 轴于E ,PF ⊥x 轴于F ,如图所示:根据题意得:PE =PF ,∴2m -1=6m -5,∴m =1,∴P (1,1),故答案为(1,1);(2)由(1)得:∠EPF =90°,∵∠BP A =90°,PE =PF =1,∴∠EPB =∠FP A ,在ΔBEP 和ΔAFP 中,∠PEB =∠PFA =90°PE =PF ∠EPB =∠FP A,∴ΔBEP ≅ΔAFP (ASA ),∴BE =AF ,∴OA +OB =OF +AF +OE -BE =OF +OE ,∵P (1,1),∴OE =OF =1,∴OA +OB =2.故答案为2.【点睛】本题考查了全等三角形的判定与性质、坐标与图形性质、角平分线的性质等知识点;证明三角形全等是解决问题(2)的关键.三、解答题(本大题共10小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(22-23八年级上·江苏宿迁·阶段练习)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD=CD.【答案】见解析【分析】本题考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.连接AC ,使这个四边形变成两个三角形,然后利用等腰三角形的性质,可得AD =CD .【详解】证明:连接AC ,∵△ABC 中,AB =BC ,∴∠BCA =∠BAC .又∵∠BAD =∠BCD ,∠BCD =∠BCA +∠ACD ,∠BAD =∠BAC +∠CAD ;∴∠CAD =∠ACD .∴AD =CD (等角对等边).18.(23-24八年级上·江苏常州·阶段练习)尺规作图:如图,A 是∠MON 的边ON 上的一点,利用直尺和圆规过点A 分别作OM 、ON 的垂线(不写作法,保留作图痕迹).【答案】作图见解析【分析】此题主要考查了基本尺规作图,熟练掌握过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线的方法和步骤是解决问题的关键.分别利用尺规过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线即可.【详解】解:(1)过点A 作OM 的垂线,作法如下:①在∠MON 所在的平面内取一点K ,使点K 与点A 在OM 的两侧,②以点A 为圆心,以AK 为半径画弧交OM 于B ,C ;③分别以点B ,C 为圆心,以大于12BC 的长为半径画弧,两弧交于点D ;④过点A ,D 作直线AD 即为所求,如图所示:(2)过点A 作ON 的垂线,作法如下:①以点A 为圆心,以适当的长为半径画弧交ON 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧交于点H ;③过点A ,H 作直线AH 即为所求,如图所示.19.(23-24八年级上·全国·单元测试)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1.(2)在DE 上画出点P ,使PB +PC 的值最小.【答案】(1)见解析(2)见解析【分析】本题考查作图-应用与设计作图,轴对称最短问题等知识,解题的关键是正确作出图形,灵活运用所学知识解决问题.(1)利用轴对称变换的性质分别作出A ,B ,C 都是对应点A 1,B 1,C 1即可;(2)连接BC 1交直线DE 于点P ,连接PC ,点P 即为所求.【详解】(1)解:如图,△A 1B 1C 1即为所求;(2)解:如图点P 即为所求.20.(24-25八年级上·江苏无锡·阶段练习)如图,在△ABC 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D .连接DE .(1)若△ABC 的周长为19,△DEC 的周长为7,求AB 的长;(2)若∠ABC =30°,∠C =45°,求∠EAC 的度数.【答案】(1)AB =6(2)30°【分析】本题考查的是线段的垂直平分线的性质,等边对等角,三角形的内角和定理的应用,三角形的外角的性质,掌握以上基础知识是解本题的关键.(1)先证明AB =BE ,AD =DE ,结合△ABC 的周长为19,△DEC 的周长为7,可得AB +BE =19-7=12,从而可得答案;(2)先求解∠BAC =180°-30°-45°=105°,然后利用等边对等角和三角形内角和定理得到∠BAE =∠BEA =12180°-∠ABC =75°,进而求解即可.【详解】(1)解:∵BD 是线段AE 的垂直平分线,∴AB =BE ,AD =DE ,∵△ABC 的周长为19,△DEC 的周长为7,∴AB +BE +CE +CD +AD =19,CD +EC +DE =CD +CE +AD =7,∴AB +BE =19-7=12,∴AB =BE =6;(2)解:∵∠ABC =30°,∠C =45°,∴∠BAC =180°-30°-45°=105°,∵AB =BE∴∠BAE=∠BEA=12180°-∠ABC=75°∴∠EAC=∠BAC-∠BAE=30°.21.(23-24八年级上·江苏扬州·阶段练习)如图甲,已知在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)说明△ADC≌△CEB.(2)说明AD+BE=DE.(3)已知条件不变,将直线MN绕点C旋转到图乙的位置时,若DE=3、AD=5.5,则BE=.【答案】(1)见解析(2)见解析(3)2【分析】本题考查了全等三角形的判定与性质,垂线的定义,直角三角形的性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由垂线的定义得出∠ADC=∠CEB=90°,再由同角的余角相等得出∠BCE=∠CAD,最后利用AAS证明△ADC≌△CEB即可;(2)由全等三角形的性质可得AD=CE,BE=CD,即可得证;(3)由垂线的定义得出∠ADC=∠CEB=90°,再由同角的余角相等得出∠BCE=∠CAD,最后利用AAS证明△ADC≌△CEB,得出CE=AD=5.5,BE=CD,即可得解.【详解】(1)证明:∵AD⊥MN于D,BE⊥MN于E.∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠BCE=∠CAD,∵AC=BC,∴△ADC≌△CEB AAS;(2)证明:∵△ADC≌△CEB,∴AD=CE,BE=CD,∴AD+BE=CE+CD=DE;(3)证明:∵AD⊥MN于D,BE⊥MN于E.∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠BCE=∠CAD,∵AC=BC,∴△ADC≌△CEB AAS,∴CE=AD=5.5,BE=CD,∴BE=CD=CE-DE=5.5-3=2,故答案为:2.22.(2022八年级上·全国·专题练习)如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F.(1)证明:BA=BC;(2)求证:△AFC为等腰三角形.【答案】(1)证明过程见解答(2)证明过程见解答【分析】本题主要考查全等三角形的判定与性质,等腰三角形的性质与判定.(1)利用AAS证明△ABD≌△CBE可证得答案;(2)由(1)易得∠BAC=∠BCA,进而可求得∠FAC=∠FCA,即可证明结论.【详解】(1)证明:在△ABD和△CBE中,∠BAD=∠BCE∠B=∠BBD=BE,∴△ABD≌△CBE AAS,∴BA=BC;(2)证明:∵BA=BC,∴∠BAC=∠BCA,∵∠BAD=∠BCE,∴∠FAC=∠FCA,∴FA=FC,∴△AFC为等腰三角形.23.(2024八年级上·全国·专题练习)已知在△ABC中,AB=AC,点D是边AB上一点,∠BCD=∠A.(1)如图1,试说明CD=CB的理由;(2)如图2,过点B作BE⊥AC,垂足为点E,BE与CD相交于点F.①试说明∠BCD=2∠CBE的理由;②如果△BDF是等腰三角形,求∠A的度数.【答案】(1)见解析(2)①见解析;②45°或36°【分析】本题考查等腰三角形的判定及性质,三角形的内角和定理及外角的性质,结合图形分情况讨论是解决问题的关键.(1)根据等腰三角形的性质可得∠ABC=∠ACB,再利用三角形的外角性质可得∠BDC=∠A+∠ACD,从而可得∠BDC=∠ACB,然后根据等量代换可得∠ABC=∠BDC.再根据等角对等边可得CD=CB,即可解答;(2)①根据垂直定义可得∠BEC=90°,从而可得∠CBE+∠ACB=90°,然后设∠CBE=α,则∠ACB=90°-α,利用(1)的结论可得∠ACB=∠ABC=∠BDC=90°-α,最后利用三角形内角和定理可得∠BCD=2α,即可解答;②根据三角形的外角性质可得∠BFD=3α,然后分三种情况:当BD=BF时;当DB=DF时;当FB=FD 时;分别进行计算即可解答.【详解】(1)解:∵AB=AC,∴∠ABC=∠ACB,∵∠BDC是△ADC的一个外角,∴∠BDC=∠A+∠ACD,∵∠ACB=∠BCD+∠ACD,∠BCD=∠A,∴∠BDC=∠ACB,∴∠ABC=∠BDC.∴CD=CB;(2)解:①∵BE⊥AC,∴∠BEC=90°,∴∠CBE+∠ACB=90°,设∠CBE=α,则∠ACB=90°-α,∴∠ACB=∠ABC=∠BDC=90°-α,∴∠BCD=180°-∠BDC-∠ABC=180°-90°-α=2α,-90°-α∴∠BCD=2∠CBE;②∵∠BFD是△CBF的一个外角,∴∠BFD=∠CBE+∠BCD=α+2α=3α,分三种情况:当BD=BF时,∴∠BDC =∠BFD =3α,∵∠ACB =∠ABC =∠BDC =90°-α,∴90°-α=3α,∴α=22.5°,∴∠A =∠BCD =2α=45°;当DB =DF 时,∴∠DBE =∠BFD =3α,∵∠DBE =∠ABC -∠CBE =90°-α-α=90°-2α,∴90°-2α=3α,∴α=18°,∴∠A =∠BCD =2α=36°;当FB =FD 时,∴∠DBE =∠BDF ,∵∠BDF =∠ABC >∠DBF ,∴不存在FB =FD ,综上所述:如果△BDF 是等腰三角形,∠A 的度数为45°或36°.24.(24-25八年级上·江苏无锡·阶段练习)已知:△ABC 中,∠ACB =90°,AC =CB ,D 为直线BC 上一动点,连接AD ,在直线AC 右侧作AE ⊥AD ,且AE =AD .(1)如图1,当点D 在线段BC 上时,过点E 作EH ⊥AC 于H ,连接DE ,求证:EH =AC ;(2)如图2,当点D 在线段BC 的延长线上时,连接BE 交CA 的延长线于点M .求证:BM =EM ;(3)当点D 在直线CB 上时,连接BE 交直线AC 于M ,若AC =4CM ,请直接写出S △ADB S △AEM的值.【答案】(1)见解析(2)见解析(3)25或23【分析】(1)由结合已知得∠EAH =∠ADC ,结合题意证△EAH ≌△ADC (AAS ),利用全等的性质可证;(2)如图2,过点E 作EN ⊥AM ,由垂直得结合已知证△ANE ≌△DCA (AAS ),得到EN =AC ,BC =NE ,再证△BCM ≌△ENM (AAS )即可得到结果;(3)作EG ⊥AM 交AM 的延长线于点G ,先证明△AGE ≌△DCA ,得AG =DC ,EG =AC =BC ,所以CG =DB ,可证明△EGM ≌△BCM ,得GM =CM ,再分两点情况,一是点D 在CB 的延长线上,设AC =4a ,则CM =a ,AM =5a ,CD =6a ,BD =2a ,可求得S △ADM S △AEM =25;二是点D 在线段BC 上,设CM =GM =n ,则BD =CG =2n ,则GE =AC =4CM =4n ,AM =3CM =3n ,于是得S △ADM S △AEM=23.【详解】(1)证明:∵AE ⊥AD ,EH ⊥AC ,∴∠AHE =∠EAD =∠ACB =90°,∴∠DAC +∠ADC =90°,∠DAC +∠EAH =90°,∴∠EAH =∠ADC ,又∵AE =AD ,∠AHE =∠ACD =90°,∴△EAH ≌△ADC (AAS ),∴EH =AC ;(2)证明:如图2,过点E 作EN ⊥AM ,∵AE ⊥AD ,EN ⊥AM ,∴∠ANE =∠EAD =∠ACB =90°,∴∠DAC +∠ADC =90°,∠DAC +∠EAN =90°,∴∠EAN =∠ADC ,又∵AE =AD ,∠ANE =∠ACD =90°,∴△ANE ≌△DCA (AAS ),∴EN =AC ,∵BC =AC ,∴BC =NE ,又∵∠BMC =∠EMN ,∠BCM =∠ENM =90°,∴△BCM ≌△ENM (AAS ),∴BM =EM ;(3)如图,当点D 在直线CB 上时,连接BE 交直线AC 于M ,交AN 的延长线于N ,∵AC =4CM ,设AC =4a ,则CM =a ,BC =AC =4a ,∵AE ⊥AD ,EN ⊥AN ,∴∠ANE =∠EAD =∠ACB =90°,∴∠DAC +∠ADC =90°,∠DAC +∠EAN =90°,∴∠EAN =∠ADC ,又∵AE =AD ,∠ANE =∠ACD =90°,∴△ANE ≌△DCA (AAS ),∴EN =AC =BC =4a ,AN =CD ,又∵∠BMC =∠EMN ,∠BCM =∠ENM =90°,∴△BCM ≌△ENM (AAS ),∴CM =NM =a ,∴AM =AC +CM =5a ,∴CD =AN =AC +CM +MN =6a ,∴BD =CD -BC =2a ,∴S △ABD S △AEM =12BD ⋅AC 12AM ⋅EN =2a ⋅4a 5a ⋅4a =25.如图4,点D 在线段BC 上,同理可证,△BCM ≌△EGM ,△AEG ≌△DAC∴CM =GM ,CD =AG∴GC =2CM∵AC =BC∴AC -AG =BC -CD ,即GC =BD∴设CM =GM =n ,则BD =CG =2n ,∵AC =4CM ,∴GE =AC =4CM =4n ,AM =3CM =3n∴S △ABD S △AEM =12BD ⋅AC 12AM ⋅EG =2n ⋅4n 3n ⋅4n =23综上所述,S △ABD S △AEM=25或23.【点睛】本题考查了全等三角形的判定和性质、三角形面积公式;解题的关键是证明三角形全等并运用性质进行等量换算.25.(22-23八年级上·山东德州·期中)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使DE =AD ,请根据小明的方法思考:(1)由已知和作图能得到△ADC ≌△EDB 的理由是.A.SSSB.SASC.AASD.HL (2)求得AD 的取值范围是.A.6<AD <8B.6≤AD ≤8C.1<AD <7D.1≤AD ≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF ,求证:AC =BF .【答案】(1)B ;(2)C ;(3)见解析【分析】本题考查了三角形的中线,三角形的三边关系定理,等腰三角形性质和判定,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.(1)根据AD =DE ,∠ADC =∠BDE ,BD =DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE =AC =6,AE =2AD ,由三角形三边关系定理得出2<2AD <14,求出即可;(3)延长AD 到M ,使AD =DM ,连接BM ,根据SAS 证△ADC ≌△MDB ,推出BM =AC ,∠CAD =∠M ,根据AE =EF ,推出∠CAD =∠AFE =∠BFD ,求出∠BFD =∠M ,根据等腰三角形的性质求出即可.【详解】(1)解:∵AD 为BC 边上的中线,∴BD =CD ,∵在△ADC 和△EDB 中AD =DE∠ADC =∠BDE BD =CD,∴△ADC ≌△EDB (SAS ),故选B ;(2)解:∵由(1)知:△ADC ≌△EDB ,∴BE =AC =6,AE =2AD ,∵在△ABE 中,AB =8,由三角形三边关系定理得:8-6<AE <8+6,即2<2AD <14∴1<AD <7,故选C ;(3)证明:如图2,延长AD 到M ,使AD =DM ,连接BM ,∵AD 是△ABC 中线,∴CD =BD ,∵在△ADC 和△MDB 中DC =DB∠ADC =∠MDB DA =DM,∴△ADC ≌△MDB ,∴BM =AC ,∠CAD =∠M ,∵AE =EF ,∴∠CAD =∠AFE ,∵∠AFE =∠BFD ,∴∠BFD =∠M ,∴BF =BM ,∴AC =BF .26.(八年级·江苏盐城·期中)(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ;(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD ,(1)中的结论是否仍然成立?(3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】(1)见解析;(2)成立;(3)不成立,应当是EF=BE-FD,见解析【分析】本题是三角形综合题,考查了三角形全等的判定和性质等知识,解题的关键是添加辅助线,构造全等三角形解决问题.(1)延长EB到G,使BG=DF,连接AG.利用全等三角形的性质解决问题即可;(2)先证明△ABM≌△ADF(SAS),由全等三角形的性质得出AF=AM,∠2=∠3.△AME≌△AFE SAS,由全等三角形的性质得出EF=ME,即EF=BE+BM,则可得出结论;(3)在BE上截取BG,使BG=DF,连接AG.证明△ABG≌△ADF.由全等三角形的性质得出∠BAG=∠DAF,AG=AF.证明△AEG≌△AEF,由全等三角形的性质得出结论.【详解】证明:延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=12∠BAD.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.∵∠ABC+∠D=180°,∠1+∠ABC=180°,∴∠1=∠D,在△ABM与△ADF中,AB=AD∠1=∠DBM=DF,∴△ABM≌△ADF(SAS),∴AF=AM,∠2=∠3,∵∠EAF=12∠BAD=∠EAF,∴∠3+∠4=∠EAF 即∠MAE=∠EAF在△AME与△AFE中AM=AF∠MAE=∠EAFAE=AE∴△AME≌△AFE(SAS),∴EF=ME,即EF=BE+BM,∴EF=BE+DF;(3)结论EF=BE+FD不成立,应当是EF=BE-FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=12∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF,∵EG=BE-BG,∴EF=BE-FD.。

最新八年级上册数学第一次月考试卷(华师大版,附答案详解)

最新八年级上册数学第一次月考试卷(华师大版,附答案详解)

最新华师版八年级上册数学第一次月考试题一、选择题(每题3分,共30分)1、3的平方根是( ).A 、3B 、-3C 、±3D 、32、一个数的算术平方根为a ,则比这个数大5的数是( ).A 、5a +B 、5a −C 、25a +D 、25a −3、已知5a =,23b =,且0ab >,则a b +的值为( ).A 、8B 、-2C 、8或-8D 、2或-24、在下列各数中,0,227,2,-π,327−,8,23,1-5,3.14,0.33……,0.1010010001……,32,16其中无理数的个数为( )A 、3B 、4C 、5D 、65、若一个数的平方根等于它的立方根,则这个数是( )A 、0B 、1C 、-1D 、±16、已知a+a 1=3,则a 2+21a 的值是( )A 、1B 、7C 、9D 、117、下列各式从左到右的变形中,是因式分解的是 ( )A 、3x+2x -1=5x -1B 、2x 2—8y 2=2(x+2y)(x -2y) 题号 一 二 三 总分 分数C 、x 2+x=x 2(1+x 1)D 、(3a+2b)(3a—2b)=9a 2-4b 2 8、32m n x y x y x ÷=,则( )A 、6,1m n ==B 、 5,1m n ==C 、5,0m n ==D 、 6,0m n == 9.如果21(3)03a b −+−=,则20102011a b ⋅的结果是( )A 、0B 、 3C 、13D 、 110.估算272−的值( )A 、在1到2之间B 、在2到3之间C 、在3到4之间D 、在4到5之间二、填空题(每题3分,共30分)11、若一个正数的平方根是2a-1和-a+2,则a=______,这个数是_______.12、9的平方根是________;121的算术平方根是_________;30.125=_________.13、3-2的相反数是________,3-2的绝对值是_____.14、已知3x −+│y-1│+(z+2)2=0,则xyz=________.15、在数轴上与表示数1的点距离为2的点所表示的数是_________.16、在下列各式中填入“>”或“<”: 6_______2, -|4-5|______0,17、若a +3b -2=0,则3a ·27b = .18、已知(x 2+nx +3)(x 2-3x +m )的展开式中不含x 2和x 3项,则m = ,n = .19、已知,则.n=___________.20、观察下列各式:(x -1)(x +1)=x 2-1.(x -1)(x 2+x +1)=x 3-1.(x -1)(x 3+x 2+x +1)=x 4-1.依据上面的各式的规律可得:(x -1)(x n +x n -1+……+x +1)= .三、解答题(5个小题,共60分)21、(10分)计算(1) 1(2)(2)(8)2a b a b b a b +−−− (2) ()()x y z x y z +−−+22、(10分)解方程.(1)(x-1)2=16; (2)8(x+1)3-27=023、(9分)已知a-b=1, a²+b²=25。

河南省郑州市2024-2025学年八年级上学期第一次月考数学试题

河南省郑州市2024-2025学年八年级上学期第一次月考数学试题

河南省郑州市2024-2025学年八年级上学期第一次月考数学试题一、单选题1.下列实数是无理数的是( )A .2020-BC .3.14159D .162.一个数的平方根等于它本身,这个数是( )A .0B .0或1C .1±D .0或1± 3.在△ABC 中,AB =8,BC =15,AC =17,则下列结论正确的是( )A .△ABC 是直角三角形,且∠A =900B .△ABC 是直角三角形,且∠B =900 C .△ABC 是直角三角形,且∠C =900D .△ABC 不是直角三角形4.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)- 5.如图,小方格都是边长为1的正方形,则△ABC 中BC 边上的高是( )A .1.6B .1.4C .1.5D .26.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为( )cm (杯壁厚度不计).A .22cmB .21cmC .20cmD .27cm 7.如图,分别以Rt ABC ∆的三边为斜边向外作等腰直角三角形,若斜边4AB =,则图中阴影部分的面积为( )A .4B .8C .10D .128.若9a ,小数部分为b ,则2a +b 等于( )A .12B .13C .14D .159.观察下列等式:第1个等式:11a ==,第2个等式:2a =第3个等式:32a =第4个等式:42a =, 按照上述规律,计算:123n a a a a ++++=L ( )A 1-BCD 10.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为()A .254cmB .152cmC .7cmD .132cm二、填空题11.已知一个正数的平方根是3x ﹣2和5x+6,则这个数是 .12.若a 、b 0=,则2024()a b +=.13.如图,在直角坐标系xOy 中,直线l 过点(0,1)且与x 轴平行,ABC V 关于直线l 对称,已知点A 坐标是(4,4),则点B 的坐标是 .14.已知在ABC V 中,13,15==AB AC ,高12AD =.则BC 的长为.15.已知:如图,在Rt ∆ABC 中,90︒∠=C ,AB=5cm, AC=3cm, 动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒.t= 时三角形ABP 为直角三角形.三、解答题16.计算:(1)(2))23)33+.0(1. 17.(1)已知点()23,47P x x +-的横坐标减纵坐标的差为6,求这个点到x 轴、y 轴的距离; (2)已知点()23,6A x x --到两坐标轴的距离相等,且在第二象限,求点A 的坐标; (3)已知线段AB 平行于y 轴,点A 的坐标为()2,3-,且4AB =,求点B 的坐标.18.如图,在ABC V 中,90ACB ∠=︒,6BC =,8AC =,CD 是高.(1)求AB 的长;(2)求ABC V 的面积;(3)求CD 的长.19.如图,△ABC 中,已知点A(-1,4),B(-2,2),C(1,1).(1)作ΔABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1,B 1,C 1的坐标,(2)作△ABC 关于y 轴对称的△A 2B 2C 2,并写出点A 2,B 2,C 2的坐标,(3)观察点A 1,B 1,C 1和A 2,B 2,C 2的坐标,请用文字语言归纳点A 1和A 2,B 1和B 2,C 1和C 2坐标之间的关系.20.探究并解决问题.(1)通过计算下列各式的值探究问题.==.探究:对于任意非负有理数a =.==.探究:对于任意负有理数a =.综上,对于任意有理数a .(2)应用(1)所得结论解决问题:有理数a 、b 在数轴上的位置如图所示,化简:b a -21.《中华人民共和国道路交通安全法》规定:小汽车在高速道路上行驶速度不得超过120km /h .高速路边也会安装车速检测仪对过往车辆进行限速检测,如图所示,A 点装有一车速检测仪,它到公路边的距离90AN =米,小汽车行驶过检测仪监控区域,到达N 点时开始计时,离开M 点时停止计时,依此计算车速,已知150AM =米.(1)若一辆汽车以108km /h 时速匀速通过监控区域,共用时几秒?(2)若另一辆车通过监控区域共用时3秒,该车是否超速?请说明理由.22.已知,在长方形ABCD 中,8AB =,6BC =,点E ,F 分别是边AB ,BC 上的点,连接DE ,DF ,EF .(1)如图①,当22CF BE ==时,试说明DEF V 是直角三角形;(2)如图②,若点E 是边AB 的中点,DE 平分ADF ∠,求BF 的长.23.综合与实践【问题情境】数学综合与实践活动课上,老师提出如下问题:一个三级台阶,它每一级的长、宽、高分别为20、3、2,A 和B 是一个台阶两个相对的端点.【探究实践】老师让同学们探究:如图①,若A 点处有一只蚂蚁要到B 点去吃可口的食物,那么蚂蚁沿着台阶爬到B点的最短路程是多少?(1)同学们经过思考得到如下解题方法:如图②,将三级台阶展开成平面图形,可得到长为20,宽为15的长方形,连接AB,经过计算得到AB长度为______,就是最短路程.【变式探究】(2)如图③,是一只圆柱形玻璃杯,该玻璃杯的底面周长是30 cm,高是8 cm,若蚂蚁从点A出发沿着玻璃杯的侧面到点B,则蚂蚁爬行的最短距离为______.【拓展应用】(3)如图④,圆柱形玻璃杯的高9 cm,底面周长为16 cm,在杯内壁离杯底4 cm的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在外壁上,离杯上沿1 cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所爬行的最短路程是多少?(杯壁厚度不计)。

人教版八年级上册数学《第一次月考》考试题及答案【完整】

人教版八年级上册数学《第一次月考》考试题及答案【完整】

人教版八年级上册数学《第一次月考》考试题及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( ) A .1个B .2个C .3个D .4个3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108°B .90°C .72°D .60°4.若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.下列各组数中,能作为一个三角形三边边长的是( ) A .1,1,2B .1,2,4C .2,3,4D .2,3,56.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .67.若a 72b 27a 和b 互为( )A.倒数B.相反数C.负倒数D.有理化因式8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE=;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠410.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.已知15xx+=,则221xx+=________________.3.如果不等式组841x xx m+<-⎧⎨>⎩的解集是3x>,那么m的取值范围是________.4.如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是________.5.如图,四边形ABCD中,点M,N分别在AB,BC上,将BMN△沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B =________°.6.如图,在正方形ABCD的外侧,作等边DCE,则AEC∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解下列分式方程(1)42122x xx x++=--(2)()()21112xx x x=+++-2.先化简,再求值:(x+2)(x-2)+x(4-x),其中x=14.3.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.4.如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、A5、C6、C7、D8、A9、D 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、233、3m ≤.4、24.5、956、45︒三、解答题(本大题共6小题,共72分)1、(1)3x =;(2)0x =.2、-3.3、±34、(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12. 5、(1)2;(2)60︒ ;(3)见详解6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。

八年级数学(上)第一次月考试题(含答案)

八年级数学(上)第一次月考试题(含答案)

第一学期第一次月考测试题八年级数学(时间:90分钟满分:100分)一、选择题:本大题共10小题;每小题3分;共30分.每小题给出的四个选项中;只有一个选项是符合题目要求的;将此选项的答案填入相应的答题区域。

.1、下列图形中有稳定性的是()A. 平行四边形B. 直角三角形C. 长方形D. 正方形2、若现有长为;;;的四根木棒;任取其中三根组成一个三角形;则可以组成不同的三角形的个数是()A. 个B. 个C. 个D. 个3、在△ABC中;∠A;∠B都是锐角;则∠C是()A.锐角B.直角C.钝角D.以上都有可能4.已知;在△ABC中;∠A=60°;∠C=80°;则∠B=()A.60°B.30°C.20°D.40°5.若一个多边形的内角和与它的外角和相等;则这个多边形是()A.三角形B.四边形C.五边形D.六边形6.下面四个图形中;能判断∠1>∠2的是()A.B.C.D.7.如图;已知△ABC中;∠C=90°;若沿图中虚线剪去∠C;则∠1+∠2等于()A.90°B.135°C.270°D.315°8.如图;点O是△ABC内一点;∠A=80°;∠1=15°;∠2=40°;则∠BOC等于()A.95°B.120°C.135°D.无法确定9.下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.所有的等边三角形都是全等三角形10、把一张形状是多边形的纸片剪去其中某一个角;剩下的部分是一个四边形;则这张纸片原来的形状不可能是()A. 三角形B. 四边形C. 五边形D. 六边形二、填空题:(本大题共10小题;每小题3分;共30分).11.三角形的两边长分别是10和8;则第三边的取值范围是.12.正多边形的一个内角等于144°;则该多边形是正______边形.13.如图;三角形纸片ABC;AB=10cm;BC=7cm;AC=6cm;沿过点B的直线折叠这个三角形;使顶点C落在AB边上的点E处;折痕为BD;则△AED的周长为cm.14、已知如图所示、分别是的中线、高;且;;则与的周长之差为;与的面积关系为 .15.已知△ABC≌△DEF;∠A=52°;∠B=57°;则∠F=.16.如图;△ABD≌△ACE;AD=8cm;AB=3cm;则BE=cm.17.已知△ABC≌△DEF;且∠A=90°;AB=6;AC=8;BC=10;△DEF中最大边长是;最大角是度.18、如图;在四边形中;;的平分线与的平分线交于点;则()19、如图;小明从点出发;前进后向右转;再前进后又向右转;…这样一直下去;直到他第一次回到出发点为止;他所走的路径构成了一个多边形.小明一共走了_______米?这个多边形的内角和是_______度?20、等腰三角形中;一个角为50°;则这个等腰三角形的顶角的度数为________三、解答题(一)本题共4小题;共40分.解答时;应写出必要的文字说明、证明过程或演算步骤.21、(8分)一个多边形的内角和与外角和的和是;通过计算说明它是几边形.22(8分)、如图所示;在中;是边上一点;;求的度数.23、(12分)如图所示;已知AD;AE分别是△ADC和△ABC的高和中线;AB=6cm;AC=8cm;BC=10cm;∠CAB=90°.试求:(1)(3分)AD的长;(2)(4分)△ABE的面积;(3)(5分)△ACE和△ABE的周长的差.24(12分)如图;已知点B、D、E、C四点在一条直线上;且△ABE≌△ACD.求证(1)(5分)BD=CE;(2)(7分)△ABD≌△ACE.第一次月考数学答案一;BCDDB DCCAD二;11.2<c<18;12.十;13.9;相等;15.71;16.5;17.10 90;18.αº或80º三;21.n=8;º;23.⑴24/5cm()⑵12cm²⑶2cm;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古呼和浩特市回民中学2018-2019学年八年级数学第一次月考
试题
时间:100分钟总分:100分
一.选择题(共10小题,满分30分,每小题3分)
1.可以把三角形分成两个面积相等的三角形的是()
A.三角形的中线 B.三角形的高线
C.三角形的角平分线 D.三角形一边的垂线
2.已知等腰三角形的两边长是4和9,则等腰三角形的周长为()
A.17 B.17或22 C.22 D.16
3.一天,爸爸带小明到建筑工地玩,看见一个如图所示的人字架,爸爸说:“小明,我考考你,这个人字架的夹角∠1等于130°,你知道∠3比∠2大多少吗?”小明马上得到了正确的答案,他的答案是()
A.50° B.65° C.90° D.130°
4.在△ABC中,如果∠A:∠B:∠C=1:1:2,那么它是()
A.钝角三角形 B.锐角三角形 C.直角三角形 D.等边三角形
5.若三角形的两边长分别为3厘米和8厘米,则此三角形的第三边的长可能是()A.4厘米 B.5厘米C.6厘米 D.13厘米
6.四边形ABCD中,∠A+∠C=∠B+∠D,∠A的外角为120°,则∠C的度数为()A.36° B.60° C.90° D.120°
7.小聪从点P出发向前走20m,接着向左转30°,然后他继续再向前走20m,又向左转30°,他以同样的方法继续走下去,当他走回点P时共走的路程是()
A.120米 B.200米 C.240米D.300米
8.如图,在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,∠EHF的度数是()
A.50° B.40° C.130° D.120°
9.一个三角形有两边长分别为2,3,第三边长为偶数,则这个三角形的周长为()A.7 B.9 C.7或9 D.7或8或9
10.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()
A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定
第3题第8题第10题
二.填空题(共6小题,满分18分,每小题3分)
11.过十边形的一个顶点有条对角线.
12.一个每个外角都相等,且比它的内角小140°,则这个多边形是边形.13.在△ABC中,CM是AB边上的中线,已知BC﹣AC=8cm,且△MBC的周长为30cm,则△AMC 的周长为cm.
14.如下图,已知△ABC中,∠A=∠ACB,CD是∠ACB的平分线,∠ADC=150°,则∠ABC的度数为度.
15.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是度.
16.如图,,AD、BD、CD分别平分的外角、内角、外角
以下结论:;;;

其中正确的结论有
第11题第14题第15题第16题
三.解答题(共7小题,满分52分)
17.(8分)如图,已知BE和CF是△ABC的两条高,∠ABC=47°,∠ACB=82°,求∠FDB的度数.
18.(8分)如图所示,在△ABC中,BP、CP分别是∠ABC和∠ACB的角平分线,∠BPC=134°,求∠A的度数.
19.(8分)如图,一艘船要从A地驶往B地,因受海上大风的影响,一开始就偏离航线20°(即∠A=20°)行驶到了C地,测得∠ABC=25°,问该船应以怎样的角度才能到达B地(即求∠BCD的度数).
20.(8分)已知两个多边形的内角和为1440°,且两多边形的边数比为1:3,求这两个多边形的边数.
21.(10分)已知如图,在△ABC中,CH是外角∠ACD的角平分线,BH是∠ABC的平分线,∠A=58°,求∠H的度数.
22.(10分)(1)如图①所示,∠1+∠2与∠B+∠C有什么关系?为什么?
(2)如图②若把△ABC纸片沿DE点折叠当点A落在四边形BCED内部时,则∠A与∠α+∠β之间有一种数量关系始终保持不变,请写出这个规律并说明理由.
参考答案
11.7 12.18 13.22 14.140 15. 60度 16.①②③④ 17.解:∵BE 和CF 是△ABC 的两条高, ∴∠BFC=90°,∠BEC=90°,
在△BFC 和△BEC 中,∠CBE=180°﹣∠BEC ﹣∠ACB=8°,∠BCF=180°﹣∠BFC ﹣∠ABC=43°, ∴∠FDB=∠CBE+∠BCF=51°. 18.解:∵在△BPC 中,∠BPC=134°,
∴∠1+∠2=180°﹣∠BPC=180°﹣134°=46°, ∵BP 、CP 分别是∠ABC 和∠ACB 的角平分线, ∴∠ABC=2∠1,∠ACB=2∠2,
∴∠ABC+∠ACB=2∠1+2∠2=2(∠1+∠2)=2×46°=92°, ∴在△ABC 中,∠A=180°﹣(∠ABC+∠ACB )=180°﹣92°=88°. 19.解:∵∠A=20°,∠ABC=25°, ∴∠BCD=∠A+∠ABC=20°+25°=45°. 20.解:设两个多边形的边数分别是x 和3x , 则(x ﹣2)•180+(3x ﹣2)•180=1440, 解之,得x=3,3x=9.
则两个多边形的边数分别为3和9.
21.解:∵∠A=58°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣58°=122°…①, ∵BH 是∠ABC 的平分线,∴∠HBC=
2
1
∠ABC , ∵∠ACD 是△ABC 的外角,CH 是外角∠ACD 的角平分线, ∴∠ACH=
2
1
(∠A+∠ABC ), ∴∠BCH=∠ACB+∠ACH=∠ACB+
2
1
(∠A+∠ABC ), ∵∠H+∠HBC+∠ACB+∠ACH=180°, ∴∠H+21∠ABC+∠ACB+21(∠A+∠ABC )=180°,即∠H+(∠ABC+∠ACB )+2
1
∠A=180°…②,
把①代入②得,∠H+122°+2
1
×58°=180°, ∴∠H=29°.
22.解:(1)∠1+∠2=∠B+∠C , ∵如图1,在△AED 和△ACB 中,
∠1+∠2+∠A=∠A+∠B+∠C=180°(三角形内角和等于180°), ∴∠1+∠2=∠B+∠C (等量代换).
(2)规律:α+β=2∠A .
理由:∵在△ADE 中,∠1+∠2=180°﹣∠A (三角形内角和等于180°), 在四边形BCED 中,∠BDE+∠DEC+∠B+∠C=360°(四边形内角和等于360°), 又∵根据题(1)得∠1+∠2=∠B+∠C (已证), ∴2(∠1+∠2)+α+β=360°(等量代换), ∴2(180°﹣∠A )+α+β=360°(等量代换), ∴α+β=2∠A .。

相关文档
最新文档