《二次根式习题精选之计算题》试卷(最新版-修订)

合集下载

二次根式单元测试题及答案doc

二次根式单元测试题及答案doc

二次根式单元测试题及答案doc一、选择题1. 下列哪个选项不是二次根式?A. √3B. 2√2C. √xD. 3x2. 二次根式的乘法法则是什么?A. √a × √b = √abB. √a × √b = √a + bC. √a × √b = a + bD. √a × √b = √(a + b)3. 如果√a = √b,那么a和b的关系是什么?A. a = bB. a = b^2C. a^2 = bD. a^2 = b^24. 以下哪个表达式不能简化为一个更简单的二次根式?A. √(2x^2)B. √(3x)C. √(4y^2)D. √(5z)5. 计算√(1/4)的结果是什么?A. 1/2B. 1/4C. 2D. 4二、填空题6. √(9x^2) 可以简化为 __________。

7. 如果√(2y) = √8,那么y的值是 __________。

8. 根据二次根式的除法法则,√(a/b) = __________。

9. √(25) + √(4) 的结果是 __________。

10. 计算(√3 + √2)^2 的结果,不展开,直接写出答案 __________。

三、解答题11. 计算下列表达式的值:(a) √(81x^4)(b) (√2 + √3)(√2 - √3)12. 简化下列二次根式,并合并同类项:√(18a^2b) + √(2a^2b) - 3√(2a^2b)四、应用题13. 一个正方形的面积是50平方厘米,求这个正方形的边长。

如果边长是一个整数,求出所有可能的边长。

答案:一、选择题1. D2. A3. D4. D5. A二、填空题6. 3x7. 48. √(ab) / √b9. 710. 7三、解答题11. (a) 9|x|^2(b) 2 - 312. √(18a^2b) + √(2a^2b) - 3√(2a^2b) = 3√(2a^2b) -2√(2a^2b) = √(2a^2b)四、应用题13. 边长为√50,即边长为5√2厘米。

二次根式的乘除法习题精选

二次根式的乘除法习题精选

二次根式的乘除法习题精选一.选择题(共18小题)1.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③2.下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=33.等式=成立的x的取值范围在数轴上可表示为()A.B.C.D.4.“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣35.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥26.等式=(b﹣a)成立的条件是()A.a≥b,x≥0B.a≥b,x≤0C.a≤b,x≥0D.a≤b,x≤0 7.计算×的结果是()A.6B.6C.6D.68.已知1<p<2,化简+()2=()A.1B.3C.3﹣2p D.1﹣2p9.下列运算中,正确的是()A.x3+x4=x7B.2x2•3x4=6x8C.(﹣3x2y)2=﹣9x4y2D.10.若,则()A.x≥6B.x≥0C.0≤x≤6D.x为一切实数11.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.0.3ab B.3ab C.0.1ab2D.0.1a2b 12.把a根号外的因式移入根号内的结果是()A.B.C.D.13.计算的结果是()A.1B.C.D.14.=成立的条件是()A.x≥﹣1B.x≤3C.﹣1≤x≤3D.﹣1<x≤3 15.实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣a+b B.﹣a﹣b C.a+b D.a﹣b 16.下列变形正确的是()A.B.C.D.17.下列运算正确的是()A.B.C.D.18.下列化简正确的是()A.B.C.D.二.填空题(共20小题)19.计算:=.20.计算:(+1)(﹣1)=.21.计算÷的结果是.22.计算:=.23.计算:=.24.计算:×的结果为.25.=.26.计算:=.27.化简:=.28.如图:化简=.29.已知长方形的面积为12,其中一边长为,则该长方形的另一边长为.30.计算:÷=.31.计算的结果是.32.计算:5÷×所得的结果是.33.若=,则x的取值范围为.34.计算的结果为.35.计算(x≥0,y≥0)的结果是.36.计算的结果是.37.计算()2=.38.化简:=.三.解答题(共10小题)39.计算:2÷•.40.(1)用“=”、“>”、“<”填空:4+3 2,1+2,5+5 2.(2)由(1)中各式猜想m+n与2(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m2的花圃,所用的篱笆至少需要m.41.计算:3•÷(﹣).42.43.设长方形的面积为S,相邻两边长分别是a,b,已知S=4,a=,求b.44.化简:•÷.45.已知:,.求下列各式的值.(1)xy;(2)x2﹣xy+y2.46.数a,b在数轴上的位置如图所示,化简:.47.若实数p在数轴上的位置如图所示,化简下列式子:+()248.阅读下列材料:在学习完实数的相关运算之后,小明同学提出了一个有趣的问题:两个数的积的算术平方根与这两个数的算术平方的积存在有什么样的关系?小明用自己的方法进行了验证:小明:==10,而=5,=2∴=5×2=10即=×回答以下问题:(1)结合材料猜想,当a≥0,b≥0时,请直接写出和之间有什么关系?(2)运用以上结论,计算:①;②(3)解决实际问题:已知一个长方形的长为,宽为,则长方形的面积为多少?二次根式的乘除法习题精选参考答案与试题解析一.选择题(共18小题)1.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③【分析】由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.【解答】解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0,a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.2.下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=3【分析】分别根据二次根式有关的运算法则,化简分析得出即可.【解答】解:A.,无法合并,故此选项错误,B.4﹣3=,故此选项错误,C.2×3=6×3=18,故此选项错误,D.=,此选项正确,故选:D.3.等式=成立的x的取值范围在数轴上可表示为()A.B.C.D.【分析】根据二次根式有意义的条件即可求出x的范围.【解答】解:由题意可知:解得:x≥3故选:B.4.“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣3【分析】根据二次根式的运算法则即可求出答案.【解答】解:设x=﹣,且>,∴x<0,∴x2=6﹣3﹣2+6+3,∴x2=12﹣2×3=6,∴x=,∵=5﹣2,∴原式=5﹣2﹣=5﹣3,故选:D.5.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥2【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故选:C.6.等式=(b﹣a)成立的条件是()A.a≥b,x≥0B.a≥b,x≤0C.a≤b,x≥0D.a≤b,x≤0【分析】若二次根式有意义,则被开方数为非负数,算术平方根的结果也是非负数,可据此求出a、b、x的取值范围.【解答】解:根据算术平方根的意义可知,b﹣a≥0且x≥0,即a≤b,x≥0.故选:C.7.计算×的结果是()A.6B.6C.6D.6【分析】根据二次根式的乘法法则计算即可.【解答】解:×===6,故选:D.8.已知1<p<2,化简+()2=()A.1B.3C.3﹣2p D.1﹣2p【分析】根据二次根式的性质进行化简即可.【解答】解:∵1<p<2,∴1﹣p<0,2﹣p>0,∴原式=|1﹣p|+2﹣p=p﹣1+2﹣p=1.故选:A.9.下列运算中,正确的是()A.x3+x4=x7B.2x2•3x4=6x8C.(﹣3x2y)2=﹣9x4y2D.【分析】直接利用合并同类项法则以及积的乘方运算法则、单项式乘单项式、二次根式的乘法运算法则分别计算得出答案.【解答】解:A、x3+x4无法合并,故此选项错误;B、2x2•3x4=6x6,故此选项错误;C、(﹣3x2y)2=9x4y2,故此选项错误;D、×=,故此选项正确.故选:D.10.若,则()A.x≥6B.x≥0C.0≤x≤6D.x为一切实数【分析】本题需注意的是二次根式的被开方数为非负数,由此可求出x的取值范围.【解答】解:若成立,则,解之得x≥6;故选:A.11.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.0.3ab B.3ab C.0.1ab2D.0.1a2b【分析】先把化为、的形式,再把a、b代入计算即可.【解答】解:∵=0.3,=a,=b,∴=0.3ab.故选:A.12.把a根号外的因式移入根号内的结果是()A.B.C.D.【分析】本题需注意的是a的符号,根据被开方数不为负数可得出a<0,因此需先将a 的负号提出,然后再将a移入根号内进行计算.【解答】解:∵a<0,∴a=﹣=﹣;故选:B.13.计算的结果是()A.1B.C.D.【分析】直接利用二次根式的乘除法运算法则化简,进而得出答案.【解答】解:===.故选:C.14.=成立的条件是()A.x≥﹣1B.x≤3C.﹣1≤x≤3D.﹣1<x≤3【分析】根据二次根式的性质分别得出关于x的不等式进而求出答案.【解答】解:∵=成立,∴,解得:﹣1<x≤3.故选:D.15.实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣a+b B.﹣a﹣b C.a+b D.a﹣b【分析】先化简各式,然后再进行计算即可.【解答】解:由题意得:b<0<a,∴=a+(﹣b)=a﹣b,故选:D.16.下列变形正确的是()A.B.C.D.【分析】A:等式右边没有意义;B:被开方数是带分数时先化为假分数,然后再开方;C:正确;D:被开方数先化为平方差的形式,然后再开方.【解答】解:A:原式==4×5=20,∴不符合题意;B:原式==,∴不符合题意;C:原式=,∴符合题意;D:原式==7,∴不符合题意;故选:C.17.下列运算正确的是()A.B.C.D.【分析】直接利用二次根式的性质以及二次根式的乘除运算法则计算得出答案.【解答】解:A.=2,故此选项不合题意;B.=,故此选项不合题意;C.3×2=6,故此选项不合题意;D.4÷=2,故此选项符合题意.故选:D.18.下列化简正确的是()A.B.C.D.【分析】根据二次根式除法法结合二次根式性质化简即可.【解答】解:A.=,故正确;B.=2,故不正确;C.=,故不正确;D.=4,故不正确.故选:A.二.填空题(共20小题)19.计算:=3.【分析】根据二次根式的乘法法则计算.【解答】解:原式===3.故答案为:3.20.计算:(+1)(﹣1)=1.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(+1)(﹣1)=.故答案为:1.21.计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:322.计算:=3.【分析】原式利用平方根的定义化简即可得到结果.【解答】解:原式=3.故答案为:323.计算:=3.【分析】本题直接运用二次根式的除法法则进行计算即可.【解答】解:原式===3.故答案为:3.24.计算:×的结果为3.【分析】按照二次根式的乘法法则计算即可.【解答】解:原式==3.故答案为:3.25.=3.【分析】直接进行平方的运算即可.【解答】解:原式=3.故答案为:326.计算:=30.【分析】利用二次根式的乘法法则运算后,将结果化成最简二次根式即可.【解答】解:原式=10=10×=30,故答案为:30.27.化简:=3.【分析】直接利用二次根式的性质计算得出答案.【解答】解:原式===3.故答案为:3.28.如图:化简=0.【分析】根据数轴上点的位置确定出a﹣b,c﹣a,以及b﹣c的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<b<0<c,∴a﹣b<0,c﹣a>0,b﹣c<0,则原式=b﹣a﹣|c﹣a|+|b﹣c|=b﹣a﹣c+a﹣b+c=0.故答案为:0.29.已知长方形的面积为12,其中一边长为,则该长方形的另一边长为3.【分析】直接利用二次根式的除法运算法则计算得出答案.【解答】解:∵长方形的面积为12,其中一边长为,∴该长方形的另一边长为:12÷2=3.故答案为:3.30.计算:÷=4.【分析】根据二次根式的除法法则求解.【解答】解:原式===4.故答案为:4.31.计算的结果是2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式==2,故答案为:232.计算:5÷×所得的结果是1.【分析】由于二次根式的乘除运算是同级运算,从左到右依次计算即可.【解答】解:原式=×=1.33.若=,则x的取值范围为﹣≤x<1.【分析】根据商的算术平方根的性质即可得到结果.【解答】解:∵=,∴,解得:﹣≤x<1,故答案为:﹣≤x<1.34.计算的结果为.【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:===.故答案为:.35.计算(x≥0,y≥0)的结果是4x.【分析】直接利用二次根式的性质化简得出答案.【解答】解:(x≥0,y≥0)==4x.故答案为:4x.36.计算的结果是3.【分析】根据二次根式的乘除法法则计算,得到答案.【解答】解:原式==3,故答案为:3.37.计算()2=2.【分析】直接计算即可.【解答】解:原式=2.故答案是2.38.化简:=.【分析】根据二次根式的除法运算法则进行计算即可.【解答】解:==,故答案为:.三.解答题(共10小题)39.计算:2÷•.【分析】直接利用二次根式的乘除运算法则化简求出答案.【解答】解:原式=2×6=12=8.40.(1)用“=”、“>”、“<”填空:4+3 >2,1+>2,5+5 =2.(2)由(1)中各式猜想m+n与2(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m2的花圃,所用的篱笆至少需要40m.【分析】(1)分别进行计算,比较大小即可;(2)根据第(1)问填大于号或等于号,所以猜想m+n≥2;比较大小,可以作差,m+n﹣2,联想到完全平方公式,问题得证;(3)设花圃的长为a米,宽为b米,需要篱笆的长度为(a+2b)米,利用第(2)问的公式即可求得最小值.【解答】解:(1)∵4+3=7,2=4,∴72=49,(4)2=48,∵49>48,∴4+3>2;∵1+=>1,2=<1,∴1+>2;∵5+5=10,2=10,∴5+5=2.故答案为:>,>,=.(2)m+n≥2(m≥0,n≥0).理由如下:当m≥0,n≥0时,∵(﹣)2≥0,∴()2﹣2•+()2≥0,∴m﹣2+n≥0,∴m+n≥2.(3)设花圃的长为a米,宽为b米,则a>0,b>0,S=ab=200,根据(2)的结论可得:a+2b≥2=2=2=2×20=40,∴篱笆至少需要40米.故答案为:40.41.计算:3•÷(﹣).【分析】根据二次根式的乘除法法则计算即可.【解答】解:原式=(﹣3××)•=﹣2•=﹣2y.42.【分析】根据二次根式的性质、二次根式的乘除运算即可求出答案、【解答】解:原式=4×(﹣5)﹣43÷=﹣20﹣=.43.设长方形的面积为S,相邻两边长分别是a,b,已知S=4,a=,求b.【分析】利用长方形的边=面积÷邻边列式计算即可.【解答】解:b=S÷a=4÷=.44.化简:•÷.【分析】根据二次根式的乘除法及二次根式的性质与化简计算方法进行计算即可得出答案.【解答】解:∵﹣>0,﹣>0,>0,∴x<0,y<0,原式=(÷=﹣×6=﹣8|x2|•|y|.=﹣8x2•(﹣y)=8x2y.45.已知:,.求下列各式的值.(1)xy;(2)x2﹣xy+y2.【分析】(1)根据二次根式的乘法法则进行计算即可;(2)根据二次根式的加法法则求出x+y的值,先根据完全平方公式进行变形,再代入,最后根据二次根式的运算法则进行计算即可.【解答】解:(1)∵x=+,y=﹣,∴xy=(+)×(﹣)=()2﹣()2=7﹣5=2;(2)∵x=+,y=﹣,∴x+y=(+)+(﹣)=2,∵xy=2,∴x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×2=28﹣6=22.46.数a,b在数轴上的位置如图所示,化简:.【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【解答】解:依题意得:a<0<b,|a|<|b|,∴﹣()2=﹣a﹣b+b﹣a﹣b+a=﹣a﹣b.故答案为:﹣a﹣b.47.若实数p在数轴上的位置如图所示,化简下列式子:+()2【分析】直接利用数轴得出p的取值范围,再利用二次根式的性质化简得出答案.【解答】解:由数轴可得:2<p<3,则原式=+4﹣p=3﹣p+4﹣p=7﹣2p.48.阅读下列材料:在学习完实数的相关运算之后,小明同学提出了一个有趣的问题:两个数的积的算术平方根与这两个数的算术平方的积存在有什么样的关系?小明用自己的方法进行了验证:小明:==10,而=5,=2∴=5×2=10即=×回答以下问题:(1)结合材料猜想,当a≥0,b≥0时,请直接写出和之间有什么关系?(2)运用以上结论,计算:①;②(3)解决实际问题:已知一个长方形的长为,宽为,则长方形的面积为多少?【分析】(1)根据阅读材料中的例题,即可解答;(2)①利用(1)的结论,进行计算即可解答,②利用(1)的结论,进行计算即可解答;(3)根据长方形的面积公式,并利用(1)的结论,进行计算即可解答.【解答】解:(1)当a≥0,b≥0时,=;(2)①=×=4×5=20,②=×=8×13=104;(3)由题意得:长方形的面积=×===16,∴长方形的面积为16.。

最新二次根式的四则运算习题精选(含答案)

最新二次根式的四则运算习题精选(含答案)

二次根式的四则运算习题精选一、选择题1).A.①和②B.②和③C.①和④D.③和④2.下列各式:①;②17=1,其中错误的有().A.3个B.2个C.1个D.0个二、填空题1是同类二次根式的有________.2.计算二次根式的最后结果是________.三、综合提高题1-)的值.(结果精确到0.01)2.先化简,再求值.(-(x=32,y=27.答案:一、1.C 2.A二、12.2.原式(4=(6+3-4-6当x=32,y=27时,原式92第二课时一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A.BC.D.以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.BC.D.二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)三、综合提高题1与n是同类二次根式,求m、n的值.2.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=)2,5=)2,你知道是谁的二次根式呢?下面我们观察:-1)2=)2-2·+12反之,+1=-1)2∴=)2-1 求:(1(2;(3吗?(4,则m 、n 与a 、b 的关系是什么?并说明理由. 答案:一、1.A 2.C二、1.2.三、1.依题意,得2223241012m m n ⎧-=-⎪⎨-=⎪⎩,2283m n ⎧=⎪⎨=⎪⎩,m n ⎧=±⎪⎨=⎪⎩所以m n ⎧=⎪⎨=⎪⎩或m n ⎧=-⎪⎨=⎪⎩或m n ⎧=⎪⎨=⎪⎩或m n ⎧=-⎪⎨=⎪⎩ 2.(1+1所以a m n b mn =+⎧⎨=⎩第三课时一、选择题1的值是( ).A .203B .23C .23D .2032)的值是( ). A .2 B .3 C .4 D .1 二、填空题1.(-12+2)2的计算结果(用最简根式表示)是________.2.(-()2的计算结果(用最简二次根式表示)是_______. 3.若-1,则x 2+2x+1=________.4.已知,,则a 2b-ab 2=_________. 三、综合提高题12.当答案:一、1.A 2.D二、1.1- 2.-24 3.2 4.二次根式的乘除习题精选一、选择题1.下列计算正确的有()(2)(3)6==-⨯-=;23=6==⨯;3==;1==。

二次根式混合运算125题(有答案)(可编辑修改word版)

二次根式混合运算125题(有答案)(可编辑修改word版)

二次根式混合运算121题(有答案)1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、(5)33、34、35、36、3﹣9+337、÷(3×)38、39、40、41、42、43、44、45、46、47、(﹣)2﹣48、49、50、51、52、53、3﹣﹣+(﹣2)(+2)54、55、56、57、58、59、2÷﹣(2﹣)260、﹣2+(﹣1)261、(+2)﹣62、63、64、65、66、67、68、69、70、3﹣(﹣)71、72、﹣273、74、75、76、77、÷78、×+÷﹣79、80、81、﹣82、83、84、85、(+1)2﹣286、(+1)(1﹣)﹣(﹣1)2+(+1)287、88、89、90、91、92、93、94、95、96、97、98、|﹣|+﹣99、100、101、(+)2008(﹣)2009 102、103、104、105、(3+)÷106、107、108、109、110、﹣1111、(﹣)(+)+2112、+|﹣3|﹣2﹣1 113、(﹣2)×﹣6 114、(2﹣)115、116、117、118、119、120、121、+6a二次根式混合计算121题参考答案:1、原式=2﹣3=﹣2、原式=×==303、原式=2﹣12=﹣104、原式==25、原式===﹣6a6、原式=7、原式=()2﹣(﹣1)2=2﹣(3﹣2+1)=8、原式=9、原式=(3﹣2+3)×=(+3)×=1+10、原式=﹣+=11、原式=(4+)÷3=12、原式=2+3﹣=13、原式==14、原式=(7+)(7+)=14×2=15、原式==3+6﹣10=﹣116、原式=2﹣=﹣217、原式=﹣2+=3﹣2+=18、原式=(3﹣2)(3+2)=18﹣12=619、原式=(2﹣+)=(+)=+120、原式=﹣3•5÷=﹣15÷=﹣1521、原式=3+﹣2+﹣3=22、原式=3a+﹣2b23、原式=3﹣2+1﹣(2﹣3)=5﹣224、原式==25、原式=2+1﹣(﹣)=3﹣1=226、原式=17﹣(19﹣)=﹣2+27、原式=2﹣3﹣2=﹣328、原式=4+12=29、原式=+2﹣10=30、原式=4﹣+=31、原式=6﹣5=132、原式=12+18﹣12=33、原式=(2+)×﹣2=3﹣2=134、原式=+×6﹣m=2m+3m﹣m=035、原式=++1=﹣1++1=36、原式=12=(12﹣3﹣+6)=37、原式=6÷(×)=6÷6=38、原式=+3﹣2=3+3﹣2=3+39、原式=++×1=6+1+=7+40、原式=×3+6×﹣2x•=2+3﹣2=341、原式=2﹣+3﹣2=2﹣2+142、原式=(6﹣+﹣2)÷2﹣3=3﹣+﹣﹣3=﹣+﹣43、原式===444、=(4÷2)=45、原式=2+3﹣7=﹣246、原式===1447、原式=10﹣7+=3+48、原式=×(2﹣+)=+×=+149、原式=﹣150、原式=2+3+2﹣(2﹣3)=5+2+1=6+251、原式=4+﹣4=52、原式=(4﹣2+6)÷=2+253、原式=6﹣3﹣+5﹣4=(6﹣3﹣)+1=+154、原式==55、原式==56、原式=[﹣(﹣)][+(﹣)]=5﹣(﹣)2=5﹣(5﹣2)=257、原式=4×2﹣16+12﹣16﹣8=﹣4﹣1658、原式=+﹣+3=59、原式=2﹣(4﹣4+2)=2﹣6+4=6﹣660、原式=×2﹣2×3+5﹣2+1=﹣6﹣2+6=6﹣761、原式=a+2=262、原式=63、原式=﹣+=﹣+=064、=2+﹣2=65、=﹣=66、原式=9﹣14+4=﹣67、原式=﹣43=﹣12=﹣1168、原式=2×=1269、原式=×3×=﹣70、原式=12﹣2+6=1671、原式=(4﹣2+6)×=2+272、原式=27÷(3×)×﹣8=3×﹣8=﹣873、原式=()2﹣()2=3﹣(2+2+5)=﹣4﹣274、原式=3+8=1175、原式=2﹣12=﹣1076、原式=5+﹣6=077、原式=÷=÷=178、原式=﹣==4+=4+79、原式===80、原式==9+6=1581、原式=(+)2﹣=3+2+2﹣=5+82、原式==83、原式=84、原式=5﹣6=﹣185、原式=4+=86、(1+)(1﹣)﹣(﹣1)2+(+1)2=1﹣()2﹣(2﹣2+1)+2+2+1=1﹣2﹣2+2﹣1+2+2+1=4﹣187、原式=+4×﹣+1=++1=1+88、原式=(40)=30=1589、原式=2+2=2+90、原式===91、原式===1292、原式=2+2+4+2=93、原式=9﹣14+24=94、原式=(7+4)(7﹣4)+4﹣3=49﹣48+1=295、原式=﹣4×+9﹣12﹣()=﹣8+9﹣12﹣+1=﹣1196、原式=﹣+=2x+=97、原式=2a(b﹣×+)=2ab﹣+ab=98、原式=﹣+3﹣5=2﹣499、原式=12﹣4+1=13﹣4100、原式=2+﹣=101、原式=()=102、原式=3×2﹣2×3+5×4=6﹣6+20=20103、原式=7﹣3+2=6104、原式=•(﹣)×=﹣=﹣105、原式=3÷+÷=3+=106、原式=3﹣1﹣=2﹣107、原式=+1﹣×2=2+1﹣2=1108、原式=3﹣2+1﹣1=3﹣2109、原式=+4﹣3=110、﹣1=﹣1=﹣1=0111、()()+2=﹣+2=5﹣7+2=0112、+|﹣3|﹣2﹣1=1+3﹣=3113、(﹣2)×﹣6=﹣4﹣=﹣9﹣=﹣114、原式=4﹣5=﹣1115、原式=×=1116、原式=5﹣2﹣5+2=117、原式=4﹣2+﹣1=3﹣118、原式==3﹣2=1119、原式==120、原式=+1=121、原式=3+6a=2a+3a=5a。

九年级数学上册 21.1《二次根式》习题精选 新人教版

九年级数学上册 21.1《二次根式》习题精选 新人教版
1).两式相等,必须 x≥1.但等式左边 x 可取任何数.【答案】×.
1 2 a
4. ab 、 a3b 、 是同类二次根式.…( )
3 x b
25.(a2 - mn + )÷a2b2 ;
m m m n m
b ab a b a b
1 2 2 3 3 4 99 100
1 x y x y
30.若 x,y 为实数,且 y= 1 4x + 4x 1 + .求 2 - 2 的值.
1 2 a
【提示】 a3b 、 化成最简二次根式后再判断.【答案】√.
3 x b
1
5. 8x , , 9 x2 都不是最简二次根式.( )
3 2 3 4
3. (x 1)2 = ( x 1)2 .…( )【提示】 (x 1)2 =|x-1|, ( x 1)2 =x-1(x≥
- 2 -
x2 a2 x x2 a2 x2 x x2 a2 x2 a2
1 1 1 1
29.计算(2 5 +1)( + + +…+ ).
七、选作题:(每小题 8 分,共 16 分)
x 2x x2 a2 1
28.当 x=1- 2 时,求 + + 的值.
2 y x y x
《二次根式》提高测试 答案
(一)判断题:(每小题 1 分,共 5 分)
2 2
(A) (B)- (C)-2x (D)2x
x x
a3
19.化简 ( a<0 ) 得…( )(A) a (B)- a (C)- a (D) a
15.x,y 分别为 8- 11 的整数部分和小数部分,则 2xy-y2=____________.

二次根式50道计算题(汇编)

二次根式50道计算题(汇编)

二次根式50道计算题(汇编)本文档包含了50道关于二次根式的计算题,可以帮助你巩固和练习有关二次根式的计算技巧。

题目1.计算 $2\\sqrt{3}$。

2.计算 $3\\sqrt{7}-\\sqrt{2}$。

3.计算 $\\sqrt{12}+\\sqrt{27}$。

4.计算 $4\\sqrt{6} - 2\\sqrt{3}$。

5.计算 $\\sqrt{50}$。

6.计算 $2(\\sqrt{5}+\\sqrt{3})$。

7.计算 $\\sqrt{18} - \\sqrt{8}$。

8.计算 $3\\sqrt{5} + 2\\sqrt{45}$。

9.计算 $\\sqrt{72} - 2\\sqrt{18}$。

10.计算 $4\\sqrt{10} - 3\\sqrt{8}$。

11.计算 $2\\sqrt{6} \\times 3\\sqrt{2}$。

12.计算 $(\\sqrt{3}+\\sqrt{5})^2$。

13.计算 $(\\sqrt{7}-\\sqrt{2})^2$。

14.计算 $(\\sqrt{20}+\\sqrt{5})(\\sqrt{20}-\\sqrt{5})$。

15.计算$(\\sqrt{3}+\\sqrt{2})(\\sqrt{3}-\\sqrt{2})$。

16.计算 $(4\\sqrt{2})^2$。

17.计算 $(\\sqrt{2})^4$。

18.计算 $(\\sqrt{3})^3$。

19.计算 $(\\sqrt{7})^2$。

20.计算 $3\\sqrt{5} \\div \\sqrt{3}$。

21.计算 $\\sqrt{8} \\div 2$。

22.计算 $\\sqrt{18} \\div (\\sqrt{6} \\times\\sqrt{2})$。

23.计算 $2\\sqrt{7} + \\sqrt{7}$。

24.计算 $\\sqrt{11} + 2\\sqrt{11}$。

二次根式练习10套(附答案)讲解学习

二次根式练习10套(附答案)讲解学习

精品文档二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。

3、16的平方根________,64的立方根________。

4、算术平方根等于它本身的数有________,立方根等于本身的数有________。

5、若2562=x ,则=x ________,若2163-=x ,则=x ________。

6、已知ABC Rt ∆两边为3,4,则第三边长________。

7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。

8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。

9、如果0)6(42=++-y x ,则=+y x ________。

10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。

12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。

二、选择题 13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )精品文档A. 2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。

专题 二次根式的运算计算题(共80小题)(解析版)

专题 二次根式的运算计算题(共80小题)(解析版)

八年级下册数学《第十六章 二次根式》专题 二次根式的运算计算题(共80小题)题型一 二次根式的乘除运算(共20小题)1.(2022春•宁武县期末)计算:(1;(2.【分析】(1)根据二次根式的乘法运算即可求出答案.(2)根据二次根式的乘除运算法则即可求出答案.【解答】解:(1)原式=23×(﹣=23×(﹣=(﹣=﹣(2)原式=÷(=(=1(−4)=−23.【点评】本题考查二次根式的乘除运算,解题的关键是熟练运用二次根式的乘除运算法则.2.计算:(1×(×((2(a >0,b >0).【分析】(1)分别将系数相乘,根号下的数相乘,再开方,最后再相乘即可;(2)将二次根式的系数和被开方数分别相乘,然后开方,再相乘即可.【解答】解:(1×(×(=32×(﹣1)×(−13)×=12×120=60;(2=2b •(−32)•3=(−9b )=﹣9a 【点评】本题考查二次根式的乘除法,掌握运算法则是解题的关键.3.(2021春•静安区期中)计算:×÷×.【分析】直接利用二次根式的乘除运算法则计算得出答案.【解答】解:原式=÷=−12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.4.(2021春•×÷.【分析】根据单项式乘单项式和单项式除以单项式的法则化简,结合二次根式的性质与化简即可得出答案.÷=32a===【点评】本题考查了二次根式的乘除法,二次根式的性质与化简,根据单项式乘单项式和单项式除以单项式的法则化简是解题的关键.5.计算下列各题:(1((2)﹣×(3(4×(×(【分析】(1)(2)(3)(4)把二次根式外面的数和里面的数分别相乘,再把结果化为最简二次根式即可;【解答】解:(1(=2×(−12)==﹣(2)﹣×=﹣=(3==2×53×13=1303;(4×(×(=32×(﹣1)×(−13)×=12×120=60;【点评】本题考查的是二次根式的乘除法,在解答此类题目时要注意结果化为最简二次根式.6.计算:(1(2×÷(3)(4【分析】(1)利用二次根式的性质化简求值;(2)利用二次根式的性质化简求值;(3)利用二次根式的性质化简求值;(4)利用二次根式的性质化简;【解答】解:(1==×===(2×÷=(=34×(−23)×118=−136×=(3)==27×13×320×=2720=(4=====3y .【点评】本题考查了二次根式的化简求值,解题的关键是掌握二次根式的性质.7.(2022秋•虹口区校级期中)计算:÷(【分析】根据二次根式的乘除法法则计算即可.【解答】解:原式=(﹣3×12×43)=﹣2=﹣.【点评】本题考查的是二次根式乘除法,掌握二次根式的乘除法法则是解题的关键.8.(2022秋•×÷m >0).【分析】先利用二次根式的乘法法则和除法法则得到原式=2m ×32×3然后约分后利用二次根式的性质化简.【解答】解:原式=2m ×32×3==9n 2.【点评】本题考查了二次根式的乘除法:灵活运用二次根式的乘法法则和除法法则是解决问题的关键.也考查了二次根式的性质.9.(2022秋•÷【分析】根据二次根式的乘除法及二次根式的性质与化简计算方法进行计算即可得出答案.【解答】解:∵−x 2y >0,−y 2x>0,1x 3y >0,∴x <0,y <0,原式=−43(=×=﹣8|x 2|•|y |.=﹣8x 2•(﹣y )=8x 2y .【点评】本题主要考查了二次根式的乘除法及二次根式的性质与化简,熟练掌握二次根式的乘除法及二次根式的性质与化简的方法进行求解是解决本题的关键.10.(2022秋•(a >0)【分析】直接利用二次根式的性质化简进而得出答案.(a >0)=−3b •a 2b ÷=﹣9a=【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.11.(2021秋•(【分析】直接利用二次根式的乘除运算法则化简,进而得出答案.【解答】解:原式=2b •(−23)×=−4b•a=【点评】此题主要考查了二次根式的乘除运算、二次根式的性质与化简,正确化简二次根式是解题关键.12÷⋅(x >0).【分析】根据二次根式的乘除法运算法则进行计算.【解答】解:∵x >0,xy 3≥0,∴y ≥0,∴原式(•(=(=−94xy •(−56x =158x 2【点评】正确理解二次根式乘除法、积的算术平方根等概念是解答问题的关键.题型二 二次根式的加减运算(共20小题)1.(2022春•大连月考)计算:(1)(2+【分析】(1)直接化简二次根式,再合并得出答案;(2)直接化简二次根式,再合并得出答案.【解答】解:(1)原式=2×6×+3×=+=(2)原式=23×6×a ×==【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.2.(2022秋•丰城市校级期末)计算:(1(2+1)(3【分析】(1)直接化简二次根式,进而合并得出答案;(2)直接利用二次根式的乘法运算法则化简,进而合并得出答案.【解答】解:(1)原式=+=(2)原式=5+3=﹣2.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.3.(2021秋•上蔡县校级月考)计算:(1)+(2).【分析】(1)先化为最简二次根式,然后去括号合并同类二次根式即可;(2)先化为最简二次根式,然后去括号合并同类二次根式即可.【解答】解:(1)原式=+=(2)原式=+=【点评】本题考查二次根式的加减运算,解题的关键是化成最简二次根式.4.(2022秋•.【分析】先化简二次根式,再合并二次根式.【解答】解:原式=−23×=【点评】本题考查了二次根式的加减法,掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解题关键.5.(2022春•+.【分析】先化简二次根式,去括号,合并同类二次根式即可.【解答】解:原式==【点评】本题考查了二次根式的加减法,掌握二次根式的化简和合并同类二次根式是解题的关键.6.(2022春•洛阳期末)计算:.【分析】先把二次根式化简,再利用二次根式的加减运算法则计算即可.【解答】解:原式==【点评】本题考查了二次根式的加减混合运算,熟练掌握二次根式的加减运算法则是解题的关键.7.(2022春•泰山区校级月考)计算:(1(2)(3;(4【分析】先化简二次根式,再合并同类二次根式即可.【解答】解:(1)原式=+3×2×==(2)原式=3×5×=+=(3)原式=42=+2=2;(4)原式=15+14×==【点评】本题考查了二次根式的加减法,掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并是解题的关键.8.(2022秋•虹口区校级月考)计算:)−12(4.【分析】先计算开方运算,再去括号,合并即可得到答案.【解答】解:原式=2×−12×==【点评】此题考查的是二次根式的加减法,掌握其运算法则是解决此题的关键.9.(2022秋•2x 【分析】根据二次根式的加减运算以及乘除运算法则即可求出答案.【解答】解:原式=23x 2=2=﹣【点评】本题考查二次根式的加减运算,解题的关键是熟练运用二次根式的加减运算以及乘法运算.10.(2022秋•北碚区校级月考)计算下列各题:(1a +(2)a +【分析】(1)先利用二次根式的性质化简各个根式,再合并同类二次根式即可求解;(2)先利用二次根式的性质化简各个根式,再合并同类二次根式即可求解.【解答】解:(1a=13×a 2+3a −a 4×=−32a=(a−a +a−32a)=−12a(2)解:a=7a ×a 2=+=【点评】本题考查了二次根式的性质及加减运算,掌握正确化简各个二次根式是关键.11.(2022秋•嘉定区月考)计算:+【分析】先根据二次根式的性质进行化简,再合并同类二次根式计算即可.【解答】解:原式===【点评】此题考查的是二次根式的加减法及性质,掌握其法则是解决此题的关键.12.(2022秋•x >0 ).【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=32•+2x 2×=+=【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.13.(2022•【分析】根据二次根式的加减运算法则即可求出答案.【解答】解:由题意可知:x >0,原式==【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的加减运算以及乘除运算法则.题型三 二次根式的混合运算(共40小题)1.(2022秋•市北区校级期末)计算:(1)2(22.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)2=5﹣+=7;(22=2,=2=﹣2.【点评】本题考查了二次根式的混合运算,分母有理化,准确熟练地进行计算是解题的关键.2.(2022春•漳平市月考)计算:(1)÷(2÷【分析】(1)先算除法,再算加减;(2)先算乘除,再合并即可.【解答】解:(1)原式==+=(2)原式==4+=4【点评】本题考查二次根式的混合运算,解题的关键是掌握二次根式相关运算的法则.3.(2022秋•平南县期末)计算:(1)(13)2+(π−2022)0;(2÷【分析】(1)先计算零指数幂、算术平方根、平方和绝对值,再计算加减法即可的得到结果.(2)先算乘除法,再将二次根式化为最简二次根式,最后算加减法即可得到结果.【解答】解:(1)原式=19+1﹣32=−359+(2)原式==4−2+=2+【点评】本题考查的是二次根式的混合运算、零指数幂,解题的关键在于熟练掌握各运算法则.4.(2022秋•绥中县校级期末)计算:(1;(2÷2.【分析】(1)分别化简各项,去括号,再合并;(2)先计算乘法和除法,将括号展开,再合并.【解答】解:(1==+=(2÷2=+3+=+8+3+=15+【点评】本题考查了二次根式的混合运算,掌握二次根式的运算法则进行计算是关键.5.(2022秋•城关区校级期末)计算:(1)++(2)+0−(1)−1【分析】(1)根据平方差公式将题目中的式子展开,然后合并同类项即可;(2)根据零指数幂、负整数指数幂和去绝对值的方法将题目中的式子化简,再合并同类项和同类二次根式即可.【解答】解:(1)+=3﹣=﹣(2)+0−(1)−1=1+13=3.【点评】本题考查二次根式的混合运算、零指数幂、负整数指数幂和去绝对值的方法,熟练掌握运算法则是解答本题的关键.6.(2022秋•市北区校级期末)计算:(1)×(2.【分析】(1)利用乘法的分配律进行运算即可;(2)先化简,再算加减即可.【解答】解:(1)===(2==83−1 =53.【点评】本题主要考查二次根式的混合运算,解答的关键是对相应的运算法则的掌握.7.(2022春•宁南县校级月考)计算:(1++÷.(2+a 【分析】(1)先化简,然后合并同类二次根式即可;(2)先化简,然后合并同类二次根式即可.【解答】解:(1×=+=+(=2=2;(2+a=3=2【点评】本题考查二次根式的混合运算,熟练掌握运算法则是解答本题的关键.8.(2022秋•城关区校级期末)计算.(11)2;(2)(π−1)0+(12)−1+【分析】(1)先将题目中的式子展开,然后合并同类项和同类二次根式即可;(2)根据零指数幂、负整数指数幂、去绝对值的方法可以解答本题.【解答】(11)2=2﹣1+3﹣1=1;(2)(π−1)0+(12)−1+=5﹣8=﹣【点评】本题考查二次根式的混合运算、零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键,注意完全平方公式和平方差公式的应用.9.(2022春•庐阳区校级月考)计算:(1)+(2×÷2.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的乘法法则和除法法则运算,把二次根式化为最简二次根式,然后合并即可.【解答】解:(1)==(2×÷2=÷2==【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法法则和除法法则是解决问题的关键.10.(2022春•灵宝市校级月考)计算:(1−1(2))2.【分析】(1)先化简各数,然后根据二次根式的加减进行计算即可求解;(2)根据平方差公式与完全平方公式进行计算即可求解.【解答】解:(1)原式==(2)原式=12−18−3−4+=.【点评】本题考查了二次根式的混合运算,乘法公式,掌握二次根式的运算法则以及乘法公式是解题的关键.11.(2022春•伊川县期中)计算:(1÷(2)++2)2.【分析】(1)先计算二次根式的除法和乘法,再合并同类二次根式即可;(2)先利用平方差和完全平方公式展开,再计算减法即可;【解答】解:(1)原式==3(2)原式=5−2−(3++4)==.【点评】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.12.(2021秋•.【分析】运用化成最简二次根式方法和二次根式混合运算法则计算即可.【解答】解:原式==+1=+1=【点评】本题考查了二次根数的混合运算,去绝对值符号,掌握相关公式和法则是关键.13.(2022秋•通川区期末)计算下列各题.(1(2)3×÷.【分析】(1)先化简每一个二次根式,然后再进行计算即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1==2==﹣(2)3×÷==+=2+=2.【点评】本题考查了二次根式的混合运算,分母有理化,准确熟练地进行计算是解题的关键.14.(2022秋•达川区期末)计算:①(÷②222)+|1【分析】①根据二次根式的除法和算术平方根将题目中的式子展开,然后合并同类项和同类二次根式即可;②根据完全平方公式、平方差公式和去绝对值的方法可以将题目中的式子展开,然后合并同类项和同类二次根式即可.【解答】解:①(=÷1)=3+1=﹣2;②222)+|1=2﹣(3﹣4)+1=2+1+1=【点评】本题考查二次根式的混合运算、平方差公式,熟练掌握运算法则是解答本题的关键,注意平方差公式的应用.15.(2022•南京模拟)计算:(1)|2+3 2;(2)(3+2(332(3+【分析】(1)先化简绝对值,并运用二次根式乘法法则计算,再合并同类二次根式即可;(2)先运用平方差公式计算二次根式乘法,再合并同类二次根式即可.【解答】解:(1)原式2−12++32=1;(2)原式=7(37(3==【点评】本题考查二次根式的混合运算,熟练掌握二次根式运算法则是解题的关键.16.(2022秋•卧龙区校级期末)计算:(1)(−2023)0+(−13)−2+1;(2)(7+)2.【分析】(1)分别化简各数,再合并;(2)利用平方差公式和完全平方公式展开,再合并计算.【解答】解:(1)(−2023)0+(−13)−2+1=1+9+++1=7+(2)(7+)2=722−(20+=49−48−21+=.【点评】本题考查了二次根式的混合运算,实数的混合运算,零指数幂和负指数幂,平方差公式和完全平方公式,掌握相应的计算方法是关键.17.(2022秋•市北区校级期末)计算:(1)+2;(2)2.【分析】(1)根据平方差公式和二次根式的乘法可以解答本题;(2)先化简,然后合并同类项和同类二次根式即可.【解答】解:(1)2=5﹣2﹣[+11)]×1)=5﹣2﹣(2﹣1)×1)=5﹣2﹣1×1)=5﹣2+1=4(2)2=+2﹣+1=2+3﹣+2﹣+1=8﹣【点评】本题考查二次根式的混合运算,熟练掌握运算法则是解答本题的关键.18.(2022秋•皇姑区校级期末)计算:(1+(1)2.【分析】先算乘方,再算乘法,最后算加减即可.【解答】解:(1+(1)2=12﹣1=13﹣【点评】本题考查了二次根式的混合运算,掌握运算法则是解题的关键.19.(2022秋•佛山校级期末)计算:)2.【分析】原式利用完全平方公式,分母有理化,以及单项式乘多项式法则计算即可求出值.【解答】解:原式=3﹣+1=3﹣+1﹣2+1)﹣3+1=3﹣+1﹣2﹣3+1=﹣【点评】此题考查了二次根式的混合运算,以及分母有理化,熟练掌握运算法则是解本题的关键.20.(2022秋•【分析】直接化简二次根式,再利用二次根式的混合运算法则计算得出答案.【解答】解:原式=3−2=+1=5﹣+1=6﹣【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.21.(2022秋•白塔区校级月考)计算:(1×((2)(×(5﹣1)2;(3÷(×+(4+|3(2023﹣π)0﹣(−12)﹣2.【分析】(1)先将原式中的二次根式化为最简二次根式,再合并同类二次根式,最后根据乘法分配律计算即可得到结果;(2)原式先根据平方差公式和完全平方公式计算即可得到结果;(3)原式先计算除法和乘法,再将二次根式化为最简二次根式,最后合并同类二次根式即可得到结果;(4)原式先根据绝对值的代数意义,零指数幂和负整数指数幂的运算法则计算,最后合并同类二次根式即可得到结果.【解答】解:(1)原式=×=×=+×=(2)原式=25−12−(28+=25﹣12﹣281=﹣16(3)原式=﹣4=﹣4(4)原式=++1−4=【点评】本题主要考查二次根式的混合运算,涉及的知识点有:平方差公式、完全平方公式、零指数幂、绝对值、负整数指数幂,熟练掌握二次根式的混合运算法则和运算顺序是解题关键.。

中考数学复习《二次根式》专项练习题-带含有答案

中考数学复习《二次根式》专项练习题-带含有答案

中考数学复习《二次根式》专项练习题-带含有答案一、选择题1.下列二次根式属于最简二次根式的是()A.√12B.√a2b C.√0.5D.√x2+1 2.若二次根式√x−3有意义,则x的取值范围是()A.x≥3 B.x≤3 C.x>3 D.x<3 3.下列计算正确的是()A.√12÷3=2B.√3+√3=3C.√13−√3=√10D.(√3+1)(√3−1)=24.已知√(2a−1)2=1−2a,那么a的取值范围是()A.a>12B.a<12C.a≥12D.a≤125.下列各式计算结果正确的是()A.6√3−2√3=4B.5√3+5√2=10√5C.4√2÷2√2=2√2D.4√3×2√2=8√66.已知x=√2+1,则代数式x+1x−1的值为()A.√2+1B.√2+2C.3D.√2−17.设x,y为实数,且y=4+√5−x+√x−5,则|y﹣x|的值是()A.1 B.9 C.4 D.58.如图,从一个大正方形中裁去面积为27和48的两个小正方形,则剩下阴影部分的面积为()A.36 B.27√3C.72 D.48√3二、填空题9.分母有理化:√5=.10.化简二次根式:√18x3=.11.式子√3x−2有意义,则x的取值范围是.12.计算(√2−√6)×√18−3√13=.13.如果a=√5−2,则1a +√1a2+a2−2=.14.计算:(1)(√6−√2)0+(−1)2023+12×√32(2)(√18−√92)×(−√8)+√643 (3)(√5+1)2√15−√12√315.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知a =√3−√2,b =√3+√2.求:(1)a 2b −ab 2 的值;(2)a 2+ab +b 2 的值.17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元? 18.阅读材料:像(√3+1)(√3−1)=2,√a ×√a =a(a ≥0)…这种两个含二次根式的代数式相乘,积不含二次根式,我们称这两个代数式互为有理化因式.在进行二次根式运算时,利用有理化因式可以化去分母中的根号. 例如:2√2=√22√2×√2=√24;√3+1√3−1=√3+1)(√3−1)(√3+1)=2+√3.解答下列问题:(1)√6的有理化因式是 ,√3+2的有理化因式是 .(2)观察下面的变形规律,请你猜想:√n+1+√n = .√2+1=√2−1 √3+√2=√3−√2 √4+√3=√4−√3…(3)利用上面的方法,请化简:1+√2+√2+√3√3+√4⋯⋯+√2022+√2023.1.D2.A3.D4.D5.D6.A7.A8.C9.2√5510.3x √2x11.x ≥2312.6−7√313.√5+614.(1)解:原式=1+(−1)+12×4√2=0+2√2=2√2. (√6−√2)0=1 (−1)2023=−1 12√32=2√2(2)解:原式=√18×(−√8)+√92×√8+4=−√144+√36+4=−12+6+4=−2. (3)解:原式=(√5)2+2√5+1√15√3√12√3=5+2√5+1+√5−2=4+3√5. 15.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3=x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2. 16.(1)解: ∵a =√3−√2 b =√3+√2∴ab =(√3−√2)(√3+√2)=3−2=1 a −b =(√3−√2)−(√3+√2)=−2√2 则 a 2b −ab 2=ab(a−b)=1×(−2√2)=−2√2;(2)解:a2+ab+b2=a2−2ab+b2+3ab=(a−b)2+3ab=(−2√2)2+3×1=8+3=11.17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.(1)√6;√3−2或2−√3(2)√n+1−√n(3)解:利用(2)中的规律,可得:1+√2+√2+√3√3+√4⋯⋯+√2022+√2023=√2−1+√3−√2+√4−√3+⋯+√2023−√2022 =√2023−1。

二次根式练习题50道(含答案)

二次根式练习题50道(含答案)

二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。

二次根式的四则运算习题精 选(含答案)

二次根式的四则运算习题精    选(含答案)

D.x≥1或x≤-1
×2 =8 B.5 ×4 =20
C.4
×3 =7 D.5 ×4 =20
二、填空题 1. =_______. 2.自由落体的公式为S= gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为 720m,则下落的时间是_________. 三、综合提高题 1.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分 水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器 中的水面下降了20cm,铁桶的底面边长是多少厘米?
二次根式的乘除 习题精选(二)
第一课时 一、选择题 1.若直角三角形两条直角边的边长分别为 cm和 cm,那么此直角三角形斜边长是( ) A.3 cm B.3 cm C.9cm D.27cm 2.化简a 的结果是( )A. B. C.D.-
3.等式
成立的条件是( ) A.x≥1 B.x≥-1 C.-1≤x≤1 4.下列各等式成立的是( ) A.4
-1,则x2+2x+1=________.
4.已知a=3+2 ,b=3-2 ,则a2b-ab2=_________.
三、综合提高题 1.化简
2.当x= 时,求 + 的值.(结果用最简二次根式表示)
答案: 一、1.A 2.D 二、1.12.4
-24 3.2 4.4
二次根式的乘除 习题精选
一、选择题 1.下列计算正确的有( ) ① ; ② ; ③ ; ④ 。 2.下列计算正确的是( ) A.
一个底面为30cm30cm长方体玻璃容器中装满水?现将一部分水例入一个底面为正方形高为10cm铁桶中当铁桶装满水时容器中的水面下降了20cm铁桶的底面边长是多少厘米
二次根式的四则运算 习题精选
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档