2019届中考数学总复习:11-反比例函数及其应用-(共32张PPT)

合集下载

反比例函数应用课件ppt课件ppt课件

反比例函数应用课件ppt课件ppt课件
• 举例说明如何利用已知条件求反比例函数的解析 式。
例题一:求反比例函数的解析式
例题与实战演练
1. 已知某地电话费每分钟0.5元,求通话时间t(分)与电话费y(元)之间的函数关系式。
2. 如果某地有甲、乙两个车站,相距400km,甲站到乙站的距离为s(km),求甲车到乙站所 需时间t(h)与速度v(km/h)之间的函数关系式。
VS
详细描述
在解决一些实际应用问题时,常常需要将 不等式与反比例函数的知识结合起来,例 如在研究某些物理量之间的关系时,利用 反比例函数和不等式可以更好地描述它们 之间的关系。
与对数函数的结合
总结词
反比例函数与对数函数的结合,可以解决一 类实际应用问题。
详细描述
在解决一些实际应用问题时,常常需要将反 比例函数和对数函数的知识结合起来,例如 在研究某些传染病传播问题时,利用反比例 函数和对数函数可以更好地描述其传播速度 和时间的关系。
02
反比例函数通常表示为y=k/x或 x=k/y,其中k是常数且不为零。
反比例函数的基本形式
反比例函数的基本形式是y=k/x,其 中k是常数且不为零。
在这个函数中,x和y都是变量,而k是 一个常数。
反比例函数的图像特征
反比例函数的图像是一个双曲 线。
双曲线有两条曲线,一条在第 一象限,另一条在第三象限。
力学中的反比关系
在力学中,有些量之间存在反比关系,例如重力与距离的平方成反比,可以利用 反比例函数进行描述。
化学中的应用
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应时 间成反比。利用反比例函数可以描述反应速率、反应物浓度 和反应时间之间的关系。
酸碱度与氢离子浓度
在酸碱度与氢离子浓度的关系中,氢离子浓度与酸碱度成反 比,可以利用反比例函数进行描述。

2019中考数学复习考点解读 反比例函数(共16张PPT)

2019中考数学复习考点解读 反比例函数(共16张PPT)

A.m+n<0
B.m+n>0
C.m<n
D.m>n
2.[2018·威海] 若点(-2,y1),(-1,y2),(3,y3)在双曲
线y= (k<0)上,则y1,y2,y3的大小关系是( D )
A.y1<y2<y3
B.y3<y2<y1
C.y2<y1<y3
D.y3<y1<y2
3.[2018·泰安]二次函数y=ax2+bx+c的图象如图所示,则
B,C,D,则四边形PAOB,QCOD为矩形,S矩形PAOB=S矩形 QCOD=|xy|=|k|;S△PAO=S△QCO=
确定反比例函数的解析式的方法 已知反比例函数图象上的点与坐标轴围成的矩形(或直角三角形)的 面积时,则可利用k的几何意义求值,从而确定其解析式. 反比例函数的应用 1.反比例函数与一次函数、几何图形的结合:在平面直角坐标系 中求三角形面积时,通常以__坐__标__轴___上的边为底;如果没有坐标 轴上的边,则用___割__补__法_求解. 2.反比例函数的实际应用(步骤) (1)分析题意,找出自变量与因变量之间的乘__积__关__系____,求出函数 解析式y= ,确定出___自__变__量__的__取__值__范__围__; (2)根据反比例函数的_图__象__和__性__质____求解有关问题; (3)根据题意,写出实际问题的答案.
销售量y(双)
40
200
250
300
30
24
20
(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关 系式; (2)若商场计划每天的销售利润为3000元,则其单价应定为多少 元?
真题练习
1.[2018·无锡]已知点P(a,m),Q(b,n)都在反比例函数y= 的图象上,且a<0<b,则下列结论一定正确的是( D )

中考数学复习课件:第1轮第3章第11讲 反比例函数

中考数学复习课件:第1轮第3章第11讲 反比例函数

(2) 反 比 例 函 数 的 图 象 是 双 曲
线,它有两个分支,可用描点
法画出反比例函数的图象.
2.待定系数法:先设反比例函数 2.若反比例函数 y= 的解析式为 y=kx,再根据条件 kx的图象经过点(4, 代入已知点,从而求出未知数,3),则 k=__1_2_____. 写出反比例函数的解析式.
B.难题突破 6.(2020·株洲)如图所示,在平面直角坐标系 xOy 中,四边形 OABC 为矩形,点 A、C 分别在 x 轴、y 轴上,点 B 在函数 y1=kx(x>0,k 为常数且 k>2)的 图象上,边 AB 与函数 y2=2x(x>0)的图象交于点 D, 则阴影部分 ODBC 的面积为___k_-__1__.(结果用含 k 的式子表示)
A(6,1),B(a,-3)两点,连接 OA,OB.
(1)求一次函数和反比例函数的解析式;
解:把A(6,1)代入y2=mx 中,解得m=6, 所以反比例函数的解析式为y2=6x; 把B(a,-3)代入y2=6x,解得a=-2,
则B(-2,-3), 把A(6,1)和B(-2,-3)代入y1=kx+b, 可得6-k+2kb+=b1=,-3,解得bk==-12,2, 所以一次函数解析式为y1=12x-2;
又∵∠OFB=∠BFD=90°,∴△OBF∽△ BDF,
∴OBFF=DBFF,∴84=D4F,∴DF=2, ∴OD=OF+DF=8+2=10,∴D(10,0).
设BD所在直线解析式为y=k′x+b(k≠0), 把B(8,4),D(10,0)分别代入, 可得810k′k+′+b= b=4, 0,解得kb′==2-0,2, 故直线BD的解析式为y=-2x+20.
(2)求△AOB 的面积.
解:将x=0代入y=x+1,解得y=1,则点A的 坐标为(0,1),

中考数学总复习第一部分基础知识复习函数及其图象反比例函数PPT

中考数学总复习第一部分基础知识复习函数及其图象反比例函数PPT

★考点2 ★考点2 ★知识点2 ★考点2 ★考点2 ★知识点2 ★考点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★考点2 ★考点2 ★考点2 ★考点2
★考点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★考点3
★知识点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3
★知识点4 ★知识点4 ★知识点4 ★知识点4
★知识点4 ★知识点4
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析

2019年安徽省中考数学总复习课件:第三章 函数及其图像第11讲反比例函数

2019年安徽省中考数学总复习课件:第三章 函数及其图像第11讲反比例函数
第三章 函数及其图象
第11讲
反比例函数
考点1 反比例函数的概念及表达式的确定 1.反比例函数 形如y=
k x
.(k是常数,且k≠ 0 )的函数叫做反比例函数,k叫
做 比例系数 .
2.反比例函数表达式的确定 求反比例函数的表达式与求一次函数的表达式一样,一般也是 用 ,即先设反比例函数的表达式是y= k ,再根据已知 条件利用方程求出 k,即得反比例函数的表达式. 待定系数法 x
2 x
k -1 (k是常数,k≠1)的图象有 x 一支在第二象限,那么k的取值范围是 k<1 .
3.[2018·上海]已知反比例函数y=
类型3
确定反比例函数的解析式
4.[2018·长春]如图,在平面直角坐标系中,等腰
直角三角形ABC的顶点A、B分别在x轴、y轴的正半 k 轴上,∠ABC=90°,CA⊥x轴,点C在函数y= x (x>0)的图象上,若AB=2,则k的值为( A ) A.4 B. 2 2 C. 2 D.
图象
பைடு நூலகம்
k>0
k<0
图象在第一、三象限 性质 在每个象限内,y随x的增大 而减小
图象在第二、四象限 在每个象限内,y随x的增大 而增大
k (k≠0)中系数k的几何意义:设P(x,y)是反比 x k 例函数y= (k≠0)的图象上的任意一点,过点P分别向x轴、y轴作
2.反比例函数y=
x
垂线,垂足分别为A,B,如图所示,则|k|=|x|· |y|=S矩形OAPB,这就 是k的几何意义.
类型1
反比例函数的图象和性质
2 1.[2018·衡阳]对于反比例函数y=- ,下列说法不正确的是( D x )
A.图象分布在第二、四象限 B.当x>0时,y随x的增大而增大

初三反比例函数ppt课件

初三反比例函数ppt课件
揭示本质
从函数形式上,我们可以将反比例函 数表示为y=k/x,其中k为常数,且 k≠0。这表明函数的输出y与输入x成 反比关系。
反比例函数的表达形式基本源自式y=k/x,其中k为常数,且k≠0。
变形形式
当k>0时,函数图像位于第一、三象限,y随x的增大而减小;当k<0时,函数图 像位于第二、四象限,y随x的增大而增大。
交点与函数图像的关系
01
当两个函数有交点时,交点的横 纵坐标分别对应两个函数在某一 点处的函数值。
02
通过交点,可以观察两个函数在 某一点处的相互关系及其变化趋 势。
利用交点解决实际问题
路程问题
01
在两个物体以不同速度相对运动的问题中,交点的横坐标表示
相遇的时间,纵坐标表示相遇的地点。
工程问题
02
满足奇偶性定义
由于反比例函数满足奇函数的定义 ,即$f( - x) = - f(x)$,因此它是奇 函数。
反比例函数的凹凸性
二阶导数判定
通过求二阶导数判断函数的凹凸 性。如果二阶导数大于0,则函 数是凹函数;如果二阶导数小于 0,则函数是凸函数。对于反比 例函数,可以通过求导再求二阶
导数来判断凹凸性。
在工程进度问题中,交点的横坐标表示完成工程所需的总时间
,纵坐标表示完成工程量。
经济问题
03
在投入产出问题中,交点的横坐标表示投资额,纵坐标表示产
值。
06
CATALOGUE
复习与巩固
反比例函数的概念与性质复习
总结词:掌握基础
详细描述:通过图表和实例,复习反 比例函数的概念和性质,包括定义、 表达式、图像等。
凹函数
通过计算二阶导数发现,反比例 函数是凹函数。这意味着函数图

反比例函数应用ppt课件ppt课件ppt

反比例函数应用ppt课件ppt课件ppt
检验解
将求得的参数代入原方程,检验方 程是否符合实际问题中的条件,如 是否合理、是否符合实际情况等。
验证模型准确性
选择检验方法
根据问题的实际情况,选择合适 的检验方法来验证模型的准确性 ,如残差分析、相关性检验等。
进行模型检验
利用收集到的数据或其他已知条 件,对模型进行检验。通过比较 模型的预测值与实际观测值之间
解题思路
利用简谐振动的周期公式和振 幅定义,建立数学表达式,通 过已知量求解未知量。
PPT内容展示
弹簧振子模型、公式推导、计 算步骤和结果。
例题三:液体流量与管道截面积问题
题目描述
给定管道中液体的流量和管道截面积,求解 液体流速或其他相关量。
解题思路
利用流量公式和流速定义,建立数学表达式 ,通过已知量求解未知量。
液体流量与管道截面积关系
• 流量公式:表述液体在管道中流动时,流量Q、截面积A、流速 v之间的关系,即Q=A×v,当流速确定时,流量与截面积成正 比;当截面积确定时,流量与流速成反比。
03 反比例函数建模与求解方法
CHAPTER
建立数学模型
确定问题类型
明确问题是涉及两个量之 间的反比例关系,即一个 量增加时,另一个量减少 ,反之亦然。
的差异,评估模型的准确性。
调整模型
如果模型检验结果不理想,可以 对模型进行调整,如修改参数、 引入其他变量等,以提高模型的
准确性。
04 典型例题解析及思路梳理
CHAPTER
例题一:电阻、电流、电压问题
01
02
03
04
题目描述
给定电路中电阻、电流和电压 之间的关系,求解未知量。
解题思路
利用欧姆定律,建立电阻、电 流、电压之间的数学表达式,

2019年中考数学总复习课件:反比例函数及其应用

2019年中考数学总复习课件:反比例函数及其应用
������ ������
(1)求反比例函数的解析式; (2)连接 EF,求△BEF 的面积.
)
[答案] A
[解析] ∵此函数是反比例函数, ∴ ������ + 1 ≠ 0, ������2 -2 = -1.
解得 a=1.故选 A.
课前考点过关
题组一 基础关
2.在反比例函数 y=
������ -3 ������
的图象的每一支曲线上,y 都随 x 的增 ( )
[答案] A
[解析] ∵在反比例函数 y=
图 15-1 所以过双曲线上任意一点作 x 轴、y 轴的垂线,它们与 x 轴、y 轴所围成的矩形面积为常数|k|.从而有 S△PNO=S△PMO= |k|.
2 1
课前考点过关
考点自查
考点三 反比例函数解析式的确定
由于反比例函数 y= (k≠0)中只有一个待定系数,因此,只要知道一组 x,y 的对应值,就可以求出 k 的值,从而
再根据点A,B关于原点对称,从而点B 的坐标为(1,-4).
课前考点过关
题组一 基础关
6.写出反比例函数 y=- 图象上一个点的坐标:
������ 6
.
[答案] (-2,3)答案不唯一 [解析] 只要满足xy=-6即可.
课前考点过关
题组一 基础关
7.如图 15-3,点 A 为反比例函数 y=- 图象上一点,过 A 作
对称性
关于原点对称 反比例函数图象既是轴对称图形又是中心对称图形
课前考点过关
反比例函数 y= (k≠0)中,比例系数 k 有一个很重要的几何意义:如图 15-1,过反比例函数 y= 图象上任一点 P
������ ������ ������ ������

2019年人教版中考数学反比例函数的应用复习课件

2019年人教版中考数学反比例函数的应用复习课件

低达到36,那么经过适当安排,老师能否在学生注意力达到所需状态下讲解完
这道题目?
答案 (1)设线段AB所在的直线的表达式为y1=k1x+20(k≠0).
把点B(10,40)的坐标代入表达式,得40=10k1+20,解得k1=2, ∴线段AB的表达式为y1=2x+20(0≤x≤10).
k2 设点C、D所在双曲线的表达式为y2= (k2≠0).把点C(25,40)的坐标代入表达 x
v(千米/时) t(小时) 75 4.00 80 3.75 85 3.53 90 3.33 95 3.16
(1)根据表中的数据,求出平均速度v(千米/时)关于行驶时间t(小时)的函
数表达式; (2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理 由; (3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.
反比例函数的应用
基础知识梳理
考点 反比例函数的应用
1.利用反比例函数解决实际问题,前提是建立反比例函数模型.一般地,实际问 题中的反比例函数的自变量的取值会受到一定的限制,这时对应的函数图象 是双曲线的一部分. 2.在实际问题中,反比例函数的图象上任何一点的坐标都有具体的实际意义, 解题时,要将实际问题中的数据转化为表达式中所需要的数据或点的坐标. ▶温馨提示 物理学中的规律与公式(运动学、力学、电学等)是建立反比
系数法求出k的值;(2)根据时间t=2.5,代入表达式求出速度,再作出判断;(3)根 据自变量的取值范围,求出函数值的取值范围.由于本题中没有明确说明变量 之间满足的是哪一种函数关系,我们要通过观察、分析表格中的数据,再通过 猜想、验证,对函数所属类型作出正确判断,在确定为反比例函数后,再建立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档