欧拉线定理的证明及其应用
欧拉公式的三种证明
欧拉公式的三种证明欧拉公式可以用来表示一个多边形内角和与它边数之间的关系,它可以被用来确定多边形内角度数的总和。
该公式被拉普拉斯(Leonhard Euler)提出于18世纪,经历了许多历史时期,可被证明为正确性。
欧拉公式可以用来确定一个n边形内角之和是(n2)π,其中n 为边数,π是圆周率,是无穷小的值。
可以将该公式表示为V-E+F = 2,其中V是多边形的顶点数,E是多边形的边数,F是多边形的面数。
欧拉公式的证明可以通过三种方式完成:可视化证明、数学归纳法和正则多边形证明。
首先,让我们来看看可视化证明方式。
可视化证明可以通过欧拉公式来证明多边形内角和与边数之间的关系。
对于由一条边构成的多边形来说,其内角和将等于0,也就是V-E+F=2= 0。
于由两条边构成的多边形来说,其内角和将等于π,也就是V-E+F=2=。
而对于由三条边构成的多边形来说,其内角和将等于2π,也就是V-E+F=2= 2π。
样的方法可以继续用于更大的多边形,做出相应的计算,验证欧拉公式的关系是正确的。
第二种证明方式是利用数学归纳法。
数学归纳法是一种较为普遍的数学证明方式,它可以用来证明一些数学性质的正确性。
考虑到欧拉公式的关系,我们可以使用数学归纳法来证明它。
以一个多边形的内角和与边数之间的关系为例,对于由一条边构成的简单多边形,其内角和等于0,根据欧拉公式,V-E+F=2= 0,即可证明欧拉公式的正确性。
如果我们仍然考虑一个三边形,其内角和等于π,根据欧拉公式,V-E+F=2=,也可以证明欧拉公式的正确性。
同样,如果你考虑一个六边形,其内角和等于4π,那么根据欧拉公式,V-E+F=2= 4π,即可证明欧拉公式的正确性。
通过不断进行反复证明,可以证明欧拉公式的正确性。
最后,让我们来看一下正则多边形证明方法。
正则多边形的概念源自欧几里得的正多边形定理,它提出了一种特殊情况,即对于正则多边形,内角之和是(n-2)π。
正则多边形概念的出发点是每个内角度数都是相等的,每一条边都具有相同的长度。
欧拉公式的意义推论欧拉公式怎么用世界上最完美的公式
欧拉公式:V+FE=2 (简单多面体的顶点数V、棱数E和面数F)(1)E=各面多边形边数和的一半,特别地,若每个面的边数为n的多边形,则面数F与棱数E的关系:;(2)若每个顶点引出的棱数为m,则顶点数V与棱数E的关系:。
欧拉公式又称为欧拉定理,也称为尤拉公式,是用在复分析领域的公式,欧拉公式将三角函数与复数指数函数相关联,之所以叫作欧拉公式,那是因为欧拉公式是由莱昂哈德·欧拉提出来的,所以用他的名字进行了命名。
尤拉公式提出,对任意实数 x,都存在其中 e是自然对数的底数, i是虚数单位,而 \cos和 \sin则是余弦、正弦对应的三角函数,参数 x则以弧度为单位。
这一复数指数函数有时还写作 {cis}(x)(英语:cosine plus i sine,余弦加i正弦)。
由于该公式在 x为复数时仍然成立,所以也有人将这一更通用的版本称为尤拉公式。
莱昂哈德·欧拉出生于1707年4月15日,死于公元1783年9月18日,莱昂哈德·欧拉是一位来自于瑞士的数学家和物理学家,是近代著名的数学家之一,此外,莱昂哈德·欧拉还有力学,光学和天文学上都作出了重大的贡献。
莱昂哈德·欧拉被认为是18世纪,世界上最杰出的数学家,也是史上最伟大的数学家之一,而且莱昂哈德·欧拉还有许多的著作,他的学术著作就多达6080册。
他对微分方程理论作出了重要贡献。
他还是欧拉近似法的创始人,这些计算法被用于计算力学中。
此中最有名的被称为欧拉方法。
在数论里他引入了欧拉函数。
自然数 n的欧拉函数被定义为小于n并且与 n互质的自然数的个数。
在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。
在分析领域,是欧拉综合了戈特弗里德·威廉·莱布尼茨的微分与艾萨克·牛顿的流数。
他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声:其中是黎曼函数。
欧拉线
欧理线三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线,且外心到重心的距离等于垂心到重心距离的一半。
莱昂哈德·欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。
他证明了在任意三角形中,以上四点共线。
欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。
欧拉线的证法1作△ABC的外接圆,连结并延长BO,交外接圆于点D。
连结AD、CD、AH、CH、OH。
作中线AM,设AM交OH于点G’∵ BD是直径∴ ∠BAD、∠BCD是直角∴ AD⊥AB,DC⊥BC∵ CH⊥AB,AH⊥BC∴ DA‖CH,DC‖AH∴ 四边形ADCH是平行四边形∴ AH=DC∵ M是BC的中点,O是BD的中点∴ OM= 1/2DC∴ OM= 1/2AH∵ OM‖AH∴ △OMG’ ∽△HAG’∴AG’/MG’=AH/MO=2/1∴ G’是△ABC的重心∴ G与G’重合∴ O、G、H三点在同一条直线上如果使用向量,证明过程可以极大的简化,运用向量中的坐标法,分别求出O G H 三点的坐标即可.欧拉线的证法2设H,G,O,分别为△ABC 的垂心、重心、外心。
连接AG 并延长交BC 于D, 则可知D 为BC 中点。
连接OD ,又因为O 为外心,所以OD⊥BC。
连接AH 并延长交BC 于E,因H 为垂心,所以 AE⊥BC。
所以OD//AE ,有∠ODA=∠EAD。
由于G 为重心,则GA:GD=2:1。
连接CG 并延长交BA 于F,则可知F 为AB 中点。
同理,OF//CM.所以有∠OFC=∠MCF连接FD ,有FD 平行AC,且有DF:AC=1:2。
FD 平行AC ,所以∠DFC=∠FCA,∠FDA=∠CAD,又∠OFC=∠MCF,∠ODA=∠EAD,相减可得∠OFD=∠HCA,∠ODF=∠EAC,所以有△OFD∽△HCA,所以OD:HA=DF:AC=1:2;又GA:GD=2:1所以OD:HA=GA:GD=2:1又∠ODA=∠EAD,所以△OGD∽△HGA。
欧拉公式19种证明
欧拉公式19种证明欧拉公式是数学中的一个重要公式,它的表达式为e^(ix)=cos(x)+i*sin(x),其中e表示自然对数的底数2.71828…,i表示虚数单位。
欧拉公式有多种证明方法,下面我们将介绍其中19种常见的证明方法。
1. 泰勒级数证明法:利用泰勒级数展开式展开e^(ix)和cos(x)+i*sin(x),然后将它们相等的系数进行比较,即可得出欧拉公式。
2. 复合函数证明法:将e^(ix)看作复数函数f(x)=e^x,将cos(x)和sin(x)看作f(x)的实部和虚部,则有f(ix)=cos(x)+i*sin(x),即e^(ix)=cos(x)+i*sin(x)。
3. 微积分证明法:将欧拉公式两边分别对x求导,得到ie^(ix)=-sin(x)+i*cos(x),再将其两边同时乘以i,即可得到欧拉公式。
4. 积分证明法:将欧拉公式两边同时积分,得到e^(ix)/i=-sin(x)/i+cos(x),再将其两边同时乘以i,即可得到欧拉公式。
5. 欧拉级数证明法:将e^(ix)和cos(x)+i*sin(x)的泰勒级数展开式进行对比,即可得到欧拉公式。
6. 幂级数证明法:将e^(ix)和cos(x)+i*sin(x)的幂级数展开式进行对比,即可得到欧拉公式。
7. 矩阵证明法:构造一个2x2矩阵,使其特征值为e^(ix)和e^(-ix),然后求解该矩阵的本征向量,即可得到欧拉公式。
8. 矩阵幂证明法:将e^(ix)表示为矩阵的形式,然后对该矩阵进行幂运算,即可得到欧拉公式。
9. 极限证明法:将e^(ix)表示为极限的形式,然后通过极限的性质推导出欧拉公式。
10. 解微分方程证明法:将e^(ix)看作微分方程y'=iy的解,并利用欧拉公式将其转化为y=cos(x)+i*sin(x),即可得到欧拉公式。
11. 解偏微分方程证明法:将e^(ix)看作偏微分方程u_t+iu_x=0的解,并利用欧拉公式将其转化为u=cos(x-t)+i*sin(x-t),即可得到欧拉公式。
欧拉公式的几种证明及其在高等数学中的应用.
李劲:欧拉公式 e ix = cos x + i sin x 的几种证明及其在高等数学中的应用λ 4 − 2λ 3 + 5λ 2 = 0,即λ 2 (λ 2 − 2λ + 5 = 0.由此可知,该特征方程的特征根为λ1 = λ2 = 0 ,λ3、 4 = 1± 2i .于是,由欧拉公式及微分方程解的叠加原理得原方程的通解为 y = C1 + C2 x + e x (C3 cos 2 x + C4 sin 2 x . 4.结束语以上证明和几个方面的实例表明,欧拉公式 e ix = cos x + i sin x 可以将高等数学中的许多知识点联系起来,形成知识链.掌握欧拉公式及其广泛应用,对于掌握有关数学思想、增强数学审美意识、提高高等数学的学习质量具有重要意义.有必要对欧拉公式的应用进行更深入的探讨.参考文献 [1] 李文林.数学史教程 [M].北京:高等教育出版社,2000. [2](美) M·克莱因.古今数学思想 [M].(第二册).上海:科学技术出版社,1979. [3] 杜瑞芝.数学史辞典 [M].济南:山东教育出版社,2000. [4] 张楚廷.数学文化 [M].北京:高等教育出版社,2000. [5] 钟玉泉.复变函数论(第三版)[M].北京:高等教育出版社,2004. [6] 陈仁政.不可思议的 [M].北京:科学出版社, 2005. [7] 龚成通.高等数学起跑第一步[M].上海:华东理工大学出版社,2004 . [8] 同济大学数学教研室.高等数学(第四版)[M].北京:高等教育出版社,1996. The Proof and Application ofEwler's Formula in Higher Mathematics Li Jin (Department of Mathematics,Hexi University,Zhangye,Gansu,734000) Abstract: This paper presents a few proofs of Euler's formula e = cos x + i sin x in the field of complex number , ix and shows several applications of Eulev's formula in higher mathematics. Key words: Euler'sformula;Proof;Higher mathematics;Application;Examples [ 责任编辑:张飞羽 ] 下接第(44)页 Analysis of Chemical Constituents of Volatile Oil from Artemisia Argyi with Different Methods Xu Xin-Jian Song Hai Xue Guo-qin An Hong-gang Wu Dong-qing (Key Laboratory of Resources and Environment Chemistry of WestChina,Zhangye Gansu 734000;Department of Chemistry,Hexi University,Zhangye Gansu 734000) Abstract: In order to analyze chemical constituents of the volatile oil form Artemisia argyi Levl.et Vant, the volatile oil was extracted from Artemisia argyi Levl.et Vant. with different methods ,the components of the volatile oil were separated and identified by GC-MS, the relative content of each component was determined by area normalization. The result showed that the oil with stream distillation is different than the solvent-extraction,and. Stream distillation is ideal for extracting the volatile oils,and solvent-extraction is also viable. Key words: Artemisia argyi Levl.et Vant.; Volatile oil; GC-MS [ 责任编辑:许耀照 ] -6-。
欧拉定理
4.提出多面体分类方法:
在欧拉公式中, f (p)=V+F-E叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。
除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的 表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面 体的欧拉示性数为0。
数论定理
内容
证明
应用
设,且,则我们有: 其中称为对模缩系的元素个数。 此外,对模的阶必整除。
欧拉定理的证明取模的缩系,则也是模的缩系. 故有 特别地,当时,该结论加强为费马小定理.
首先看一个基本的例子。令a = 3,n = 5,这两个数是互素的。比5小的正整数中与5互素的数有1、2、3和4, 所以φ(5)=4(详情见[欧拉函数])。计算:a^{φ(n)} = 3^4 =81,而81= 80 + 1 Ξ 1 (mod 5)。与定理结果相符。
证明应用
利用几何画板
公式应用
逐步减少多面体的棱数,分析V+F-E 先以简单的四面体ABCD为例分析证法。 去掉一个面,使它变为平面图形,四面体顶点数V、棱数E与剩下的面数F1变形后都没有变。因此,要研究V、 E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1 1.去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。 2.从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一个点。 以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。 对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。 计算多面体各面内角和 设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和Σα 一方面,在原图中利用各面求内角总和。
有关欧拉线性质的证明(M)
xb ab b 2 c ); ab ,于是的点 I 的坐标为 (b, y x c b c
经计算 k HI kGI ,即 G、H、I 三点共线。
9b 4 c 4 10b 2 c 2 10 abc2 a 2 c 2 9a 2b 2 18ab3 计算线段 GH 的距离为 ; 6c
GI 的距离为 即 GH
9b 4 c 4 10b 2 c 2 10 abc2 a 2 c 2 9a 2b 2 18ab3 ; 3c
1 GI 。 2
ab c , ); 3 3
c b b b2 c ,则垂线斜率 k AB ,直线 DH 可表为 y x , c 2c 2 b c a a b 2 ab c 2 ,联立得 H 点坐标为( ( , ); 2 2c 2
相似可知直线 EH 可表为 x
同理,联立直线 AI 和 CI 得
有关欧拉线性质的证明
证明:1)任意三角形外心、重心、垂心三点共线; 2)其外心与重心的距离等于重心与垂心距离的一半。 (注:欧拉线,即外心、重心、 垂心所在的直线。 )
12
10
A
8
6
D
4
F H G I
2
B
5
C E
10 15 20 25 30
-2
作一任意三角形 ABC,然后以 B 为原点 BC 边为半径建立直角坐标系,于是可设 C 点 坐标为(a,0) 点坐标为(b,c) ,A 。 据重心性质可知点 G 的坐标为 ( 直线 AB 的斜率 k AB
euler定理
euler定理Euler定理是数学中的一个重要定理,由瑞士数学家欧拉于18世纪提出。
它涉及到复数和指数函数,并在许多领域都有广泛的应用。
Euler定理的表述如下:对于任意实数x,有e^(ix) = cos(x) +i*sin(x),其中i为虚数单位。
这个公式可以被称为欧拉公式,它将指数函数和三角函数联系在了一起。
欧拉公式的证明可以通过泰勒级数展开来完成。
我们知道,e^(ix)的泰勒级数为1 + ix + (ix)^2/2! + (ix)^3/3! + ... 。
同时,cos(x)和sin(x)的泰勒级数分别为1 - x^2/2! + x^4/4! - ... 和x - x^3/3! + x^5/5! - ... 。
将这些级数代入e^(ix) = cos(x) + i*sin(x)中,可以得到相同的结果。
Euler定理不仅仅是一条简单的公式,它还有许多重要的应用。
下面我们来看几个例子:1. 欧拉公式可以用于解决三角函数问题。
例如,如果需要求sin(π/6),我们可以将π/6代入e^(ix) = cos(x) + i*sin(x)中得到e^(iπ/6) =cos(π/6) + i*sin(π/6),然后解出sin(π/6) = 1/2。
2. 欧拉公式可以用于证明欧拉恒等式。
欧拉恒等式是指e^(ix) =cos(x) + i*sin(x)和e^(-ix) = cos(x) - i*sin(x)两个公式的乘积等于1,即e^(ix)*e^(-ix) = 1。
这个恒等式可以通过将e^(ix)*e^(-ix)展开并应用三角函数的加法公式得到。
3. 欧拉公式可以用于解决复数幂的问题。
例如,如果需要求i^100,我们可以将i写成e^(iπ/2),然后将100代入指数中得到i^100 =(e^(iπ/2))^100 = e^(i50π),最后化简得到i^100 = 1。
4. 欧拉公式可以用于证明费马小定理。
费马小定理是指对于任意整数a和素数p,有a^p ≡ a (mod p),其中≡表示同余。
欧拉公式的证明和应用
欧拉公式的证明和应用work Information Technology Company.2020YEAR数学文化课程报告欧拉公式的证明与应用一 .序言------------------------------------------------------------------------2二.欧拉公式的证明--------------------------------------31.1 极限法 --------------------------------------31.2 指数函数定义法-------------------------------41.3 分离变量积分法-------------------------------41.4 复数幂级数展开法-----------------------------41.5 变上限积分法---------------------------------51.6 类比求导法-----------------------------------7 三.欧拉公式的应用2.1 求高阶导数-----------------------------------72.2 积分计算------------------------------------8 2.3 高阶线性齐次微分方程的通解------------------9 2.4 求函数级数展开式----------------------------9 2.5 三角级数求和函数----------------------------10 2.6 傅里叶级数的复数形式-------------------------10四.结语------------------------------------------------11 参考文献-----------------------------------------------11一.序言欧拉是十八世纪最杰出的最多产的数学家之一[1],留下了数不胜数的以其名字命名的公式。
欧拉线的发现与证明过程
• 欧拉线的发现 • 欧拉线的证明过程 • 欧拉线在几何学中的应用 • 欧拉线的扩展研究 • 总结与展望
01
欧拉线的发现
欧拉简介
欧拉(Leonhard Euler)是18世纪的瑞士数学家,被誉为历史上最伟大 的数学家之一。他不仅在数学领域有着广泛而深入的研究,还在物理学、 工程学和天文学等领域有着卓越的贡献。
欧拉还利用面积法证明了欧拉线定理,即三角形各边的垂直 平分线交于一点,这一点将三角形的重心分为2:1的两部分。
欧拉线的深入证明
欧拉线的深入证明主要涉及解析几何和代数方法的应用。 通过建立坐标系,将三角形的顶点和角元线方程表示为坐 标形式,然后利用代数方法求解这些方程,可以得到欧拉 线的方程。
此外,还可以利用向量和矩阵等工具来证明欧拉线定理, 这些方法在处理更复杂的几何问题时非常有用。
THANKS
感谢观看
05
总结与展望
欧拉线的重要意义
数学史上的里程碑
欧拉线的发现是数学史上的一个重要 里程碑,它推动了数学领域的发展, 丰富了数学理论体系。
对几何学的影响
在其他学科的应用
欧拉线不仅在数学领域有广泛应用, 还涉及到物理学、工程学等多个学科, 为这些学科的发展提供了重要的理论 支持。
欧拉线是几何学中的重要概念,它的 出现为几何学的研究提供了新的思路 和方法,促进了几何学的发展。
欧拉线是由欧拉在18世纪提出的几何概念。它是指在一个多边形中,连接所有顶 点与对边中点的线段组成的折线。
欧拉在研究多边形的几何性质时,发现了这一特殊的折线。他发现,无论多边形 的形状如何变化,只要边数固定,欧拉线的长度总和保持不变。这一性质被称为 “欧拉线的定长性”。
欧拉线在几何学中的地位
三角形的欧拉线与费马点
三角形的欧拉线与费马点欧拉线和费马点是三角形几何中的两个重要概念。
欧拉线是连接三角形的垂心、重心、外心和内心的一条直线;费马点是使三角形内各边上的两个角相等的点。
本文将介绍三角形的欧拉线和费马点的相关理论和性质。
一、欧拉线的定义及性质在三角形ABC中,垂心H是高线的三个垂足的交点,重心G是三角形三条中线的交点,外心O是三角形外接圆的圆心,内心I是三角形内切圆的圆心。
连接H、G、O和I的直线被称为欧拉线。
欧拉线具有以下性质:1. 欧拉线与垂心连线垂直:欧拉线与垂心H的连线是垂直的,即HO⊥BC、GO⊥AC和IO⊥AB。
2. 欧拉线与三角形的关系:欧拉线与三角形内切圆和外接圆有密切的联系。
其中,欧拉线的中点是外心O和内心I连线的中点,也是重心G和垂心H连线的中点。
3. 欧拉线的长度关系:设三角形边长分别为a、b、c,欧拉线上的点离三角形顶点的距离分别为d、e、f,则有d = R - 2r,e = R + 2r,f = 2R;其中R为外接圆半径,r为内切圆半径。
二、费马点的定义及性质费马点是使三角形内各边上的两个角相等的点,也被称为费马点和莫尔根布洛赫点。
设三角形ABC中的两个角∠BAC和∠ABC相等,费马点P满足∠APB = ∠BPC = ∠CPA。
费马点具有以下性质:1. 费马点的唯一性:对于任意的三角形ABC,费马点P是唯一的。
2. 费马点与三角形的关系:费马点P到三角形的各顶点的距离之和是常数,即PA + PB + PC = 常数。
3. 费马点与等边三角形:对于等边三角形ABC,费马点P与各顶点的距离相等。
三、欧拉线与费马点的关系三角形的欧拉线与费马点之间存在着紧密的联系。
1. 费马点在欧拉线上:对于任意三角形ABC,费马点P总是在欧拉线上。
2. 欧拉线上的重要点:在三角形ABC中,欧拉线上的垂心H、重心G、外心O和内心I都与费马点P在一条直线上。
3. 欧拉线的切点:欧拉线与三角形的外接圆和内切圆有两个切点,这两个切点与费马点P共线。
欧拉线问题 解析版-高中数学
欧拉线问题欧拉线是高中数学常见的信息题类的考点,其原理很简单:三角形的外心、垂心和重心都在同一直线上,而且外心和重心的距离是垂心和重心的距离之半”,这条直线叫做三角形的欧拉线,只需要掌握图形特点即可轻松求解等腰三角形中的欧拉线(中垂线)1.数学巨星欧拉(LeonhardEuler,1707~1783)在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上,而且外心和重心的距离是垂心和重心的距离之半”,这条直线被后人称之为三角形的欧拉线.若已知△ABC的顶点B(-1,0),C(0,2),且AB=AC,则△ABC的欧拉线方程为()A.2x-4y-3=0B.2x+4y+3=0C.4x-2y-3=0D.2x+4y-3=0【答案】D【分析】根据题意得出△ABC的欧拉线方程为线段BC的垂直平分线,再根据点B和点C的坐标求出线段BC 的垂直平分线即可.【详解】由B(-1,0),C(0,2),得线段BC中点的坐标为-1 2 ,1,所以线段BC的斜率k BC=2,所以线段BC垂直平分线的方程为:y-1=-12x+12,即2x+4y-3=0,又因为AB=AC,所以△ABC的外心、中心、垂心都在线段△ABC的垂直平分线上,所以△ABC的欧拉线方程为2x+4y-3=0,故选:D.2.瑞士著名数学家欧拉在1765年得出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为“欧拉线”.在平面直角坐标系中作△ABC,AB=AC,点B-1,3,点C4,-2,圆M:(x+3)2+y2= 4,P x0,y0是“欧拉线”上一点,过P可作圆的两条线切,切点分别为D,E.则下列结论正确的是()A.△ABC的“欧拉线”方程为y=x-1B.圆M上存在点N,使得∠MPN=π6C.四边形PDME面积的最大值为4D.直线DE恒过定点【答案】ABD【分析】由题意求出BC中点为D的坐标,根据欧拉线的定义求出欧拉线的方程即直线AD的方程,再利用圆和圆的切线的性质判断各选项即可.【详解】设BC中点为D,因为AB=AC,所以AD⊥BC,因为k BC=3+2-1-4=-1,所以k AD=1,且x D=-1+42=32,y D=3-22=12,所以D32,12,由题意可得欧拉线为直线AD,则欧拉线的方程为y-12=x-32即y=x-1,A正确;由圆的切线性质可得∠MPD≥∠MPN,设P(a,a-1),则PM2=(a+3)2+(a-1)2=2a2+4a+10,在△MPD中由正弦定理得PMsin∠PDM=PDsin∠MPD,所以sin∠MPD=PD×sin∠PDMPM=22a2+4a+10,由二次函数的性质得当a=-42×2=-1时2a2+4a+10取最小值8,所以sin∠MPD=22a2+4a+10≤22,即∠MPD的最大值为π4,所以∠MPN≤π4,所以圆M上存在点N,使得∠MPN=π6,B正确;由圆的切线的定义可知PD⊥MD,PE⊥ME,PD=PE,所以S PDME=S△PMD+S△PME=12×PD×MD+12×PE×ME=2PD,又因为PD=PM2-4,且PM min=-3-112+(-1)2=22,所以PD min=4即四边形PDME面积的最小值为4,C错误;设P(a,a-1),因为PD⊥MD,PE⊥ME,所以P,D,M,E四点共圆,其中PM为直径,设PM中点Ha-32,a-12,则PH=a-a-322+a-1-a-122=a2+2a+52,所以圆H为x-a-3 22+y-a-122=a2+2a+52即x2+y2-(a-3)x-(a-1)y-3a=0,所以DE为圆M和圆H的相交弦,两圆方程相减得DE方程为(a+3)x+(a-1)y+5+3a=0,即a(x+y+3)+3x-y+5=0,由x+y+3=03x-y+5=0解得DE过定点(-2,-1),D正确;故选:ABD3.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.在非等边△ABC中,AB=AC,点B坐标为-1,1,点C坐标为3,-3,且其“欧拉线”与圆M:x2+y2=r2r>0相切,则△ABC的“欧拉线”方程为,圆M的半径r=.【答案】y=x-22【分析】分析可知△ABC 的“欧拉线”为线段BC 的中垂线,求出线段BC 的中垂线方程,可得出△ABC 的“欧拉线”方程,利用圆心到“欧拉线”的距离等于圆的半径可求得r 的值,即可得解.【详解】线段BC 的中点为M 1,-1 ,在非等边△ABC 中,AB =AC ,所以,△ABC 的“欧拉线”为线段BC 的中垂线,k BC =1+3-1-3=-1,所以,△ABC 的“欧拉线”方程为y +1=x -1,即y =x -2,由已知,圆M 与直线y =x -2相切,故r =212+12= 2.故答案为:y =x -2;2.普通三角形中的欧拉线4.数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的外心、垂心和重心都在同一直线上.这条直线被后人称为三角形的欧拉线.已知△ABC 的顶点分别为A 0,2 ,B -1,0 ,C 4,0 ,则△ABC 的欧拉线方程为()A.4x -3y -6=0B.3x +4y +3=0C.4x +3y -6=0D.3x +4y -3=0【答案】C【分析】先求出△ABC 的重心坐标,由k AB ⋅k AC =-1得出△ABC 为直角三角形,外心为斜边中点,进而求出外心坐标,由于外心和重心在同一直线上,根据外心和重心的坐标即可得出答案.【详解】因为△ABC 的顶点分别为A 0,2 ,B -1,0 ,C 4,0 ,所以△ABC 的重心为G 1,23 ,因为k AB =2,k AC =-12,所以k AB ⋅k AC =-1,所以AB ⊥AC ,所以△ABC 的外心为BC 的中点D 32,0 ,因为三角形的外心、垂心和重心都在同一直线上,所以△ABC 的欧拉线为直线GD ,所以△ABC 的欧拉线方程为y -023-0=x -321-32,即4x +3y -6=0,故选:C .5.欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心、垂心和外心共线,这条线称之为三角形的欧拉线.已知A 0,2 ,B 4,2 ,C a ,-1 ,且△ABC 为圆x 2+y 2+Ex +Fy =0内接三角形,则△ABC 的欧拉线方程为.【答案】y =1/y -1=0【分析】首先将点的坐标代入圆的方程,即可求出E 、F ,从而得到圆心坐标即△ABC 的外心坐标,再确定△ABC的重心坐标,即可得解.【详解】依题意22+2F=042+22+4E+2F=0,解得E=-4F=-2,所以圆x2+y2-4x-2y=0,即x-22+y-12=5,故圆心坐标为2,1,即△ABC的外心坐标为2,1,又△ABC的重心坐标为a+43,1 ,又点2,1、a+4 3,1均在直线y=1上,所以△ABC的欧拉线方程为y=1.故答案为:y=16.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中,△ABC满足AC=BC,顶点A-1,0、B1,2,且其“欧拉线”与圆M:x+52+y2=r2r>0相切.(1)求△ABC的“欧拉线”方程;(2)若圆M与圆x2+y-a2=2有公共点,求a的范围.【答案】(1)x+y-1=0(2)a∈-7,7【分析】(1)由等腰三角形三线合一知△ABC的欧拉线即为AB的垂直平分线,根据与直线AB垂直得到斜率,结合过中点得到所求直线方程;(2)由直线与圆相切得到圆M的圆心和半径,由两圆有公共点得到两圆的位置关系进而得到关于a的不等式,解不等式即可得到a的取值范围.【详解】(1)因为AC=BC,所以△ABC是等腰三角形,由三线合一得:△ABC的外心、重心、垂心均在边AB 的垂直平分线上,设△ABC的欧拉线为l,则l过AB的中点,且与直线AB垂直,由A-1,0、B1,2可得:AB的中点D1-12,0+22,即D0,1 ,由k AB=2-01--1=1,得k l=-1,故l的方程为y-1=-x即x+y-1=0;(2)因为l与圆M:x+52+y2=r2相切,故圆心M-5,0,r=|6|1+1=32,圆x2+y-a2=2的圆心坐标为0,a,半径r1=2,则要想圆M与圆x2+y-a2=2有公共点,则两圆外切、相交或内切,只需两圆圆心的距离小于等于半径之和,大于等于半径之差的绝对值,即32-2≤-52+a2≤32+2,故22≤25+a2≤42,解得a∈-7,7.。
欧拉线的向量证法
欧拉线的向量证法欧拉线的向量证法是一种证明欧拉线存在的方法。
欧拉线是指连接一个三角形的垂心、重心和外心所形成的直线。
这条直线通常被认为是三角形的重要性质之一,因为它连接了三角形的三个关键点,并且具有一些重要的几何性质。
这篇文章将讨论欧拉线的向量证法。
欧拉线的向量证法的关键在于证明欧拉线存在于一个三维向量空间中。
我们可以将一个三角形三个关键点的坐标表示为向量,并将欧拉线表示为这些向量的线性组合。
然后,我们可以使用向量运算证明这个线性组合的结果是一个常向量,这个常向量就是欧拉线。
具体地,我们可以定义向量OA、OB和OC分别表示三角形的三个关键点。
然后,我们可以构造向量OH,表示垂心O到三角形所在平面的垂线。
向量OG表示重心G到三角形所在平面的垂线。
最后,向量OA、OB和OC的平均向量OM表示外接圆心O到三角形所在平面的垂线。
现在我们需要找到一个向量倍数,将OH、OG和OM相加后可以得到一个常向量。
我们可以首先证明OH、OG和OM在同一平面内,并且通过欧拉线的定义,这个平面必须与三角形所在平面垂直。
因此,我们可以用叉乘来证明一个向量与这个平面垂直。
这可以通过叉乘OH和OG,OG和OM,以及OH和OM来完成。
然后,我们可以相互叠加OH、OG和OM,找出它们之间的线性关系。
最后,我们将这个线性关系表示为向量倍数,并证明这个线性组合的结果是一个常向量,表示欧拉线。
简而言之,欧拉线的向量证法是一种通过向量运算来证明欧拉线存在的方法。
这种方法非常优雅,因为它基于三角形的几何关系和向量空间的基本性质。
这个方法可以帮助我们更好地理解欧拉线的几何性质,并将其应用到更广泛的研究领域。
欧拉线证明过程
欧拉线证明过程
嘿,咱今天就来唠唠欧拉线的证明过程。
这欧拉线啊,就像是数学
世界里一条神秘而有趣的小路。
咱先说说三角形,这可是个常见又重要的图形。
那欧拉线呢,就和
三角形有着密切的关系。
想象一下,一个三角形稳稳地站在那,它有三个顶点,三条边。
然
后呢,我们要找到这个三角形的重心、垂心和外心。
重心,就像是三角形的“重量中心”,它把三角形平衡得很好。
垂心呢,是那些垂线相交的地方,感觉挺特别的吧。
外心,就是三角形外
接圆的圆心,厉害吧!
那怎么证明欧拉线呢?这可得动点脑筋。
我们要通过各种巧妙的方
法和推理,来把这几个点之间的关系给弄清楚。
比如说,我们可以通过一些几何定理,像什么垂直平分线的性质啊,相似三角形的特点啊。
然后一步一步地推导,就像走迷宫一样,慢慢
找到出路。
在这个过程中,可不能马虎,每一步都得认真思考。
就好像盖房子,一砖一瓦都得放对地方。
有时候,遇到难题了,别着急,静下心来好好想想。
数学就是这样,得有耐心,得慢慢琢磨。
哎呀,你说这欧拉线的证明是不是很神奇?从一个普通的三角形里,居然能发现这么有意思的一条线和这么多关系。
这就好比在一个大宝藏里挖呀挖呀,突然挖到了宝贝,那种惊喜感,真是让人兴奋!
总之呢,证明欧拉线可不是一件容易的事,但一旦你弄明白了,那
种成就感简直爆棚!你还等什么呢,赶紧去试试吧,说不定你就是下
一个发现欧拉线奥秘的人呢!。
相似三角形的欧拉线和费马点
相似三角形的欧拉线和费马点相似三角形是几何学中一个重要的概念,它们具有相同形状但尺寸不同的特点。
在研究相似三角形的过程中,人们发现了一些有趣而具有深远意义的性质,其中包括欧拉线和费马点。
本文将介绍欧拉线和费马点的概念、性质及其应用。
一、欧拉线欧拉线是指在一个三角形中连接三个特殊点所形成的线段,这三个特殊点分别是三角形的重心、垂心和外心。
简洁地说,欧拉线是连接三角形重心、垂心和外心的线段。
1. 重心三角形的重心是三条中线的交点,即三角形三个顶点与对边中点所构成的线段交于一点,该点即为三角形的重心。
重心到三个顶点的距离相等,具有平衡的性质。
2. 垂心三角形的垂心是三条高线的交点,即三角形三个顶点到对边垂直的高所构成的线段交于一点,该点即为三角形的垂心。
垂心到三个顶点的距离的和最小,具有最优化的性质。
3. 外心三角形的外心是三角形外接圆的圆心,即三角形三个顶点所在的圆的圆心,该点即为三角形的外心。
外心到三个顶点的距离相等,具有对称的性质。
连接重心、垂心和外心所得到的线段,即为欧拉线。
欧拉线研究的是三个重要点之间的关系和性质,有助于我们更深入地了解三角形的特性。
二、费马点费马点是指在一个三角形中,使得三条边到该点的距离之和最小的点。
也就是说,费马点在三角形内部,且满足到三条边的距离之和最小。
费马点是一个极小值点,它与三角形的形状和边长有关。
如果三角形是锐角三角形,费马点就是三个顶点所构成的角的内部;如果三角形是钝角三角形,费马点就是三个顶点所构成的角的外部。
费马点在很多实际问题中有重要应用,比如设计路径规划的最优路线、无线电信号传输的最佳覆盖点等。
费马点的研究不仅在几何学中有着重要意义,也在应用科学和工程领域有着广泛应用。
结论:相似三角形的欧拉线和费马点是几何学中有趣而重要的概念。
欧拉线连接了三角形的重心、垂心和外心,研究这条线有助于深入理解三角形的性质。
费马点则是三角形内使得三边到该点的距离之和最小的点,它在实际问题中有着广泛的应用。
原创:平行四边形法妙证欧拉线定理
原创:平行四边形法妙证欧拉线定理
昨天我发表《原创:重外垂心欧拉线》之后,他(她)见多识广,提出证明欧拉线定理,构造平行四边形的方法比较好.
读者群里有高人.
我把他提供的解法整理了出来,分享给感兴趣的读者朋友们.
1
欧拉线定理
我们首先来回顾欧拉线定理:
三角形的外心、垂心和重心在一条直线上,而且外心和重心的距离是垂心和重心的距离一半.
翻译成这样一个证明题:
△ABC的外心、重心、垂心分别为O,G,H,证明:向量GH=2倍向量OG.
2
构造平行四边形
我们首先画出△ABC的外接圆O.
延长BO交圆O于点D,连接DA,DC,则DA⊥AB,DC⊥BC.
又因为H为垂心,所以CH⊥AB,AH⊥BC.
故DA//CH,DC//AH,四边形AHCD为平行四边形.
结合重心的向量公式:向量OA+向量OB+向量OC=3向量OG (需要证明才能用),容易证得原命题成立.
老左用15年教学经验做成的专栏《圆锥曲线要你命》,依旧精彩,依旧超值.它包含123个图文和123个视频,庖丁解牛式地讲透圆锥曲线的方方面面.
参考阅读:一顿火锅钱,搞定高考圆锥曲线大题。
欧拉公式极其应用
用
例1
1996年的诺贝尔化学奖授予对发现C60有重大贡献的 三位科学家.C60是有60 个C原子组成的分子,它结构为简 单多面体形状.这个多面体有60个顶点,从每个顶点都引出 3条棱,各面的形状分别为五边形或六边形两种.计算C60分 子中形状为五边形和六边形的面各有多少? 解:设C60分子中形状为 五边形和六边形的面各
有x个和 y个. 由题意有顶点数V=60,面数=x+y, 棱数E= 1/2(3×60)
示范性问题2:
例1 1996年的诺贝尔化学奖授予对发现C60有重大贡献的 三位科学家.C60是有60 个C原子组成的分子,它结构为简 单多面体形状.这个多面体有60个顶点,从每个顶点都引出 3条棱,各面的形状分别为五边形或六边形两种.计算C60分 子中形状为五边形和六边形的面各有多少? 解:设C60分子中形状为五边形和六边形的面各有x个和 y 个. 1 由题意有顶点数V=60,面数=x+y,棱数E= 2 (3×60) 根据欧拉公式,可得
∴多边形内角和=(E-F)· 3600
思考4:设平面图形中最大多边形(即多边形ABCDE)是m边形,则它和它 内部的全体多边形的内角总和是多少?
2(m-2) · 1800+(V-m) · 3600=(V-2) · 3600 ∴(E-F)· 3600= (V-2) · 3600
V+F-E=2
欧拉公式
五.示范性问题1:欧拉公式的应
根据欧拉公式得 V+F=E+2=9
因为多面体的顶点数V≥4,面数F≥4,所以只有两种 情形:
V=4,F=5 或 V=5,F=4. 但是,有4 个顶点的多面体只有4个面,而四面体也只有 四个顶点.所以假设不成立,没有棱数是7 的简单多面体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意到中位线 FD一+AC,且 FD∥Ac,△ABC
0G一 0A + oG 一 0B + 0G 一 0C一
1
的 中线 AD 经 过 重 心 G,并 且 DG一÷ GA.显 然 这 些
厶
—
—
—
1 ———
——— ———
0,亦 即0G一÷ (OA+0B+0c).
.)
平行关 系 和等量关 系 可以用 共 线 向量 来 表示 ,从 而 可 以考虑 用 向量 的方法加 以解 决.
因为 FD、OF不 共 线 ,由 平 面 向 量 基 本 定 理 得
』2一 _。’所以 一 一2,即 :::2 ,商 一2 .
1 - 2— 0,
’
—
—
1 ———+
———
———+
因为 G为重 心 ,于是DG=÷GA,所 以0G—OD+
接 0D 并延 长到 ,连 接 oF并延 长到 U,连 接 OS并 延 长到 V,使 DW一0D,FU一0F,S 一0S.
当 B= 90。时 ,0 为 AC 的 中 点 ,H 与 B 重 合 ,
CH 并 延 长 ,分 别交 BC、AB 于 E、M ,则有 AE_上_BC, 0A+0B+OC= 0B一0H ,所 以 m一 1.
甄以 AH //oD,CH 7oF.
证 明 如 图 3所 示 ,因 为 G 为
1
重 心 ,所 以 AG+ BG + CG ===0,即
OH 互 相平 分.设 0H 的 中 点 为 Q,即 DN 经 过 Q 且 被 Q 平 分 .PF、KS也 经 过 Q 且 被 Q 平 分 .四 边 形 0l AH W 也 是 平 行 四 边 形 , B Aw 经 过 Q 且 被 Q 平 分 . 同 理 ,BV、CU 经 过 Q 且 被
(1) 求 证 :0H 、DN 、FP、KS、Aw 、BV、CU 7线 共 点 ;(2)求证 :D、F、S、E、M 、T、N、P、K(3个 中点 、 3个垂 足 、3个 中点 )9点 共 圆.
分 析 根据 中点 条 件 以及AH一2 OD,以 OH 为 对 角线 ,可 以获 得 多 个 相 关 的 平行 四 边 形.各 相 关 线 段 均 以 0H 的 中点为 中点 .不妨 以 ND 和 Aw 作 为 2 类 线段 的代 表 ,分 别证 明.
1 问 题 的 提 出
2 定 理 的 应 用
问题 如 图 1,△ABC中 ,0、G、H 分 别 为外 心 、
例 1 △ABC的外接 圆的 圆心 为 0,2条 边上 的
重 心 、垂 心 . 试 探 究 :0、G、H
高 的交 点 为 H ,0H —m (OA+ 0B+ OC),则 实 数
●
.
例 2 已知 △ABC 中 ,D、F、S分 别 为 BC、AB、
CA 的 中点 ,AE上BC,CM上AB,BT上AC,E、M 、T分
别 为垂 足 ,AE与 CM 交 于 H ,0、G 分 别 为 三 角 形 的
D E C 外 心和 为重 心 .N、K、P 为 AH 、BH、CH 的 中 点.连
DG=寺AN+寺GA一音 (GA+AH)一寺GH.因为
欧撞线 理 证 萁
◇ 江 苏 陶 冶 北 京 童 嘉 森 (特 级 教 师 )
OG、GH有 公共 点 G,所 以 0、G、H 3点共 线 ,且
0G :GH 一 1:2.
舞 莞 耋 麓
这 个 结论 被 称 为 欧 拉 线定 理.定 理 的 证 明方 法有 多 种 ,但 用 向 量 法 证 明 3 点 共 线 ,思 路 清 晰 、表 述 简 洁 , 有独特 之处.这 个 定 理 的证 明 中,除 了定 理 的结 论 重 要之 外 ,AH一2 OD也是 一个 很好 的结论 .
根
据
欧拉
线
定
理
,OG=÷ } —
—
—
1
—O——i一l ,
图3
解 如 图 2所 示 ,设
所 以 0H — OA+0B+0C,所 以 m一 1.
D、F分 别 为 BC、AB 的 中 点 ,连 接 0D、OF,则 0D上 BC,且 0F j_AB.连 接 AH 、CH 并 延 长 ,分 别 交 B BC、AB 于 E、M ,则 AE_上_
BC,CM上AB,所 以 AH∥
圈 2
OD,CH//OF,所 以AH //OD,CH//OF,所 以AH —
OD ,CH —t2OF , ̄IlAC+ CH — (0F+FD).
因为 D、F 为 中 点 ,故AC一 2 FD,所 以 2 FD+ OF— OF+ FD ,且p
(2一 )FD+ (“一 )0F 一 0.
图 4
Q 平 分.所 以 0H 、DN、FP、KS、Aw、BV、CU 七 线
共 点 .
(2)如 图 5,设 △ABC
的 外 接 圆 的 半 径 为 尺.由 AN//OD,AN—OD 得 ,四
M
F/ \
边 形 A0DN 为 平 行 四 边
是 否 共 线 ? 并 求 0G :GH 的 值 .
.
—
—
分 析 作 为填 空题 ,淡 化 过程 ,关 注 结果 ,考试 时
分 析 由 外 心 和 重 心 联 想 3边 的 中点 ,由垂 心 和 外 心 联想 高和 垂 直 .根 据 需 要 可 以
图 1
因为时 间关 系可 以通过特 殊 情 形 获得 答 案.但作 为 学
C
习过程 中的 思考 题 ,不 仅 要求 得 结 果 ,更 要 追 究 为 什
么 是这个 结果 .联 想 欧 拉 线定 理 以及 重 心定 理 ,易 证
适 当地 添加 辅助线 ,例 如设 D、F分别 为 BC、AB 的 中 结论 .本题 我们 可 以用特 殊值 法.
点 ,连 0D、0F,则 有 0D上BC,0F上AB.连接 AH、
证 明 (1)如 图 4,由外 心 和垂 心 知 ,NH∥oD, N H 一0D ,四边 形 NoDH 为 平 行 四 边 形 ,从 而 DN 、
困难 是 欺 软 怕硬 的.你 愈 畏 惧 它 ,它 愈 威 吓 你 .你愈 不将 它放 在 眼 里 ,
,
它愈 对 你 表 示 恭顺 .
一 一宣永 光