2020年武昌中考数学训练题(二)参考答案

合集下载

2020年湖北省武汉市中考数学试卷(含解析)

2020年湖北省武汉市中考数学试卷(含解析)

2020年湖北省武汉市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.实数﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≤2 C.x≥﹣2 D.x≥23.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1 B.﹣1<a<1 C.a>1 D.a<﹣1或a>18.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32 B.34 C.36 D.389.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160 B.128 C.80 D.48二、填空题(每小题3分,共18分)11.计算的结果是.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.计算﹣的结果是.14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC 上,AD=AE=BE,∠D=102°,则∠BAC的大小是.15.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B 两城总运费的和的最小值(用含有m的式子表示).23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2,直接写出AD的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.参考答案与试题解析一、选择题1.【解答】解:实数﹣2的相反数是2,故选:A.2.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.3.【解答】解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B.4.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.【解答】解:从左边看上下各一个小正方形.故选:A.6.【解答】解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.7.【解答】解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.8.【解答】解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L/min),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L),a=24+45÷3.75=36.故选:C.9.【解答】解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.10.【解答】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.二、填空题11.【解答】解:==3.故答案为:3.12.【解答】解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5,故答案为:4.5.13.【解答】解:原式=﹣===.故答案为:.14.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.15.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.16.【解答】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,∴S四边形CDEF=(CF+DE)×1=t+1.故答案为:t+1.三、解答题17.【解答】解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.18.【解答】证明:∵EM∥FN,∴∠FEM=∠EFN,又∵EM平分∠BEF,FN平分∠CFE,∴∠FEB=∠EFC,∴AB∥CD.19.【解答】解:(1)这次抽取的居民数量为9÷15%=60(名),扇形统计图中,D类所对应的扇形圆心角的大小是360°×=6°,故答案为:60,6°;(2)A类别人数为60﹣(36+9+1)=14(名),补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有2000×=1200(名).20.【解答】解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接(5,0),(0,5),可得与AC的交点F,点F即为所求,如图所示:21.【解答】(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD∥AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=,sin∠3=,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x2+xy+y2=0,解得x=y或x=y(舍去),∴sin∠3==,即sin∠BAC的值为.22.【解答】解:(1)由题意得:,解得:.∴a=1,b=30;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000,=(x﹣20)2+6600,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20=80.答:A城生产20件,B城生产80件;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D 地的产品数量为(10﹣20+n)件,由题意得:,解得10≤n≤20,∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),整理得:P=(m﹣2)n+130,根据一次函数的性质分以下两种情况:①当0<m≤2,10≤n≤20时,P随n的增大而减小,则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;②当m>2,10≤n≤20时,P随n的增大而增大,则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m>2时,A,B两城总运费的和为(10m+110)万元.23.【解答】问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠ADC,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴AM===2,∴AD=.24.【解答】解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x﹣2)2﹣6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∴∠BAD=∠AOC,∵AB=OA,∠ADB=∠OCA,∴△ABD≌△OAC(AAS),∴BD=AC,∴a﹣2=|(a﹣2)2﹣6|,解得,a=4,或a=﹣1(舍),或a=0(舍),或a=5,∴A(4,﹣2)或(5,3);(3)把y=kx代入y=x2﹣6中得,x2﹣kx﹣6=0,∴x E+x F=k,∴M(),把y=﹣x代入y=x2﹣6中得,x2+x﹣6=0,∴,∴N(,),设MN的解析式为y=mx+n(m≠0),则,解得,,∴直线MN的解析式为:,当x=0时,y=2,∴直线MN:经过定点(0,2),即直线MN经过一个定点.。

2020年湖北省武汉市中考数学试卷和答案解析

2020年湖北省武汉市中考数学试卷和答案解析

2020年湖北省武汉市中考数学试卷和答案解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是()A.2B.﹣2C.D.﹣解析:由相反数的定义可知:﹣2的相反数是2.参考答案:解:实数﹣2的相反数是2,故选:A.点拨:本题考查相反数的定义;熟练掌握相反数的定义是解题的关键.2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥2解析:根据二次根式有意义的条件可得x﹣2≥0,再解即可.参考答案:解:由题意得:x﹣2≥0,解得:x≥2,故选:D.点拨:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.3.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于6解析:分别利用随机事件、必然事件、不可能事件的定义分别分析得出答案.参考答案:解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B.点拨:本题考查了随机事件、必然事件、不可能事件,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.4.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.解析:根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.参考答案:解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.点拨:此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.解析:根据从左边看得到的图形是左视图,可得答案.参考答案:解:从左边看上下各一个小正方形.故选:A.点拨:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.解析:根据题意画出树状图得出所有等可能情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.参考答案:解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.点拨:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k <0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a >1解析:根据反比例函数的性质分两种情况进行讨论,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上时,②当点(a﹣1,y1)、(a+1,y2)在图象的两支上时.参考答案:解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.点拨:此题主要考查了反比例函数的性质,关键是掌握当k<0时,在图象的每一支上,y随x的增大而增大.8.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.38解析:根据图象可知进水的速度为5(L/min),再根据第16分钟时容器内水量为35L可得出水的速度,进而得出第24分钟时的水量,从而得出a的值.参考答案:解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L/min),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L),a=24+45÷3.75=36.故选:C.点拨:此题考查了一次函数的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题.9.(3分)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4解析:连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF =CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC =DF,从而求得BC=DF=2,利用勾股定理即可求得AC.参考答案:解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.点拨:本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.10.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48解析:对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.参考答案:解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.点拨:此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算的结果是3.解析:根据二次根式的性质解答.参考答案:解:==3.故答案为:3.点拨:解答此题利用如下性质:=|a|.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是 4.5.解析:根据中位数的定义求解可得.参考答案:解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5,故答案为:4.5.点拨:本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)计算﹣的结果是.解析:原式通分并利用同分母分式的减法法则计算,约分即可得到结果.参考答案:解:原式=﹣===.故答案为:.点拨:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE =BE,∠D=102°,则∠BAC的大小是26°.解析:根据平行四边形的性质得到∠ABC=∠D=102°,AD=BC,根据等腰三角形的性质得到∠EAB=∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.参考答案:解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.点拨:本题考查了平行四边形的性质,三角形的内角和定理,三角形外角的性质,正确的识别图形是解题的关键.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).解析:根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.参考答案:解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.点拨:本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M 处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.解析:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,由勾股定理得出(2﹣x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.参考答案:解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,∴S四边形CDEF=(CF+DE)×1=t+1.故答案为:t+1.点拨:本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.解析:原式中括号中利用同底数幂的乘法,积的乘方与幂的乘方运算法则计算,合并后利用单项式除以单项式法则计算即可求出值.参考答案:解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.点拨:此题考查了整式的除法,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.解析:根据平行线的性质以及角平分线的定义,即可得到∠FEB=∠EFC,进而得出AB∥CD.参考答案:证明:∵EM∥FN,∴∠FEM=∠EFN,又∵EM平分∠BEF,FN平分∠CFE,∴∠FEB=∠EFC,∴AB∥CD.点拨:本题考查了平行线的判定与性质,解决本题的关键是熟记角平分线的性质和平行线的性质.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A 表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了60名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是6°;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?解析:(1)由C类别的人数及其所占百分比可得被调查的总人数,用360°乘以样本中D类别人数占被调查人数的比例即可得出答案;(2)根据A、B、C、D四个类别人数之和等于被调查的总人数求出A的人数,从而补全图形;(3)用总人数乘以样本中B类别人数所占比例可得答案.参考答案:解:(1)这次抽取的居民数量为9÷15%=60(名),扇形统计图中,D类所对应的扇形圆心角的大小是360°×=6°,故答案为:60,6°;(2)A类别人数为60﹣(36+9+1)=14(名),补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有2000×=1200(名).点拨:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.解析:(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出BC为边的正方形,找到以C点为一个顶点的对角线与AB的交点E即为所求;(3)利用网格特点,作出E点关于直线AC的对称点F即可.参考答案:解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接(5,0),(0,5),可得与AC的交点F,点F即为所求,如图所示:点拨:本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O 交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.解析:(1)连接OD,如图,根据切线的性质得到OD⊥DE,则可判断OD∥AE,从而得到∠1=∠ODA,然后利用∠2=∠ODA得到∠1=∠2;(2)连接BD,如图,利用圆周角定理得到∠ADB=90°,再证明∠2=∠3,利用三角函数的定义得到sin∠1=,sin∠3=,则AD =BC,设CD=x,BC=AD=y,证明△CDB∽△CBA,利用相似比得到x:y=y:(x+y),然后求出x、y的关系可得到sin∠BAC的值.参考答案:(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD∥AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=,sin∠3=,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x2+xy+y2=0,解得x=y或x=y(舍去),∴sin∠3==,即sin∠BAC的值为.点拨:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和解直角三角形.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A 城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B 城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B 两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).解析:(1)利用待定系数法即可求出a,b的值;(2)先根据(1)的结论得出y与x之间的函数关系,从而可得出A,B两城生产这批产品的总成本的和,再根据二次函数的性质即可得出答案;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,从而可得关于n的不等式组,解得n的范围,然后根据运费信息可得P关于n的一次函数,最后根据一次函数的性质可得答案.参考答案:解:(1)由题意得:,解得:.∴a=1,b=30;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000,=(x﹣20)2+6600,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20=80.答:A城生产20件,B城生产80件;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,由题意得:,解得10≤n≤20,∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),整理得:P=(m﹣2)n+130,根据一次函数的性质分以下两种情况:①当0<m≤2,10≤n≤20时,P随n的增大而减小,则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;②当m>2,10≤n≤20时,P随n的增大而增大,则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m >2时,A,B两城总运费的和为(10m+110)万元.点拨:本题考查了待定系数法求二次函数的解析式、二次函数及一次函数在实际问题中的应用,理清题中的数量关系并明确一次函数和二次函数的相关性质是解题的关键.23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD ∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2,直接写出AD的长.解析:问题背景由题意得出,∠BAC=∠DAE,则∠BAD=∠CAE,可证得结论;尝试应用连接EC,证明△ABC∽△ADE,由(1)知△ABD∽△ACE,由相似三角形的性质得出,∠ACE=∠ABD=∠ADE,可证明△ADF∽△ECF,得出=3,则可求出答案.拓展创新过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,证明△BDC∽△MDA,由相似三角形的性质得出,证明△BDM∽△CDA,得出,求出BM=6,由勾股定理求出AM,最后由直角三角形的性质可求出AD的长.参考答案:问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠ADC,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴AM===2,∴AD=.点拨:此题是相似形综合题,考查了直角三角形的性质,勾股定理,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.解析:(1)根据平移规律:上加下减,左加右减,直接写出平移后的解析式;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,设A (a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,再证明△ABD≌△OAC,由全等三角形的性质得a的方程求得a便可得A 的坐标;(3)由两直线解析式分别与抛物线的解析式联立方程组,求出M、N点的坐标,进而求得MN的解析式,再根据解析式的特征得出MN经过一个定点.参考答案:解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x﹣2)2﹣6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∴∠BAD=∠AOC,∵AB=OA,∠ADB=∠OCA,∴△ABD≌△OAC(AAS),∴BD=AC,∴a﹣2=|(a﹣2)2﹣6|,解得,a=4,或a=﹣1(舍),或a=0(舍),或a=5,∴A(4,﹣2)或(5,3);(3)把y=kx代入y=x2﹣6中得,x2﹣kx﹣6=0,∴x E+x F=k,∴M(),把y=﹣x代入y=x2﹣6中得,x2+x﹣6=0,∴,∴N(,),设MN的解析式为y=mx+n(m≠0),则,解得,,∴直线MN的解析式为:,当x=0时,y=2,∴直线MN:经过定点(0,2),即直线MN经过一个定点.点拨:本题是一个二次函数综合题,主要考查了平移的性质,二次函数的性质,等腰直角三角形的性质,全等三角形的性质与判定,待定系数法,求函数图象的交点问题,第(2)小题关键是证明三角形全等,第(3)题关键是求出M、N点的坐标及直线MN的解析式.。

2020年湖北省武汉市青山区中考数学备考训练试卷(二)(附答案详解)

2020年湖北省武汉市青山区中考数学备考训练试卷(二)(附答案详解)

2020年湖北省武汉市青山区中考数学备考训练试卷(二)一、选择题(本大题共10小题,共30.0分)1.12020的倒数是()A. −12020B. 12020C. 2020D. −20202.式子√x+1在实数范围内有意义,则x的取值范围是()A. x>−1B. x<−1C. x≥−1D. x≠−13.不透明袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是确定性事件的是()A. 3个球中只有1个黑球B. 3个球都是黑球C. 3个球中有白球D. 3个球都是白球4.现实世界中,对称现象无处不在,中国的传统服饰文化源远流长,下列展示的服装是轴对称的是()A. B. C. D.5.如图,该几何体是由5个大小相同的正方体组成,它的左视图是()A.B.C.D.6.如图是国内出土的最大商代鼎之一--饕餮纹大圆鼎,重达百余斤.现在往这个容器中以均匀的速度注水,水面高度h随着时间t的变化而变化,下列符合实际情况的是()A.B.C.D.7.从−3,1,2,4四个数中选取两个不同的数,分别记为a、c,则关于x的二次函数y=ax2−3x+c的图象与x轴有交点的概率为()A. 34B. 23C. 712D. 138.如图,已知反比例函数y=kx(x>0)的图象与直线y=−3x+b相交于A、B两点,A在B的左侧,点E在线段AB上,且它的横坐标为5.过点A作AC⊥y轴于点C,过点B作BD⊥x轴于点D,若S△ACE=S△BDE,且x B−x A=8,则k的值为()A. 15B. 16C. 24D. 279.把形如3m+3n(0≤m<n)的数按照图中的形式排列起来,则下列各数中不符合这种规律的数是()A. 82B. 85C. 90D. 10810.如图,⊙O为矩形ABCD外接圆,AB=6,BC=8,点M在⊙O上运动,N为MB中点,当点M在⊙O上运动一周时,点N运动的路径长为()A. 10πB. 10C. 5πD. 10√2π二、填空题(本大题共6小题,共18.0分)11.计算(a5)3的结果是______ .12.初三(1)班的五个学习小组的人数分别是:9,5,7,x,5.已知这组数据的平均数是6,则这组数据的中位数是______.13.计算:2xx2−9−1x−3的结果是______ .14.如图,在▱ABCD中,P为CD上一点,BC=BP,BP平分∠ABC,∠ABD=43°,则∠APB的度数是______度.15.抛物线y=ax2+bx+c经过点A(−3,0),B(4,0)两点,则关于x的一元二次方程a(x−2)2+c=2b−bx的解是______.16.已知矩形ABCD,AB=2,AD=4AB=8,E为线段AD上一动点,以CE为边向上构造正方形CEFG,连接BF,则BF的最小值是______.三、解答题(本大题共8小题,共72.0分)17.解方程组:{3m+n=12m+3n=4.18.已知在△ABC中,DA、EA为线段AB、AC反向延长线上的线段,已知∠E=∠B,AE=AB.求证:DE=BC.19.今年“新冠”疫情期间,某校为了调查学生的视力健康问题,通过网络调查问卷的形式随机调查了四个班的眼保健操完成情况,将收到的调查问卷数据进行整理,得到图1和图2两幅不完整的统计图.(1)请你补全条形统计图,并把扇形统计图中缺少的数据补全;(2)求扇形统计图中“不规范”部分所对应的圆心角的度数;(3)该校有1800人,估计该校眼保健操“较规范”的学生约有多少名?20.在三角形中,三边上的高或高的延长线交于一点,这个交点我们叫做三角形的重心.请根据上述性质,完成下列各题,并保留作图痕迹.(1)如图1,△ABC的各顶点在以AB为直径的半圆上,则△ABC的垂心是______;(2)如图2,只用不带刻度的直尺(不能使用圆规),从半圆外的C点向直径AB作垂线(不写画法);(3)如图3,作图工具要求不变,从C点向AB的延长线作垂线(不写画法).21.已知:点D是△ABC的边AC上一点,tanC=1,cos∠ADB=1,⊙O经过B,C,D三点.2(1)若BD=4,求阴影部分图形的面积;(2)若AD=2CD=4,求证:AB为⊙O的切线.22.今年销售新冠防护服,经市场调查发现:防护服的周销售量y(件)与售价x(元/件)、周销售量y、周销售利润w(元)的三组对应值如表:售价x(元/件)100200300周销售量y(件)600400200周销售利润w(元)120004800044000注:周销售利润=周销售量×(售价−进价)(1)①求y关于x的函数解析式.(不要求写出自变量的取值范围)②该防护服进价是______元/件;当售价是______元/件时,周销售利润最大,最大利润是______元.(2)由于某种原因,该防护服进价提高了a元/件(a>0),物价部门规定该防护服售价不得超过200元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是40000元,求a的值.23.矩形ABCD中∠EAF=45°,AD=nAB,E在BC上.(1)如图1,HA⊥AE于E,交CD延长线于H,求证:HD=nBE;(2)若F在DC上,FG//CB交AE于G.①如图2,求证:nBE+DF=FG;=______.②如图3,连接BG并延长交AF于P,若tan∠PGF=1,ABDF24.抛物线C1:y=ax2−x−a与x轴交于A,B两点(a>0).(1)抛物线经过第四象限内一定点P,请直接写出P点坐标;(2)是否存在一个a值使得tan∠APB=2,若存在请求出a的值;若不存在请说明理由;(3)平移抛物线C1使其顶点为原点,得抛物线C2,直线l与抛物线C2有唯一公共点M,且与y轴交于点C,OH⊥MC于H.若OH=1,求MH的最小值.答案和解析1.【答案】C的倒数是2020,【解析】解:12020故选:C.根据倒数之积等于1可得答案.此题主要考查了倒数,解题的关键是掌握倒数定义.2.【答案】C【解析】解:要使式子√x+1在实数范围内有意义,则需x+1≥0,即x≥−1,则x的取值范围是x≥−1,故选:C.根据负数没有平方根判断即可确定出x的范围.此题考查了二次根式有意义的条件,弄清二次根式性质是解本题的关键.3.【答案】D【解析】解:A、3个球中只有1个黑球,是随机事件;B、3个球都是黑球,是随机事件;C、3个球中有白球,是随机事件;D、3个球都是白球,是不可能事件,是确定性事件;故选:D.根据事件发生的可能性大小判断即可.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【答案】B【解析】解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】D【解析】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:D.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【答案】D【解析】解:由于鼎的横截面从下往上为先变大然后不变,由于匀速注水,因此水面高度h随时间t的变化为第一段上升高度速度越来越慢,第二段上升高度速度不变为直线.故选:D.根据鼎的横截面先变大再不变和匀速注水即可得出结果.本题考查了函数的图象,分析鼎的横截面是解本题的关键.7.【答案】B【解析】解:画树状图如图:由树形图可知:共有12种等可能的结果,其中使判别式Δ=9−4ac≥0的有8种结果,∴二次函数y =ax 2−3x +c 的图象与x 轴有交点的概率为812=23;故选:B .画树状图,共有12种等可能的结果,其中使判别式Δ=9−4ac ≥0的有8种结果,再由概率公式求解即可.此题考查的是用列表法或树状图法求概率以及条形统计图、扇形统计图的应用.树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.也考查了二次函数的性质.8.【答案】D【解析】解:设直线AB 交坐标轴于点N 、M ,则点M 、N 的坐标分别为(0,b)、(b3,0),点E 在直线AB 上,则点E(5,b −15),设点A(a,b −3a),而x B −x A =8,则点B(a +8,−3a −24+b),由反比例函数点的对称性得:S △ACM =S △BDN ,而S △ACE =S △BDE ,故S △MCE =S △NDE ,即12×MC ×x E =12ND ×y E ,即12×(b +3a −b)×5=12×(b 3−a −8)(b −15)①,而点A 、B 都在反比例函数上,故:a(b −3a)=(a +8)(−3a −24+b)②,联立①②并解得:{a =1b =30, 故点A 的坐标为(1,27),将点A 的坐标代入反比例函数表达式并解得:k =27,故选:D .设点A(a,b −3a),而x B −x A =8,则点B(a +8,−3a −24+b),则S △MCE =S △NDE ,即本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.9.【答案】B【解析】解:由图表可得:第一行为30+31;第二行为:30+32,31+32,第三行为:30+33,31+33,32+33,82=30+34,90=32+34,108=33+34.故选:B.观察图表可知:第一行为30+31;第二行为:30+32,31+32,进而根据规律解答即可.本题考查规律型:数字的变化类,解题的关键是学会观察,探究规律,利用规律解决问题.10.【答案】C【解析】解:如图,连接BD,ON.∵四边形ABCD是矩形,∴∠C=90°,AB=−CD=6,∴BD=√CD2+BC2=√62+82=10,∴OB=OD=5,∵NB=NM,∴ON⊥BM,∴点N的运动轨迹是以OB为直径的圆,∴点N运动的路径长为5π,如图,连接BD,ON.由垂径定理可知,ON⊥BM,推出点N的运动轨迹是以OB为直径的圆,求出OB即可解决问题.本题考查矩形的性质,垂径定理,勾股定理,轨迹等知识,解题的关键是正确寻找点N 的运动轨迹,属于中考常考题型.11.【答案】a15【解析】解:(a5)3=a5×3=a15.故答案为:a15.幂的乘方法则:底数不变,指数相乘,据此计算即可.本题主要考查了幂的乘方,熟记幂的运算法则是解答本题的关键.12.【答案】5【解析】解:∵数据9,5,7,x,5的平均数是6,∴x=4,∴这组数据重新排列为4、5、5、7、9,则这组数据的中位数为5,故答案为:5.先根据数据的平均数求出x的值,再将数据从小到大重新排列,由中位数的概念求解即可.本题主要考查平均数和中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.【答案】1x+3【解析】解:原式=2x(x+3)(x−3)−x+3(x+3)(x−3)=2x−x−3(x+3)(x−3)=x−3(x+3)(x−3)=1x+3.故答案为:1x+3.先通分,再加减.本题考查了分式的加减,掌握异分母分式的加减法法则,是解决本题的关键.14.【答案】77【解析】证明:∵ABCD是平行四边形,∴AB//DC,AD=BC,∴∠ABP=∠BPC,∵BP平分∠ABC,∴∠ABP=∠CBP,∴∠BPC=∠CBP,∵BC=BP,∴∠BPC=∠C,∴∠CBP=∠BPC=∠C,∴BC=BP=PC,∴△BPC是等边三角形,∴∠BPC=∠PBC=∠ABP=∠BAD=60°,∴四边形DPBA是等腰梯形,∴∠PAB=∠ABD=43°,∴∠APB=180°−60°−43°=77°.故答案为:77.根据平行四边形的性质和已知条件证明△BPC是等边三角形,可得四边形DPBA是等腰梯形,进而可得∠APB的度数.本题考查了平行四边形的性质,等腰梯形的判定与性质,解决本题的关键是掌握平行四边形的性质.15.【答案】x1=−1,x2=6【解析】解:关于x的一元二次方程a(x−2)2+bx=2b−c变形为a(x−2)2+b(x−2)+c=0,把抛物线y=ax2+bx+c沿x轴向右平移2个单位得到y=a(x−2)2+b(x−2)+c,因为抛物线y=ax2+bx+c经过点A(−3,0)、B(4,0),所以抛物线y=a(x−2)2+b(x−2)+c与x轴的两交点坐标为(−1,0),(6,0),所以一元二方程a(x−2)2+b(x−2)+c=0的解为x1=−1,x2=6.故答案为:x1=−1,x2=6.由于抛物线y=ax2+bx+c沿x轴向右平移2个单位得到y=a(x−2)2+b(x−2)+c,从而得到抛物线y=a(x−2)2+b(x−2)+c与x轴的两交点坐标为(−1,0),(6,0),然后根据抛物线与x轴的交点问题得到一元二方程a(x−2)2+b(x−2)+c=0的解.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.16.【答案】4√2【解析】解:过点E作EK⊥BC,交AD于点H,如图,∵四边形ABCD是矩形,∴CD=AB=2,AD=BC=8,∠D=90°.∵EK⊥BC,∴四边形ABKH为矩形.∴HK=AB=2,AH=BK.∵四边形CEFG为正方形,∴∠FE=CE,∠FEC=90°.∴∠FEH+∠DEC=90°.∵∠DEC+∠ECD=90°,∴∠FEH=∠ECD.在△FEH和△ECD中,{∠FHE =∠D =90°∠FEH =∠ECD FE =EC,∴△FEH≌△ECD(AAS).∴EF =CD =2,FH =DE .设AE =x ,则AH =BK =AE +EH =x +2,DE =FH =AD −AE =8−x ,∴FK =FH +KH =10−x .在Rt △BKF 中,∵BK 2+FK 2=BF 2,∴BF =√BK 2+FK 2=√(x +2)2+(10−x)2=√2(x −6)2+32.∵2>0∴当x =6时,BF 有最小值√32=4√2.故答案为:4√2.过点E 作EK ⊥BC ,交AD 于点H ,易得HK =AB =CD =2;通过说明△FEH≌△ECD ,可得FH =ED ,EH =CD =2,设AE =x ,则DE =FH =8−x ,AH =BK =x +2.在Rt △BKF 中,利用勾股定理求得BF ,再利用配方法,应用二次函数的性质可得结论. 本题主要考查了正方形的性质,勾股定理.三角形全等的判定与性质,矩形的判定与性质,用勾股定理求得BF ,再利用配方法,应用二次函数的性质求得最小值是解题的关键.17.【答案】解:{3m +n =12①m +3n =4②, ①×3−②得:8m =32,解得:m =4,把m =4代入①得:n =0,则方程组的解为{m =4n =0.【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】证明:在△AED和△ABC中,{∠E=∠BAE=AB∠EAD=∠BAC,∴△AED≌△ABC(ASA),∴DE=BC.【解析】证明△AED≌△ABC(ASA),由全等三角形的性质可得出结论.本题考查了全等三角形的判定与性质,证明△AED≌△ABC是解题的关键.19.【答案】解:(1)调查的总人数有:8÷4%=200(人),较规范的人数有:200−90−32−8=70(人),规范所占的百分比是:90200×100%=45%,较规范所占的百分比是:70200×100%=35%,补全统计图如下:(2)“不规范”部分所对应的圆心角的度数是360°×16%=57.6°;(3)1800×35%=630(名),答:该校眼保健操“较规范”的学生约有630名.【解析】(1)根据未做的人数和所占的百分比求出抽取的总人数,再用总人数减去其他人数,求出较规范的人数,再用规范和较规范的人数分别除以总人数,求出各自所占的百分比,从而补全统计图;(2)用360°乘以“不规范”所占的百分比即可;(3)用总人数乘以“较规范”的学生所占的百分比即可.本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.【答案】点C【解析】解:(1)如图1,∵AB为直径,∴ACB=90°,∴AC⊥BC,∴△ABC的三边上的高交于点C,∴△ABC的垂心是点C,故答案为:点C;(2)如图2:连接AC、BC分别交半圆于点D,E,连接AE,BD相交于点P,∴∠AEB=∠ADB=90°,连接CP并延长交AB于T,∵在三角形中,三边上的高或高的延长线交于一点,∴CT⊥AB;(3)如图3:连接AC交半圆于点D,连接CB并延长交以AB为直径的圆于E,连接DB,AE并延长相交于点P,∴∠AEB=∠ADB=90°,连接CP交AB的延长线于S,∵在三角形中,三边上的高或高的延长线交于一点,∴AS⊥CP.(1)根据圆周角定理:直径所对的圆周角是90°即可得出△ABC的垂心是点C;(2)连接AC、BC分别交半圆于点D,E,连接AD,BE相交于点P,根据圆周角定理可得∠AEB=∠ADB=90°,连接CP并延长交AB于T,根据在三角形中,三边上的高或高的延长线交于一点,可得出CT⊥AB;(3)连接AC交半圆于点D,连接CB并延长交以AB为直径的圆于E,连接DB,AE并延长相交于点P,根据圆周角定理可得∠AEB=∠ADB=90°,连接CP交AB的延长线于S,根据在三角形中,三边上的高或高的延长线交于一点,可得出AS⊥CP.此题是圆的综合题,主要考查了复杂作图,圆周角定理,关键是掌握三角形的三条高交于一点,直径所对的圆周角是90°.21.【答案】解:(1)连接OB,OD,∵tanC=1,∴∠C=45°,∴∠BOD=2∠ACB=90°,∵BD=4,∴OB=OD=√22BD=2√2,∴S扇形DOB =90⋅π⋅(2√2)2360=2π,S△DOB=12×(2√2)2=4,∴S阴影=S扇形DOB−S△DOB=2π−4.(2)证明:过点B作BF⊥AC于点F,设DF=x,则BF=√3x,∵∠ACB=45°,∴CF=BF,∴x+2=√3x,∴x=√3+1,∴BF=√3x=3+√3,∴AF=4−x=3−√3,∴AB2=AF2+BF2=24,又∵AD⋅AC=4×6=24,∴AB2=AD⋅AC,即ABAD =ACAB,∵∠A=∠A,∴△ADB∽△ABC,∴∠ABD=∠ACB=45°,又∵∠DBO=45°,∴∠ABO=∠ABD+∠OBD=45°+45°=90°,∴AB⊥BO,∵OB是半径,∴AB为⊙O的切线.【解析】(1)连接OB,OD,由圆周角定理得出∠DOB=90°,由扇形的面积公式及三角形面积公式可得出答案;(2)过点B作BF⊥AC于点F,设DF=x,则BF=√3x,求出x=√3+1,得出AB2= AD⋅AC,证明△ADB∽△ABC,得出∠ABD=45°,证出∠ABO=90°,则可得出结论.本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质及直角三角形的性质等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.22.【答案】80 240 51200【解析】解:(1)①设y 关于x 的函数解析式为y =kx +b ,将(100,600),(200,400)分别代入得:{600=100k +b 400=200k +b, 解得:{k =−2b =800. ∴y 关于x 的函数解析式为y =−2x +800;②该商品进价是100−12000÷600=80(元/件);由题意得:w =y(x −80)=(−2x +800)(x −80)=−2x 2+960x −64000=−2(x −240)2+51200,∵二次项系数−2<0,抛物线开口向下,∴当售价是240元/件时,周销售利润最大,最大利润是51200元.故答案为:80,240,51200;(2)由题意得:w =(−2x +800)(x −80−a)=−2x 2+(960+2a)x −6400−800a ,∵二次项系数−2<0,抛物线开口向下,对称轴为:x =−960+2a −4=240+12a , 又∵x ≤200,∴当x <240+12a 时,w 随x 的增大而增大,∴当x =200时,w 有最大值:(−2×200+800)(200−80−a)=40000,解得:a =20,∴周销售最大利润是40000元时,a 的值为20.(1)①设y 关于x 的函数解析式为y =kx +b ,用待定系数法求解即可;②该商品进价等于周销售利润除以周销售量,被“售价减”;根据周销售利润=周销售量×(售价−进价),列出w 关于x 的二次函数,根据二次函数的性质可得答案;(2)根据周销售利润=周销售量×(售价−进价),列出w 关于x 的二次函数,根据题意及二次函数的性质得出取得最大利润时的售价,再列出关于a 的方程,求解即可.本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.23.【答案】2n−1n【解析】证明:(1)∵∠EAF=45°,∠BAD=∠EAH=90°,∴∠BAE+∠DAF=45°,∠HAD+∠DAF=45°,∴∠BAE=∠DAH,又∵∠B=∠ADH=90°,∴△ADH∽△ABE,∴ADAB =HDBE=n,∴HD=nBE;(2)①如图2,作AN⊥AE,交CD的延长线于N,在AE的延长线上截取AM=AN,连接FM,由(1)可知:△ADN∽△ABE,∴ADAB =DNBE=n,∠N=∠AEB,∴DN=nBE,∵AM=AN,∠EAF=∠NAF=45°,AF=AF,∴△AMF≌△ANF(SAS),∴NF=FM,∠N=∠M,∵GF//BC,∴∠FGM=∠AEB,∴∠FGM=∠AEB=∠N=∠M,∴GF=FM,∴GF=NF=DN+DF=nBE+DF;②如图3,延长FG交AB于Q,∵AD//GF,AB//CD,∠BAD=90°,∴四边形ADFQ是矩形,∴AQ=DF,∠AQF=90°,AD=QF,∵tan∠PGF=1,∴∠PGF=45°,∴∠QGB=45°=∠QBG,∴BQ=QG,设AB=x,AQ=DF=y,则BQ=QG=x−y,AD=nx,∵GQ//BE,∴△AQG∽△ABE,∴AQAB =QGBE,∴yx =x−yBE,∴BE=x2−xyy,∵AD=QF=QG+GF,∴nx=x−y+nBE+DF=x−y+n⋅x2−xyy+y,∴(2n−1)xy=nx2,∴xy =2n−1n,∴ABDF =2n−1n,故答案为:2n−1n.(1)通过证明△ADH∽△ABE,可得ADAB =HDBE=n,即可求解;(2)①由(1)可知DN=nBE,由“SAS”可知△AMF≌△ANF,可得NF=FM,∠N=∠M,由平行线的性质和等腰三角形的性质可得结论;②延长FG交AB于Q,设AB=x,AQ=DF=y,则BQ=QG=x−y,AD=nx,由相似三角形的性质可求BE=x 2−xyy,由线段的和差关系可求解.本题是相似形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形或相似三角形是本题的关键.24.【答案】解:(1)y=ax2−x−a图象过第四象限内的定点P,∴y=ax2−x−a=a(x2−1)−x,∴x2−1=0,解得x=1或x=−1(舍去),∴P(1,−1).(2)存在.设A(x1,0),B(x2,0),作AE⊥AP交PB延长线于点E,作AC⊥x轴,PC⊥AC,ED⊥AC,∴△ACP∽△EDA,∴DEAC =ADPC=AEAP=tan∠APB=2,∴DE=2AC=2BP=2,AD=2PC=2(1−x1),E(2+x1,2−2x1).设直线PE:y=k(x−1)−1,代入B(x2,0),E(2+x1,2−2x1).k=1x2−1=2−2x1+12+x1−1,即1+x=(x2−1)(3−2x1)=3x−2x1x2−3+2x1,∴3x2+x1−2x1x2−4=0.又x1+x2=1a,x1x2=−1,∴2x2+1a+2−4=0,∴x2=1−12a ,x1=32a−1,∴((1−12a)(32a−1)=−1,解得a=38.(3)设CM:y=kx+b,联立ax2=kx+b,即ax2−kx−b=0,∵直线l与抛物线C2有唯一公共点M,∴k2+4ab=0,∴M(k2a ,k24a),∴直线CM:y=kx+k24a,∴C(0,−k24a ),N(k4a,0),由面积法CM⋅OH=ON⋅(y M+|y C|),即CM2=ON2⋅(k22a)2,∴(k22a )2+(k22a)=(k24a)2⋅(k22a)2,∴1a =16(k2+1)k,∴MH2=OM2−OH2=k24a2+k416a2−1=k2(4+k2)16⋅16(k2+1)k2−1=5+4k2+k2−1=4+4k2+k2,∵4k2+k2≥2√4=4,∴MH2≥8,∴MH≥2√2,即MH的最小值为2√2.【解析】(1)根据y=ax2−x−a图象过第四象限内的定点P,则x、y的值与a的取值无关,所以由y=ax2−x−a=a(x2−1)−x得到x2−1=0,解得x=1或x=−1(舍去),从而求出P坐标;(2)设A(x1,0),B(x2,0),作AE⊥AP交PB延长线于点E,作AC⊥x轴,PC⊥AC,ED⊥AC,由△ACP∽△EDA,得到DEAC =ADPC=AEAP=tan∠APB=2,所以DE=2AC=2BP=2,AD=2PC=2(1−x1),E(2+x1,2−2x1).设直线PE:y=k(x−1)−1,代入B(x2,0),E(2+ x1,2−2x1).解得a的值;(3)设CM:y=kx+b,联立得到ax2−kx−b=0,由于直线l与抛物线C2有唯一公共点M,所以k2+4ab=0,求出C(0,−k24a ),N(k4a,0),由面积法CM⋅OH=ON⋅(y M+|y C|),推出MH2=OM2−OH2=4+4k2+k2,利用不等式的性质求出MH的最小值为2√2.本题是二次函数综合题,考查了二次函数的应用,相似三角形的判定和性质,三角形面积公式,熟练运用二次函数的性质和一元二次方程根与系数关系以及相似三角形的性质是解题的关键.。

(湖北卷) 2020年中考数学第二次模拟考试-数学(参考答案)

(湖北卷) 2020年中考数学第二次模拟考试-数学(参考答案)

2020届九年级第二次模拟考试【湖北卷】数学·参考答案12345678910CABBDBCD AA11.212.2.1×10813.–214.215.16.417.【解析】(a +2b )(a ﹣2b )+(a ﹣2b )2﹣2a (a ﹣b )=a 2﹣4b 2+a 2﹣4ab +4b 2﹣2a 2+2ab =﹣2ab ,∵a =6,b =13,∴原式=﹣2×6×13=﹣4.18.【解析】(1)∵AC BD ⊥,EF BD ⊥,∴ABC ∆和EDF ∆为直角三角形,∵CD BF =,∴CF BF CF CD +=+,即BC DF =,在Rt ABC ∆和Rt EDF ∆中,AB DE BC DF =⎧⎨=⎩,∴()Rt ABC Rt EDF HL ∆≅∆;(2)由(1)可知ABC EDF ∆≅∆,∴B D ∠∠=,∴//AB DE .19.【解析】(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560+=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.20.【解析】(1)证明:在AB 上截取BH ,使BH BE =,连接EH ,∵四边形ABCD 是正方形,∴AB BC =,90ABC BCD ∠=∠=︒,45BDC ∠=︒,∴45BHE BEH ∠=∠=︒,∴135+∠=∠∠=︒AHE ABC BEH ,∵//CF BD ,∴45DCF BDC ∠=∠=︒,∴135+∠=∠∠=︒ECF BCD DCF ,∴AHE ECF ∠=∠,∵90ABC AEF ∠=∠=︒,∴90BAE AEB CEF AEB ∠+∠=∠+∠=︒,∴BAE CEF ∠=∠,∵AB BC =,BH BE =,∴AB BH BC BE -=-,即AH EC =.在AHE 和ECF △中,BAE CEF AH ECAHE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴≅ AHE ECF (ASA ),∴AE EF =;(2)//CF EG 且=CF EG ;证明:∵90ABC ∠=︒,∴90CBG ABC ∠=∠=︒,在ABE △和CBG 中,AB BC ABC CBG BE BG =⎧⎪∠=∠⎨⎪=⎩,∴≅ ABE CBG (SAS ),∴BAE BCG ∠=∠,AE CG =,∵BAE CEF ∠=∠,AE EF =,∴BCG CEF ∠∠=,CG EF =,∴//CG EF ,∴四边形CFEG 是平行四边形,∴//CF EG 且=CF EG .21.【解析】(1)证明:连接O C.∴OA =OC ,∴∠ACO =∠BAC .∵CD ⊥AB ,CG ⊥AE ,∴∠CGA =∠CFA =90°,∵CG =CF ,AC =AC ,∴Rt △ACG ≌Rt △ACF ,∴∠CAG =∠CAB ,∴∠ACO =∠CAG ,∴OC ∥AG ,∴∠OCG +∠G =180°,∵∠CGA =90°,∴∠OCG =90°,即OC CG ⊥,∴CG 是⊙O 的切线.(2)过点O 作OM ⊥AE ,垂足为M ,则AM =ME =12AE =1,∠OMG =∠OCG =∠G =90°.∴四边形OCGM 为矩形,∴OC =MG =ME +EG =2.在Rt △AGC 和Rt △AFC 中,CG CFAC AC =⎧⎨=⎩,∴Rt △AGC ≌Rt △AFC ,∴AF =AG =AE +EG =3,∴OF =AF -OA =1,在Rt △COF 中,∵cos ∠COF =OF OC =12.∴∠COF =60°,CF =OC ·sin ∠COF =2×2∴S 弓形BC =2602360π⋅⋅-1223π-.22.【解析】(1)设每个A 型垃圾箱x 元,B 型垃圾箱y 元,依题意有3254032160x y y x +=⎧⎨-=⎩,解得100120x y =⎧⎨=⎩.故每个A 型垃圾箱100元,B 型垃圾箱120元;(2)设购买B 型垃圾箱m 个,则购买A 型垃圾箱(20﹣m )个,依题意有120m +100(20﹣m )≤2100,解得m ≤5.故该小区最多可以购买B 型垃圾箱5个.(3)由题知3≤m ≤5,故方案一:A 买17个,B 买3个,费用为:17×100+3×120=2060元;方案二:A 买16个,B 买4个,费用为:16×100+4×120=2080元;方案三:A 买15个,B 买5个,费用为:15×100+5×120=2100元;∴最省钱方案是A 买17个,B 买3个,费用2060元.23.【解析】(1)2(3)0b +-=,∴10a +=,30b -=,∴1a =-,3b =;(2)如图1所示,过M 作CE ⊥x 轴于E ,∵1a =-,3b =,∴A (–1,0),B (3,0),∴OA =1,OB =3,∴AB =4,∵在第三象限内有一点M (–2,m ),∴ME m m ==-,∴S △ABM =12AB ×ME =12×4×(m -)=2m -;(2)当32m =-时,点M 的坐标为(2-,32-),S △ABM =3232⎛⎫-⨯-= ⎪⎝⎭,∴PBM ABM 2236S S ==⨯= ,设直线BM 交y 轴于C 点,①当点P 在y 轴上时,如图:∵PBM MPC BPC 11PC 2PC 3622S S S =+=⨯+⨯= ,解得:PC =125,设直线BM 的解析式为y kx d =+,把点M (2-,32-),B (3,0)代入得:32203k d k d ⎧-=-+⎪⎨⎪=+⎩,解得:310910k d ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BM 的解析式为391010y x =-,当0x =时,910y =-,∴点C 的坐标为(0,910-),∴OC =910,当点P 在点C 的下方时,点P 的坐标为(0,129510--),即P (0,3310-),当点P 在点C 的上方时,点P 的坐标为(0,129510-),即1P (0,1510),②当P 在x 轴上且在点A 的左侧时,设P 点的坐标为(x ,0),如图:∵PBM ABM 2236S S ==⨯= ,∴PB =2AB ,∵B (3,0),AB =4,∴38x -=,∴5x =-,∴P 点的坐标为(5-,0),当P 在x 轴上且在点B 的D 右侧时,设P 点的坐标为(x ,0),如图:同理,PB =2AB ,∵B (3,0),AB =4,∴38x -=,∴11x =,∴P 点的坐标为(11,0),综合上述:P 点的坐标为(5-,0)或(11,0)或(0,3310-)或(0,1510).24.【解析】(1)∵抛物线y =ax 2+bx +2经过A (﹣1,0),B (4,0)两点,∴2016420a b a b -+=⎧⎨++=⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩.∴抛物线解析式为213y x x 222=-++.当y =2时,213x x 2222-++=,解得:x 1=3,x 2=0(舍去).∴点D 坐标为(3,2).(2)A ,E 两点都在x 轴上,AE 有两种可能:①当AE 为一边时,AE ∥PD ,∴P 1(0,2).②当AE 为对角线时,根据平行四边形对顶点到另一条对角线距离相等,可知P 点、D 点到直线AE (即x 轴)的距离相等,∴P 点的纵坐标为﹣2.代入抛物线的解析式:213x x 2222-++=-,解得:123x x 22-==.∴P点的坐标为(2,﹣2),(32,﹣2).综上所述:P 1(0,2);P 2(2,﹣2);P 3(32-,﹣2).(3)存在满足条件的点P ,显然点P 在直线CD 下方.设直线PQ 交x 轴于F ,点P 的坐标为(213222a a a -++,),①当P 点在y 轴右侧时(如图1),CQ =a,PQ =2213132a a 2=a a 2222⎛⎫--++- ⎪⎝⎭.又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,∴Q 'C Q 'P =CO FQ ',即213a aa 22= 2FQ '-,解得FQ ′=a ﹣3∴OQ ′=OF ﹣FQ ′=a ﹣(a ﹣3)=3,CQ=CQ 此时a,点P 的坐标为().②当P 点在y 轴左侧时(如图2)此时a <0,,213a a 222-++<0,CQ =﹣a ,(无图)PQ =2213132a a 2=a a 2222⎛⎫--++- ⎪⎝⎭.又∵∠CQ ′O +∠FQ ′P =90°,∠CQ ′O +∠OCQ ′=90°,∴∠FQ ′P =∠OCQ ′,∠COQ ′=∠Q ′FP =90°.∴△COQ ′∽△Q ′FP .∴Q 'C Q 'P =CO FQ ',即213a aa 22= 2FQ '--,解得FQ ′=3﹣A .∴OQ ′=3,CQ=CQ .此时a =,点P的坐标为(92--,).综上所述,满足条件的点P 坐标为(),(92--,).。

2020年湖北省武汉市中考数学试题及参考答案(word解析版)

2020年湖北省武汉市中考数学试题及参考答案(word解析版)

2020年武汉市初中毕业生学业考试数学试卷(满分120分,考试用时120分钟)第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案。

1.实数﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≤2 C.x≥﹣2 D.x≥23.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1 B.两个小球的标号之和等于6C.两个小球的标号之和大于1 D.两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1 B.﹣1<a<1 C.a>1 D.a<﹣1或a>18.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32 B.34 C.36 D.389.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160 B.128 C.80 D.48第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解题过程,请将结果直接填写在题中的横线上。

武汉市中考数学试题及答案解析版

武汉市中考数学试题及答案解析版

2020年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间B .1和2之间C .2和3之间D .3和4之间【考点】有理数的估计 【答案】B【解析】∵1<2<412.2.若代数式在31-x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =3【考点】分式有意义的条件 【答案】C 【解析】要使31-x 有意义,则x -3≠0,∴x≠3 故选C.3.下列计算中正确的是( )A .a ·a 2=a 2B .2a ·a =2a 2C .(2a 2)2=2a 4D .6a 8÷3a 2=2a 4 【考点】幂的运算 【答案】B【解析】A. a·a2=a3,此选项错误;B.2a·a=2a2,此选项正确;C.(2a2)2=4a4,此选项错误;D.6a8÷3a2=2a6,此选项错误。

4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【考点】不可能事件的概率【答案】A【解析】∵袋子中有4个黑球,2个白球,∴摸出的黑球个数不能大于4个,摸出白球的个数不能大于2个。

A选项摸出的白球的个数是3个,超过2个,是不可能事件。

故答案为:A5.运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2-6x+9 C.x2+6x+9 D.x2+3x +9【考点】完全平方公式【答案】C【解析】运用完全平方公式,(x+3)2=x2+2×3x+32=x2+6x+9.故答案为:C6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-1【考点】关于原点对称的点的坐标.【答案】D【解析】关于原点对称的点的横坐标与纵坐标互为相反数.∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=-5,b=-1,故选D.7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()【考点】简单几何体的三视图.【答案】A【解析】从左面看,上面看到的是长方形,下面看到的也是长方形,且两个长方形一样大.故选A8.某车间20名工人日加工零件数如下表所示:日加工零件数4 5 6 7 8人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6【考点】众数;加权平均数;中位数.根据众数、平均数、中位数的定义分别进行解答.【答案】D【解析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故选D.9.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M 为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A .π2B .πC .22D .2【考点】轨迹,等腰直角三角形 【答案】B【解析】取AB 的中点E ,取CE 的中点F ,连接PE ,CE ,MF ,则FM =12PE =1,故M 的轨迹为以F 为圆心,1为半径的半圆弧,轨迹长为1212ππ⋅⋅=.10.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5B .6C .7D .8【考点】等腰三角形的判定;坐标与图形性质 【答案】A【解析】构造等腰三角形,①分别以A ,B 为圆心,以AB 的长为半径作圆;②作AB 的中垂线.如图,一共有5个C 点,注意,与B 重合及与AB 共线的点要排除。

2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《圆》(含解析)

2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《圆》(含解析)

2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《圆》一.选择题1.(2020•江岸区校级模拟)已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O的位置关系是()A.相离B.相交C.相切D.不确定2.(2020•武汉模拟)如图,AB是⊙O的直径,AB=a,点P在半径OA上,AP=b,过P 作PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,则弧AC与弧BD的弧长之和为()A.B.C.D.3.(2020•武汉模拟)在⊙O中内接四边形ABCD,其中A,C为定点,AC=8,B在⊙O 上运动,BD⊥AC,过O作AD的垂线,若⊙O的直径为10,则OE的最大值接近于()A.B.C.4 D.5 4.(2020•武昌区模拟)如图,正方形ABCD的边长为1,点E是AB边上的一点,将△BCE 沿着CE折叠得△FCE.若CF,CE恰好都与正方形ABCD的中心O为圆心的⊙O相切,则折痕CE的长为()A.2B.C.D.5.(2020•武汉模拟)如图,在等腰直角△ABC中,斜边AB的长度为8,以AC为直径作圆,点P为半圆上的动点,连接BP,取BP的中点M,则CM的最小值为()A.3B.2﹣C.﹣D.3﹣6.(2020•武汉模拟)如图,PA、PB为⊙O的切线,直线MN切⊙O且MN⊥PA.若PM =5,PN=4,则OM的长为()A.2 B.C.D.7.(2020•青山区模拟)如图,A,B,C,D为一直线上4个点,BC=3,△BCE为等边三角形,⊙O过A,D,E三点,且∠AOD=120°,设AB=x,CD=y,则y与x的函数关系式是()A.y=B.y=x C.y=3x+3 D.y=8.(2020•硚口区模拟)平面直角坐标系中,M点坐标为(﹣2,3),以2为半径画⊙M,则以下结论正确的是()A.⊙M与x轴相交,与y轴相切B.⊙M与x轴相切,与y轴相离C.⊙M与x轴相离,与y轴相交D.⊙M与x轴相离,与y轴相切9.(2020•武汉模拟)如图,在⊙O中,AB是直径,且AB=10,点D是⊙O上一点,点C 是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,OP,CO.关于下列结论:①∠BAD=∠ABC;②GP =GD;③点P是△ACQ的外心;④点P是△AOC的内心;⑤若CB∥GD,则OP=.正确的个数有()A.2 B.3 C.4 D.0 10.(2020•武汉模拟)如图,BC为⊙O直径,弦AC=2,弦AB=4,D为⊙O上一点,I 为AD上一点,且DC=DB=DI,AI长为()A.B.C.D.二.填空题11.(2020•武汉模拟)如图,在⊙O中,弦AB=4,点C是上的动点(不为A,B),且∠ACB=120°,则CA+CB的最大值为.12.(2020•武汉模拟)如图,正方形的边长为8,剪去四个角后成为一个正八边形,则这个正八边形的面积为.13.(2020•武汉模拟)圆锥的侧面展开图是一个扇形,扇形的弧长为10πcm,扇形面积为65πcm2,则圆锥的高为.14.(2020•武汉模拟)正八边形半径为2,则正八边形的面积为.15.(2020•武汉模拟)如图,正方形ABCD中,AB=4,E,F分别是边AB,AD上的动点,AE=DF,连接DE,CF交于点P,过点P作PK∥BC,且PK=2,若∠CBK的度数最大时,则BK长为.16.(2020•武汉模拟)已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的侧面积为.17.(2020•武汉模拟)正n边形内接于半径为R的圆,这个n边形的面积为3R2,则n等于.18.(2020•武汉模拟)如图,PA,PB分别与⊙O相切于A,B两点,∠P=70°,点C在劣弧AB上,则∠C=.19.(2020•武汉模拟)我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R,其内接正十二边形的周长为C.若R=,则C=,≈(结果精确到0.01,参考数据:≈2.449,≈1.414).三.解答题20.(2020•武汉模拟)如图,AB是⊙O的直径,CD与⊙O相切于D,作CH⊥AB于H,交⊙O于E,交AD于F,若AE∥CD.(1)求证:AE=EF;(2)若cos C=,AB=,求AF的长.21.(2020•青山区模拟)已知,⊙O过矩形ABCD的顶点D,且与AB相切于点E,⊙O 分别交BC,CD于H,F,G三点.(1)如图1,求证:BE﹣AE=CG;(2)如图2,连接DF,DE.若AE=3,AD=9,tan∠EDF=,求FC的值.22.(2020•武汉模拟)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E.F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求⊙O的半径.23.(2020•硚口区二模)如图,在Rt△ABC中,∠ACB=90°,以AB上的一点O为圆心,OA为半径作圆O,与BC相切于点D,交AB于点E,交AC于点F.(1)求证:DE=DF;(2)若CF:BE=4:5,求tan∠BDE的值.24.(2020•洛江区一模)如图①,AB为⊙O的直径,C为⊙O上一点,D为BC延长线一点,且BC=CD,直线CE与⊙O相切于点C,与AD相交于点E.(1)求证:CE⊥AD;(2)如图②,设BE与⊙O交于点F,AF的延长线与CE交于点P.①求证:∠PCF=∠CBF;②若PF=6,tan∠PEF=,求PC的长.参考答案一.选择题1.解:∵d=3<半径=4,∴直线与圆相交,故选:B.2.解:连接OC、OD,如图,∵CP⊥OA,DQ⊥OB,∴∠OPC=∠OQD=90°,在Rt△OPC和Rt△DQO中,∴Rt△OPC≌Rt△DQO(HL),∴∠POC=∠ODQ,而∠ODQ+∠DOQ=90°,∴∠POC+∠DOQ=90°,∴弧AC与弧BD的弧长之和==aπ.故选:B.3.解:如图,当点B与A重合时,连接CD.∵BD⊥AC,∴∠DAC=90°,∴CD是直径,∵OE⊥AD,∴AE=ED,∵OC=OD,∴OE=AC=4,此时OE的值最大,最大值为4∴OE的最大值为4,故选:C.4.解:连接OC,∵O为正方形ABCD的中心,∴∠DCO=∠BCO,∵CF与CE都为⊙O的切线,∴CO平分∠ECF,即∠FCO=∠ECO,∴∠DCO﹣∠FCO=∠BCO﹣∠ECO,即∠DCF=∠BCE,∵△BCE沿着CE折叠至△FCE,∴∠BCE=∠ECF,∴∠BCE=∠ECF=∠DCF=∠BCD=30°,在Rt△BEC中,cos∠ECB=,∴CE===,故选:B.5.解:如图,连接PA、PC,取AB、BC的中点E、F,连接EF、EM、FM,取EF的中点O,连接OM,OC,CM.∵AC是直径,∴∠APC=90°,∵BE=EA,BM=MP,∴EM∥PA,同理FM∥PC,∴∠BME=∠BPA,∠BMF=∠BPC,∴∠BME+∠BMF=∠BPA+∠BPC=90°,∴∠EMF=90°,∴点M的轨迹是,(EF为直径的半圆,图中红线部分)∵BC=AC,∠ACB=90°,AB=8,∴AC=BC=4,∵AE=EB,BF=CF=2,∴EF=AC=2,EF∥AC,∴∠EFB=∠EFC=∠ACB=90°,OE=OF=OM=,∴OC===,∵CM≥OC﹣OM,∴CM≥﹣故选:C.6.解:∵PA、PB为⊙O的切线,直线MN切⊙O于C,∴MB=MC,PA=PB,连接OC,OA,则四边形AOCN是正方形,设NC=OC=OA=AN=r,∵MN⊥PA,PM=5,PN=4,∴MN=3,∴CM=BM=3﹣r,∴5+3﹣r=4+r,解得:r=2,∴OC=2,CM=1,∴OM==,故选:D.7.解:连接AE,DE,∵∠AOD=120°,∴为240°,∴∠AED=120°,∵△BCE为等边三角形,∴∠BEC=60°;∴∠AEB+∠CED=60°;又∵∠EAB+∠AEB=∠EBC=60°,∴∠EAB=∠CED,∵∠ABE=∠ECD=120°;∴△ABE∽△ECD,∴=,即=,∴y=(0<x<6).8.解:∵M点坐标为(﹣2,3),∴点M到x轴的距离为3,到y轴的距离为2,∵⊙P的半径为2,∴圆心M到x轴的距离大于半径,到y轴的距离等于半径,故⊙M与x轴相离,与y轴相切,故选:D.9.解:不妨设∠BAD=∠ABC,则=,∵=,∴==,这个显然不符合题意,故①错误,连接OD,∵GD是⊙O的切线,∴OD⊥DG,∴∠ODG=90°,∴∠GDP+∠ODA=90°,∵GE⊥AB,∴∠AEP=90°,∴∠PAE+∠APE=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,故②正确,∵AB是直径,∴∠ACB=90°,∵∠ACP+∠BCE=90°,∠BCE+∠ABC=90°,∴∠ACE=∠ABC,∵=,∴∠CAP=∠ABC,∴∠PAC=∠PCA,∵∠AQC+∠CAP=90°,∠ACP+∠PCQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴PA=PQ,∵∠ACQ=90°,∴点P是△ACQ的外接圆的圆心,故③正确,∵与不一定相等,∴∠CAP与∠DAB不一定相等,∴点P不一定是△AOC的内心,故④错误,∵DG∥BC,OD⊥DG,∴OD⊥BC,∴=,∵=,∴==,∴∠AOC=∠COD=∠DOB=60°,∠CAD=∠DAB=30°∵OA=OC,∴△OAC是等边三角形,∵CE⊥OA,∴∠ACE=∠OCE,∴点P是△AOC的外心,∴OP=AP=PC===,故⑤错误,故选:A.10.解:如图,连接IC,作IE⊥AC于E,IF⊥AB于F,IG⊥BC于G.∵DB=DC,∴=,∠DBC=∠DCB,∴∠BAD=∠CAD,∵DI=DC,∴∠DIC=∠DCI,∵∠DIC=∠DAC+∠ACI,∠DCI=∠DCB+∠ICB,∠DBC=∠DAC,∴∠ICA=∠ICB,∴点I为△ABC内心,∴IE=IF=IG,∵BC是直径,∴∠BAC=90°,∴BC===2,∵S△ABC=•AB•AC=•IE•(AB+AC+BC),∴IE=3﹣,∵∠IAE=∠AIE=45°,∴AI=IE=3﹣,故选:D.二.填空题(共9小题)11.解:取优弧AB中点P,连接PC,PA,PB,延长CA至M,使MA=CB,连接PM.∵=,∴PA=PB,∵∠APB+∠ACB=180°,∠ACB=120°,∴∠APB=60°,∴△APB是等边三角形,∴∠ACP=∠ABP=60°,∵∠PAM+∠PAC=180°,∠PAC+∠PBC=180°,∴∠PAM=∠PBC,∵AM=BC,AP=BP,∴△MAP≌△CBP(SAS),∴PM=PC,∵∠PCM=60°∴△MPC为等边三角形,∴PC=CM.∴CA+CB=PC,过点P作PD⊥AB连接OB,∵△PAB是等边三角形,∴PD过圆心O,∠BPD=30°,∴BD=AB=2,在Rt△BDP中,DP=6,在Rt△BDO中,根据勾股定理得,(6﹣OB)2+(2)2=OB2∴OB=4,当PC为圆的直径时,CA+CB的最大值为8.故答案为8.12.解:设剪掉的等腰直角三角形的直角边为x,则由2x+x=8,解得x=4(2﹣),∴S=64﹣2(8﹣4)2=128﹣128,故答案为:128﹣128.13.解:设母线长为R,由题意得:65π=×10π×R,解得R=13cm.设圆锥的底面半径为r,则10π=2πr,解得:r=5,故圆锥的高为:=12故答案为:12.14.解:连接OA,OB,作AC⊥BO于点C,∵⊙O的半径为2,则⊙O的内接正八边形的中心角为:=45°,∴AC=CO=2,∴S△ABO=OB•AC=×2×2=2,∴S正八边形=8S△ABO=16,故答案为:16.15.解:∵正方形ABCD中,AD=CD,∠A=∠CDA=90°,∵AE=DF,∴△ADE≌△DCF(SAS),∴∠ADE=∠DCF,∵∠ADE+∠CDE=90°,∴∠DCF+∠CDE=90°,∴∠CPD=90°,∴点P在以CD为直径的半圆上运动,取CD的中点O,过O作OM⊥CD,且点M在CD的右侧,MO=2,连接OP,KM,∵PK∥BC,BC⊥CD,∴PK⊥CD,∴PK∥OM,PK=OM=2,∴四边形POMK是平行四边形,∵CD=AB=4,∴OP=CD=2,∴OP=OM,∴四边形POMK是菱形,∴点K在以M为圆心,半径=2的半圆上运动,当BK与⊙M相切时,∠CBK最大,∴∠BKM=90°,∵BM==2,∴BK==6,故答案为:6.16.解:这个圆锥的母线长为=10,所以这个圆锥的侧面积=×2π×8×10=80π(cm2).故答案为80πcm2.17.解:根据正n边形内接于半径为R的圆,则可将其分割成n个全等的等腰三角形,其中等腰三角形的腰长为圆的半径R,顶角为,∵n边形的面积为3R2,∴n××R×R×sin=3R2n sin=6解得n=12.故答案为12.18.解:连结OA、OB,D为优弧AB上一点,∠ADB为弧AB所对的圆周角,如图,∵PA,PB分别与⊙O相切于A,B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°,∴∠AOB=180°﹣70°=110°,∴∠D=∠AOB=55°,∴∠ACB=180°﹣∠D=125°.故答案为:125°.19.解:如图,△AOB中,∠AOB=30°,OA=OB=+,作AH⊥OB于H.则AH=OA=,OH=AH=,∴BH=OB﹣OH=,∴AB===2,∴正十二边形的周长C=12×2=24,∴=≈3.11,故答案我为24,3.11.三.解答题(共5小题)20.(1)证明:连接OD,如图1,∵CD与⊙O相切于D,∴OD⊥DC,∴∠ODA+∠ADC=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠ADC=90°,又∵CH⊥AB,∴∠AHC=90°,∴∠OAD+∠AFH=90°,∴∠ADC=∠AFH,∵AE∥CD,∴∠ADC=∠EAF,∴∠EAF=∠AFH,∴AE=EF;(2)解:∵AE∥CD,∴∠C=∠E,∴cos∠C=cos∠E=,设EH=4x,AE=5x,则AH=3x,连接OE,如图2,∵AB=,∴OA=OE=,∵EH2+OH2=OE2,∴,解得x=1,∴AE=EF=5,EH=4,AH=3,∴HF=1,∴AF==.21.解:(1)连接OE,延长EO与CD交于点M,∵⊙O与AB相切于点E,∴OE⊥AB,∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,AB∥CD,∴EM⊥CD,∴∠EMD=∠EMC=90°,DM=GM,∴四边形AEMD和四边形BEMC都是矩形,∴AE=DM,BE=CM,∵CM﹣CG=GM,∴BE﹣AE=CG;(2)连接EO,延长EO交⊙O于点N,交CD于点M,连接OD,EF,FN,过点N作NH⊥BC,与BC的延长线交于点H,如图2,由(1)知,四边形AEMD为矩形,∴AE=DM=MG=3,AD=EM=9,设⊙O的半径为r,则OD=r,OM=9﹣r,∵OD2﹣OM2=DM2,∴r2﹣(9﹣r)2=32,解得,r=5,∴BH=EN=2r=10,∴CH=BH﹣BC=BH﹣AD=1,∵EN为⊙O的直径,∴∠EFN=90°,∵∠ENF=∠EDF,tan∠EDF=,∴tan∠ENF=,设EF=4x,则FN=3x,∵EF2+FN2=EN2,∴16x2+9x2=100,解得,x=2,或x=﹣2(舍),∴EF=8,FN=6,设CF=y,BE=HN=z,则BF=9﹣y,FH=y+1,∵∠EFN=90°,∠B=∠H=90°,∴∠BFE+∠HFN=∠BFE+∠BEF=90°,∴∠BEF=∠HFN,∴△BEF∽△HFN,∴,即,解得,y=,即CF=.22.解:(1)线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴线BC与⊙O的位置关系是相切;(2)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+2)2=(2)2+R2,解得:R=4,即⊙O的半径是4.23.(1)证明:连接OD、EF交于点M,∵AE是⊙O的直径,∴∠AFE=∠90°=∠ACB,∴EF∥BC,又∵BC切⊙O于D,∴∠ODB=90°,∴∠OME=∠ODB=90°,即OD⊥EF,∴=,∴DE=DF;(2)解:∵EF∥BC,∴=,∴可设AF=8k,AE=10k,∴OA=OE=OD=5k,∵∠AFE=90°,∴EF==6k,又∵OD⊥EF,∴EM=FM=3k,∵OD⊥EF,∴OM==4k,∴DM=OD﹣OM=k,∵EF∥BC,∴∠BDE=∠FED,∴tan∠BDE=tan∠FED===.24.(1)证明:如图①,连结OC.∵直线CE与⊙O相切于点C,∴OC⊥CE,即∠OCE=90°.∵OA=OB,BC=CD,∴OC是△BDA的中位线.∴OC∥AD.∴∠CED=∠OCE=90°,即OC⊥AD;(2)①证明:如图②,作直径CG,连结FG,连结CF,∵CG是直径,点F在圆上,∴∠CFG=90°.∴∠G+∠FCG=90°.由(1)可知∠OCE=∠PCF+∠FCG=90°,∴∠G=∠PCF.又∵∠G=∠CBF,∴∠PCF=∠CBF;②如图②,连结AC.∵AB是直径,点F在圆上,∴∠AFB=∠PFE=90°=∠CEA.又∵∠EPF=∠APE,∴△PEF∽△PAE.∴=,即PE2=PF•PA.在直角△PEF中,tan∠PEF==,又∵PF=6,∴EF=8,由勾股定理,可求得PE=10.∵∠FBC=∠PCF=∠CAF,∠CPF=∠APC ∴△PCF∽△PAC.∴=,即PC2=PF×PA.∴PC2=PE2,则PC=PE=10.。

2020武汉市中考数学模拟试题2参考答案及评分标准(WORD版)

2020武汉市中考数学模拟试题2参考答案及评分标准(WORD版)

=t(k-n)+2(k+n) =-2t+2(k-n)=-2t ∴k-n=0④……………………10 分 ∴联立③④: k=-1,n=1 ∴直线 BP 的解析式为 y=x-2 代入抛物线: x1=0,x2=1(舍) ∴P(0,-2)…………………………12 分
40 故答案为:40,108°,……………………2 分 (2)补全条形统计图如图所示:
……4 分 (3)2500× 16 =1000(人).……6 分
40 答:该校 2500 名学生中 D 类的约有 1000 人.…………8 分 20.解:(1)(2) …………………………5 分 (3) 3 65 - 5 …………8 分
=4n8÷4n8……………………4 分 =1……………………8 分 18.解:(1)∵AB=AC, ∴∠ABC=∠C∵BC 平分∠ABD, ∴∠ABC=∠CBD, ∴∠C=∠CBD,∴AC∥BD, ∵∠A=100°,∴∠ABD=180°﹣∠A=80°, ∴∠CBD=40°故答案为:40°.………………………………3 分 (2)AC∥BD,理由如下: ∵AB=AC,∴∠ABC=∠C…………………………5 分 ∵BC 平分∠ABD,∴∠ABC=∠CBD,…………………………7 分 ∴∠C=∠CBD,∴AC∥BD.………………………………8 分 19.解:(1)8÷20%=40(人),C 组人数为 40﹣4﹣8﹣16=12(人),360°× 12 =108°,
设 AD=m,AC=4m=BC,构造△PED∽△CEB,由于 BE 4 ,EC=8,得 PE=10, DE 5
PD=5m,PC=8m,PA=PC;倍长 AQ=AE,得 PQ=CE=8,∠EPQ=60°,解三角形△EPQ 解得 EQ= 2 21 ,AE= 21 …………10 分

湖北省武汉市2020年中考数学试题(Word版,含答案与解析)

湖北省武汉市2020年中考数学试题(Word版,含答案与解析)

湖北省武汉市2020年中考数学试卷一、选择题(共10题;共20分)1.-2的相反数是()A. -2B. 2C. 12D. −12【答案】B【考点】相反数及有理数的相反数【解析】【解答】因为-2+2=0,所以﹣2的相反数是2,故答案为:B.【分析】根据相反数的性质可得结果.2.式子√x−2在实数范围内有意义,则x的取值范围是()A. x≥0B. x≥−2C. x≤2D. x≥2【答案】 D【考点】二次根式有意义的条件【解析】【解答】解:由式子√x−2在实数范围内有意义,∴x−2≥0,∴x≥2.故答案为:D.【分析】由二次根式有意义的条件是被开方数应该不小于0,从而列不等式求解可得答案.3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A. 两个小球的标号之和等于1B. 两个小球的标号之和等于6C. 两个小球的标号之和大于1D. 两个小球的标号之和大于6【答案】B【考点】随机事件【解析】【解答】解:从两个口袋中各摸一个球,其标号之和最大为6,最小为2,选项A:“两个小球的标号之和等于1”为不可能事件,故此选项错误;选项B:“两个小球的标号之和等于6”为随机事件,故此选项B正确;选项C:“两个小球的标号之和大于1”为必然事件,故此选项C错误;选项D:“两个小球的标号之和大于6”为不可能事件,故此选项D错误.故答案为:B.【分析】随机事件是指在某个条件下有可能发生有可能不会发生的事件,根据此定义即可求解.4.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是轴对称图形的是()A. B. C. D.【答案】C【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,此项不符题意;B、不是轴对称图形,此项不符题意;C、是轴对称图形,此项符合题意;D、不是轴对称图形,此项不符题意.故答案为:C.【分析】根据轴对称图形的定义“在平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形”逐项判断即可得.5.下图是由4个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】解:根据图形可知左视图为故答案为:A.【分析】左视图就是从左面看得到的正投影,从而即可一一判断得出答案.6.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A. 13B. 14C. 16D. 18【答案】C【考点】列表法与树状图法【解析】【解答】解:画树状图为:∴P(选中甲、乙两位)= 212=16.故答案为:C.【分析】画出树状图展示所有12种等可能的结果数,同时得出恰好选中甲、乙两位选手的结果数,再根据概率公式即可求解.(k<0)的图象上,且y1>y2,则a的取值范7.若点A(a−1,y1),B(a+1,y2)在反比例函数y=kx围是()A. a<−1B. −1<a<1C. a>1D. a<−1或a>1【答案】B【考点】反比例函数的性质,反比例函数图象上点的坐标特征(k<0),【解析】【解答】解:∵反比例函数y=kx∴图象经过第二、四象限,在每个象限内,y随x的增大而增大,①若点A、点B同在第二或第四象限,∵y1>y2,∴a-1>a+1,此不等式无解;②若点A在第二象限且点B在第四象限,∵y1>y2,∴{a−1<0a+1>0,解得:−1<a<1;③由y1>y2,可知点A在第四象限且点B在第二象限这种情况不可能.综上,a的取值范围是−1<a<1.故答案为:B.(k<0),可知图象经过第二、四象限,在每个象限内,y随x的增大而增【分析】由反比例函数y=kx大,由此分三种情况①若点A、点B在同在第二或第四象限;②若点A在第二象限且点B在第四象限;③若点A在第四象限且点B在第二象限讨论即可.8.一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A. 32B. 34C. 36D. 38【答案】C【考点】通过函数图象获取信息并解决问题【解析】【解答】解:设每分钟的进水量为bL,出水量为cL=5(L)由第一段函数图象可知,b=204由第二段函数图象可知,20+(16−4)b−(16−4)c=35即20+12×5−12c=35解得c=154(L)则当x=24时,y=20+(24−4)×5−(24−4)×154=45因此,a−24=45c=45154=12解得a=36(min)故答案为:C.【分析】设每分钟的进水量为bL,出水量为cL,先根据函数图象分别求出b、c的值,再求出x=24时,y的值,然后根据每分钟的出水量列出等式求解即可.9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是AC⌢的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A. 52√3 B. 3√3 C. 3√2 D. 4√2【答案】 D【考点】勾股定理,圆周角定理【解析】【解答】解:连接DO、DA、DC、OC,设DO与AC交于点H,如下图所示,∵D是AC⌢的中点,∴DA=DC,∴D在线段AC的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∴DO⊥AC,∠DHC=90°,∵AB是圆的直径,∴∠BCA=90°,∵E是BD的中点,∴DE=BE,且∠DEH=∠BEC,∴△DHE≌△BCE(AAS),∴DH=BC,又O是AB中点,H是AC中点,∴HO是△ABC的中位线,设OH=x,则BC=DH=2x,∴OD=3x=3,∴x=1,即BC=2x=2,在Rt△ABC中,AC=√AB2−BC2=√62−22=4√2.故答案为:D.【分析】连接DO、DA、DC,设DO与AC交于点H,证明△DHE≌△BCE,得到DH=CB,同时OH是三角形ABC中位线,设OH=x,则BC=2x=DH,故半径DO=3x,解出x,最后在Rt△ACB中由勾股定理即可求解. 10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 48【答案】C【考点】探索图形规律【解析】【解答】解:由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4=20(个)则n=20×4=80故答案为:C.【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.二、填空题(共6题;共6分)11.计算√(−3)2的结果是________.【答案】3【考点】二次根式的性质与化简【解析】【解答】√(−3)2= |−3|=3,故答案为:3.【分析】由一个负数的平方的算术平方根等于它的绝对值即可得出答案。

2020年湖北省武汉市中考数学。试卷及答案解析

2020年湖北省武汉市中考数学。试卷及答案解析

2020年湖北省武汉市中考数学。

试卷及答案解析2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是()A。

3℃ B。

-3℃ C。

11℃ D。

-11℃2.若分式在实数范围内有意义,则实数x的取值范围是()A。

x>-2 B。

x<-2 C。

x=-2 D。

x≠-23.计算3x^2-x^2的结果是()A。

2 B。

2x^2 C。

2x D。

4x^24.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A。

42、40 B。

42、38 C。

40、42 D。

2、405.计算(a-2)(a+3)的结果是()A。

a^2-6 B。

a^2+a-6 C。

a^2+6 D。

a^2-a+66.点A(2,-5)关于x轴对称的点的坐标是()A。

(2,5) B。

(-2,5) C。

(-2,-5) D。

(2,-5)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A。

3 B。

4 C。

5 D。

68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A。

3/4 B。

1/2 C。

1/4 D。

1/89.将正整数1至2020按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A。

2020 B。

2021 C。

2022 D。

201310.如图,在⊙O中,点C在优弧AB的中点D。

若⊙O的半径为,AB=4,则BC的长是()A。

B。

C。

D.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算的结果是12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 成活数m 成活的频率(精确到0.01)400 325 0.81350 300 0.89700 640 0.91900 815 0.911400 1255 0.903500 3145 0.90由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1)13.计算的结果是。

2020年湖北省武汉中考数学试卷(附答案与解析)

2020年湖北省武汉中考数学试卷(附答案与解析)

绝密★启用前2020年湖北省武汉市初中毕业生学业考试数 学亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本试卷由第I 卷(选择题)和第II 卷(非选择题)两部分组成.全卷共8页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答第I 卷(选择题)时,选出每小题答案后,用2B 铅笔把“答题卡”上相应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答在“试卷”......上无效.... 4.答第II 卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上,答在“试卷”上无效.......... 5.认真阅读答题卡上的注意事项. 预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑. 1.2-的相反数是( )A .2-B .2C .12D .12-2.x 的取值范围是( )A .0x ≥B .2x -≥C .2x ≤D .2x ≥3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( )A .两个小球的标号之和等于1B .两个小球的标号之和等于6C .两个小球的标号之和大于1D .两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是轴对称图形的是( )ABCD5.下图是由4个相同的正方体组成的立体图形,它的左视图是( )ABCD6.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( )A .13B .14C .16 D .18 7.若点()11,A a y -,()21,B a y +在反比例函数()0ky k x=<的图象上,且12y y >,则a 的取值范围是( )A .1a -<B .11a -<<C .1a >D .1a -<或1a >8.一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4 min 内只进水不出水,从第4 min 到第24 m in 内既进水又出水,从第24 m in 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是 ( )(第8题)A .32B .34C .36D .38毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------9.如图,在半径为3的O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是( )(第9题)AB. C. D.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A .160B .128C .80D .48第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)下面各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置. 11.________.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h ),分别为:4,3,3,5,5,6.这组数据的中位数是________. 13.计算2223m nm n m n--+-的结果是________. 14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC 是平行四边形ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D ∠=︒,则BAC ∠的大小是________.(第14题)15.抛物线2y ax bx c =++(a ,b ,c 为常数,0a <)经过()2,0A ,()4,0B -两点,下列四个结论:①一元二次方程20ax bx c ++=的根为12x =,24x =-; ②若点()15,C y -,()2,D y π在该抛物线上,则12y y <; ③对于任意实数t ,总有2at bt a b +-≤;④对于a 的每一个确定值,若一元二次方程2ax bx c p ++=(p 为常数,0p >)的根为整数,则p 的值只有两个.其中正确的结论是________(填写序号).16.如图,折叠矩形纸片ABCD ,使点D 落在AB 边的点M 处,EF 为折痕,1AB =,2AD =.设AM 的长为t ,用含有t 的式子表示四边形CDEF 的面积是________.(第16题)三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本小题满分8分)计算:()235423a a a a ⎡⎤⋅+÷⎢⎥⎣⎦. 18.(本小题满分8分)如图,直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,且EM FN ∥.求证:AB CD ∥.(第18题)19.(本小题满分8分)为改善民生;提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A 表示“非常支持”,B 表示“支持”,C 表示“不关心”,D 表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了________名居民进行调查统计,扇形统计图中,D 类所对应的扇形圆心角的大小是________; (2)将条形统计图补充完整;(3)该社区共有2 000名居民,估计该社区表示“支持”的B 类居民大约有多少人?20.(本小题满分8分)在85⨯的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为()0,0O ,()3,4A ,()8,4B ,()5,0C .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段CD ; (2)在线段AB 上画点E ,使45BCE ∠=︒(保留画图过程的痕迹); (3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.(第20题)21.(本小题满分8分)如图,在Rt ABC △中,90ABC ∠=︒,以AB 为直径的O 交AC 于点D ,AE 与过点D 的切线互相垂直,垂足为E . (1)求证:AD 平分BAE ∠; (2)若CD DE =,求sin BAC ∠的值.(第21题)-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________22.(本小题满分10分)某公司分别在A ,B 两城生产同种产品,共100件.A 城生产品的总成本y (万元)与产品数量x (件)之间具有函数关系2y ax bx c =++,当10x =时,400y =;当20x 时,1000y =.B 城生产产品的每件成本为70万元.(1)求a ,b 的值;(2)当A ,B 两城生产这批产品的总成本的和最少时,求A ,B 两城各生产多少件? (3)从A 城把该产品运往C ,D 两地的费用分别为m 万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件,C 地需要90件,D 地需要10件,在(2)的条件下,直接写出A ,B 两城总运费的和的最小值(用含有m 的式子表示).23.(本小题满分10分)问题背景 如图(1),已知A ABC DE ∽△△,求证:ABD ACE △∽△; 尝试应用 如图(2),在ABC △和ADE △中,90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒,AC 与DE 相交于点F .点D 在BC边上,ADBDDFCF的值; 拓展创新 如图(3),D 是ABC △内一点,30BAD CBD ∠=∠=︒,90BDC ∠=︒,4AB =,AC =AD 的长.(第23题)24.(本小题满分12分)将抛物线()2:2C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C . (1)直接写出抛物线1C ,2C 的解析式;(2)如图(1),点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,OAB △是以OB 为斜边的等腰直角三角形,求点A 的坐标;(3)如图(2),直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,M为线段EF 的中点;直线4y x k=-与抛物线2C 交于G ,H 两点,N 为线段GH 的中点.求证:直线MN 经过一个定点.(第24题)2020年湖北省武汉市初中毕业生学业考试数学答案解析一、 1.【答案】B【解析】因为220-+=,所以2-的相反数是2,故选B . 【考点】相反数 2.【答案】D20x ∴-≥, 2x ∴≥.故选D .【考点】二次根式有意义的条件 3.【答案】B【解析】解:从两个口袋中各摸一个球,其标号之和最大为6,最小为2, 选项A :“两个小球的标号之和等于1”为不可能事件,故选项A 错误; 选项B :“两个小球的标号之和等于6”为随机事件,故选项B 正确; 选项C :“两个小球的标号之和大于1”为必然事件,故选项C 错误; 选项D :“两个小球的标号之和大于6”为不可能事件,故选项D 错误. 故选:B .【考点】随机事件的概念,不可能事件的概念,必然事件的概念 4.【答案】C【解析】A 、不是轴对称图形,此项不符题意; B 、不是轴对称图形,此项不符题意; C 、是轴对称图形,此项符合题意; D 、不是轴对称图形,此项不符题意. 故选:C .【考点】轴对称图形的定义5.【答案】A【解析】根据图形可知左视图为.故选A . 【考点】三视图 6.【答案】C【解析】画树状图为:∴P (选中甲、乙两位)21126== 故选C .【考点】列表法或树状图法 7.【答案】B【解析】解:∵反比例函数()0ky k x=<, ∴图象经过第二、四象限,在每个象限内,y 随x 的增大而增大,①若点A 、点B 同在第二或第四象限, ∵12y y >,∴11a a -+>,此不等式无解; ②若点A 在第二象限且点B 在第四象限, ∵12y y >,∴1010a a -⎧⎨+⎩<>,解得:11a -<<;③由12y y >,可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上,a 的取值范围是11a -<<. 故选:B .【考点】反比例函数的图象和性质 8.【答案】C【解析】设每分钟的进水量为 L b ,出水量为 L c 由第一段函数图象可知,2054b ==(L ) 由第二段函数图象可知,()()2016416435b c +---= 即201251235c +⨯-= 解得154c =(L ) 则当24x =时,()()15202445244454y =+-⨯--⨯=因此,45452412154a c -===解得()36min a = 故选:C .【考点】函数图象的应用 9.【答案】D【解析】解:连接DO 、DA 、DC 、OC ,设DO 与AC 交于点H ,如下图所示,∵D 是AC 的中点,∴DA DC =,∴D 在线段AC 的垂直平分线上, ∵OC OA =,∴O 在线段AC 的垂直平分线上, ∴DO AC ⊥,90DHC ∠=︒, ∵AB 是圆的直径,∴90BCA ∠=︒,∵E 是BD 的中点,∴DE BE =,且DEH BEC ∠=∠, ∴()AAS DHE BCE △≌△, ∴DH BC =,又O 是AB 中点,H 是AC 中点, ∴HO 是ABC △的中位线, 设OH x =,则2BC DH x ==, ∴33OD x ==,∴1x =, 即22BC x ==, 在Rt ABC △中,AC ==故选:D .【考点】圆周角定理,三角形全等,勾股定理 10.【答案】A【解析】由图可知,在66⨯方格纸片中,32⨯方格纸片的个数为54240⨯⨯=(个) 则404160n =⨯=, 故选:A .【考点】图形类规律探索 二、 11.【答案】333=-=,故答案为3.【考点】二次根式的性质 12.【答案】4.5【解析】将这组数据按从小到大进行排序为3,3,4,5,5,6,则这组数据的中位数是454.52+=,故答案为:4.5. 【考点】中位数 13.【答案】1m n- 【解析】原式()()()()()23m n m n m n m n m n m n ---+=+--()()223m n m n m n m n --++-=()()m nmn m n ++-=1m n=-. 故答案为:1m n-.【考点】分式的减法运算 14.【答案】26°【解析】解:设BAC x ∠= ∵平行四边形ABCD 的对角线 ∴DC AB ∥,AD BC =,AD BC ∥ ∴DCA BAC x ∠=∠= ∵AE BE =∴ EBA BAC x ∠=∠= ∴2BEC x ∠= ∵AD AE BE == ∴BE BC =∴ 2BCE BEC x ∠=∠= ∴3DCB BCE DCA x ∠=∠+∠= ∵AD BC ∥,102D ︒∠=∴180D DCB ∠+∠=︒,即1023180x ︒+=︒,解得26x =︒. 故答案为26°.【考点】平行四边形的性质,等腰三角形的判定和性质 15.【答案】①③【解析】抛物线2y ax bx c =++经过()2,0A ,()4,0B -两点∴一元二次方程20ax bx c ++=的根为12x =,24x =-,则结论①正确抛物线的对称轴为4212x -+==-∴3x =时的函数值与5x =-时的函数值相等,即为1y0a <∴当1x -≥时,y 随x 的增大而减小又13π-<<12y y ∴>,则结论②错误当1x =-时,y a b c =-+则抛物线的顶点的纵坐标为a b c -+,且0a b c -+>将抛物线2y ax bx c =++向下平移a b c -+个单位长度得到的二次函数解析式为()22y ax bx c a b c ax bx a b =++--+=+-+由二次函数图象特征可知,2y ax bx a b =+-+的图象位于x 轴的下方,顶点恰好在x 轴上 即0y ≤恒成立则对于任意实数t ,总有20at bt a b +-+≤,即2at bt a b +-≤,结论③正确将抛物线2y ax bx c =++向下平移p 个单位长度得到的二次函数解析式为2y ax bx c p =++-函数2y ax bx c p =++-对应的一元二次方程为20ax bx c p ++-=,即2ax bx c p ++= 因此,若一元二次方程2ax bx c p ++=的根为整数,则其根只能是11x =,23x =-或10x =,22x =-或121x x ==-对应的p 的值只有三个,则结论④错误 综上,结论正确的是①③ 故答案为:①③.【考点】二次函数的图象与性质(对称性、增减性),二次函数图象的平移问题,二次函数与一元二次方程的联系 16.【答案】211144t t -+ 【解析】设DE EM x ==, ∴()2222x x t =-+,∴244x t =+,设CF y =,连接FM ,∴2BF y =-,又∵FN y =,1NM =, ∴()()2222121y y t +=-+-,∴2244t y t =-+,∴四边形CDEF 的面积为:()221142412244t t t x y CD ⎛⎫+-++ ⎝=+⋅⎪⎭,故答案为:211144t t -+. 【考点】勾股定理的综合运用 三、17.【答案】解:原式()35829+=a a a +÷()8289=a a a +÷ 8210a a =÷ 610a =.【解析】根据同底数幂相乘、乘积的幂、幂的乘方、同底数幂相除运算法则逐步求解即可.【考点】整式的乘除中幂的运算法则 18.【答案】EM 平分BEF ∠,FN 平分CFE ∠12MEF BEF ∴∠=∠,12N E CF F E ∠=∠EM //FNMEF NFE ∠=∠∴1122BEF CFE ∴∠=∠,即BEF CFE ∠=∠ //AB CD ∴.【解析】先根据角平分线的定义可得11,22MEF BEF N CF FE E ∠=∠∠∠=,再根据平行线的性质可得MEF NFE ∠=∠,从而可得BEF CFE ∠=∠,然后根据平行线的判定即可得证.【考点】平行线的判定与性质,角平分线的定义 19.【答案】(1)6018︒(2)A 类居民的人数为60369312---=(名) 补全条形统计图如下所示:(3)表示“支持”的B 类居民的占比为36100%60%60⨯= 则200060%1200⨯=(名)答:该社区表示“支持”的B 类居民大约有1200人.【解析】(1)根据C 类的条形统计图和扇形统计图的信息可得出总共抽取的人数,再求出D 类居民人数的占比,然后乘以360︒即可得;(2)根据(1)的结论,先求出A 类居民的人数,再补全条形统计图即可; (3)先求出表示“支持”的B 类居民的占比,再乘以2000即可得. 【考点】条形统计图和扇形统计图的信息关联,画条形统计图20.【答案】解:(1)如图示,线段CD 是将线段CB 绕点C 逆时针旋转90︒得到的;(2)BCE ∠为所求的角,点E 为所求的点.(3)连接()5,0和()0,5点,与AC 的交点为F ,且F 为所求.【解析】(1)根据题意,将线段CD 是将线段CB 绕点C 逆时针旋转90︒即可; (2)连接BD ,并连接()4,2,()5,5点,两线段的交点即为所求的点E . (3)连接()5,0和()0,5点,与AC 的交点为F ,且F 为所求.【考点】作图旋转变换,正方形的性质,全等三角形的性质和轴对称的性质 21.【答案】(1)如图,连接OD 由圆的切线的性质得:OD DE ⊥AE DE ⊥//OD AE ∴ DAE ADO ∴∠=∠又OA OD =DAO ADO ∴∠=∠ DAE DAO ∴∠=∠则AD 平分BAE ∠; (2)如图,连接BD由圆周角定理得:90ADB ∠=︒90BDC ∴∠=︒ 90ABC ∠=︒ 90DAO C ∴∠+∠=︒ 90DAE ADE ∠+∠=︒ ADE C ∴∠=∠在ADE △和BCD △中,90E BDC DE CD ADE C ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ADE BCD ASA ∴△≌△AD BC ∴=设AD BC a ==,CD x =,则AC AD CD a x =+=+,且0a >,0x >在ACB △和BCD △中,90C CABC BDC ∠=∠⎧⎨∠=∠=︒⎩ACB BCD ∴△∽△AC BC BC CD ∴=,即a x aa x+=解得2a x -=或02a x -=<(不符题意,舍去)经检验,x是所列分式方程的解AC a ∴=+=则在Rt ABC△中,sin BC BAC AC ∠===故sin BAC∠.【解析】(1)如图(见解析),先根据圆的切线的性质可得OD DE ⊥,再根据平行线的判定与性质可得DAE ADO ∠=∠,然后根据等腰三角形的性质可得DAO ADO ∠=∠,最后根据角平分线的定义即可得证;(2)如图(见解析),先根据角的和差、等量代换可得ADE C ∠=∠,再根据三角形全等的判定定理与性质可得AD BC =,设AD BC a ==,CD x =,然后根据相似三角形的判定与性质可得AC BCBC CD=,从而可求出x 的值,最后根据正弦三角函数的定义即可得.【考点】圆周角定理,圆的切线的性质,正弦三角函数,相似三角形的判定与性质 22.【答案】(1)由题意得:当产品数量为0时,总成本也为0,即0x =时,0y =则010010400400201000c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得1300a b c =⎧⎪=⎨⎪=⎩故1a =,30b =;(2)由(1)得:230y x x =+设A ,B 两城生产这批产品的总成本的和为W 则()223070100700040x x x x W x ++-+==- 整理得:()2206600W x +=- 由二次函数的性质可知,当20x 时,W 取得最小值,最小值为6600万元此时1001002080x -=-=答:A 城生产20件,B 城生产80件;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D 地的产品数量为()20n -件,从B 城运往C 地的产品数量为()90n -件,从B 城运往D 地的产品数量为()1020n -+件由题意得:20010200n n -⎧⎨-+⎩≥≥,解得1020n ≤≤()()()3209021020P mn n n n =+-+-+-+整理得:()2130P m n =-+根据一次函数的性质分以下两种情况:①当02m <≤时,在1020n ≤≤内,P 随n 的增大而减小则20n =时,P 取得最小值,最小值为()2021302090m m -+=+ ②当2m >时,在1020n ≤≤内,P 随n 的增大而增大则10n =时,P 取得最小值,最小值为()10213010110m m -+=+答:当02m <≤时,A ,B 两城总运费的和的最小值为()2090m +万元;当2m >时,A ,B 两城总运费的和的最小值为()10110m +万元.【解析】(1)先根据题意得出产品数量为0时,总成本y 也为0,再利用待定系数法即可求出a 、b 的值;(2)先根据(1)的结论得出y 与x 的函数关系式,从而可得出A ,B 两城生产这批产品的总成本的和,再根据二次函数的性质即可得;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,先列出从A 城运往D 地的产品数量、从B 城运往C 地的产品数量、从B 城运往D 地的产品数量,再求出n 的取值范围,然后根据题干运费信息列出P 与n 的函数关系式,最后根据一次函数的性质求解即可得.【考点】利用待定系数法求二次函数的解析式,二次函数与一次函数的实际应用 23.【答案】问题背景:∵A ABC DE ∽△△, ∴BAC DAE ∠=∠,AB ACAD AE=, ∴BAD DAC CAE DAC ∠+∠=+∠, ∴BAD CAE ∠=∠, ∴ABD ACE △∽△; 尝试应用:连接CE ,数学试卷 第21页(共26页) 数学试卷 第22页(共26页)∵90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=, ∴BAC DAE △∽△,∴AB AD AC AE=, ∵BAD DAC CAE DAC ∠+∠=+∠, ∴BAD CAE ∠=∠, ∴ABD ACE △∽△,∴BD AD CE AE=, 由于30ADE ∠=︒,90DAE ∠=︒,∴tan30AE AD ︒==,即BD AD CE AE =,∵AD BD = ∴3AD CE=, ∵90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒, ∴60C E ∠=∠=︒, 又∵AFE DFC ∠=∠, ∴AFE DFC ∽△△, ∴AF EF DF CF =,即AF DFEF CF=, 又∵AFD EFC ∠=∠ ∴ADF ECF ∽△△, ∴3DF ADCF CE ==;拓展创新:AD =如图,在AD 的右侧作DAE BAC ∠=∠,AE 交BD 延长线于E ,连接CE ,∵ADE BAD ABD ∠=∠+∠,ABC ABD CBD ∠=∠+∠,30BAD CBD ∠=∠=︒, ∴ADE ABC ∠=∠, 又∵DAE BAC ∠=∠, ∴BAC DAE △∽△, ∴AB AC BCAD AE DE==, 又∵DAE BAC ∠=∠, ∴BAD CAE ∠=∠, ∴BAD CAE △∽△,∴=BD AB AD CE AC AE === 设CD x =,在直角三角形BCD 中,由于30CBD ∠=︒,∴BD =,2BC x =, ∴3CE x =,∴DE x ,∵AB BCAD DE =, ∴4AD =, ∴AD =【解析】问题背景:通过A ABC DE ∽△△得到AB ACAD AE =,AB ACAD AE=,再找到相等的数学试卷 第23页(共26页) 数学试卷 第24页(共26页)角,从而可证ABD ACE △∽△;尝试应用:连接CE ,通过BAC DAE △∽△可以证得ABD ACE △∽△,得到BD ADCE AE=,然后去证AFE DFC ∽△△,ADF ECF ∽△△,通过对应边成比例即可得到答案; 拓展创新:在AD 的右侧作DAE BAC ∠=∠,AE 交BD 延长线于E ,连接CE ,通过BAC DAE △∽△,BAD CAE △∽△,然后利用对应边成比例即可得到答案.【考点】相似三角形24.【答案】解:(1)∵抛物线()2:2C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C , ∴抛物线1C 的解析式为:()226y x =--,即242y x x =--, 抛物线2C 的解析式为:()2226y x =-+-,即26y x =-.(2)如下图,过点A 作AC x ⊥轴于点C ,连接AD ,∵OAB △是等腰直角三角形, ∴ 45BOA ∠=︒,又∵90BDO BAO ∠=∠=︒, ∴点A 、B 、O 、D 四点共圆, ∴45BDA BOA ∠=∠=︒, ∴9045ADC BDA ∠=︒-∠=︒, ∴DAC △是等腰直角三角形,∴DC AC =.∵点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上, ∴抛物线1C 的对称轴为2x =, 设点A 的坐标为()2,42x x x --, ∴2DC x =-,2 42AC x x =--, ∴22 42x x x -=--,解得:5x =或0x =(舍去), ∴点A 的坐标为()5,3;同理,当点B 、点A 在x 轴的下方时,()2242x x x -=---,4x =或1x =-(舍去), ∴点A 的坐标为()4,2-,综上,点A 的坐标为()5,3或()4,2-.(3)∵直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点, ∴26y kx y x =⎧⎨=-⎩,∴260x kx --=,设点E 的横坐标为E x ,点F 的横坐标为F x , ∴E F x x k +=,∴中点M 的横坐标22F M E x x x k+==, 中点M 的纵坐标22M y kx k==,∴点M 的坐标为2,22k k ⎛⎫⎪⎝⎭;同理可得:点N 的坐标为228,k k ⎛⎫- ⎪⎝⎭, 设直线MN 的解析式为y ax b =+(0a ≠),将2,22k k M ⎛⎫ ⎪⎝⎭、228,N k k ⎛⎫- ⎪⎝⎭代入得:数学试卷 第25页(共26页) 数学试卷 第26页(共26页)222282k ka b a b k k ⎧=+⎪⎪⎨⎪=-+⎪⎩, 解得:242k a k b ⎧-=⎪⎨⎪=⎩,∴直线MN 的解析式为24·2k ky x -=+(0k ≠), 不论k 取何值时(0k ≠),当0x =时,2y =, ∴直线MN 经过定点()0,2.【解析】(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可;(2)先判断出点A 、B 、O 、D 四点共圆,再根据同弧所对的圆周角相等得到45BDA BOA ∠=∠=︒,从而证出DAC △是等腰直角三角形.设点A 的坐标为()2,42x xx --,把DC 和AC 用含x 的代数式表示出来,利用DC AC =列方程求解即可,注意有两种情况;(3)根据直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,联立两个解析式,得到关于x 的一元二次方程,根据根与系数的关系求出点M 的横坐标,进而求出纵坐标,同理求出点N 的坐标,再用待定系数法求出直线MN 的解析式,从而判断直线MN 经过的定点即可. 【考点】二次函数综合应用。

2019-2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《方程与不等式》含解析

2019-2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《方程与不等式》含解析

2019-2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《方程与不等式》一.选择题1.(2020•武汉模拟)方程4x2=81的一次项系数为()A.4 B.0 C.81 D.﹣81 2.(2020•武汉模拟)我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,裁一张边长为1的正方形纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置F,因而EF=EB,类似地,在AB上折出点M,使AM=AF,表示方程x2+x﹣1=0的一个正根的线段是()A.线段BM B.线段AM C.线段BE D.线段AE 3.(2020•青山区模拟)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:今有甲种袋子中装有黄金9枚(每枚黄金重量相同),乙种袋子中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲种袋子比乙种袋子轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可建立方程为()A.B.C.D.4.(2020•武汉模拟)如果m、n是一元二次方程x2+x=4的两个实数根,那么多项式2n2﹣mn﹣2m的值是()A.16 B.14 C.10 D.6 5.(2020•武汉模拟)关于x的方程2x2+3x﹣7=0的根的情况,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根6.(2020•武汉模拟)将关于x的一元二次方程x(x+2)=5化成一般式后,a、b、c的值分别是()A.1,2,5 B.1,﹣2,﹣5 C.1,﹣2,5 D.1,2,﹣5 7.(2020•武汉模拟)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2+x1x2的值是()A.﹣1 B.﹣5 C.5 D.1 8.(2020•武汉模拟)栖树一群鸦,鸦树不知数;三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?歌谣大意是:一群乌鸦落在一片树上,如果三个乌鸦落在一棵树上,那么就有五个乌鸦没有树可落;如果五个乌鸦落在一棵树上,那么就有一棵树没有落乌鸦,请问乌鸦和树各多少?若设乌鸦有x只,树有y棵,由题意可列方程组()A.B.C.D.9.(2020•硚口区模拟)我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.10.(2020•武汉模拟)某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x人,生产螺帽y人,由题意列方程组()A.B.C.D.11.(2020•江汉区校级一模)若关于x的不等式2x﹣a≤0的正整数解是1,2,3,则a的取值范围是()A.6<a<7 B.7<a<8 C.6≤a<7 D.6≤a<8 12.(2020•武汉模拟)关于x的方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m≥3 C.m≤3且m≠2 D.m<3 13.(2020•武汉模拟)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9 B.3(x+2)=2x﹣9C.+2=D.﹣2=二.填空题14.(2020•武汉模拟)已知3是一元二次方程x2+m=0的一个根,则该方程的另一个根是.15.(2020•武汉模拟)如果关于x的一元二次方程mx2+4x﹣1=0没有实数根,那么m的取值范围是.16.(2020•武汉模拟)已知,如图是一个三角形点阵,从上向下数有无数多行,其中第一行有一个点,第二行有两个点,…,第n行有n个点,容易发现,三角形点阵中前4行的点数和是10.若三角形点阵中前a行的点数之和为300,则a的值为.17.(2020•武汉模拟)一元二次方程x(x﹣5)=0的根为.18.(2020•武汉模拟)为响应全民阅读活动,某校面向社会开放图书馆.自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次.若进馆人次的月增长率相同,为求进馆人次的月增长率.设进馆人次的月增长率为x,依题意可列方程为.19.(2020•武汉模拟)若x=1为方程x2﹣m=0的一个根,则m的值为.20.(2020•武昌区校级模拟)已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是三.解答题21.(2020•硚口区模拟)解方程:3(2x+3)=11x﹣6.22.(2020•武汉模拟)解一元二次方程:x2+2x﹣1=0.23.(2020•武汉模拟)已知3是一元二次方程x2﹣2x+a=0的一个根,求a的值和方程的另一根.24.(2020•硚口区模拟)为了抓住武汉园博园元宵灯会的商机,某商店决定购进A、B两种艺术纪念品.若购进A种纪念品8件,B种纪念品3件,需要95元,若购进A种纪念品5件,B种纪念品6件,需要80元.(1)求购进A,B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过765元,那么该商店共有几种进货方案?25.(2019•江夏区校级模拟)商场从厂家购进了A,B两种型号的空气净化器,已知一台A 型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)商场决定用不超过14000元从厂家购进A、B两种型号的空气净化器共10台,且B 型空气净化器的台数少于A型空气净化器的台数的2倍,问商场有几种进货方案?如果这10台空气净化器在进价的基础上都加价50%销售并售完,采用上面哪一方案利润最大.(3)为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?26.(2019•东西湖区模拟)某商店计划一次购进两种型号的手机共110部,销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元,其中A型手机的进货量不超过B型手机的2倍,且商店最多购进B型手机50台.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)设购进B型手机n部,销售手机的总利润为y元,怎么进货才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.27.(2019•武汉一模)母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒.已知A、B两种礼盒的单价比为2:3,单价和为200元(1)求A、B两种礼盒的单价分别是多少元?(2)该店主进这两种礼盒花费不超过9720元,B种礼盒的数量是A种礼盒数量的2倍多1个,且B种礼盒的数量不低57个,共有几种进货方案?28.(2019•青山区模拟)为迎接军运会,市政府准备采购若干套健身器材免费提供给社区,经考察,某体育器材公司有A,B两种型号的健身器可供选择.(1)体育器材公司2017年每套A型健身器的售价为2.5万元,经过连续两年降价,2019年每套售价为1.6万元,求每套A型健身器年平均下降率n;(2)2019年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项费总计不超过112万元,不少于110万元.采购合同规定:每套A型健身器售价为1.6万元,每套B型健身器售价为1.5(1﹣n)万元.①有几种采购方案?②安装完成后,若每套A型和B型健身器一年的养护费分别是购买价的a%(5≤a≤8)和10%.市政府计划支出W万元进行养护.问每年养护费的最低费用为多少?29.(2019•硚口区模拟)某公司根据市场需求销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划用不超过9.8万元购进A,B两种型号的净水器共50台,其中A型、B 型净水器每台售价分别为2500元、2180元,设A型净水器为x台.①求x的取值范围.②若公司决定从销售A型净水器的利润中每台捐献a(100<a<150)元给贫困村饮水改造爱心工程,求售完这50台净水器后获得的最大利润.参考答案一.选择题1.解:方程4x2=81的一般形式是4x2﹣81=0,它的一次项系数是0,故选:B.2.解:设AM=AF=x,由题意知EF=BE=,在Rt△ABE中,AB2+BE2=AE2,即1+()2=(x+)2,整理得x2+x﹣1=0,即AM为方程x2+x﹣1=0的一个正数根.故选:B.3.解:设每枚黄金重x两,每枚白银重y两,依题意,得:.故选:C.4.解:∵n是一元二次方程x2+x=4的根,∴n2+n=4,即n2=﹣n+4,∵m、n是一元二次方程x2+x=4的两个实数根,∴m+n=﹣1,mn=﹣4,∴2n2﹣mn﹣2m=2(﹣n+4)﹣mn﹣2m=﹣2(m+n)﹣mn+8=2+4+8=14.故选:B.5.解:由题意可知:△=9+4×2×7>0,故选:A.6.解:方程整理得:x2+2x﹣5=0,则a,b,c的值分别是1,2,﹣5,故选:D.7.解:∵x1,x2是一元二次方程x2﹣3x+2=0的两根,∴x1+x2+x1x2=3+2=5.故选:C.8.解:设诗句中谈到的鸦为x只,树为y棵,则可列出方程组为:.故选:D.9.解:设大马有x匹,小马有y匹,由题意得:,故选:D.10.解:设生产螺栓x人,生产螺帽y人,根据总人数可得方程x+y=90;根据生产的零件个数可得方程2×15x=24y,可得方程组:.故选:C.11.解:解不等式2x﹣a≤0,得:x≤,∵不等式2x﹣a≤0的正整数解是1,2,3,∴3≤<4,解得:6≤a<8,故选:D.12.解:当m﹣2=0,即m=2时,方程变形为2x+1=0,解得x=﹣;当m﹣2≠0,则△=22﹣4(m﹣2)≥0,解得m≤3且m≠2,综上所述,m的范围为m≤3.故选:A.13.解:设有x辆车,则可列方程:3(x﹣2)=2x+9.故选:A.二.填空题(共7小题)14.解:将x=3代入方程,得:9+m=0,则m=﹣9,∴方程为x2﹣9=0,解得x=±3,∴方程的另一个根为﹣3,故答案为:﹣3.15.解:根据题意得m≠0且△=42﹣4m×(﹣1)<0,解得m<﹣4.故答案为:m<﹣4.16.解:依题意,得:1+2+3+…+a=300,整理,得:a2+a﹣600=0,解得:a1=24,a2=﹣25(不合题意,舍去).故答案为:24.17.解:方程x(x﹣5)=0,可得x=0或x﹣5=0,解得:x1=0,x2=5,故答案为:x1=0,x2=518.解:设进馆人次的月平均增长率为x,则由题意得:200+200(1+x)+200(1+x)2=872,故答案为:200+200(1+x)+200(1+x)2=872.19.解:将x=1代入x2﹣m=0,m=1,故答案为:1.20.解:设方程的另一根为a,∵﹣3是一元二次方程x2﹣4x+c=0的一个根,∴﹣3+a=4,解得a=7,故答案为:7.三.解答题(共9小题)21.解:3(2x+3)=11x﹣6,6x+9=11x﹣6,9+6=11x﹣6x,15=5x,x=3.22.解:方程变形得:x2+2x=1,配方得:x2+2x+1=2,即(x+1)2=2,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣.23.解:将x=3代入x2﹣2x+a=0中得32﹣6+a=0,解得a=﹣3,将a=﹣3代入x2﹣2x+a=0中得:x2﹣2x﹣3=0,解得x1=3,x2=﹣1,所以a=﹣3,方程的另一根为﹣1.24.解:(1)设A、B两种纪念品的价格分别为x元和y元,则,解得.答:A、B两种纪念品的价格分别为10元和5元.(2)设购买A种纪念品t件,则购买B种纪念品(100﹣t)件,则750≤5t+500≤765,解得50≤t≤53,∵t为正整数,∴t=50,51,52,53,即有四种方案.第一种方案:购A种纪念品50件,B种纪念品50件;第二种方案:购A种纪念品51件,B种纪念品49件;第三种方案:购A种纪念品52件,B种纪念品48件;第四种方案:购A种纪念品53件,B种纪念品47件.25.解:(1)设每台B型空气净化器的进价为x元,则每台A型净化器的进价为(x+300)元,根据题意得:,解得:x=1200,经检验,x=1200是原方程的根,∴x+300=1500.答:每台B型空气净化器的进价为1200元,每台A型空气净化器的进价为1500元.(2)设A型空气净化器购进x台,则B型空气净化器(10﹣x)台.由1500x+1200(10﹣x)≤14000和10﹣x<2x解得x的范围<x≤,可取4,5,6三种方案.当x=6时,y最大=6900元.(3)设B型空气净化器的售价为x元,根据题意得:(x﹣1200)(4+)=3200,整理得:(x﹣1600)2=0,解得:x1=x2=1600.答:电器商社应将B型空气净化器的售价定为1600元.26.解:(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)设购进B型手机n部,则购进A型手机(110﹣n)部,则y=150(110﹣n)+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴y关于n的函数关系式为y=﹣50n+16500 (36≤n≤50);∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650(元),答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;(3)设购进B型手机n部,则购进A型手机(110﹣n)部,根据题意,得:y=150(110﹣n)+(100+m)n=(m﹣50)n+16500,其中,36≤n≤50(n为整数),①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36≤n≤50的整数时,均获得最大利润;③当50<m<70时,y随n的增大而增大,∴当n=50时,y取得最大值,即购进A型手机60部、B型手机50部时销售总利润最大.27.解:(1)设A种礼盒单价为x元,B种礼盒单价为y元,依据题意得:,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒(2a+1)个,依据题意可得:,解得:28≤a≤30,∵a的值为整数,∴a的值为:28、29、30,∴共有三种进货方案.28.解:(1)依题意列方程,2.5(1﹣n)2=1.6(1﹣n)2=1﹣n=±1﹣n=或1﹣n=﹣解得,n=或n=∵0<n<1∴n=.(2)①设采购A型号健身器材x套,采购B型号健身器材则(80﹣x)套,采购专项总费用为y元.依题意,y=1.6x+1.5(1﹣n)(80﹣x).把n=代入上式得,y=1.6x+1.2(80﹣x)整理得,y=0.4x+96.由题意,110≤y≤112∴110≤0.4x+96≤112.解得,35≤x≤40.又∵x应为整数∴x=35,36,37,38,39,40.故有6套方案.②依题意,W=1.6•a%x+1.2×10%(80﹣x)整理得,W=(1.6•a%﹣0.12)x+9.6.∵5≤a≤8∴﹣0.04≤1.6•a%﹣0.12≤0.0008故当a=5时,即W=﹣0.04x+9.6时应有W的最小值.又∵﹣0.04<0∴W随x的增大而减小∴当x=40时,由W的最小值为8.答:(1)年平均下降率为.(2)①有6种方案.②每年养护费的最低费用为8万元.29.解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m﹣200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m﹣200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)①根据题意得:2000x+1800(50﹣x)≤98000,解得:x≤40∴x的取值范围为:0≤x≤40且为x整数;②总利润w=(2500﹣2000)x+(2180﹣1800)(50﹣x)﹣ax=(120﹣a)x+19000,∵100<a<150,∴i).当100<a<120时,120﹣a>0,w随x增大而增大,∴当x=40时,w取最大值,最大值为(120﹣a)×40+19000=23800﹣40a,ii).当a=120时,w为一个定值w=0+19000=19000,iii)当120<a<150时,120﹣a<0,w随x的增大而减小,∴当x=0时,w取最大值,其最大值为:(120﹣a)×0+19000=19000,综上,当100<a<120时,19000<23800﹣40a<19800,∴售完这50台净水器后获得的最大利润为23800﹣40a.。

2020年武昌中考数学训练题(二)参考答案.doc

2020年武昌中考数学训练题(二)参考答案.doc

2020武昌考数学训练题(二)一1A 2B 3.B 4.A 5D 6C 7.C 8C 9.C 10.B二、填空题(本大题共6个小题,每小题3分,共18分)11.2 1211-x 13.5413 14.解:连接CE 交BD 于O∵AC =4,BC =3∴AB =5∴OC =OE =512,OB =OD =59 ∴AD =5759595=-- 15.解:设EH =x ,则HG =x 3600 ∵BCHG AD AM = ∴1603600120120x x =-,解得x 1=30,x 2=90 16.解:1或33+三、解答题(共8题,共72分)17.(本题8分)解方程:⎩⎨⎧=+=+832152y x y x 解:⎩⎨⎧-==523y x 18.略19.解:(1) 200人(2) 如图(3) 最喜欢兵乓球,全校有720180020080=⨯人 20.解:(1) y 1=50+0.4x ,y 2=0.6x(2) 当y 1=y 2时,50+0.4x =0.6x ,解得x =250(3) 小童选择“方式B ”,小郑选择“方式A ”21.证明:(1) 连接OC 、BC∵AB 为⊙O 的直径∴∠ACB =90°∵∠PMC =45°∴△CMN 为等腰直角三角形∵PM 平分∠APC∴∠CPM =∠APM∵∠CMN =∠CAP +∠MP A ,∠CNM =∠MPC +∠BCP∴∠BCP =∠CAP∵OB =OC∴∠OBC =∠OCB在△ABC 中,∠CAB +∠CBA =90°∴∠BCP +∠OCB =90°∴∠OCP =90°∴PC 是⊙O 的切线(2) 过点M 作MD ⊥MC 交AB 于D∵∠PMC =45°∴∠PMC =∠PMD可证:△PMC ≌△PMD (ASA )∴MC =MD ∵52=AM CM ∴设CM =2a =DM ,AM =5a∵DM ∥BC ∴75==AC AM BC MD ,a BC 514= 在Rt △ABC 中,2227)514()7(=+a a ,整理得49254494922=⨯+a a ∴125422=+a a ,解得29295=a ∴CM =2a =29291022.(本题10分)如图所示,某双曲线xk y =(k >0,x >0)上三点A 、B 、C 的横坐标分别为1、2、3 (1) 若A 点的纵坐标为5,则B 点的纵坐标是___________(2) 若AB =2BC ,该双曲线的解析式(3) 将点A 绕点B 顺时针旋转90°到点D ,连接BD 、CD ,若△BCD 是直角三角形,直接写出满足条件的k 值解:(1) (252,) (2) ∵A (1,k )、B (2,2k )、C (3,3k )∴AB 2=412k +,BC 2=3612k + ∵AB =2BC ∴AB 2=4BC 2 ∴)361(44122k k +=+,解得5156=k (3) 由三垂直模型,得D (1222++k k ,) ∴BD 2=1)2(2+k ,CD 2=22)16()12(++-k k ① 当∠BCD =90°时,BC 2+CD 2=BD 21)2()16()12(3612222+=++-++k k k k ,解得539±=k ② 当∠CBD =90°时,CB 2+BD 2=CD 22222)16()12(1)2(361++-=+++k k k k ,解得k =0(舍去) ③ 当∠BDC =90°时,BD 2+CD 2=CB 2361)16()12(1)2(2222k k k k +=++-++,无解23.解:(1) ∵∠ADC =∠AHC =90°∴A 、C 、H 、D 四点共圆∴∠CDH =∠CAH =∠EDF =45°∵EF ⊥CE∴∠BFH =45°(2) 过点B 作BG ∥CD 交FH 的延长线于G∵∠G =∠GDC =∠HAC =∠ABC =30°∴AB =3AC ,AH =3CH ,BH =3AH ∴31=BH CH (这里是射影定理) ∵BG ∥DE ∴31==BH CH BG CD ∵∠DEF =90°∴∠BGF =90°∴BG =3BF ∴CD BF 3= (3) BFCD =tan α(可以直接通过第2问来推测)24.解:(1) ∵y =a (x 2-2x +1)+4=a (x -1)2+4∴当x =1时,y =4∴P (1,4)(2) 过点P 作l ∥x 轴,过点A 作AC ⊥l 于C ,过点B 作BD ⊥l 于D∵∠APB =90°∴△APC ∽△PBD ∴BD PC PD AC = ∴14412121--=--x y y x ,(x 1+x 2)-x 1x 2-1=16-4[k (x 1+x 2)-2k ]+k 2(x 1x 2-x 1-x 2+1) 联立⎪⎩⎪⎨⎧++-=-=422a ax ax y k kx y ,整理得ax 2-(2a +k )x +a +k +4=0 ∴x 1+x 2=a k a +2,x 1x 2=ak a 4++ ∴)4()22(4161422a a a k a ak a k ak a a ++-+-+-=--,得ak a k a 2244164+-=-,解得41-=a (3) 将P (1,4)代入y =(c +1)x 2+(2a +3)x +c 中,得a =-c∴y =(c +1)x 2+(3-2c )x +c设M (t ,(c +1)t 2+(3-2c )t +c )、N (t ,-ct 2+2ct -c +4)∴Q (t ,2432++t t ) ∴Q 点运动的轨迹为223212++=x x y。

2020年湖北省武汉市武昌区九年级中考数学模拟试卷 含详细答案

2020年湖北省武汉市武昌区九年级中考数学模拟试卷  含详细答案

2020年湖北省武汉市武昌区中考数学模拟试卷一、选择题(本大题共10小题,共30分)1.2的相反数是()A. −2B. −12C. 2 D. 122.若式子√x+3在实数范围内有意义,则x的取值范围是()A. x>3B. x≥3C. x>−3D. x≥−33.下列说法正确的是()A. 打开电视机,它正在播广告是必然事件B. “明天降水概率80%“,是指明天有80%的时间在下雨C. 方差越大数据的波动越大,方差越小数据的波动越小D. 在抽样调查过程中,样本容量越小,对总体的估计就越准确4.下列四个图案中,轴对称图形的个数是()A. 1B. 2C. 3D. 45.如图是由五个完全相同的小正方体组成的几何体,这个几何体的俯视图是()A. B. C. D.6.公元前3世纪,古希腊数学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即“阻力×阻力臂=动力×动力臂”.若现在已知某一杠杆的阻力和阻力臂分别为1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数图象大致是()A.B.C.D.7.小明投掷一次骰子,向上一面的点数记为x,再投掷一次骰子,向上一面的点数记为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=6x上的概率为()A. 16B. 19C. 112D. 1188.如图,反比例函数y=kx(x>0)的图象分别与矩形OABC 的边AB,BC相交于点D,E,与对角线OB交于点F,以下结论:①若△OAD与△OCE的面积和为2,则k=2;②若B点坐标为(4,2),AD:DB=1:3.则k=1;③图中一定有ADBD =CEBE;④若点F是OB的中点,且k=6,则四边形ODBE的面积为18.其中一定正确个数是()A. 1B. 2C. 3D. 49.如图,正方形ABCD的边长为1,点E是AB边上的一点,将△BCE沿着CE折叠得△FCE.若CF,CE恰好都与正方形ABCD的中心O为圆心的⊙O相切,则折痕CE的长为()A. 2√5、B. 23√3C. 83√3D. 4√3310.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则1a1+1a2+1a3+⋯+1a10的值为()A. 175264B. 175132C. 1124D. 1112二、填空题(本大题共6小题,共18分)11.化简√12的结果为______.12.在一次考试中,某小组8名同学的成绩(单位:分)分别是:7,10,8,8,10,7,9,7,则这组数据的中位数是______.13.化简:2aa2−b2+1b−a的结果是______.14.如图,AE平分∠BAC,BE⊥AE于E,ED//AC,∠BAE=40°,那么∠BED的度数为______.15.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=15,则S2的值是______.16.如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D是半径为4的⊙A上一动点,点M是CD的中点,则BM的最大值是______.三、解答题(本大题共8小题,共72分)17.计算:2x3⋅x3+(3x3)2−8x6.18.如图,AC=DB,AB=DC,求证:EB=EC.19.某校组织了2000名学生参加“爱我中华”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了部分学生的得分进行统计:成绩x(分)频数频率50≤x<6020a60≤x<70160.0870≤x<80b0.15请你根据以上的信息,回答下列问题:(1)a=______,b=______.(2)在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数是______;(3)若将得分转化为等级,规定:50≤x<60评为D,60≤x<70评为C,70≤x<90评为B,90≤x<100评为A.这次全校参加竞赛的学生约有______人参赛成绩被评为“B”.20.定义:顶点都在网格点上的四边形叫做格点四边形,端点都在网格点上的线段叫做格点线.如图1,在正方形网格中,格点线DE、CE将格点四边形ABCD分割成三个彼此相似的三角形.请你在图2、图3中分别画出格点线,将阴影四边形分割成三个彼此相似的三角形.21.如图,⊙O的直径AB=6cm,直线DM与⊙O相切于点E.连接BE,过点B作BC⊥DM于点C,BC交⊙O于点F,BC=9cm.2(1)求线段BE的长;(2)求图中阴影部分的面积.22.某公司经过市场调查,发现某种运动服的销量与售价是一次函数关系,具体信息如表:售价(元/件)200210220230…月销量(件)200180160140…已知该运动服的进价为每件元.(1)售价为x元,月销量为y件.①求y关于x的函数关系式:②若销售该运动服的月利润为w元,求w关于x的函数关系式,并求月利润最大时的售价;(2)由于运动服进价降低了a元,商家决定回馈顾客,打折销售,这时月销量与调整后的售价仍满足(1)中函数关系式.结果发现,此时月利润最大时的售价比调整前月利润最大时的售价低15元,则a的值是多少?23. △ABC 中,D 是BC 的中点,点G 在AD 上(点G 不与A 重合),过点G 的直线交AB于E ,交射线AC 于点F ,设AE =xAB ,AF =yAC(x,y ≠0). (1)如图1,若△ABC 为等边三角形,点G 与D 重合,∠BDE =30°,求证:△AEF∽△DEA ;(2)如图2,若点G 与D 重合,求证:x +y =2xy ;(3)如图3,若AG =nGD ,x =12,y =32,直接写出n 的值.24. 已知抛物线的顶点A(−1,−4),经过点B(−2,−3),与x 轴分别交于C ,D 两点.(1)求该抛物线的解析式;(2)如图1,点M 是抛物线上的一个动点,且在直线OB 的下方,过点M 作x 轴的平行线与直线OB 交于点N ,当MN 取最大值时,求点M 的坐标;(3)如图2,AE//y 轴交x 轴于点E ,点P 是抛物线上A ,D 之间的一个动点,直线PC ,PD 与AE 分别交于F ,G ,当点P 运动时, ①直接写出EF +EG 的值;②直接写出tan∠ECF +tan∠EDG 的值.答案和解析1.解:2的相反数是−2.故选:A.依据相反数的定义求解即可.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.解:根据题意得,x+3≥0,解得x≥−3.故选:D.根据被开方数大于等于0列式进行计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.3.解:A、打开电视机,它正在播广告是随机事件,故本选项错误;B、“明天降水概率80%“,意味着明天降雨的可能是80%,故本选项错误;C、方差越大数据的波动越大,方差越小数据的波动越小,故本选项正确;D、在抽样调查过程中,样本容量越大,对总体的估计就越准确,故本选项错误;故选:C.根据必然事件的概念、方差的定义、随机事件的概率逐项分析即可得出答案.本题考查了必然事件的概念、方差的定义、求随机事件的概率,解题的关键是熟练掌握方差的定义以及求随机事件的概率.4.解:第1个不是轴对称图形,符合题意;第2个是轴对称图形,不合题意;第3个是轴对称图形,不合题意;第4个不是轴对称图形,符合题意,故有2个轴对称图形.故选:B.直接利用轴对称图形的定义分别判断得出答案.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.解:根据俯视图是从上面看所得到的图形,可知这个几何体的俯视图是C中的图形,故选:C.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.本题考查了三视图的知识,理解俯视图是从物体的上面看得到的视图是解题的关键.6.解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,,是反比例函数,A选项符合,则F=600l故选:A.直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式,从而确定其图象即可.此题主要考查了反比例函数的应用,正确读懂题意得出关系式是解题关键.7.解:画树状图为:共有36种等可能的结果数,其中点P落在双曲线y=6x上有:(1,6),(2,3),(3,2),(6,1),所以点P落在双曲线y=6x 上的概率=436=19.故选:B.先画画树状图展示所有36种等可能的结果数,再利用反比例函数图象上点的坐标特征找出点P落在双曲线y=6x上的结果数,然后根据概率公式求解.本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了树状图法.8.解:①∵D、E均在反比例函数图象上,∴S△OAD=S△OCE,又∵△OAD与△OCE的面积和为2,∴S△OAD=S△OCE=1,∴k=2,故本选项正确;②∵B点坐标为(4,2),∴AB=4,AO=2,∵AD:DB=1:3,∴AD=1,AO=2,∴k=1×2=2,故本选项错误;③∵△OAD与△OCE的面积相等,∴12AD⋅AO=12OC⋅CE,∴OCAD =AOCE,∴ABAD =CBCE,∴AB−ADAD =CB−CECE,∴DBAD =BECE,∴ADBD =CEBE,故本选项正确;④∵k=6,∴S四边形OGFH=6,∴S四边形ABCO=6×4=24,∴S△AOD=S△CEO=6×12=3,∴S四边形ODBE=24−3−3=18,故本选项正确.故选:C.①根据反比例函数比例系数k的几何意义,可知△OAD与△OCE的面积相等,均为1,据此即可求出k的值;②根据B点坐标为(4,2),AD:DB=1:3,求出AD、AO的长,计算出△AOD的面积,据此即可求出k的值;③根据△OAD与△OCE的面积相等,列出等式AD⋅AO=OC⋅CE,然后写成比例式OCAD=AO CE ,再转化为ABAD=CBCE,然后利用合比性质解答.④根据反比例函数k的几何意义,求出S四边形OGFH=6,进而得出S四边形ABCO=6×4=24,再求出S△AOD=S△CEO=6×12=3,从而得到四边形ODBE的面积.本题主要考查了反比例函数的性质、反比例函数k的几何意义、矩形的性质以及比例式的基本性质等知识,是一道综合题,要熟悉反比例函数的性质及四边形的性质.9.解:连接OC,∵O为正方形ABCD的中心,∴∠DCO=∠BCO,∵CF与CE都为⊙O的切线,∴CO平分∠ECF,即∠FCO=∠ECO,∴∠DCO−∠FCO=∠BCO−∠ECO,即∠DCF=∠BCE,∵△BCE沿着CE折叠至△FCE,∴∠BCE=∠ECF,∴∠BCE=∠ECF=∠DCF=13∠BCD=30°,在Rt△BEC中,cos∠ECB=BCCE,∴CE=BCcos∠ECB =√32=2√33,故选:B.连接OC,由O为正方形的中心,得到∠DCO=∠BCO,根据切线长定理得到CO平分∠ECF,可得出∠DCF=∠BCE,由折叠可得∠BCE=∠FCE,再由正方形的内角为直角,可得出∠ECB为30°,根据余弦的定义计算,得到答案.本题主要考查的是切线的性质、正方形的性质、勾股定理、切线长定理以及折叠的性质,熟练掌握定理及性质是解本题的关键.10.解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+ 2);∴1a1+1a2+1a3+⋯+1a10=11×3+12×4+13×5+⋯+110×12=11×3+13×5+⋯+19×11+12×4+14×6+⋯+110×12=12(1−111)+12(12−112)=175264,故选:A.首先根据图形中“●”的个数得出数字变化规律,进而求出即可.此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.11.解:√12=2√3,故答案为:2√3.根据二次根式的性质进行化简.本题考查的是二次根式的化简,掌握二次根式的性质:√a2=|a|是解题的关键.12.解:将这组数据按从小到大的顺序排列为:7,7,7,8,8,9,10,10,那么由中位数的定义可知,这组数据的中位数是8+82=8.故答案为:8.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.此题主要考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.解:原式=2aa2−b2−1a−b=2a−(a+b)a2−b2=a−ba2−b2=1a+b,故答案为:1a+b.根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.解:∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∵ED//AC,∴∠CAE+∠DEA=180°,∴∠DEA=180°−40°=140°,∵∠AED+∠AEB+∠BED=360°,∴∠BED=360°−140°−90°=130°.故答案为:130°.已知AE平分∠BAC,ED//AC,根据两直线平行,同旁内角互补,可求得∠DEA的度数,再由三角形外角和为360°求得∠BED度数.本题考查了平行线的性质和三角形外角和定理.两直线平行,同旁内角互补.15.解:∵图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2=CG2+DG2+2CG⋅DG=GF2+2CG⋅DG,S2=GF2,S3=(NG−NF)2=NG2+NF2−2NG⋅NF,∵S1+S2+S3=15=GF2+2CG⋅DG+GF2+NG2+NF2−2NG⋅NF=3GF2,∴S2的值是:5.故答案为:5.根据图形的特征得出线段之间的关系,进而利用勾股定理求出各边之间的关系,从而得出答案.此题主要考查了勾股定理的应用,根据已知得出S1+S2+S3=15=GF2+2CG⋅DG+ GF2+NG2+NF2−2NG⋅NF=3GF2是解决问题的关键.16.解:如图,取AC的中点N,连接MN,BN.∵∠ABC=90°,AB=8,BC=6,∴AC=10,∵AN=NC,AC=5,∴BN=12∵AN=NC,DM=MC,∴MN=1AD=2,2∴BM≤BN+NM,∴BM≤5+2=7,即BM的最大值是7.故答案为7.如图,取AC的中点N,连接MN,BN.利用直角三角形斜边中线的性质,三角形的中位线定理求出BN,MN,再利用三角形的三边关系即可解决问题.本题考查直角三角形斜边的中线的性质,三角形的中位线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.17.解:2x3⋅x3+(3x3)2−8x6=2x6+9x6−8x6=3x6.18.证明:在△ABC与△DCB中,{AC=DB AB=DC BC=CB,∴△ABC≌△DCB(SSS);∴∠ECB=∠EBC,∴EB=EC.19.解:(1)本次调查的人数为:16÷0.08=200,a=20÷200=0.1,b=200×0.15=30,故答案为:0.1,30;(2)在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数是360°×0.1= 36°,故答案为:36°;(3)2000×30+62200=920(人),即这次全校参加竞赛的学生约有920人参赛成绩被评为“B”,故答案为:920.(1)根据60≤x<70的频数和频率可以求得本次调查的人数,从而可以求得a、b的值;(2)根据a的值,可以求出在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数;(3)根据统计图中的数据,可以计算出次全校参加竞赛的学生约有多少人参赛成绩被评为“B”.本题考查扇形统计图、用样本估计总体、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.20.解:如图所示21.解:(1)连接AE.∵AB是⊙O的直径,∴∠AEB=90°,又∵BC⊥DM,∴∠ECB=90°,∴∠AEB=∠ECB,∵直线DM与⊙O相切于点E,∴∠CEB=∠EAB,∴△AEB∽△ECB,∴ABEB =BEBC,∴BE2=AB⋅BC,∴BE=√6×92=3√3(cm);(2)连接OE,过点O作OG⊥BE于点G.∴BG=EG,在Rt △ABE 中,cos∠ABE =BE AB =√32, ∴∠ABE =30°,在Rt △OBG 中,∠ABE =30°,BO =3,∴OG =1.5,∴S △EOB =12×3√3×32=94√3, ∵OE =OB ,∴∠OEB =∠OBE =30°,∴∠BOE =120°,∴S 扇形OBE =120×32360=3π,∴S 阴影=S 扇形OBE −S △EOB =(3π−94√3)cm 2.22.解:(1)①设y 关于x 的函数关系式为y =kx +b ,把(200,200),(210,180)代入得: {200k +b =200210k +b =180, 解得:{k =−2b =600, ∴y 关于x 的函数关系式为y =−2x +600;②月利润w =(x −150)(−2x +600)=−2x 2+900x −90000=−2(x −225)2+11250.∵−2<0,∴w 为开口向下的抛物线,∴当x =225时,月最大利润为11250元;∴w 关于x 的函数关系式为w =−2x 2+900x −90000,月利润最大时的售价为225元;(2)设调整后的售价为t 元,则调整后的单件利润为(t −150+a)元,销量为(−2t +600)件.月利润w =(t −150+a)(−2t +600)=−2t 2+(900−2a)t +600a −90000,∴当t =450−a 2时,月利润最大,则450−a 2=210,解得a =30.∴a 的值是30元.23.解:(1)∵△ABC 为等边三角形,∴∠BAC =∠B =60°,AB =AC ,∵AD 是△ABC 的中线,∴∠BAD =12∠BAC =30°,∵∠BDE =30°,∴∠BED =90°∴EF ⊥AB ,∴∠F =90°−∠EAF =30°=∠BAD ,∵∠AED =∠FEA =90°,∴△AEF∽△DEA .(2)如图2,过C作CH//AB交EF于H,∴∠B=∠DCH,∠BED=∠CHD,∵AD是△ABC的中线,∴BD=CD,∴△DEB≌△DHC(AAS),∴CH=BE,∵CH//AB,∴△FCH∽△FAE,∴CFAF =CHAE,∴CFAF =BEAE,∵ABAE =1x,ACAF=1y,∴CFAF =1−ACAF=1−1y,BEAE=ABAE−1=1x−1∴1−1y =1x−1,∴1x +1y=2,∴x+y=2xy.(3)如图3,连接DE.∵y=32,∴AF=32AC,∴AC=23AF,∵x=12,∴AE=12AB,∴点E是AB的中点,∵AD 是△ABC 的中线,∴点D 是BC 的中点,∴DE =12AC =12⋅23AF =13AF , ∵DE//AC ,∴△DGE∽△AGF ,∴DGAG =DEAF=13, ∴DG =13AG ,∴AG =3DG ,∴n =3.24.解:(1)∵抛物线顶点坐标为(−1,−4),∴可设抛物线解析式为y =a(x +1)2−4,∵抛物线经过B(−2,−3),∴−3=a −4,解得a =1,∴抛物线为y =x 2+2x −3;(2)设直线OB 解析式为y =kx ,由题意可得−3=−2k ,解得k =32, ∴直线OB 解析式为y =32x ,设M(t,t 2+2t −3),MN =s ,则N 的横坐标为(t −s),纵坐标为32(t −s). ∵MN//x 轴,∴t 2+2t −3=32,得s =−23t 2−13t +2=−23(t +14)2+4924. ∴当t =−14时,MN 有最大值,最大值为4924,此时点M 的坐标是(−14,−5516);(3)EF +EG =8.理由如下:如图2,过点P 作PQ//y 轴交x 轴于Q ,在y =x 2+2x −3中,令y =0可得0=x 2+2x −3, 解得x =−3或x =1.∴C(−3,0),D(1,0).设P(t,t2+2t−3),则PQ=−t2−2t+3,CQ=t+3,DQ=1−t.∵PQ//EF,∴△CEF∽△CQP.∴EFPQ =CECQ.∴EF=CECQ ⋅PQ=2t+3×(−t2−2t+3).同理△EGD∽△QPD得EGPQ=DEDQ.∴EG=DEDQ ⋅PQ=21−t⋅(−t2−2t+3),∴EF+EG=2t+3(−t2−2t+3)+21−t⋅(−t2−2t+3)=2(−t2−2t+3)(1t+3+11−t)=2(−t2−2t+3)×4−t2−2t+3=8,∴当点P运动时,EF+EG为定值8;②由①知,EF+EG=8,则tan∠ECF+tan∠EDG=EF+EGCE=4.。

【2020精品中考数学提分卷】武汉市武昌区初三二模数学试卷+答案

【2020精品中考数学提分卷】武汉市武昌区初三二模数学试卷+答案

2020年武汉市武昌区初三二模数学试卷1.选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.武汉某日最高气温5℃,最低-2℃,最高气温比最低气温高 A .3℃ B .7℃ C .-3℃D .-7℃2.若代数式41x 在实数范围内有意义,则实数x 的取值范围是 A .x >4 B .x =4 C .x<4D .x ≠43.计算x 2-2x 2的结果是 A .-1 B .-x 4C .-x2D .x 24.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 5.计算(a +3)(a -1)的结果是 A .a 2-3B .a 2+3C .a 2-2a -3D .a 2+2a -36.点A (-2,1)关于原点对称的点的坐标是A .(2,-1)B .(-2,-1)C .(2,1)D .(1,-2) 7.五个相同的小正方体搭成的几何体的俯视图如图所示,这个几何体的搭法种数是 A .1种B .2种C .3种D .4种8.某单位组织职工开展植树活动,植树量与人数之间的关系如下表,下列说法不正确的是植树量(棵)3 4 5 6 7 人数410861A .参加本次植树活动共有29人B .每人植树量的众数是4C .每人植树量的中位数是5D .每人植树量的平均数是59.如图,0°<∠BAC <90°,点A 1,A 3,A 5…在边AB 上,点 A 2,A 4,A 6…在边AC 上,且满足如下规律:A 1A 2⊥A 2A 3, A 2A 3⊥A 3A 4,A 3A 4⊥A 4A 5,…,若AA 1=A 1A 2=A 2A 3=1,则A 11A 12的长度为A .21015+B .21217+C .21724+D .22941+10.如图,Rt △ABC 中,∠ACB =90°,BC =5,AC =12,I 是Rt △ABC 的内心,连接CI ,AI ,则△CIA 外接圆的半径为 A .13 B .262 C .132D .26 二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定位置.11.计算222-的结果是__________.12.计算11122---x x x 的结果是__________. 13.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .14.如图,正方形ABCD 中,E 是AB 的中点,FE ⊥AB ,AF =2AE ,FC 交BD 于O ,则∠DOC 的度数为 °.15.如图,正方形ABCD 中,DE=2AE=4, F 是BE 的中点,点H 在CD 上,∠EFH=45°,则FH 的长度为 .16.已知抛物线4)343(2+++=x a ax y 交x 轴于点A ,B (B 在x 轴正半轴上),交y 轴于点C ,△ABC 是等腰三角形,则a 的值为 .三、解答题(共8小题,共72分)第14题第15题下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本题8分)解方程组⎩⎨⎧=+=+5342y x y x18.(本题8分)如图,B ,E ,C ,F 在同一条直线上,AE ⊥BF ,DC ⊥BF ,BC =EF ,AE=DC ,求证AB ∥DF .19.(本题8分)交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A ,B ,C ,D ,E 等著名景点,该市旅游部门统计绘制出2018年“五·一”小长假期间旅游情况统计图,根据图中信息回答下列问题:(1)2018年“五·一”期间,该市景点共接待游客 万人,扇形统计图中C 景点所对应的圆心角的度数是,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“十·一”国庆节将有80万游客选择该市旅游,E景点每张门票是25元,请估计2018年“十·一”国庆期间E景点门票收入约是多少万元?20.(本题8分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?21.(本题8分)如图,在⊙O 中,BC是弦,OA⊥BC于点E,D为⊙O上一点,连接AD,CD.(1)求证:∠AOB=2∠ADC;(2)若OB⊥CD,CD=8,OE=5,求tan∠ADC.22.(本题10分)如图,直线721+-=x y 与双曲线xky =交于A ,B 两点,A 点的横坐标为2. (1)求点B 的坐标;(2)P 为线段AB 上一点(不包括端点),P 点的纵坐标为a ,作PN ⊥y 轴,垂足为N ,交双曲线于点M ,求MNPM的最大值; (3)点C 在x 轴上,点D 在y 轴上,若四边形ABCD 是平行四边形,则四边形ABCD 的面积为_________.23.(本题10分)在四边形ABCD 中,BD 平分∠ABC. (1)如图1,若∠A =∠BDC ,求证:BD 2=AB ·BC ; (2)如图2,∠A >90°,∠BAD+∠BDC=180°,① 若∠ABC =60°,AB =49,BC =4,求DCAD; ② 若BC =2n ,CD =n ,BD =8,则AB 的长为________.24.(本题12分)抛物线c bx x y ++-=2与x 轴交于A ,B 两点(点A 在点B 的左边),与y轴正半轴交于点C.(1)如图1,若A (-1,0),B (3,0),① 求抛物线c bx x y ++-=2的解析式;② P 为抛物线上一点,连接AC ,PC ,若∠PCO=3∠ACO ,求点P 的横坐标; (2)如图2,D 为x 轴下方抛物线上一点,连DA ,DB ,若∠BDA+2∠BAD=90°,求点D⎩⎨⎧=+=+5342y x y x 的纵坐标.2020年武汉市武昌区初三二模数学试卷参考答案一、选择题B DC AD A C D D C 二、填空题 11.2 12.11+x 13.52 14. 60 15.52516.32-或94-或78-三、解答题(共8题,共72分) 17.解:①②②-①得:x =1 ……………………2分x =1代入②得:42=+y ………………4分 ∴2=y …………………………6分 ∴方程组的解为:⎩⎨⎧==21y x ……………………8分18.∵AE ⊥BF ,DC ⊥BF∴∠AEB =∠DCF =90°………………2分 ∵BC =EF ∴BC -EC =EF -EC∴BE =FC ………………4分 在△ABE 和△DFC 中⎪⎩⎪⎨⎧=∠=∠=DC AE DCF AEB FCBE ∴△ABE ≌△DFC ………………6分 ∴∠B =∠F∴AB ∥DF ………………8分19. (1) 50 ………………1分28.8° 条形统计图B 景点12 ………………5分 (2)2402580506=⨯⨯万 答:E 景点门票收入约是240万元 .………………8分 20.解:(1) 设甲客车租金每辆x 元,乙客车租金每辆y 元, 则⎩⎨⎧=+=+17602312403y x y x 解得:⎩⎨⎧==280400y x答:甲客车租金每辆400元,乙客车租金每辆280元 .………………4分(2)设甲租了x 辆,则乙客车租了(8-x )辆,设租车费用为W 元W=400x +280(8-x )=2240+120x 330)8(3045≥-+x x解得:6≥x ,W 随x 的增大而增大,∴x =6时W 最小,296028026400=⨯+⨯ 答:最节省的租车费用是2960元 .………………8分 21.(1)连接OC ∵OA ⊥BC ,∴,∴∠AOC=∠AOB∵∠AOC =2∠ADC ,∴∠AOB =2∠ADC ………………4分 (2)延长BO 交CD 于点F ,连接AB ∵OB ⊥CD ,∴CF=21CD =4∵∠EBO=∠FBC ∠CFB=∠OEB ∴ △ABE ∽△DFC ,∴45==CF OE BF BE设BE =n 5,则BF =4n ,BC =n 52 ∴CF =n BF BC 222=-,∴2n =4 n =2,∴BE =n 5=52,∴BO =5 AE =55-,∴tan ∠ADC=tan ∠ABE=2155255-=-=BEAE …………8分22.解:(1) A (2,6), A (2,6)代入xk y =得:k =12.⎪⎪⎩⎪⎪⎨⎧=+-=x y x y 12721解得:⎩⎨⎧==6211y x ⎩⎨⎧==11222y x ∴B (12,1) ………………3分 (2)令y=a 721+-=x aa x 214-=,∴P (14-2a ,a )∴M (a12,a),∴PN =a 214- MN =a12PM =PN -MN =aa a a a 12142122142-+-=--∴2425)27(61167611212142222+--=-+-=-+-=a a a a a MN PM 27=a 可以取到,所以PN PM 的最大值为2425 ………………7分 (3)20 ………………10分23. 解:(1) ∵BD 平分∠ABC ,∴∠ABD =∠DBC∵∠A =∠BDC ,∴△ABD ∽△DBC∴BC BD BD AB =,∴BD 2=AB ·BC ………………3分 (2)延长BA 到E ,使DE =DA ,作DH ⊥AE 于点H∴∠EAD =∠E∵∠EAD+∠BAD =180°,∠BAD+∠BDC=180°∴∠BDC =∠EAD=∠E ,∵∠ABD =∠DBC∴△EBD ∽△DBC ,∴BD 2=EB ·BC设DH=x ,则BH=x 3,AH =HE =493-x ∴BE =BH +EH =4932-x ,∴2)2(4)4932(x x =⨯- 解得:2332321==x x ∵AH =HE =493-x >0,∴433>x ,∴233=x ∴BD =332=x∵△EBD ∽△DBC ,∴433===BC BD DC DE DC AD ………………7分 (3)n 23 ………………10分 (解析:ID =163642n -,DE =4,BE =n 32,HE =nn 43642-,AB =BE -2HE =n 23) 24.①A (-1,0),B (3,0)代入c bx x y ++-=2得:⎩⎨⎧=++-=+--03901c b c b 解得⎩⎨⎧==32c b ∴322++-=x x y ………………3分②延长CP 交x 轴于点E ,在x 轴上取点D 使CD =CA ,作EN ⊥CD 交CD 的延长线于N .∵CD =CA ,OC ⊥AD ,∴ ∠DCO=∠ACO ∵∠PCO=3∠ACO ,∴∠ACD=∠ECD ,∴tan ∠ACD=tan ∠ECD∴CN ENCI AI=,AI =106=⨯CD OC AD , ∴CI =10822=-AI CA ,∴43==CN EN CI AI设EN =3x ,则CN =4xtan ∠CDO=tan ∠EDN13==OD OC DN EN ,∴DN =x ,∴CD =CN -DN =3x =10 ∴310=x ,∴DE=310 , E (313,0) CE 的直线解析式为:3139+-=x y ⎪⎩⎪⎨⎧++-=+-=3239132x x y x y 3139322+-=++-x x x 解得:1335021==x x 点P 的横坐标1335 ………………7分 (2)作DI ⊥x 轴,垂足为I∵∠BDA+2∠BAD=90°∴∠DBI+∠BAD=90°∵∠BDI+∠DBI=90°∴∠BAD=∠BDI∵∠BID=∠DIA∴△EBD ∽△DBC ∴AI ID ID BI= ∴AD D D B D x x y y x x --=-- ∴B A D B A D D x x x x x x y ++-=)(22令y=0 02=++-c bx xc x x b x x B A B A -==+c bx x x x x x x x y D D B A D B A D D --=++-=222)( ∵c bx x y D D D ++-=2∴D D y y -=2解得 0=D y 或-1∵D 为x 轴下方一点∴1-=D yD 的纵坐标-1 ………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018武昌考数学训练题(二)

1A 2B 3.B 4.A 5D 6C 7.C 8C 9.C 10.B
二、填空题(本大题共6个小题,每小题3分,共18分)
11.2 1211-x 13.54
13 14.解:连接CE 交BD 于O
∵AC =4,BC =3
∴AB =5
∴OC =OE =512,OB =OD =5
9 ∴AD =5
759595=-- 15.
解:设EH =x ,则HG =
x 3600 ∵BC
HG AD AM = ∴160
3600
120120x x =-,解得x 1=30,x 2=90 16.解:1或33+
三、解答题(共8题,共72分)
17.(本题8分)解方程:⎩⎨⎧=+=+8
32152y x y x 解:⎩
⎨⎧-==523y x 18.略
19.
解:(1) 200人
(2) 如图
(3) 最喜欢兵乓球,全校有7201800200
80=⨯人
20.
解:(1) y 1=50+0.4x ,y 2=0.6x
(2) 当y 1=y 2时,50+0.4x =0.6x ,解得x =250
(3) 小童选择“方式B ”,小郑选择“方式A ”
21.
证明:(1) 连接OC 、BC
∵AB 为⊙O 的直径
∴∠ACB =90°
∵∠PMC =45°
∴△CMN 为等腰直角三角形
∵PM 平分∠APC
∴∠CPM =∠APM ∵∠CMN =∠CAP +∠MP A ,∠CNM =∠MPC +∠BCP
∴∠BCP =∠CAP
∵OB =OC
∴∠OBC =∠OCB
在△ABC 中,∠CAB +∠CBA =90°
∴∠BCP +∠OCB =90°
∴∠OCP =90°
∴PC 是⊙O 的切线
(2) 过点M 作MD ⊥MC 交AB 于D
∵∠PMC =45°
∴∠PMC =∠PMD
可证:△PMC ≌△PMD (ASA )
∴MC =MD ∵5
2=AM CM ∴设CM =2a =DM ,AM =5a
∵DM ∥BC ∴75==AC AM BC MD ,a BC 5
14= 在Rt △ABC 中,2227)514(
)7(=+a a ,整理得49254494922=⨯+a a ∴125
422=+a a ,解得29295=a ∴CM =2a =
292910
22.(本题10分)如图所示,某双曲线x
k y =
(k >0,x >0)上三点A 、B 、C 的横坐标分别为1、2、3 (1) 若A 点的纵坐标为5,则B 点的纵坐标是___________
(2) 若AB =2BC ,该双曲线的解析式
(3) 将点A 绕点B 顺时针旋转90°到点D ,连接BD 、CD ,若△BCD 是直角三角形,直接写出满足条件的k 值
解:(1) (2
52,) (2) ∵A (1,k )、B (2,
2k )、C (3,3k ) ∴AB 2=412k +,BC 2=36
12k + ∵AB =2BC
∴AB 2=4BC 2 ∴)361(44122k k +=+,解得5
156=k (3) 由三垂直模型,得D (12
22++k k ,) ∴BD 2=1)2(2+k ,CD 2=22)16
()12(++-k k ① 当∠BCD =90°时,BC 2+CD 2=BD 2
1)2
()16()12(3612222+=++-++k k k k ,解得539±=k ② 当∠CBD =90°时,CB 2+BD 2=CD 2
2222)16
()12(1)2(361++-=+++k k k k ,解得k =0(舍去) ③ 当∠BDC =90°时,BD 2+CD 2=CB 2
36
1)16()12(1)2(2222k k k k +=++-++,无解
23.
解:(1) ∵∠ADC =∠AHC =90°
∴A 、C 、H 、D 四点共圆
∴∠CDH =∠CAH =∠EDF =45°
∵EF ⊥CE
∴∠BFH =45°
(2) 过点B 作BG ∥CD 交FH 的延长线于G
∵∠G =∠GDC =∠HAC =∠ABC =30°
∴AB =3AC ,AH =3CH ,BH =3AH ∴3
1=BH CH (这里是射影定理) ∵BG ∥DE ∴
31==BH CH BG CD ∵∠DEF =90°
∴∠BGF =90°
∴BG =3BF ∴CD BF 3= (3) BF
CD =tan α(可以直接通过第2问来推测)
24.解:(1) ∵y =a (x 2-2x +1)+4=a (x -1)2+4
∴当x =1时,y =4
∴P (1,4)
(2) 过点P 作l ∥x 轴,过点A 作AC ⊥l 于C ,过点B 作BD ⊥l 于D
∵∠APB =90°
∴△APC ∽△PBD ∴
BD PC PD AC = ∴1
4412121--=--x y y x ,(x 1+x 2)-x 1x 2-1=16-4[k (x 1+x 2)-2k ]+k 2(x 1x 2-x 1-x 2+1)
联立⎪⎩⎪⎨⎧++-=-=4
22a ax ax y k kx y ,整理得ax 2-(2a +k )x +a +k +4=0 ∴x 1+x 2=a k a +2,x 1x 2=a
k a 4++ ∴)4()22(4161422a a a k a ak a k ak a a ++-+-+-=--,得a
k a k a 2244164+-=-,解得41-=a (3) 将P (1,4)代入y =(c +1)x 2+(2a +3)x +c 中,得a =-c
∴y =(c +1)x 2+(3-2c )x +c
设M (t ,(c +1)t 2+(3-2c )t +c )、N (t ,-ct 2+2ct -c +4)
∴Q (t ,2
432++t t ) ∴Q 点运动的轨迹为22
3212++=x x y。

相关文档
最新文档