第1课时--正比例函数的图象和性质-练习题(含答案)

合集下载

4.3 第1课时 正比例函数的图象和性质

4.3 第1课时 正比例函数的图象和性质

6.在同一平面直角坐标系中,分别画出下列函数的图象: (1)y1=-2x; (2)y2=-x; (3)y3=-12x.
7.关于函数y=5x,下列结论中正确的是( C) A.函数图象经过点(1,-5) B.函数图象经过二、四象限 C.y随x的增大而增大 D.不论x为何值,总有y>0
8.(阿凡题:1071128)(2017·西安模拟)已知正比例函数y=(m-1)x的图象上有 两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是( )A A.m<1 B.m>1 C.m<2 D.m>0
则 t≤1020=50,∴0≤t≤50.图象略
(2)当 t=151650时,Q=2×151650=30.5, 即 t=15 分 15 秒时,水量 Q 为 30.5 m3 (3)水池中的水量 Q 随着时间 t 的增大而增大
1.下列函数的图象经过原点的是( C ) A.y=7x+2 B.y=-5x+1 C.y=-6x
D.y=x-2 3
2.当k>0时,正比例函数y=kx的图象大致是( )A
3.当x<0时,函数y=-2x在(B ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.如果y=mxm2-8是正比例函数,且其图象在第二、四象限,那么m的 值是_-__3_. 5.函数y=6x的图象是经过点(0,__0__)和点(__1__,6)的一条直线,点A(2 ,4)_不__在_(填“在”或“不在”)直线y=6x上.
八年级数学上册(北师版) 第四章 一次函数
4.3 一次函数的图象
第1课时 正比例函数的图象和性质
1.把一个函数的自变量x与对应的因变量y的值分别作为点的_横___坐标和 _纵___坐标,在直角坐标系内描出它的 对应点 ,所有这些点组成的图形叫做 函数的_图__象_.

八年级数学上册4.3 第1课时 正比例函数的图象和性质

八年级数学上册4.3  第1课时 正比例函数的图象和性质
学习目标
1.理解函数图象的概念,掌握作函数图象的 一般步骤.(重点) 2.掌握正比例函数的图象与性质,并能灵活 运用解答有关问题.(难点)
知识回顾
导入新课
1.下列函数:
(1) y x2 3(2) y 2x (3)y 4 (4)y 2 5x
是一次函数的是 (2),(4),是正比例x 函数的是 (2) .
议一议
(1)正比例函数y=x和y=3x中,随着x值的增大y的
值都增加了,其中哪一个增加得更快?你能说明其
中的道理吗?
(2)正比例函数y=
-
1 2
x和y
=-4x中,随着x值的增
大y的值都减小了,其中哪一个减小得更快?你是如
何判断的?
|k|越大,直线越陡,直线越靠近y轴.
随堂练习
1.下列图象哪个可能是函数y=-x的图象( B )
解析:将坐标(2,4)带入函数表达式中,得 4=(k+1)·2,解得k=1.
变式2:当x>0时,y与x的函数解析式为y=2x , 当x≤0时,y与x的函数解析为y=-2x ,则在同一直角 坐标系中的图象大致为( C)
知识点2 正比例函数图象的性质 画一画:在同一直角坐标系内画出正比例函数 y=x , y=3x, y=- 1 x和 y=-4x 的图象.
2
这四个函数中, 随着x的增大,y的 值分别如何变化?
想一想:下列函数中,随着x的增大,y的值分别如何变化?
当k>0时,
当k<0时,
x增大时,y的值也增大; x增大时,y的值反而减小.
y随x的增大而增大
y随x的增大而减小
y y = 2x
y = 2x3y44 Nhomakorabea2
2
O 12 x

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=04.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或35.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)7.正比例函数y=kx(k≠0)的图像在第二、四象限,则一次函数y=x+k的图像大致是()A. B. C. D.8.下列点不在正比例函数y=﹣2x的图象上的是()A. (5,﹣10)B. (0,0)C. (2,﹣1)D. (1,﹣2)9.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=010.关于函数y=﹣x,下列结论正确的是()A. 函数图象必过点(﹣2,﹣1)B. 函数图象经过第1、3象限C. y随x的增大而减小D. y随x的增大而增大11.下列式子中,表示y是x的正比例函数的是()A.y=x﹣1B.y=2xC.y=2x2D.y2=2x12.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A. 正方形的面积S随着边长x的变化而变化B. 正方形的周长C随着边长x的变化而变化C. 水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t(min)的变化而变化D. 面积为20的三角形的一边a随着这边上的高h的变化而变化13.P1(x1,y1),P2(x2,y2)是正比例函数图象上的两点,下列判断中,正确的是A. y1>y2B. y1<y2C. 当x1<x2时,y1<y2D. 当x1<x2时,y1>y214.下列四个点中,在正比例函数的图象上的点是()A. (2,5)B. (5,2)C. (2,—5)D. (5,—2)15.若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A. (﹣3,﹣2)B. (2,3)C. (3,﹣2)D. (﹣2,3)16.下列关系中,是正比例关系的是()A. 当路程s一定时,速度v与时间tB. 圆的面积S与圆的半径RC. 正方体的体积V与棱长aD. 正方形的周长C与它的一边长a17.下列问题中,两个变量成正比例关系的是()A. 等腰三角形的面积一定,它的底边和底边上的高B. 等边三角形的面积与它的边长C. 长方形的长确定,它的周长与宽D. 长方形的长确定,它的面积与宽18.下列各点中,在正比例函数y=-2x图象上的是()A. (-2,-1)B. (1,2)C. (2,-1)D. (1,-2)19.一次函数y=4x,y=﹣7x,y=的共同特点是()A. 图象位于同样的象限B. y随x增大而减小C. y随x增大而增大D. 图象都过原点二、填空题20.已知正比例函数y=kx(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为________.21.写出一个正比例函数,使其图象经过第二、四象限:________.22.若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.23.写一个图象经过第二、四象限的正比例函数:________24.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.答案解析部分一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定【答案】B【考点】正比例函数的图象和性质【解析】【解答】∵点(2,-3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小,故选B【分析】首先根据函数的图象经过的点的坐标确定函数的图象经过的象限,然后确定其增减性即可2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±1【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:由题意,得k+1=0,解得k=﹣1,故选:B.【分析】根据正比例函数的定义,可得答案.3.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=0 【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.4.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或3 【答案】C【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=kx(k≠0)的图象经过第一、三象限∴k>0,把(k,9)代入y=kx得k2=9,解得k1=﹣3,k2=3,∴k=3,故选C.【分析】根据正比例函数的性质得k>0,再把(k,9)代入y=kx得到关于k的一元二次方程,解此方程确定满足条件的k的值.5.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.【答案】D【考点】正比例函数的图象和性质【解析】【分析】由题目所给信息“当x1<x2时,y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.【解答】由题目分析可知:在正比例函数y=(1-2m)x中,y随x的增大而减小由一次函数性质可知应有:1-2m<0,即-2m<-1,解得:m>.【点评】此题主要考查了一次函数的图象性质,只有掌握它的性质才能灵活运用.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)【答案】A【考点】正比例函数的图象和性质【解析】【分析】根据正比例函数关系式y=kx,可得k=,再依次分析各选项即可判断。

14.2.1正比例函数(第一课时)

14.2.1正比例函数(第一课时)

一、三 经过第____象限;函数y=-2x的图像从左向右__ 下降 二、四 ___,经过第____象限。
一般地,正比例函数y=kx(k是常数,k≠0)的图像
是一条经过原点的直线,我们称它为直线y=kx.当
k>0时,直线y=kx经过第三、一象限,从左向右上 升,即随着x的增大y也增大;当k<0时,直线y=kx 经过第二、四象限,从左向右下降,即随着x的增 大y反而减小。
下面的函数是否是正比例函数?比例系数是多少?
(1) y 3x (2) y 2 x (3) y x 2 (4)s r 2
是;比例系数是3。 不是。 是;比例系数是1/2。 不是。
应用新知
例1
(1)若y=5x3m-2是正比例函数,m=
m2 3
1

(2)若 y (m 2) x
上面这些函数的组成特点:
(1)l=2 r; (3) h=0.5n; (2)m=7.8v (4)T=-2t.
正如函数y=200x一样,上面这些函数都是常数与 自变量的乘积的形式:
一般地,形如
y kx(k是常数,k 0)
②x的系数为1。
叫做正比例函数,其中k叫做比例系数。 注意:①k≠0;
y=200x (0≤x≤128)
(3)这只燕鸥飞行1个半月的行程大约是多少千米?
当x=45时,y=200×45=9000
下列问题中的变量对应的规律可用怎样的函数表示? 并观察这些函数有什么共同的特点? (1)圆的周长l随半径r的大小的变化而变化;
(2)铁的密度为7.8g/cm3 铁块的质量m(单位:g)随它的 体积v(单位:cm3 )的大小的变化而变化;
是正比例函数,m= -2

例2 已知△ABC的底边BC=8cm,当BC边上的高线 从小到大变化时, △ABC的面积也随之变化。 (1)写出△ABC的面积y(cm2)与高线x的函数解析 式,并指明它是什么函数;

湘教版八下数学4.3一次函数的图象第1课时正比例函数的图象和性质说课稿

湘教版八下数学4.3一次函数的图象第1课时正比例函数的图象和性质说课稿

湘教版八下数学4.3一次函数的图象第1课时正比例函数的图象和性质说课稿一. 教材分析湘教版八下数学4.3一次函数的图象第1课时,主要介绍正比例函数的图象和性质。

在这一课时中,学生将学习正比例函数的定义、图象特点以及如何绘制正比例函数的图象。

教材通过丰富的实例和练习题,帮助学生理解和掌握正比例函数的知识。

二. 学情分析在学习本课时,学生已经掌握了函数的基本概念和一次函数的定义,对函数的图象有一定的了解。

但学生对正比例函数的图象和性质的认识还不够深入,需要通过本节课的学习来进一步理解和掌握。

此外,学生可能对如何绘制正比例函数的图象存在一定的困惑,需要教师的引导和讲解。

三. 说教学目标1.知识与技能目标:学生能够理解正比例函数的定义,掌握正比例函数的图象特点,学会绘制正比例函数的图象。

2.过程与方法目标:通过观察、分析和实践,学生能够培养数形结合的思维方式,提高解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学习的兴趣和自信心。

四. 说教学重难点1.教学重点:正比例函数的定义,正比例函数的图象特点,绘制正比例函数的图象。

2.教学难点:如何引导学生理解正比例函数的图象与性质之间的关系,以及如何绘制正比例函数的图象。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作学习法等,激发学生的学习兴趣,引导学生主动参与课堂讨论和实践活动。

2.教学手段:利用多媒体课件、实物模型、练习题等,辅助教学,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个实际问题,引出正比例函数的概念,激发学生的兴趣。

2.新课导入:介绍正比例函数的定义和图象特点,引导学生观察和分析正比例函数的图象。

3.实例讲解:通过具体的例子,讲解如何绘制正比例函数的图象,让学生动手实践。

4.课堂练习:设计一些练习题,让学生巩固所学知识,并及时给予解答和反馈。

5.总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的思考。

19-2-1 第1课时 正比例函数的概念

19-2-1 第1课时 正比例函数的概念

∴ m = -1.
知识点 2:求正比例函数的解析式
根据下表写出 y 与 x 之间的函数解析式:
x
-1
0
1
2
y
2
0
-2Leabharlann -4y 与 x 之间的函数解析式为_y__=_-_2_x____,由此断定
y 是 x 的 __正__比__例____函数.
例2 已知某种小汽车的耗油量是每 100 km 耗油 15 L. 所使用的汽油为 5 元/ L. (1)写出汽车行驶途中所耗油费 y (元) 与行程 x (km) 之 间的函数关系式,并指出 y 是 x 的什么函数; (2)计算该汽车行驶 220 km 所需油费是多少?
(2) 某人一年内的月平均收入为 x 元,他这年(12 个月) 的总收入为 y 元. y = 12x,是正比例函数
(3) 一个长方体的长为 2 cm,宽为 1.5 cm,高为 x cm,
体积为 y cm3.
y = 3x,是正比例函数
一般地,_形__如__y__=_k_x_(__k_是__常__数__,__k_≠__0_)_的__函__数_ 叫做正比例函数
解:(1) y = 5×15x÷100,即 y 是 x 的正比例函数.
(2) 当 x = 220 时,
答:该汽车行驶 220 km 所需油费是 165 元.
做一做 3. 列式表示下列问题中 y 与 x 的函数关系,并指出哪 些是正比例函数.
(1) 正方形的边长为 x cm,周长为 y cm. y = 4x,是正比例函数
注意:(1)中 k 可能为 0. (4)中 2 + k2>0,故 y 是 x 的正比例函数.
3.已知 y - 3 与 x 成正比例,并且 x = 4 时,y = 7, 求 y 与 x 之间的函数关系式. 解:依题意,设 y - 3 与 x 之间的函数关系式为

4.3 正比例函数图像(优秀课件)

4.3 正比例函数图像(优秀课件)

y=-
1 2
x和
y=-4x
的图象.
这四个函数中, 随着x的增大,y的 值分别如何变化?
想一想:下列函数中,随着x的增大,y的值分别如何变化?
当k>0时,
当k<0时,
y随x的增大而增大
y随x的增大而减小
y y = 2x
y = 2x
3
y44源自220 12 x
-6 -3 0
x
总结归纳
在正比例函数y=kx中: 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
提升
1.已知正比例函数y=kx (k>0)的图象上有两点(x1,y1), (x2,y2),若x1<x2,则y1 < y2.
2. 正比例函数y=k1x和y=k2x的图象如图,则k1和k2
的大小关系是( A) A k1>k2 B k1=k2
y y=k1x y=k2x
C k1<k2 D 不能确定
ox
m>-2 (2)当m为何取值范围时,y 随x 的增大而减小?
m<-2 (3)当m为何值时,函数图象经过点(2,10)?.
m=0.5
课堂小结
正比例函 数的图象 和性质
画正比例函数图象的一般 步骤:列表、描点、连线
图象:经过原点的直线. 当k>0时,经过第一、三象限; 当k<0时,经过第二、四象限.
性质:当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
经过的象限
k>0
第一、三象限
k<0
第二、四象限
两点 作图法
由于两怎点样确画定正一比条例直函线数,的画图正象比例函数

4.3 正比例函数的图象及性质 练习题 2021——2022学年北师大版八年级数学上册

4.3  正比例函数的图象及性质  练习题 2021——2022学年北师大版八年级数学上册

3 第1课时 正比例函数的图象及性质【基础练习】知识点 1 正比例函数的图象1.正比例函数y=3x 的大致图象是( )图12.(1)函数y=5x 的图象经过的象限是第 象限;(2)写出一个实数k 的值: ,使得正比例函数y=kx 的图象经过第二、四象限.3.在同一平面直角坐标系中画出下列函数的图象:(1)y=-23x ; (2)y=3x ; (3)y=23x.图2知识点 2 正比例函数图象上点的坐标4.已知正比例函数y=3x 的图象经过点(1,m ),则m 的值为( )A .13B .3C .-13D .-35.点(-2,6)在正比例函数y=kx 的图象上,下列各点在此函数图象上的为( )A .(3,1)B .(-3,1)C .(1,3)D .(-1,3)6.(1)函数y=6x 的图象是经过点(0, )和点( ,6)的一条直线;(2)若正比例函数的图象经过点(-1,4)和(m ,3),则m 的值为 .7.[教材习题4.3第4题变式]已知:如图3,正比例函数的图象经过点P(-1,2)和点Q(-m,m+3).(1)求该函数的表达式;(2)求m的值;(3)判定这个函数的图象必经过(1,-2),(-1,-2),(2,-1),(1,2)中的哪个点.图3知识点3正比例函数的性质8.关于正比例函数y=-3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=1时,y=139.已知函数y=(a-1)x,且y的值随着x值的增大而增大,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<010.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,若x1>x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.以上都有可能11.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m的值为()A.2B.-2C.4D.-412.对于关于x的正比例函数y=mx|m|-1,若其图象经过第一、三象限,则m的值为,且y 的值随x值的增大而.13.已知关于x的正比例函数y=(m+2)x.(1)m为何值时,函数图象经过第一、三象限?(2)m 为何值时,y 随x 的增大而减小?(3)m 为何值时,点(1,3)在该函数的图象上?【能力提升】14.设点A (a ,b )是正比例函数y=-32x 图象上的任意一点,则下列等式一定成立的是( )A .2a+3b=0B .2a -3b=0C .3a -2b=0D .3a+2b=0 15.如果一个正比例函数的图象经过不同..象限的两点A (2,m ),B (n ,3),那么一定有( ) A .m>0,n>0 B .m>0,n<0C .m<0,n>0D .m<0,n<016.若关于x 的正比例函数y=(1-m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m<0B .m>0C .m<1D .m>117.正比例函数y=kx ,当x 每增加3时,y 就减小2,则k 的值为( )A .32B .-32C .23D .-23 18.如图4,在同一直角坐标系中,正比例函数y=k 1x ,y=k 2x ,y=k 3x ,y=k 4x 的图象分别是l 1,l 2,l 3,l 4,则下列关系正确的是( )图4A .k 1<k 2<k 3<k 4B .k 2<k 1<k 4<k 3C .k 1<k 2<k 4<k 3D .k 2<k 1<k 3<k 419.定义运算“※”为a ※b={ab (b ≥0),-ab (b <0),则函数y=2※x 的图象大致是( )图520.已知正比例函数图象上一点A 到x 轴的距离为4,点A 的横坐标为-2,则这个函数的表达式为 .21.已知正比例函数y=kx (k ≠0),当-3≤x ≤1时,对应的y 的取值范围是-1≤y ≤13,且y 随x 的增大而增大,则k 的值为 .22.已知y 与x 成正比例,当x=1时,y=2.(1)求y 与x 之间的函数关系式;(2)求当x=-1时的函数值;(3)若点(-1,m ),(5,n )在此函数的图象上,比较m ,n 的大小.23.(1)在同一坐标系内画出正比例函数y 1=-2x 与y 2=12x 的图象;(2)请你用量角器度量一下(1)中这两条直线的夹角,你发现这两条直线的位置关系是 ;(3)在平面直角坐标系中,直线y=23x 与直线y=-32x 的位置关系是 ;(4)若直线y=(m -1)x (m 为常数)与直线y=-3x 互相垂直,求m 的值.答案1.B [解析] 因为在y=3x 中,k=3>0,所以图象过原点且经过第一、三象限.故选B .2.(1)一、三 (2)答案不唯一,如-23.解:如图所示.4.B5.D6.(1)0 1 (2)-347.解:(1)设正比例函数的表达式为y=kx.因为它的图象经过点P (-1,2),所以2=-k ,即k=-2.所以正比例函数的表达式为y=-2x.(2)因为正比例函数的图象经过点Q (-m ,m+3),所以m+3=2m.所以m=3.(3)把点(1,-2),(-1,-2),(2,-1),(1,2)的坐标分别代入y=-2x 中,等号成立的点就在正比例函数y=-2x 的图象上,所以这个函数的图象必经过点(1,-2).8.C 9.A 10.B 11.B12.2 增大13.解:(1)因为函数图象经过第一、三象限,所以m+2>0,解得m>-2.(2)因为y 随x 的增大而减小,所以m+2<0,解得m<-2.(3)因为点(1,3)在该函数的图象上,所以m+2=3,解得m=1.14.D [解析] 把点A (a ,b )的坐标代入正比例函数y=-32x 中,可得-32a=b ,即3a+2b=0. 15.D 16.D17.D [解析] 根据题意得y -2=k (x+3),y -2=kx+3k ,而y=kx ,所以3k=-2,解得k=-23.18.B [解析] 对正比例函数的图象来说,当k>0时,k 的值越大,直线与x 轴正半轴所夹的锐角越大,所以k3>k4;当k<0时,k的值越大,直线与x轴负半轴所夹的锐角越小,所以k2<k1.因为正数大于一切负数,所以k2<k1<k4<k3.19.C20.y=2x或y=-2x21.1322.解:(1)设y与x之间的函数关系式为y=kx.将x=1,y=2代入,得k=2,故y与x之间的函数关系式为y=2x.(2)当x=-1时,y=2×(-1)=-2.(3)因为k=2>0,所以y的值随着x值的增大而增大.因为-1<5,所以m<n.23.解:(1)如图.(2)互相垂直(3)互相垂直.(4)由题意可得-3(m-1)=-1,解得m=43。

正比例函数 第一课时 PPT课件(数学人教版八年级下册)

正比例函数 第一课时 PPT课件(数学人教版八年级下册)
这时,列车尚未到达距离始发站 1100km的南京南站.
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(3)乘京沪高铁列车从北京南站出发2.5 h后,是否 已经过了距始发站1 100 km 的南京南站?
解:(3)高铁从北京南站出发2.5 h 的行程,是当t 2.5 是函数 y 300t 的值, 即 y 300 2.5 750 (km),
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(1)乘京沪高铁列车,从始发站北京南站到终点站 上海虹桥站,约需多少小时(结果保留小数点后一位)?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
数学初中 正比例(第一课时)
认真观察这四个函数解析式,说说这些函数有什么共同点.
l 2r
m 7.8V h 0.5n T 2t
一般地,形如 y kx ( k 是常数, k 0 )的函数,叫做正比例函数, 其中k 叫做比例系数.
数学初中 正比例(第一课时)
例1 下列式子中,哪些表示y 是x 的正比例函数? (1)y=2x ; (2) y=- x ; (3)y=x2 ;

人教版初中数学八年级下册第19章习题课件 19.2.2 正比例函数的图象和性质

人教版初中数学八年级下册第19章习题课件 19.2.2  正比例函数的图象和性质
【点拨】由题意可知-3m>0,∴m<0,∴P(m,5)在第二象限.
9.已知函数 y=(m-1)xm2-3 是正比例函数. (1)若 y 随 x 的增大而减小,求 m 的值;
解:由题意知m2-3=1且m-1<0,故m=-2.
(2)若函数的图象经过第一、三象限,求 m 的值; 解:由题意知m2-3=1且m-1>0,故m=2.
第十九章 一次函数
19.2 一次函数 第2课时 正比例函数的图象和性质
提示:点击 进入习题
1 原点;第三;第二 2C 3D 4C 5 (1)增大 (2)减小
6A 7B示
1.正比例函数 y=kx(k 是常数,k≠0)的图象是一条经过__原__点____ 的直线,也称它为直线 y=kx; 当 k>0 时,直线经过第一、__第__三____象限; 当 k<0 时,直线经过__第__二____、第四象限.
5.(1)当 k>0 时,函数 y=kx,y 随 x 的增大而__增__大____; (2)当 k<0 时,函数 y=kx,y 随 x 的增大而__减__小____.
6.已知在正比例函数 y=(a-1)x 中,y 随 x 的增大而减小,则 a 的取值范围是( A ) A.a<1 B.a>1 C.a≥1 D.a≤1
7.下列关于正比例函数 y=-5x 的说法中,正确的是( B ) A.当 x=1 时,y=5 B.它的图象是一条经过原点的直线 C.y 随 x 的增大而增大 D.它的图象经过第一、三象限
*8.在正比例函数 y=-3mx 中,函数 y 随 x 的增大而增大,则 P(m,5)在( B ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
(2)在 x 轴上是否存在一点 P,使△AOP 的面积为 5?若存在,求 点 P 的坐标;若不存在,请说明理由.

人教版数学八年级下册 正比例函数的概念

人教版数学八年级下册 正比例函数的概念
(2) 某人一年内的月平均收入为 x 元,他这年(12 个月) 的总收入为 y 元. y = 12x,是正比例函数
(3) 一个长方体的长为 2 cm,宽为 1.5 cm,高为 x cm,
体积为 y cm3.
y = 3x,是正比例函数
一般地,_形__如__y__=_k_x_(__k_是__常__数__,__k_≠__0_)_的__函__数_ 叫做正比例函数
解:(1) y = 5×15x÷100,即 y 是 x 的正比例函数.
(2) 当 x = 220 时,
答:该汽车行驶 220 km 所需油费是 165 元.
做一做 3. 列式表示下列问题中 y 与 x 的函数关系,并指出哪 些是正比例函数.
(1) 正方形的边长为 x cm,周长为 y cm. y = 4x,是正比例函数
一次 函数
新知一览
函数
常量与变量 函数的图象
函数 函数的表示方法
一次 函数
正比例函数的概念 正比例函数的图象与性质
一次函数的概念 一次函数的图象与性质 用待定系数法求一次函数的解析式
一次函数与方程、不等式
课题学习 选择方案
第十九章 一次函数
19.2.1 正比例函数
第1课时 正比例函数的概念
如果设蛤蟆的数量为 x,y 分别表示蛤蟆嘴的数量, 眼睛的数量,腿的数量,扑通声,你能列出相应的 函数解析式吗?
等号右边是一次单项式,一次项系数不为 0, 次数为 1.
2. 正比例函数 y = kx 的自变量 x 的取值范围是什么? 这与问题 1 中的函数自变量的取值范围有何不同?
自变量 x 的取值范围是全体实数, 注意实际问题:要符合实际情境.
练一练
k 是常数,k ≠ 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时正比例函数的图象和性质一.选择题(共10小题)1.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣22.若y=x+2﹣b是正比例函数,则b的值是()A.0B.﹣2 C.2D.﹣0.53.若函数是关于x的正比例函数,则常数m的值等于()A.±2 B.﹣2 C.D.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C.y=中,y与x成反比例关系D.y=中,y与x成正比例关系5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3 C.±3 D.不能确定7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2 B.k≠2 C.k=﹣2 D.k≠﹣28.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.3D.48题图 9题图9.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k410.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.二.填空题(共9小题)11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为_________ .12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= _________ .14.请写出直线y=6x 上的一个点的坐标: _________ . 15.已知正比例函数y=kx (k ≠0),且y 随x 的增大而增大,请写出符合上述条件的k 的一个值: _________ .16.已知正比例函数y=(m ﹣1)的图象在第二、第四象限,则m 的值为 _________ .17.若p 1(x 1,y 1) p 2(x 2,y 2)是正比例函数y=﹣6x 的图象上的两点,且x 1<x 2,则y 1,y 2的大小关系是:y 1 _________ y 2.点A (-5,y 1)和点B (-6,y 2)都在直线y= -9x 的图像上则y 1__________ y 218.正比例函数y=(m ﹣2)x m 的图象的经过第 _________ 象限,y 随着x 的增大而 _________ .19.函数y=﹣7x 的图象在第 _________ 象限内,经过点(1, _________ ),y 随x 的增大而 _________ .三.解答题(共3小题)20.已知:如图,正比例函数的图象经过点P 和点Q (﹣m ,m+3),求m 的值.21.已知y+2与x ﹣1成正比例,且x=3时y=4.(1)求y 与x 之间的函数关系式;(2)当y=1时,求x 的值.22.已知y=y 1+y 2,y 1与x 2成正比例,y 2与x ﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y 与x 之间的函数表达式,并求当x=2时y 的值.23. 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()x kW h 与应付饱费y (元)的关系如图所示。

(1)根据图像,请求出当050x ≤≤时,y 与x 的函数关系式。

(2)请回答:当每月用电量不超过50kW ·h 时,收费标准是多少?当每月用电量超过50kW ·h 时,收费标准是多少?24.已知点P (x ,y )在正比例函数y=3x 图像上。

A (-2,0)和B (4,0),S △PAB =12. 求P 的坐标。

参考答案与试题解析一.选择题(共10小题)1.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣2考点:正比例函数的定义.分析:根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.解答:解:A、是二次函数,故本选项错误;B、符合正比例函数的含义,故本选项正确;C、是反比例函数,故本选项错误;D、是一次函数,故本选项错误.故选B.点评:本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.2.若y=x+2﹣b是正比例函数,则b的值是()A.0B.﹣2 C.2D.﹣0.5考点:正比例函数的定义.分析:根据正比例函数的定义可得关于b的方程,解出即可.解答:解:由正比例函数的定义可得:2﹣b=0,解得:b=2.故选C.点评:考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.3.若函数是关于x的正比例函数,则常数m的值等于()A.±2 B.﹣2 C.D.考点:正比例函数的定义.分析:根据正比例函数的定义列式计算即可得解.解答:解:根据题意得,m2﹣3=1且2﹣m≠0,解得m=±2且m≠2,所以m=﹣2.故选B.点评:本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C.y=中,y与x成反比例关系D.y=中,y与x成正比例关系考点:反比例函数的定义;正比例函数的定义.分析:根据反比例函数的定义和反比例关系以及正比例关系判逐项断即可.解答:解:A、圆面积公式S=πr2中,S与r2成正比例关系,而不是r成正比例关系,故该选项错误;B、三角形面积公式S=ah中,当S是常量时,a=,即a与h成反比例关系,故该选项正确;C、y=中,y与x没有反比例关系,故该选项错误;D、y=中,y与x﹣1成正比例关系,而不是y和x成正比例关系,故该选项错误;故选B.点评:本题考查了反比例关系和正比例故选,解题的关键是正确掌握各种关系的定义.5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米考点:正比例函数的定义.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:A、依题意得到y=4x,则=4,所以正方形周长y(厘米)和它的边长x(厘米)的关系成正比例函.故本选项正确;B、依题意得到y=πx2,则y与x是二次函数关系.故本选项错误;C、依题意得到y=90﹣x,则y与x是一次函数关系.故本选项错误;D、依题意,得到y=3x+60,则y与x是一次函数关系.故本选项错误;故选A.点评:本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是(k≠0).6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3 C.±3 D.不能确定考点:正比例函数的定义.分析:根据正比例函数定义可得|m|﹣2=1,且m﹣3≠0,再解即可.解答:解:由题意得:|m|﹣2=1,且m﹣3≠0,解得:m=﹣3,故选:B.点评:此题主要考查了正比例函数定义,关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k 为常数且k≠0,自变量次数为1.7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2 B.k≠2 C.k=﹣2 D.k≠﹣2分析:根据正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数可得k+2=0,且k﹣2≠0,再解即可.解答:解:∵y=(k﹣2)x+k+2是正比例函数,∴k+2=0,且k﹣2≠0,解得k=﹣2,故选:C.点评:此题主要考查了正比例函数定义,关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k 为常数且k≠0,自变量次数为1.8.(2010•黔南州)已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.3D.4考点:正比例函数的图象.专题:数形结合.分析:根据图象,列出不等式求出k的取值范围,再结合选项解答.解答:解:根据图象,得2k<6,3k>5,解得k<3,k>,所以<k<3.只有2符合.故选B.点评:根据图象列出不等式求k的取值范围是解题的关键.9.(2005•滨州)如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k41分析:首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.解答:解:首先根据直线经过的象限,知:k<0,k1<0,k4>0,k3>0,2再根据直线越陡,|k|越大,知:|k2|>|k1|,|k4|<|k3|.则k2<k1<k4<k3故选B.点评:此题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.10.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.考点:正比例函数的图象.分析:根据正比例函数图象的性质进行解答.解答:解:A、D、根据正比例函数的图象必过原点,排除A,D;B、也不对;C、又要y随x的增大而减小,则k<0,从左向右看,图象是下降的趋势.故选C.点评:本题考查了正比例函数图象,了解正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.二.填空题(共9小题)11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为 1 .考点:正比例函数的定义.专题:计算题.分析:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数,根据正比例函数的定义即可求解.解答:解:∵y﹦(m+1)x+m2﹣1是正比例函数,∴m+1≠0,m2﹣1=0,∴m=1.故答案为:1.点评:本题考查了正比例函数的定义,属于基础题,关键是掌握:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= ﹣1 .考点:正比例函数的定义.专题:计算题.分析:让x的系数不为0,常数项为0列式求值即可.解答:解:∵y=(k﹣1)x+k2﹣1是正比例函数,∴k﹣1≠0,k2﹣1=0,解得k≠1,k=±1,∴k=﹣1,故答案为﹣1.点评:考查正比例函数的定义:一次项系数不为0,常数项等于0.13.(2011•钦州)写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).考点:正比例函数的性质.专题:开放型.分析:先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解答:解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).点评:本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k<0时函数的图象经过二、四象限.14.(2007•钦州)请写出直线y=6x上的一个点的坐标:(0,0).考点:正比例函数的性质.专题:开放型.分析:只需先任意给定一个x值,代入即可求得y的值.解答:解:(0,0)(答案不唯一).点评:此类题只需根据x的值计算y的值即可.15.(2009•晋江市质检)已知正比例函数y=kx(k≠0),且y随x的增大而增大,请写出符合上述条件的k的一个值:y=2x(答案不唯一).考点:正比例函数的性质.专题:开放型.分析:根据正比例函数的性质可知.解答:解:y随x的增大而增大,k>0即可.故填y=2x.(答案不唯一)点评:本题考查正比例函数的性质:当k>0时,y随x的增大而增大.16.已知正比例函数y=(m﹣1)的图象在第二、第四象限,则m的值为﹣2 .考点:正比例函数的定义;正比例函数的性质.分析:首先根据正比例函数的定义可得5﹣m2=1,m﹣1≠0,解可得m的值,再根据图象在第二、第四象限可得m ﹣1<0,进而进一步确定m的值即可.解答:解:∵函数y=(m﹣1)是正比例函数,∴5﹣m2=1,m﹣1≠0,解得:m=±2,∵图象在第二、第四象限,∴m﹣1<0,解得m<1,∴m=﹣2.故答案为:﹣2.点评:此题主要考查了一次函数定义与性质,关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.17.若p1(x1,y1) p2(x2,y2)是正比例函数y=﹣6x的图象上的两点,且x1<x2,则y1,y2的大小关系是:y1>y2.考点:正比例函数的性质.分析:根据增减性即可判断.解答:解:由题意得:y=﹣6x随x的增大而减小当x1<x2,则y1>y2的故填:>.点评:正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.18.正比例函数y=(m﹣2)x m的图象的经过第二、四象限,y随着x的增大而减小.考点:正比例函数的性质;正比例函数的定义.专题:计算题.分析:y=(m﹣2)x m是正比例函数,根据定义可求出m的值,继而也能判断增减性.解答:解:∵y=(m﹣2)x m是正比例函数,∴m=1,m﹣2=﹣1,即y=(m﹣2)x m的解析式为y=﹣x,∵﹣1<0,∴图象在二、四象限,y随着x的增大而减小.故填:二、四;减小.点评:正比例函数y=kx,①k>0,图象在一、三象限,是增函数;②k<0,图象在二、四象限,是减函数.19.函数y=﹣7x的图象在第二、四象限内,经过点(1,﹣7 ),y随x的增大而减小.考点:正比例函数的性质.分析: y=﹣7x为正比例函数,过原点,再通过k值的正负判断过哪一象限;当x=1时,y=﹣7;又k=﹣7<0,可判断函数的增减性.解答:解:y=﹣7x为正比例函数,过原点,k<0.∴图象过二、四象限.当x=1时,y=﹣7,故函数y=﹣7x的图象经过点(1,﹣7);又k=﹣7<0,∴y随x的增大而减小.故答案为:二、四;﹣7;减小.点评:本题考查正比例函数的性质.注意根据x的系数的正负判断函数的增减性.三.解答题(共3小题)20.已知:如图,正比例函数的图象经过点P和点Q(﹣m,m+3),求m的值.考点:待定系数法求正比例函数解析式.于m的方程,通过解方程来求m的值.解答:解:设正比例函数的解析式为y=kx(k≠0).∵它图象经过点P(﹣1,2),∴2=﹣k,即k=﹣2.∴正比例函数的解析式为y=﹣2x.又∵它图象经过点Q(﹣m,m+3),∴m+3=2m.∴m=3.点评:此类题目考查了灵活运用待定系数法建立函数解析式,然后将点Q的坐标代入解析式,利用方程解决问题.21.已知y+2与x﹣1成正比例,且x=3时y=4.(1)求y与x之间的函数关系式;(2)当y=1时,求x的值.考点:待定系数法求正比例函数解析式.专题:计算题;待定系数法.分析:(1)已知y+2与x﹣1成正比例,即可以设y+2=k(x﹣1),把x=3,y=4代入即可求得k的值,从而求得函数解析式;(2)在解析式中令y=1即可求得x的值.解答:解:(1)设y+2=k(x﹣1),把x=3,y=4代入得:4+2=k(3﹣1)解得:k=3,则函数的解析式是:y+2=3(x﹣1)即y=3x﹣5;(2)当y=1时,3x﹣5=1.解得x=2.点评:此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.22.已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.考点:待定系数法求正比例函数解析式.分析:设y=kx2,y2=a(x﹣2),得出y=kx2+a(x﹣2),把x=1,y=5和x=﹣1,y=11代入得出方程组,求出方程组1的解即可,把x=2代入函数解析式,即可得出答案.解答:解:设y=kx2,y2=a(x﹣2),1则y=kx2+a(x﹣2),把x=1,y=5和x=﹣1,y=11代入得:,k=﹣3,a=2,∴y与x之间的函数表达式是y=﹣3x2+2(x﹣2).把x=2代入得:y=﹣3×22+2×(2﹣2)=﹣12.点评:本题考查了用待定系数法求出正比例函数的解析式的应用,主要考查学生的计算能力.。

相关文档
最新文档