概率统计A答案

合集下载

《概率论与数理统计A》期末习题一答案

《概率论与数理统计A》期末习题一答案

《概率论与数理统计A 》期末习题一答案一、简答题(本题满分30分,共含6小题,每小题5分)1、设A ,B 为随机事件,A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,求()P AB 。

解:32.04.08.0)()()(=⨯==B P A P B A P 。

(5分)2、设随机变量X 的概率密度为⎩⎨⎧<<=其他 010 )(x cx x f ,求常数c 的值。

解:121)(1===⎰⎰+∞∞-c dx cx dx x f ,因此2=c 。

(5分) 3、 已知随机变量)4,1(~N X ,求}21{<<X P 。

解:()021}21221211{}21{Φ-⎪⎭⎫⎝⎛Φ=-<-<-=<<X P X P (3分) 1915.05.06915.0=-=。

(2分)4、设随机变量X 和Y 相互独立,)4,3(~N X ,)9,2(~N Y ,求变量12+-=Y X Z 的数学期望和方差。

解:()()()()51261212=+-=+-=+-=Y E X E Y X E Z E ; (2分)()()()()25916412=+=+=+-=Y D X D Y X D Z D 。

(3分) 5、 已知10个产品中有3个次品,现从中有放回地取3次,每次任取1个,求所取的3个产品中恰有2个次品的概率。

解:设X :所取得3个产品中次品的个数,则⎪⎭⎫⎝⎛103,3~B X (2分)1000189107103}2{223=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==C X P (3分) 6、设随机变量X 、Y 相互独立,且都服从标准正态分布,则Z(同时要写出分布的参数) ?~(1)t 。

(5分)二、(本题满分10分) 编号为1,2,3的三台仪器正在工作的概率分别为0.9,0.8和0.4,从中任选一台。

(1) 求此台仪器正在工作的概率;(2) 已知选到的仪器正在工作,求它编号为2的概率。

2017~2018(一)概率统计试卷(理工类)A卷(答案)

2017~2018(一)概率统计试卷(理工类)A卷(答案)


X2
...
X 100

1 } (用中心极限定理)
100
3
解: EX

1
xf (x)dx

1
x 2xdx

1
2 x 2 dx
2
0
0
0
3
EX 2 1 x 2 2xdx 1 2x3dx 1 , DX EX 2 (EX )2 1
0
0
2
18
P{ X1
M (M 1)
3.在 H0 为原假设, H1 为备择假设的假设检验中,若显著性水平为 ,则( C )。 (A) P (接受 H0 H0 成立)= ; (B) P (接受 H1 H1 成立)= ; (C) P (接受 H1 H0 成立)= ; (D) P (接受 H0 H1 成立)= 。
4. 设随机变量 X 和Y ,若 E( XY ) E( X )E(Y ) ,则下列结论一定成立的是(B )。
f
(x,
y)

Axe y
,0

x

1,0

y

x
2

0,
其他
求:(1)常数 A;(2)求 X 与 Y 的边缘概率密度 f X (x) 和 fY ( y) ;(3)判断 X 与 Y 的独立
性。
解:(1) f (x, y)dxdy 1
D
f (x, y)dxdy
U W , 拒绝 H 0 ,认为元器件的平均寿命有显著变化。
(八)(6)
已知 X 1 和 X 2 的概率分布律:
1
X1
~

1
0 1

概率统计试卷A及答案

概率统计试卷A及答案

概率统计试卷A及答案2010—2011—2概率统计试题及答案⼀、选择题(每题3分,共30分)1 11 .已知P(A) P(B) P(C) , P(AC) P(BC) , P(AB) 0 求事件A,B,C 4 16全不发⽣的概率1 3(A) 3(B)8(C)2 ?设A、B、C为3个事件?运算关系A B C表⽰事件___________ .(A)A、B、C⾄少有⼀个发⽣(B)A、B、C中不多于⼀个发⽣(C) A , B, C不多于两个发⽣(D) A,⽉,C中⾄少有两个发⽣3?设X的分布律为P{X k} 2 k (k 1,2,),贝U _________________________ .(A) 0的任意实数(B) 31(C) 3(D) 14. 设X为⼀个连续型随机变量,其概率密度函数为f(x),则f(x)必满⾜(A) 0 f (x) 1 ( B)单调不减(C) f (x)dx 1(D) lim f (x) 15. 对正态总体的数学期望⼙进⾏假设检验,如果在显著性⽔平=下接受H。

0,那么在显著性⽔平=下,下列结论正确的是:(A)必接受H。

( B)可能接受也可能拒绝H 0(C)必拒绝H。

( D)不接受,也不拒绝H。

6. 设随机变量X和丫服从相同的正态分布N(0,1),以下结论成⽴的是(A) 对任意正整数k,有E(X k) E(Y k)(B) X Y服从正态分布N(0,2)(C) 随机变量(X ,Y)服从⼆维正态分布(D) E(XY) E(X) E(Y) 7.若正态总体X 的⽅差D (X )1 2未知,检验期望E (X ) 0⽤的统计量是(C) x 0 (n 1) (D)x0 — 1 2n勺2 2X X kX X k1k 18.设⼆维随机变量(X,Y )服从G 上的均匀分布,G 的区域由曲线y x 2与参数落在区间(?1 , ?2 )之内的概率为1 参数落在区间(?1 , ?2)之外的概率为D )对不同的样本观测值,区间(?1 , ?2)的长度相同.、填空题(每题3分,共30 分)1 1 _ _1 n 2-(X i X)2( D)n i 1x 所围, 则(X ,Y )的联合概率密度函数为 (A) f(x,y) 6, (x,y) G0,其他(B) f(x ,y) 1/6, (x,y) G 0, 其他 (C) f(x,y) 2, (x,y) G 0,其他(D )f(x ,y) 1/2, (x,y) G 0, 其他 9 ?样本 X 1, X 2,,X n 来⾃总体N ( 2), 则总体⽅差 2的⽆偏估计为 A ) S 12 七 n (X i X)2( n 2 i 1S ;七(X i n 1 i 1X)2 S41 nf (X i X)10.设(2)是参数的置信度为1 的区间估计,则以下结论正确的是(A)x. n(n 1) (B)1n _2⼆x X kx 0 n- n 2 2 2x X kk 1C )区间( 2)包含参数的概率为11?设P(A) P(B) - , P(A B)—,则P(A|B)3 2 12?设⼀批产品共10件,其中8件正品,2件次品,从中任意抽取3件,则恰有1件是次品的概率是 __________ .13?已知随机变量X在[a, a]上服从均匀分布,且P{X 1}丄,则a _____________ . 3设随机变量X服从(0,3)上的均匀分布,则随机变量丫=X2在(0,9)的概率密度函数为____________ .4.设X ~ N(3,4),丫~N( 5,6),且X 与丫相互独⽴,则X 2Y ~ _____________ . 5?设随机变量X的数学期望为E(X) 、⽅差D(X) 2,则由切⽐雪夫不等式有P X —.4 ------------------6.设随机变量X的分布律为E(2X 1) __________ .7. 已知D(X) 25,D(Y) 36, (X,Y) 0.4,则D(X Y) _______________ .8. 设总体X服从参数为的泊松分布,X1 , X2 , , X100为来⾃总体的⼀个样本,则矩估计量为____________ .9. 设总体X服从正态分布N(m, s2),X1,X2, X3是来⾃总体X的⼀个样本,则X1,X X B的联合概率密度为___________ .10. 设总体X服从正态分布N(m, s2),其中s2未知,现从总体中抽取⼀容量为n的样本,则总体均值的置信度为1 的置信区间为 ________ .,X10是来⾃总体X的⼀个样本且X ~ N (0,0.52)求、设X1,X2,P i24 . ( 0.O5(9) 16 , 2.io(1O) 16,)i 1四、从⼀正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.(已知:(2.33) 0.99, (2.06) 0.98 , t o.8(9) 0.261 ,t o.8(1O) 0.26)五、在肝癌诊断中,有⼀种甲胎蛋⽩法,⽤这种⽅法能够检查出95%勺真实患者,但也有可能将10%勺⼈误诊。

2002-2003学年第一学期概率统计(A)期末考试试卷答案

2002-2003学年第一学期概率统计(A)期末考试试卷答案

2002-2003学年第一学期概率论与数理统计(A )期末考试试卷答案一.填空题(本题满分15分,共有5道小题,每道小题3分)请将合适的答案填在每题的空中 1.掷两颗骰子,已知两颗骰子的点数之和为6,则其中有一颗为1点的概率为________. 解:两颗骰子的点数之和为6共有5种可能情况:()()()()()1,5,2,4,3,3,4,2,5,1,而其中有一颗为1点有两种可能:()()1,5,5,1,因此所求概率(条件概率)为52. 应填:52. 2.设二维随机变量()Y X ,的联合密度函数为()()⎩⎨⎧<<<<--=其它042,206,y x y x k y x f 则=k ________. 解:由()1,=⎰⎰+∞∞-+∞∞-dxdy y x f ,得()()()⎰⎰⎰⎰⎰---=--==+∞∞-+∞∞-422024220626,1dy y x k dx y x k dy dxdy y x f()()[]k dy y y k 84624222=---=⎰所以,81=k . 应填:813.设总体()2,~σμNX ,()1021,,,X X X 是从X 中抽取的一个样本,样本量为10,则()1021,,,X X X 的联合概率密度函数()=1021,,,x x x g _________________________.解:由于总体()2,~σμNX ,所以总体X 的概率密度函数为()()⎭⎬⎫⎩⎨⎧--=222exp 21σμσπx x f ()+∞<<∞-x , 并且()1021,,,X X X 是从中抽取的一个样本,即()1021,,,X X X 是简单随机样本,所以样本中的n 个分量n X X X ,,,21 是独立同分布的随机变量,而且其分布与总体分布相同.因此样本()1021,,,X X X 的联合概率密度函数()()()()10211021,,,x f x f x f x x x g =()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--⎭⎬⎫⎩⎨⎧--⋅⎭⎬⎫⎩⎨⎧--=22102222212exp 212exp 212exp 21σμσπσμσπσμσπx x x ()()⎭⎬⎫⎩⎨⎧--=∑=10122210221exp 21i i x μσπσ ()()⎭⎬⎫⎩⎨⎧--=∑=101225221exp 21i i x μσπσ 应填:()()⎭⎬⎫⎩⎨⎧--∑=101225221exp 21i i x μσπσ. 4.设总体X其中10<<θ是未知参数,()n X X X ,,,21 是从中抽取的一个样本,则参数θ的矩估计量=θˆ__________________.解:()()()()θθθθθθθθθθ232134413122122222-=+-+-+=-⨯+-⨯+⨯=X E所以,()()X E -=321θ.将()X E 替换成样本均值X ,得参数θ的矩估计量为 ()X -=321ˆθ. 应填:()X -321.5.显著性检验是指____________________________________. 解:显著性检验是指只控制犯第Ⅰ类错误的概率,而不考虑犯第Ⅱ类错误的概率的检验. 应填:只控制犯第Ⅰ类错误的概率,而不考虑犯第Ⅱ类错误的概率的检验.二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内) 1.设随机变量()2,1~-N X ,()2,1~N Y ,而且X 与Y 不相关,令Y aX U +=,bY X V +=,且U 与V 也不相关,则有()A .0==b a ; ()B .0≠=b a ; ()C .0=+b a ; ()D .0=ab .【 】解:()()bY X Y aX V U ++=,cov ,cov()()()()()()()()Y bD Y X ab X aD Y Y b Y X ab X X a +++=+++=,cov 1,cov ,cov 1,cov再由于随机变量()2,1~-N X ,()2,1~N Y ,而且X 与Y 不相关,所以()2=X D ,()2=Y D ,()0,cov =Y X . 因此,()()b a V U +=2,cov .这表明:随机变量U 与V 不相关,当且仅当()()02,cov =+=b a V U ,当且仅当0=+b a . 应选:()C .2.对两台仪器进行独立测试,已知第一台仪器发生故障的概率为1p ,第二台仪器发生故障的概率为2p .令X 表示测试中发生故障的仪器数,则()=X E()A .21p p +; ()B .()()122111p p p p -+-; ()C .()211p p -+; ()D .21p p .【 】解:由于X 表示测试中发生故障的仪器数,所以X 的取值为2,1,0,并且X 的分布律为所以()()()()()21211221212111110p p p p p p p p p p X E +=⨯+-+-⨯+--⨯=. 应选:()A .3.若Y X ,ρ表示二维随机变量()Y X ,的相关系数,则“1,=Y X ρ”是“存在常数a 、b 使得{}1=+=bX a Y P ”的()A .必要条件,但非充分条件; ()B .充分条件,但非必要条件; ()C .充分必要条件; ()D .既非充分条件,也非必要条件.【 】解:由相关系数的性质,可知“1,=Y X ρ”是“存在常数a 、b 使得{}1=+=bX a Y P 的充分必要条件. 应选:()C .4.根据辛钦大数定律,样本均值X 是总体期望()μ=X E 的()A .矩估计量; ()B .最大似然估计量; ()C .无偏估计量; ()D .相合估计量.【 】解:辛钦大数定律指出:设{}n X 是独立同分布的随机变量序列,且()μ=n X E 存在,则对任意给定的0>ε,有01lim 1=⎭⎬⎫⎩⎨⎧≥-∑=∞→εμn i i n X n P , 即{}0lim =≥-∞→εμX P n这表明,样本均值X 是总体期望()μ=X E 的相合估计量. 应选:()D .5.设总体X 服从参数10=λ的泊松(Poisson )分布,现从该总体中随机选出容量为20一个样本,则该样本的样本均值的方差为()A . 1; ()B . 5.0; ()C . 5; ()D . 50.【 】解:由于总体服从参数10=λ的泊松(Poisson )分布,所以()10==λX D .又从该总体中随机选出容量为20一个样本,则若令X 是其样本均值,则()()5.02010===n X D X D . 应选:()B .三.(本题满分10分)某学生接连参加同一课程的两次考试.第一次考试及格的概率为p ,如果他第一次及格,则第二次及格的概率也为p ,如果他第一次不及格,则第二次及格的概率为2p. ⑴ 求他第一次与第二次考试都及格的概率. ⑵ 求他第二次考试及格的概率.⑶ 若在这两次考试中至少有一次及格,他便可以取得某种证书,求该学生取得这种证书的概率. ⑷ 若已知第二次考试他及格了,求他第一次考试及格的概率. 解:设{}该学生第一次考试及格=A ,{}该学生第二次考试及格=B . 则由题设,()p A P =,()p A B P =,()2p B A P =. ⑴ ()()()2p A B P A P AB P ==.⑵ ()()()()()()()21212p p p p p A B P A P A B P A P B P +=-+=+=. ⑶ ()()()()()()23212p p p p p p AB P B P A P B A P -=-++=-+=⋃. ⑷ ()()()()p pp p p B P AB P B A P +=+==12212.四.(本题满分10分)设顾客在某银行等待服务的时间X (单位:分钟)是服从5=θ的指数分布.某顾客在窗口等待服务,若等待时间超过10分钟,他便离开.⑴ 求某次该顾客因等待时间超过10分钟而离开的概率.⑵ 若在某月中,该顾客来到该银行7次,但有3次顾客的等待时间都超过10分钟,该顾客是否有理由推断该银行的服务十分繁忙. 解:由于随机变量X 服从5=θ的指数分布,所以X 的概率密度函数为()⎪⎩⎪⎨⎧≤>=-00515x x ex f x. ⑴ {}{}135335283.05110102105105==-==≥=-+∞-∞+-⎰e e dx e X P P x x分钟顾客等待时间超过 ⑵ 设Y 表示该顾客在一个月内等待时间超过10分钟的次数,则()2,7~-e b Y .所以,()()()048494457.013423237=-==--e eC Y P .这表明,()3=Y 是一个小概率事件,由于小概率事件在一次试验中是几乎不可能发生的,现在发生了.因此该顾客有理由推断该银行的服务十分繁忙. 五.(本题满分10分)一射手进行射击,击中目标的概率为p ()10<<p ,射击直至击中2次目标时为止.令X 表示首次击中目标所需要的射击次数,Y 表示总共所需要的射击次数. ⑴ 求二维随机变量()Y X ,的联合分布律.⑵ 求随机变量Y 的边缘分布律.⑶ 求在n Y =时,X 的条件分布律.并解释此分布律的意义. 解:⑴ 随机变量Y 的取值为 ,4,3,2;而随机变量X 的取值为1,,2,1-n ,并且(){}次第次,第二次命中目标在第一次命中目标在第n m P n Y m X P ===, 2211p q p q p q n m n m ----=⋅=, (其中p q -=1) ()1,,2,1;,4,3,2-==n m n .⑵ ()()()221122111,p q n p q n Y m X P n Y P n n m n n m --=--=-======∑∑,() ,4,3,2=n . 即随机变量Y 的边缘分布律为()()221p q n n Y P n --== () ,4,3,2=n .⑶ 由于()()()()111,2222-=-=======--n p q n p q n Y P n Y m X P n Y m X P n n 因此在n Y =时,X 的条件分布律为 ()11-===n n Y m X P ()1,,2,1-=n m 这表明,在n Y =的条件下,X 的条件分布是一个“均匀”分布.它等可能地取值1,,2,1-n .六.(本题满分10分)一食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而一只蛋糕的价格是一个随机变量,它取1元、2.1元、5.1元各个值的概率分别为3.0、2.0、5.0.某天该食品店出售了300只蛋糕.试用中心极限定理计算,这天的收入至少为395元的概率. (附表:标准正态分布()x Φ的数值表:解:设k X 表示该食品店出售的第k 只蛋糕的价格()300,,2,1 =k ,则k X 的分布律为所以,()29.15.05.12.02.13.01=⨯+⨯+⨯=k X E ,()713.15.05.12.02.13.012222=⨯+⨯+⨯=k X E , 所以,()()()[]0489.029.1713.1222=-=-=k k k X E X E X D .因此,30021,,,X X X 是独立同分布的随机变量,故()()()()⎪⎪⎪⎪⎪⎭⎫⎝⎛-<--=⎪⎭⎫ ⎝⎛≥∑∑∑∑∑∑======3001300130013001300130013951395k k k k k k k k k k k k X D X E X D X E X P X P ⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯-<⨯⨯--=∑=0489.030029.130********.030029.130013001k k X P ()0183.09817.0109.2109.20489.030029.130013001=-=Φ-=⎪⎪⎪⎪⎭⎫ ⎝⎛<⨯⨯--=∑=k k X P .七.(本题满分10分) 设总体X 的密度函数为()()⎩⎨⎧≤>=+-cx cx x c x f 01θθθ. 其中0>c 是已知常数,而1>θ是未知参数.()m X X X ,,,21 是从该总体中抽取的一个样本,试求参数θ的最大似然估计量. 解:似然函数为()()()()()121111+-=+-====∏∏θθθθθθθn n n ni i n i i x x x c x c x f L所以,()()∑=+-+=ni ixc n n L 1ln 1ln ln ln θθθθ.所以,()∑=-+=ni i x c n nL d d 1ln ln ln θθθ.令:()0ln =θθL d d ,即0ln ln 1=-+∑=n i i x c n nθ, 得到似然函数的唯一驻点cxnni iln ln 1-=∑=θ.所以参数θ的最大似然估计量为cXnni iln ln ˆ1-=∑=θ.八.(本题满分10分) 设总体()21,~σμNX ,总体()22,~σμN Y ,()m X X X ,,,21 是从总体X 中抽取的一个样本,()n Y Y Y ,,,21 是从总体Y 中抽取的一个样本.并且随机变量n m Y Y Y X X X ,,,,,,,2121相互独立.记21S 是样本()m X X X ,,,21 的样本方差,22S 是样本()n Y Y Y ,,,21 的样本方差.再设()()21122212-+-+-=n m S n S m S W证明:2W S 是2σ的无偏估计.解:由于总体()21,~σμNX ,()m X X X ,,,21 是从总体X 中抽取的一个样本,所以()()1~12221--m S m χσ.又由于总体()22,~σμNY ,()n Y Y Y ,,,21 是从总体Y 中抽取的一个样本,所以()()1~12222--n S n χσ.所以,()()()()()222122212211111σσσσσ-=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅=-m S m E S m E Sm E , ()()()()()222222222221111σσσσσ-=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅=-n S n E S n E S n E . 所以, ()()()⎥⎦⎤⎢⎣⎡-+-+-=21122212n m S n S m E S E W()[]()[]22211121S n E S m E n m -+--+=()()[]2221121σσσ=-+--+=n m n m 所以,()()21122212-+-+-=n m S n S m SW是2σ的无偏估计.九.(本题满分10分)检验某批矿砂中的含镍量,随机抽取7份样品,测得含镍量百分比分别为:67.2 33.3 69.3 01.3 98.3 15.3 69.3假设这批矿砂中的含镍量的百分比服从正态分布,试在05.0=α下检验这批矿砂中的含镍量的百分比为25.3.(附表:t 分布的分位点表:()9432.1605.0=t ()4469.26025.0=t ()8946.1705.0=t ()3646.27025.0=t解:设X 表示这批矿砂中的含镍量的百分比,则()2,~σμNX .25.3:0=μH ()25.3:1≠μH由于总体方差未知,故用检验统计量n SX T 25.3-=当0H 成立时,()1~25.3--=n t n SX T .由于显著性水平05.0=α,7=n ,所以()4469.26025.0=t .因此检验的拒绝域为()⎭⎬⎫⎩⎨⎧≥-=4469.225.3:,,,7211n sx x x x W由样本观测值,得36.3=x ,455668007.0=s 所以,4469.2638694486.0745*******.025.336.325.3<=-=-n sx 所以,不拒绝0H ,可以认为这批矿砂中的含镍量的百分比为25.3.。

《线性代数与概率统计》概率统计答案及评分标准

《线性代数与概率统计》概率统计答案及评分标准

计算机系《线性代数与概率统计》(概率统计)(A)参考答案及评分标准一、选择题(本大题共 5题,每小题 3 分,共 15 分)1. 一射手向目标射击3 次,i A 表示第i 次射击击中目标这一事件)3,2,1(=i ,则3次射击中至多2次击中目标的事件为( B )321321321321)()()()(A A A D A A A C A A A B A A A A ⋃⋃⋃⋃2. 若x x cos )(=ϕ可以成为随机变量X 的概率密度函数,则X 的可能取值区间为( A )(A )]2,0[π(B) ],2[ππ(C ) ],0[π (D ) ]47,23[ππ 3. 设随机变量X 的概率密度为()p x ,且{}01P x ≥=,则必有( C ) (A ) ()p x 在()0+∞,内大于零(B ) ()p x 在(),0-∞内小于零(C ) 01p(x)dx +∞=⎰(D ) ()p x 在()0+∞,上单调增加4. 下列数列是随机变量的分布律的是( A ).(A ) )5,4,3,2,1,0(15==i ip i(B ) )3,2,1,0(652=-=i i p i(C ) )4,3,2,1(51==i p i (D ) )5,4,3,2,1(251=+=i i p i5. 设X 1,X 2,X 3,X 4是来自总体N (?,?2)的简单随机样本,则四个统计量:μ1=( X 1+X 2+X 3+X 4 )/4, μ2=X 1,μ3=X 1/2+X 2/3+X 3/6,μ4=X 1/2+X 2/3+X 3/4中,是?的无偏估计量的个数为( C ) (A ) 1(B ) 2 (C ) 3 (D ) 4二、填空题(本大题共 5 题,每小题 3 分,共 15 分)1.设()0.4,()0.3,()0.6P A P B P A B ===U ,则()P AB =__0.3___.2.将3个球随机地放入3个盒子中(每个盒子中装多少个球不限),则每盒中各有一球的事件的概率等于____2/9___.3.设离散随机变量X的分布函数为00;1,01;3()=2,12;31, 2.xxF xxx<⎧⎪⎪≤<⎪⎨⎪≤<⎪⎪≥⎩, 则122P X⎧⎫<≤=⎨⎬⎩⎭___2/3______.4.连续型随机变量取任何给定实数值a的概率为 0 .5.设随机变量X与Y服从分布:X~(1,2)N,Y~(100,0.2)B,则(23)-+=E X Y -15 .三、计算题(本大题共 6 题,其中1、2小题每题8分,3、4小题每题10分,5、6小题每题12分,共 60 分)1.设一口袋装有10只球,其中有4只白球,6只红球,从袋中任取一只球后,不放回去,再从中任取一只球。

概率统计A解答(1)

概率统计A解答(1)

湖州师范学院 2010 — 2011 学年第 一 学期 《概率论与数理统计》期末考试试卷(A 卷)适用班级 090126 090127 考试时间 120 分钟学院 班级 学号 姓名 成绩题号 一 二 三 四 五 六 七 八 九 总分 得分一、填空题 (本题共20分,每空格2分)1.设A 、B 、C 表示三个随机事件,则事件“A 、B 、C 中恰有一个发生”可表示为C B A C B A C B A ++,事件“A 、B 、C 中至少发生二个”可表示为AC BC AB ++。

2.把5本书任意地放在书架上,其中指定的3本书放在一起的概率为103。

3.进行独立重复试验,每次试验成功的概率为p ,则在首次试验成功时共进行了m 次试验的概率为()11--m p p 。

4.若随机变量X 服从正态分布)21,1(N ,则X 的密度函数为=)(x ϕ2)1(1--x e π。

5.一批为产品共20个,其中3个次品,从中任取的3个中次品数不多于一个的概率为32013217317C C C C +。

6.设事件A 、B 、A ⋃B 的概率分别为p 、q 、r ,则=)(AB P r q p -+,=)(B A P q r -。

7.若随机变量X 服从泊松分布,)2()1(===X P X P ,则=≤)1(X P 23-e8.进行独立重复试验,每次试验事件A 发生的概率为p ,则在n 次试验中事得分件A 恰好发生()n k k ≤≤0次的概率为()kn kk np p C --1。

9.已知随机变量X 服从标准正态分布)1,0(N ,=≤)96.1(X P 0.975, 则=<)96.1(X P 0.95 。

10.加工在全产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是相互独立的,则经过三道工序生产出的产品是废品的概率是 0.316 。

11.设随机变量X 服从参数为p n ,的二项分布,则=EX np ,DX =()p np -1。

18-19-2概率统计A(A卷)答案

18-19-2概率统计A(A卷)答案

南京林业大学试卷(A 卷)(答案)课程 概率统计A 2018~2019学年第2学期3分,共15分),A B ,若0()1,0()1P A P B <<<<,且(|)1P A B =,则(|)P B A = 1 . X 的概率密度为()f x ,且()3E X =,则(1)()x f x dx +∞-∞-=⎰2 .X ~(0,1)N ,Y ~(2,1)N -,且X 和Y 独立,21Z X Y =-+,则2()E Z = 14 . X ~2(,)N μσ,12,,,n X X X (1n >)为其样本,X 和2S 分别是样本均值和样本μ的置信度为1α-的置信区间为/2/2((1),(1))X n X n αα-+-.y a bx =+,通过对样本观测值计算得y bˆ1.6,3,3===,则y 关于x 的线性回归方程是 3 1.8y x =-. 3分,共15分),A B 为任意事件,则关于()P AB 有( D ).)()()P AB P A ≥ (B )()()()P AB P A P B = )()()()P AB P A P B ≥+ (D )1()[()()]2P AB P A P B ≤+ X 的分布函数为()F x ,12,X X 为其样本,又{}12max ,Y X X =,则Y 的分布函数为 A ).)2()F y (B )2[1()]F y - (C )21()F y - (D )1()F y -设随机变量X 的概率密度是21,0()20,xe xf x -⎧>⎪=⎨⎪⎩其它,用切比雪夫不等式估计概率(|2|3)P X =-≥,有( C ).题号 一 二 三 四 总分 得分(A )59p ≤(B )59p ≥ (C )49p ≤ (D )49p ≥ 4.设总体X ~(,1)N μ,12,,,n X X X (1n >)为其样本,X 是样本均值,则以下统计量服 从2χ分布的是( D ). (A )1()nii Xμ=-∑ (B )212()n X X - (C )2()X μ- (D )21()ni i X X =-∑5.在假设检验问题中,显著性水平α意义是( A ). (A )在0H 成立的条件下,经检验0H 被拒绝的概率 (B )在0H 成立的条件下,经检验0H 被接受的概率 (C )在0H 不成立的条件下,经检验0H 被拒绝的概率 (D )在0H 不成立的条件下,经检验0H 被接受的概率 三、计算下列各题(第1-5题每题12分,第6题10分,共70分)1.设随机变量X 的分布律为21312XPa b-,且()0E X =.试求:(1),a b 的值;(2)X 的分布函数;(3)()D X .解:(1)由()130,1/2E X a b a b =-++=+=解得1/4a b ==,从而X 的分布律2131/21/41/4XP -(4分)(2)0,21/2,21()3/4,131,3x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩(8分)(3)()0E X =,222()9/2,()()()9/2 4.5E X D X E X E X ==-==. (12分)2.设随机变量,X Y 相互独立,且X 的分布律为12(0),(1)33P X P X ====,Y 的概率密度2,01()0,y y f y <<⎧=⎨⎩其他,求:(1)(())P Y E Y ≤;(2)3()2P X Y +≤.解: (1)12/32()22/3,(())24/9E Y y dy P Y E Y ydy ==≤==⎰⎰,(6分)(2)333((0)(|0)(1)(|1)222P X Y P X P X Y X P X P X Y X +≤==+≤=+=+≤=13211211()()132323342P Y P Y =≤+≤=⨯+⨯=. (12分)3.对于上题中的随机变量Y ,求2Z Y =的概率密度()Z f z . 解:由于2(01)z y y =<<严格单调,反函数y =连续可导且z y '=()(0,1)R Z = (6分)由公式得011,01()0,0,Z z z f z ⎧<<<<⎧⎪==⎨⎨⎩⎪⎩其他其他. (12分)4.设(,)X Y 的概率密度,01,1(,)0,xk x y ey f x y ⎧<<<<⎪=⎨⎪⎩其它,求:(1)k 的值;(2)求关于X和Y 的边缘概率密度,并判断X 与Y 是否独立;(3)求(2)P Y <.解:(1)由规范性111/21ekxdx dy k y==⎰⎰得2k =; (4分)(2)12()(,)2eX xf x f x y dy dy x y+∞-∞===⎰⎰,(01)x <<, 1021()(,)Y x f y f x y dx dx y y+∞-∞===⎰⎰,(1)y e <<, 由于(,)()()X Y f x y f x f y =, 故X 与Y 相互独立; (8分)(3)(2)P Y <12:211(,)2ln 2D y f x y d xdx dy yσ<===⎰⎰⎰⎰. (12分)5.设总体X 的概率密度233,0(,)0,x x f x θθθ⎧<<⎪=⎨⎪⎩其他,其中θ为未知参数,又设12,,,nX X X 为来自总体X 容量为n 的样本,试求:(1)θ的矩估计量ˆθ;(2)θ的最大似然估计量ˆLθ.解:(1)31333()4E X x dx θθμθ===⎰,解得143θμ=,从而4ˆ3X θ=; (6分)(2)22331133()nnni ini i x L xθθθ====∏∏,1ln ()ln 33ln 2ln nii L n n xθθ==-+∑,由于ln ()30d L nd θθθ=-<,故()L θ单调减少,又0,max(),1,2,,i i x x i n θθ<<>= ,故12ˆmax(,,,)L nX X X θ= . (12分)6.某厂生产的某种铝材长度X ~2(,)N μσ,其均值μ设定为240cm .现从该厂抽取9件产品,测得239.5x =cm ,20.16s =,试判断该厂这批铝材的长度是否满足设定要求?(取0.05α=).(附:0.05(8) 1.86t =,0.025(8) 2.31t =) 解:由题意,即在0.05α=下检验假设00:240H μμ==vs 10:H μμ≠(2分)检验统计量X T =,拒绝域/2||(1)T t n α-(7分)又0.025239.5240|| 3.75(8) 2.310.4/3t t -==>=,从而拒绝0H ,认为不满足设定要求.(10分)。

概率统计A试题 答案 06-07(秋)

概率统计A试题  答案 06-07(秋)

θ1 = ( X 1 + X 2 + X 3 ) ,θ 2 =
有效.
1 3
1 1 1 X 1 + X 2 + X 3 ,都是期望 EX 的无偏估计,但 θ 1 比 θ 2 2 3 6
(是)
二、填空题:(每格 3 分,共计 15 分) 6、设 P ( A) = 0.5 , P( B )=0.4 , P ( B | A) = 0.8 ,则 P( A ∪ B) = 0.7 . 7、已知事件 A 与 B 满足条件 P( AB) = P( A B ) ,且 P( B) = p ,则 P ( A) = 1 − p .
(1) 置信区间 ( X −
评分参考 (1) 写出密度函数(5 分) ; 。 (2) 得到 P ( S ≤ s) (2×5=10 分)
s n
tα / 2 (n − 1), X +
s n
tα / 2 (n − 1)) (4 分) ;
(2) 计算正确(3 分) ; (3) 拒绝域 s > k =
2
σ 02

稿

14、 X , Y 是独立同分布的随机变量, U = X + Y , = X − Y , 设 而 V 那么 U 和 V (A)一定不独立 (C)相关系数一定为零 四、计算题:(15 分×3=45 分) (B)一定独立 (D)相关系数一定不为零
15. 已知一批产品中 90%是合格品,检查时,一个合格品被误认为是次品的概率为 0.05,一个次品被误认为是合格品的概率为 0.02,求(1)一个产品经检查后被认为 是合格品的概率; (2)一个经检查后被认为是合格品的产品确是合格品的概率.
2 2 2 χ 0.05 (16) = 26.296, χ 0.05 (15) = 24.996, χ 0.025 (15) = 27.488.

10-11(2)概率统计A答案

10-11(2)概率统计A答案

东莞理工学院(本科)试卷(A 卷)答案2010 --2011 学年第二学期《概率论与数理统计》试卷开课单位:计算机学院数学教研室 ,考试形式:闭卷,允许带 计算器 入场选择填空题(共80分, 其中第1-25小题每题2分,第26-353分) A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 相互独立, 则()P A B = B ;(A) 0.7 (B) 0.58 (C) 0.82 (D) 0.12A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 互不相容,则()P A B = D ;(A) 0 (B) 0.42 (C) 0.88 (D) 1已知B,C 是两个随机事件,P( B | C ) = 0.5,P( BC ) = 0.4,则P( C ) = C ; (A) 0.4 (B) 0.5(C) 0.8(D) 0.9袋中有6只白球,4只红球,从中抽取两只,如果作不放回抽样,则抽得的两个球颜色不同的概率为: A ; (A)815(B)415(C)1225(D)625袋中有6只白球,4只红球,从中抽取两只,如果作放回抽样,则抽得的两个球颜色不同的概率为: C ; (A)815(B)415(C)1225(D)6256.在区间[0,1]上任取两个数,则这两个数之和小于12的概率为 C ;(A) 1/2 (B) 1/4 (C) 1/8(D) 1/167.在一次事故中,有一矿工被困井下,他可以等可能地选择三个通道之一逃生.假设矿工通过第一个通道逃生成功的可能性为1/2,通过第二个通道逃生成功的可能性为1/3,通过第三个通道逃生成功的可能性为1/6.请问:该矿工能成功逃生的可能性是 C .(A) 1 (B) 1/2(C) 1/3(D) 1/68.已知某对夫妇有四个小孩,但不知道他们的具体性别。

设他们有Y 个儿子,如果生男孩的概率为0.5,则Y 服从 B 分布. (A) (01)- 分布 (B) (4,0.5)B (C) (2,1)N(D) (2)π9.假设某市公安机关每天接到的110报警电话次数X 可以用泊松(Poisson)分布()πλ来描述.已知{99}{100}.P X P X ===则该市公安机关平均每天接到的110报警电话次数为 C 次. (A) 98 (B) 99(C) 100(D) 10110.指数分布又称为寿命分布,经常用来描述电子器件的寿命。

概率论与数理统计-A卷答案(2)

概率论与数理统计-A卷答案(2)

诚信应考,考试作弊将带来严重后果!期末考试《概率论与数理统计》A 卷注意事项:1. 开考前请将密封线内各项信息填写清楚; 2. 所有答案请直接答在试卷上; 3.考试形式:闭卷;4. 本试卷共八大题,满分100分, 考试时间120分钟。

注意: (1.67)0.9525(1.96)0.975(1.45)0.926Φ=Φ=Φ=()()()0.9750.950.9515 2.132,16 1.746,15 1.753t t t ===()()220.9750.025220.950.05220.9750.025(4)11.143(4)0.484(5)11.071(5) 1.145512.83350.831χχχχχχ======一、(12分)设有n 个人排成一行,甲与乙是其中的两个人,求这n 个人的任意排列中,甲与乙之间恰有r 个人的概率。

如果这n 个人围成一圈,试证明甲与乙之间恰有r 个人的概率与r 无关。

(甲到乙是顺时针) 解:()1221(2)!2(1)1)()!(1)(2)!!12)()(1)!1r n C n r n n r P A n n n C n r r P A n n ------==---==--二、(10分) 甲、乙、丙三车间加工同一产品,加工量分别占总量的25%、35%、40%,次品率分别为0.03、0.02、0.01。

现从所有的产品中抽取一个产品,试求 (1)该产品是次品的概率;(2)若检查结果显示该产品是次品,则该产品是乙车间生产的概率是多少? 解:设1A ,2A ,3A 表示甲乙丙三车间加工的产品,B 表示此产品是次品。

(1)所求事件的概率为112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.250.030.350.020.40.010.0185=⨯+⨯+⨯=(2)222()(|)0.350.02(|) = 0.38 ()0.0185P A P B A P A B P B ⨯=≈三、 (10分) 假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障可获利润5万元;发生二次故障所获利润0元;发生三次或三次以上故障就要亏损2万元,求一周内期望利润是多少?解 由条件知)2.0,5(~B X ,即5,,1,0,8.02.05}{5 =⎪⎪⎭⎫ ⎝⎛==-k k k X P kk⎪⎪⎩⎪⎪⎨⎧≥-=====3,2;2,0;1,5;0,10)(X X X X X g Y )(216.5057.02410.05328.010}]5{}4{}3{[2}2{0}1{5}0{10}{)()(5万元=⨯-⨯+⨯==+=+=⨯-=⨯+=⨯+=⨯====∑=X P X P X P X P X P X P k X P k g X Eg EY k四、(15分) 设随机变量和的联合分布在以点为顶点的三角形区域上服从均匀分布,试求 (1) 关于X 的边缘密度 (2) X 和Y 的协方差(3) 随机变量的方差.X Y ()()()0,1,1,0,1,1U X Y =+解 三角形区域为;随机变量和的联合密度为以表示的概率密度,则当或时, ;当时,有因此同理可得, .现在求和的协方差于是五、(12)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相互独立,且均服从2(0,2)N 分布. 求 (1)命中环形区域(){}22,12D x y xy =≤+≤的概率;(2)命中点到目标中心距离Z =.(){},:01,01,1G x y x y x y =≤≤≤≤+≥X Y ()()()2,,0,x y Gf x y x y G ∈⎧⎪=⎨∉⎪⎩当当()1f x X 0x ≤1x ≥()10f x =01x <<()()111,22xf x f x y dy dy x ∞-∞-===⎰⎰1122300212, 232EX x dx EX x dx ====⎰⎰()221412918DX EX EX =-=-=21,318EY DY ==X Y 11152212xGEXY xydxdy xdx ydy -===⎰⎰⎰⎰()541cov ,12936X Y EXY EX EY =-⋅=-=-()()11212cov ,18183618DU D X Y DX DY X Y =+=++=+-=X Y(1)(2).六、(10分)某种电子器件的寿命(小时)具有数学期望μ(未知),方差2400σ=.为了估计μ,随机地取n只这种器件,在时刻0t=投入测试(设测试是相互独立的)直到失败,测得寿命为12,,,nX X X,以11niiX Xn==∑作为μ的估计,为了使{}10.95P Xμ-<≥,问n至少为多少?解、由于12,,,nX X X独立同分布,且2,400i iEX DXμσ===.由林德伯格-列维定理得{}1P X Pμ⎫⎛-<=<≈Φ-Φ⎝⎭⎝⎭21210.95=Φ-=Φ-≥⎝⎭⎝⎭即0.975Φ≥⎝⎭, 1.96≥,故2400 1.961536.64n≥⨯=.因此n至少为1537.{,)}(,)DP X Y D f x y dxdy∈=⎰⎰22222880111248x y rDe dxdy e rdrdπθππ+--==⋅⎰⎰⎰⎰2221122888211()8r rre d e e e----=--=-=-⎰22818x yEZ E e dxdyπ+-+∞-∞-∞==⎰⎰2222880001184r rre rdrd e r drπθπ--+∞+∞==⎰⎰⎰222888r r rre e dr dr+∞---+∞+∞-∞=-+==⎰⎰七、(10分)(1) 设某机器生产的零件长度(单位:cm),今抽取容量为16的样本,测得样本均值,样本方差. 求的置信度为0.95的置信区间.(2) 某涤纶厂的生产的维尼纶的纤度(纤维的粗细程度)在正常生产的条件下,服从正态分布N(1.405 , 0.0482),某日随机地抽取5根纤维,测得纤度为1.32 ,1.55 ,1.36 ,1.40 ,1.44问一天涤纶纤度总体X的均方差是否正常(α=0.05)?解:(1)的置信度为下的置信区间为()()11221,1X n X nαα--⎛⎫--+-⎪⎝⎭()0.97510,0.4,16,0.05,15 2.132 x s n tα=====所以的置信度为0.95的置信区间为(9.7868,10.2132)(2)()()()()()()()()()()()22222001022221220.97512220.0252222 222220.975012:0.048:.1~512.83350.83111.32 1.405 1.55 1.405 1.44 1.4050.04813.68313.683512.833niiH HX nnnn H ααασσσσχμχσχχχχχχχχ=--==≠=-====⎡⎤=-+-++-⎣⎦==>==∑,因为,所以拒绝,即这一天涤纶纤度ξ的均方差可以认为不正常。

(A)概率统计参考答案与评分标准

(A)概率统计参考答案与评分标准

2010—2011学年第二学期闽江学院考试试卷(A )一、单项选择题(20%=2%*10) 得分1、 事件A 与B 互相对立的充要条件是( C ).(本题考核:事件之间的关系) (A )()()()P AB P A P B =; (B )()0()1P AB P A B == 且; (C )AB A B =∅=Ω 且; (D )AB =∅.2、 事件A 与B 和的对立事件A B +=( B ). (本题考核:事件之间的运算)(A )A B +;(B )AB ;(C )AB ; (D )AB AB +.3、 下列说法错误的是( D ). (本题考核:概率论的基本概念)(A )随机变量可以取负值;(B )随机变量的分布函数不可以取负值; (C )随机变量的密度函数不可以取负值; (D )随机变量的数学期望不可以取负值.4、 设离散型随机变量(,)X Y 的联合分布律为XY 12311/61/91/1821/3αβ且,X Y 相互独立,则( A ). (本题考核:二维离散型边缘分布与独立性) (A )2/9,1/9αβ==; (B )1/9,2/9αβ== ; (C )1/6,1/6αβ== ; (D )8/15,1/18αβ==. 5、 设随机变量2~(,)X N μσ,那么当 σ 增大时,{}P X μσ-<=( C ).(A )增大;(B )减少; (C )不变; (D )增减不定.(本题考核:正态分布的标准化,容易误解,有一定难度)6、 设12()()F x F x 与分别为随机变量1X 与2X 的分布函数.为了使得12()()()F x aF x bF x =-还是某一随机变量的分布函数,在下列给定的各组数值中应取( A ). (本题考核:分布函数的性质) (A )32,55a b ==-; (B )22,33a b ==;(C )13,22a b == ;(D )13,22a b ==-.7、 设随机变量~(3,)X B p ,且{1}{2}P X P X ===, 则()E X =( C ) .(A)1/2; (B)1; (C)3/2; (D)3/4.(本题考核:常用分布及其数字特征)8、 关于随机变量,X Y 的数学期望与方差,下列等式总成立的是( A ). (A)(234)2()3()4E X Y E X E Y -+=-+;(B)(234)2()3()E X Y E X E Y -+=-; (C)(234)2()3()4D X Y D X D Y -+=-+; (D)(234)4()9()D X Y D X D Y -+=+. (本题考核:数学期望与方差的性质)9、 设12(,,,)n X X X 为总体2(1,2)N 的一个样本,X 为样本均值,则下列结论中正确的是( D ). (本题考核:常用统计量的概念)(A )1~()2/X t n n-; (B )1~(0,1)2X N -; (C )1~(0,1)2/X N n-;(D ) 2211(1)~()4ni i X n χ=-∑.10、 设2~(,)X N μσ,其中μ已知,2σ未知, 12,,,n X X X …为其样本. 则下列( A )不是统计量. (本题考核:统计量的概念)(A)X μσ- (B)X Sμ-(C)211()ni i X X n =-∑(D)211()ni i X n μ=-∑二、填空题 (21%=3%*7) 得分11、 甲,乙,丙三人各射一次靶,记A =“甲中靶”,B =“乙中靶”,C =“丙中靶”.则用这三个事件的运算表示事件:“三人中至少两人中靶”=AB AC BC ++.(本题考核:事件的运算)12、 一批产品由45件正品、5件次品组成,现从中任取3件产品,其中恰有1件次品的概率为2145535099(0.2526)392C C C ≈或.(本题考核:古典概型)本题考核:概率统计中的基本概念,基本公式与基本性质.本题考核:概率统计中的基本概念,基本公式与基本性质.13、 已知()0.5P A =,()0.6P B =,()0.8P B A =,()P AB =0.3. (本题考核:概率的计算公式)14、 设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k === ,则A =1/5.(本题考核:分布律的性质)15、 已知随机变量X 的密度为()f x =,010,ax b x +<<⎧⎨⎩其它, 且{0.5}5/8P X >=,则a =1,b =1/2 . (本题考核:密度函数的性质与应用) 16、 设2~(2,)X N σ,且{24}0.3P X <<=,则{0}P X <=0.2. (本题考核:正态分布的图象特点与应用)17、 设随机变量(,)X Y 的联合分布律为:(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y P a b若()0.8E XY =,则cov(,)X Y =0.1.(本题考核:二维离散型随机变量函数的分布与协方差计算。

15春华师《概率统计A》在线作业满分答案

15春华师《概率统计A》在线作业满分答案

华师《概率统计A》在线作业
一,单选题
1. 随机变量X服从正态分布,其数学期望为25,X落在区间(15,20)内的概率等于0.2,则X落在区间(30,35)内的概率为()
A. 0.1
B. 0.2
C. 0.3
D. 0.4
?
正确答案:B
2. 对于任意两个随机变量X和Y,若E(XY)=EX*EY,则()。

A. D(XY)=DX*DY
B. D(X+Y)=DX+DY
C. X和Y相互独立
D. X和Y互不相容
?
正确答案:B
3. 参数估计分为()和区间估计
A. 矩法估计
B. 似然估计
C. 点估计
D. 总体估计
?
正确答案:C
4. 一台设备由10个独立工作折元件组成,每一个元件在时间T发生故障的概率为0.05。

设不发生故障的元件数为随即变量X,则借助于契比雪夫不等式来估计X和它的数学期望的离差小于2的概率为()
A. 0.43
B. 0.64
C. 0.88
D. 0.1
?
正确答案:C
5. 进行n重伯努利试验,X为n次试验中成功的次数,若已知EX=12.8,DX=2.56 则n=()
A. 6
B. 8
C. 16。

概率论与数理统计a综合练习答案

概率论与数理统计a综合练习答案

综合练习一一、单项选择题1.设A 与B 为两个随机事件,则表示A 与B 不都发生是【 】.(A )A B (B )AB (C )AB (D )AB2.设A 、B 、C 为三个随机事件,则表示A 与B 都不发生,但C 发生的是【】. (A )A BC (B )()A B C + (C )ABC (D )A B C +3.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为【】. (A )甲种产品滞销,乙种产品畅销 (B )甲、乙两种产品均畅销 (C )甲种产品滞销 (D )甲种产品滞销或乙种产品畅销4.对于任意两个事件A 与B ,均有=-)(B A P 【】. (A) )()(B P A P - (B) )()()(AB P B P A P +- (C) )()(AB P A P - (D) )()()(AB P B P A P -+5.已知事件A 与B 互斥,8.0)(=+B A P ,5.0)(=B P ,则=)(A P 【】. (A) 0.3 (B) 0.7 (C) 0.5 (D) 0.6 6.若21)(=A P ,31)(=B P ,61)(=AB P ,则A 与B 的关系为【】. (A) 互斥事件 (B) 对立事件 (C) 独立事件 (D) A B ⊃7.已知事件A 与B 相互独立,8.0)(=+B A P ,5.0)(=B P ,则()P A =【】. (A) 0.3 (B) 0.2 (C) 0.5 (D) 0.6 8.若事件A 与B 相互独立,0)(>A P ,0)(>B P ,则错误的是【 】. (A) A 与B 独立 (B) A 与B 独立 (C) )()()(B P A P B A P = (D) A 与B 一定互斥 9. 设事件A 与事件B 互不相容,则【 】.(A )()0P AB = (B )()()()P AB P A P B = (C )()1()P A P B =- (D )()1P AB =10. 设A 、B 为任意两个事件,且,()0A B P B ⊂>, 则下列选项必然成立的是【】. C A D C B C D D D B(A )()()P A P A B < (B ) ()()P A P A B ≤ (C )()()P A P A B > (D )()()P A P A B ≥二、填空题11.设C B A ,,为三个事件,试用C B A ,,表示下列事件:(1)C B A ,,中至少有一个发生 ; (2)C B A ,,中恰好有一个发生 ;(3)C B A ,,三个事件都发生 ; (4)C B A ,,三个事件都不发生 ;(5)B A ,都发生而C 不发生 ; (6)A 发生而C B ,都不发生 ;12. 某人向目标射击三次,事件=i A {第i 次击中},3,2,1=i ,用事件的运算关系表示下列各事件,(1)只击中第一枪 ; (2)只击中一枪 ___________; (3)三枪都未击中 ; (4)至少击中一枪 ; (5)目标被击中 ; (6)三次都击中 ;(7)至少有两次击中 _______________________________; (8)三次恰有两次击中 _____________. 13. 已知事件A 与B 相互对立,则AB = ,A B += ,()P AB = ,()P A B += .14. 已知3.0) (=B A P ,则=+)(B A P .15. 已知事件B A ⊂,9.0)(=+B A P ,3.0)(=AB P ,则=-)(A B P. 16. 设A 与B 为两个事件,且7.0)(=A P ,3.0)(=-B A P ,则=)(AB P .17. 已知事件A 与B 相互独立,4.0)(=A P ,3.0)(=B P ,则=+)(B A P. 18. 设,,A B C 是三个相互独立事件,且5.0)(=A P ,6.0)(=B P ,7.0)(=C P ,则()P A B C ++=. 19. 一张考卷上有5道选择题,每道题列出4个可能答案,其中有1个答案是正确的.某学生靠猜测能答对4道题的概率是 . 20. 已知在3次独立重复试验中,事件A 至少发生一次的概率为2726,则事件A 在一次试验中A B C ++ABC ABC ABC ++ABC ABC ABC ABC 123A A A 123123123A A A A A A A A A ++123A A A 123A A A ++123A A A ++123A A A 123123123123A A A A A A A A A A A A +++123123123A A A A A A A A A ++∅U 01.07.06.06.058.094()()44151344C21. 设A 与B 相互独立,()0.5,()0.8P A P A B =+=,则()P B =,()P AB = . 22. 若112(),(),(),233P A P B P B A === 则()P A B = .23.投掷两个均匀骰子,出现点数之和为6*24. 设两个相互独立的事件A 和B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则)(A P三、计算题24. 设4.0)(=A P ,3.0)(=B P ,6.0)(=+B A P ,求(1))(AB P ;(2)) (B A P ;(3)) (B A P ;(4))(B A P +.25. 已知7.0)(=A P ,()0.9P B =,()0.7P A B =,求()P A B +.四、解答题26. 某城市中发行2种报纸A 与B , 经调查, 在全市人中, 订阅A 报的有45%,订阅B 报的有35%, 同时订阅2种报纸A , B 的有10%. 求只订一种报纸的概率..06.021解:()由()()()()1P A B P A P B P AB +=+-得()()()()P AB P A P B P A B =+-+....;04030601=+-=()()()2P AB P A B =-()()P A P AB =-...;040103=-=()()()31P AB P A B =-+..;10604=-=()()()4P A B P AB +=()1P AB =-...10109=-=解:()()(|)P AB P B P A B =...,0907063=⨯=()()()()P A B P A P B P AB +=+-...0709063=+-..097=解:由题意得().,().,().,04503501P A P B P AB ===()()()P AB AB P AB P AB ∴+=+()()P A B P B A =-+-()()()()P A P AB P B P AB =-+-....0450103501=-+-..06=答:只订一种报纸的概率为..0627. 袋中有10个球,其中7个白球,3个红球,从中任取三个,求(1)全是白球的概率; (2)恰有两个白球的概率;(3)至少一个白球的概率.28. 一副扑克牌52张,每次抽一张,共抽取2次,分两种方式抽取, 求两张都是A 的概率. (1)取后不放回; (2)取后放回.*29.(配对问题)三个学生证混放在一起,现将其随意发给三名学生,试求事件A ={学生都没有拿到自己的学生证}的概率.解:()(全是白球)373101C P C =;724=()(恰有个白球)217331022C C P C =;2140=()(至少有个白球)(全是红球)311P P =-333101C C =-11120=-.119120=解:()(张都是)43125251P A =⨯;1221=()(张都是)44225252P A =⨯.1169=解:()2111323P A =⨯⨯=综合练习二一、单项选择题1. 已知离散型随机变量X 的概率分布表为:则下列计算结果中正确是【 】. (A) {3}0P X == (B) {0}0P X== (C) {1}1P X >-= (D) {4}1P X <= 2. 设随机变量X 的分布列如下,则c =【 】.(A) 0.1 (B) 0.2 (C) 1 (D) 2*3. 设随机变量X 的分布函数()F x ,在下列概率中可表示为}{)(a X P a F <-的是【 】.(A )}{a X P ≤ (B )}{a X P > (C )}{a X P ≥ (D )}{a X P =4. 设随机变量X 的概率密度为:(),020,cx x f x ≤≤⎧=⎨⎩其它 ,则c =【 】.(A) 1 (B) 2 (C)12 (D) 145. 设随机变量X 的概率密度为:()1,080,x x cf x ⎧≤≤⎪=⎨⎪⎩其它 ,则c =【 】.(A) 1 (B) 2 (C) 3 (D) 46. 设随机变量~(3,4)X N -,则随机变量=Y 【】~(0,1)N . (A)43-X (B) 43+X (C) 23-X (D) 23+X 7.设随机变量2~(10,)X N σ,且3.0}2010{=<<X P ,则=<<}100{X P 【】. (A) 0.3 (B) 0.2 (C) 0.1 (D) 0.58. 设随机变量X 服从泊松分布,且已知{}{}02P X P X ===,则参数λ=【 】.(A)12 (B) 2A A C D D A D D9. 设随机变量X 的概率分布律为⎪⎪⎭⎫⎝⎛1.03.06.0210,则E X =()【 】. (A) 1 (B)13(C) 0 (D) 05. 10. 有一批钢球,重量为10克、15克、20克的钢球分别占55%、20%、25%,现从中任取一个钢球,重量X 的期望为【 】. (A )12.1克 (B )13.5克 (C )14.8克 (D )17.6克11. 设随机变量~(,)X B n p ,则下列等式中【】恒成立. (A )12(-X E np 2)=(B )14)12(-=-np X E (C )1)1(4)12(--=-p np X D(D ))1(4)12(p np X D -=-12. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且0E X =(),则【 】. (A) 6,4a b =-= (B) 1,1a b =-= (C) 6,1a b == (D) 1,5a b ==13. 设随机变量~(2,16)X N ,则下列等式中不成立的是【 】.(A )()2E X =(B )()4D X =(C ){16}0P X == (D ) {2}0.5P X ≤=14. 设随机变量X ,且10)10(=X D ,则=)(X D 【 】.(A )101(B ) 1 (C ) 10 (D )100 二、填空题15. 某射手射击目标的命中率为8.0=p ,他向目标射击3枪,用X 表示命中的枪数,则随机变量2=X 的概率为___________.16. 设随机变量~(2,)X B p ,若9{1}25P X ≥=,则p ={2}P X = 17. 设随机变量X 服从泊松分布,且{1}{2}P X P X ===,则参数λ= ,{0}P X == ;{2}P X == ;{4}P X == . 18. 设X 服从()0,5上的均匀分布,则==}5{X P ____,=≤≤}42{X P ______,=≤≤}64{X P. D B D A B A .038422e -223e -0.02.0422e -19. 设每次试验失败的概率为(01)p p <<, 则在3次重复独立试验中成功2次的概率为________________.20. 设随机变量X ,4)13(=+-X E ,则=)(X E .21. 设随机变量)21,100(~B X ,则=)(X E _________; =+)32(X E _________. 22. 已知随机变量X ,且9)3(=X E ,4)2(=X D ,则=)(2X E . 23. 设X 和Y 相互独立,4)(=X D ,2)(=Y D ,则(32)D X Y -= .24. 设X 服从参数为λ的泊松分布,4)(=X D ,则=)(X E ,=λ .25. 设),(~b a U X ,3)(=X E ,3)(=X D ,则=a ,=b .26. 设X 服从指数分布,4)4(=X D ,则=)(X E .27. 设)4,2(~N X ,则=)(X E ,()D X = ,=)(2X E .三、计算题28. 6个零件中有4个正品2个次品,从中任取 3个零件,用X 表示所取出的 3 个零件中正品的个数, 求随机变量X 的概率分布.29.设随机变量X 在[2,5]上服从均匀分布,现对X 进行三次独立观测。

2)《概率统计》试题A卷答案

2)《概率统计》试题A卷答案

广州大学2008-2009学年第二学期考试卷概率论与数理统计(A 卷)参考解答与评分标准一、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共5个小题,每小题3分,总计15分)1.对于任意两个事件A 与B,若A ⊆B,则P(A −B)= ( B )。

A. P(A)−P(B) B. 0 C. 1 D. P(A)2.设B A ,是两个概率不为0且互不相容的事件,则下列成立的是( D )。

A. A 与B 互不相容 B. A 与B 独立C.)(B A P = )()(B P A PD. )(B A P = )(A P3.设)(x f 为某连续型随机变量的概率密度函数, 则必有( B )。

A .1)(0≤≤x f B. 1)(=⎰+∞∞-dx x fC. 在定义域内单调不减D.1)(lim =+∞→x f x4.设一个连续型随机变量的分布函数为⎪⎩⎪⎨⎧≥<≤+<=a x a x k x x x F 1000)(则( C )。

A. 21,0==a kB. 21,21==a kC. 1,0==a kD. 1,21==a k学院专业班 级 姓 名学号5.设二维随机变量()的联合分布概率为若X 与Y 独立,则}3{=+Y X P =( A )。

A. 1/3 B. 5/6 C. 1/6 D. 2/3二、填空题(本大题共5小题,每小题3分,总计15分)(1) 三阶方阵⎪⎪⎪⎭⎫ ⎝⎛=c b a A 000000中的c b a ,,取3,2,1,0的概率都相同,则该阵为可逆阵的概率为_27/64____。

(2) 某人射击某一个目标的命中率为0.6,现不停的射击,直到命中为止,则第3次才命中目标的概率为_0.096__。

(3)设)6,1(~U X ,则方程012=++Xx x 有实数根的概率为__5/6 。

(4)设X 和Y 是相互独立的两个随机变量,且)3,2(~-U X ,)4,1(~N Y ,则=+)(Y X E __1.5__。

2018~2019(二)概率统计试卷(理工类)A卷答案

2018~2019(二)概率统计试卷(理工类)A卷答案

������ − ������
U=
~������(0,1)
������/√������
������ − ������ W = {u|U > ������ } = u ������ > 1.64
√������
代入样本值
33.85 − 32 1.85
u=
=
= 1.83
√102/√100 √1.02
标准答案
(2)L(x, θ) = ∏
=( )
������ = min(������ , ������ , … , ������ )
(六)(10)设随机变量 X~B(100,0.2)(二项分布),用中心极限定理求 P(X>10)。
解 : P(X > 10) = P 0. .99989
>
= 1−Φ
()
()
= 1 − Φ(−2.5) = Φ(2.5) =
3������ − 6������ + 3, 0 < ������ < 1
������ (������) =
0,
其它
同理:
������ (������) = ������(������, ������)������������ = 6(1 − ������)������������ = 6(1 − ������)������
(2)D(X) = E(X − ������) = ������(������ − + − ������) = ������(������ − ) + 2������ ������ −
− ������ +
������( − ������) = ������(������ − ) + − ������ ������ ������ − + ( − ������)

概率论与数理统计考试a(含答案)

概率论与数理统计考试a(含答案)

深圳大学期末考试试卷参考解答及评分标准开/闭卷 闭卷A/B 卷A 课程编号 2219002801-2219002811课程名称概率论与数理统计学分3命题人(签字) 审题人(签字) 年 月 日 基本题6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一(每道选择题选对满分,选0分)事件表达式A B 的意思是 ( ) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 D ,根据A B 的定义可知。

假设事件A 与事件B 互为对立,则事件A B ( ) 是不可能事件 (B) 是可能事件 发生的概率为1 (D) 是必然事件 A ,这是因为对立事件的积事件是不可能事件。

已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布。

已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3) 选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计试题(A )答案
一·填充题(32分,每题4分)
1. C B A ⋃⋃ 2。

0 3。

0.6 4。

24 5。

3 6。

0.5 7。

))1(),1((-+--
n t n
S X n t n S X αα 8。

0.5 二·选择题(24分,每小题4分)
1.A 2.C 3.D 4.A 5.C 6.D
三。

解:设A i 表示取到第i 台设备生产的零件, i=1,2,3.则P(A 1)=0.25, P(A 2)=0.35, P(A 3)=0.40
设B 表示取到次品,则,05.0)(1=A B P ,04.0)(2=A B P ,02.0)(3=A B P 由全概率公式,得:
)()()()()()()(332211A P A B P A P A B P A P A B P B P ++= ==⨯+⨯+⨯02.040.004.035.005.025.00.0345 四。

解:先求Y 的分布函数F Y (y)
⎰-∞-=-≤=≤+=≤=28
)(}2
8
{}82{}{)(y X Y dx x f y X P y X P y Y P y F
根据概率密度函数与分布函数的关系,得Y 得概率密度函数为:
⎪⎩⎪⎨⎧<<-='--='
=其它
,016
8,328)28)(28()()(y y y y f y F y f X Y Y 五.解:似然函数为:)()1()1(),()(211
1
θ
θθθ
θθθθn n n
i i
n i i
X X X X X f L +=+==
∏∏==
∑=++=n
i i X n L 1
ln )1ln()(ln θθθ 0ln 1)(ln 1=++=∑=n
i i X n
d L d θθθ
∑=--=n
i i
X
n
1
ln 1ˆθ
六.解:(1)关于X 得边缘概率密度函数为:
⎪⎩
⎪⎨⎧≤≤-===⎰⎰

+∞
-其它
,020,
2
1121
),()(2x x dy dy y x f x f x X
关于Y 得边缘概率密度函数为:
⎪⎩
⎪⎨⎧≤≤===⎰⎰

+∞
-其它
,020,
2
121
),()(0y y dx dx y x f y f y Y
)()(),(y f x f y x f Y X ≠, 所以X 与Y 不相互独立。

(2)1)4(2121),()(203
2022
0:=-====⎰⎰⎰⎰⎰⎰⎰+∞∞-+∞
∞-≤≤≤dx x x dy y xdx dxdy xy dxdy y x xyf XY E x y x D 32
)6121()21()()(2
322
02=-=-==⎰⎰∞
+∞-x x dx x x dx x xf X E X
3
4
6
21)()(2
3
2
2=
===



+∞
-y dy y dy y yf Y E Y 9
1
34321)()()(),(=⨯-=-=Y E X E XY E Y X Cov
(3)⎰⎰⎰⎰==
≤+≤+D
y x dxdy dxdy y x f Y X P 21
),(}2{2, 其中D:⎩⎨⎧-≤≤≤≤x y x x 210 所以 21
2121),(}2{2=⨯===
≤+⎰⎰⎰⎰≤+的面积D dxdy dxdy y x f Y X P D
y x 七.解:70:,70:10≠=μμH H 05.0,15,5.66,
36====αS X n
)35(~36
70
t S X T -=
0301.2)35()35(025.02
==t t α
)35(0301.24.161570
5.6636
702
0αt S X T =<=-=-=
接受H 0,即认为本次考试的平均成绩为70分。

相关文档
最新文档