传感器实验指导书
传感器实验指导书
实验指导书实验一、箔式应变片的温度效应及补偿实验目的:1、认识环境温度变化对传感器输出的影响(零点漂移、灵敏度漂移);2、 掌握差动电桥电路对温漂的抑制;3、 了解差动电桥电路抗干扰能力。
实验原理:传感器输出不仅反映被测量,环境的其它物理量(温度、电磁、偏载等等)也会对传感器的输出产生影响,即产生干扰。
为了提高测量精度,需提高传感器抗干扰能力,即干扰补偿。
一种有效的补偿措施是差动传感器方法。
含干扰的传感器静态数学模型为:)(3210T f X a X a X a a Y n n +++++=若传感器采用差动方法则有:)()(2222155331T f T f X a X a X a Y -++++=式中,)(T f 为干扰量产生的输出,)(1T f 、)(2T f 为两差动转换元件产生的输出。
通常干扰为共模干扰,即)(1T f 、)(2T f 同号,这样差动传感器的干扰减小,若传感器转换元件完全对称,即)(1T f 、)(2T f 完全相等,则干扰输出为零。
由工艺原因,传感器结构不可能完全对称,即通过差动方法不能完全消除干扰,或是传感器不能采用差动结构,传感器的干扰通常还需采取其它补偿措施。
实验步骤:1、连接主机与模块电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“-”输入端对地用实验线短路。
输出端接电压表2V 档。
开启主机电源,用调零电位器调差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。
2、 观察贴于悬臂梁根部的应变片的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为固定标准电阻,R 为应变片(可选上梁或下梁中的一个工作片),图中每两个节之间可理解为实验连接线,注意连接方式,勿使直流电源激励电源短路。
将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。
3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。
传感器实验指导书2023
传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。
二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。
电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。
电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。
压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。
磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。
传感器实验指导书
使用说明实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。
一、实验仪的传感器配置及布局是:四片金属箔式应变计:位于仪器顶部的实验工作台部分,左边是一副双孔称重传感器,四片金属箔式应变计贴在双孔称重传感器的上下两面,受力工作片分别用符号和表示。
可以分别进行单臂、半桥和全桥的交、直流信号激励实验。
请注意保护双孔悬臂梁上的金属箔式应变计引出线不受损伤。
电容式:由装于圆盘上的一组动片和装于支架上的两组定片组成平行变面积式差动电容,线性范围≥3mm。
电感式(差动变压器):由初级线圈Li和两个次级线圈L。
绕制而成的空心线圈,圆柱形铁氧体铁芯置于线圈中间,测量范围>10mm。
电涡流式:多股漆包线绕制的扁平线圈与金属涡流片组成的传感器,线性范围>1mm。
压电加速度式:位于悬臂梁自由端部,由PZT-5双压电晶片、铜质量块和压簧组成,装在透明外壳中。
磁电式:由一组线圈和动铁(永久磁钢)组成,灵敏度0.4V/m/s。
热电式(热电偶):位于仪器顶部的实验工作台部分,左边还有一副平行悬臂梁,上梁表面安装一支K分度标准热电偶,冷端温度为环境温度。
热敏式:平行悬臂梁的上梁表面还装有玻璃珠状的半导体热敏电阻MF-51,负温度系数,25℃时阻值为8~10K。
光电式传感器装于电机侧旁。
为进行温度实验,左边悬臂梁之间装有电加热器一组,加热电源取自15V直流电源,打开加热开关即能加热,加热温度通常高于环境温度30℃左右,达到热平衡的时间随环境温度高低而不同。
需说明的是置于上梁上表面的温度传感器所感受到的温度与在两片悬臂梁之间电加热器处所测得的温度是不同的。
霍尔式:半导体霍尔片置于两个半环形永久磁钢形成的梯度磁场中,线性范围≥3mm 。
MPX 压阻式:摩托罗拉扩散硅压力传感器,差压工作,测压范围0~50KP 。
精度1%。
(CSY10B )湿敏传感器:高分子湿敏电阻,测量范围:0~99%RH 。
气敏传感器:MQ3型,对酒精气敏感,测量范围10-2000PPm ,灵敏度RO/R >5。
传感器实训指导书
扬州高等职业技术学校实训指导书2011—2012学年第二学期课程名称传感器课程类别实训专业模具授课班级10205授课教师胡冯仪《传感器》实训指导书实验一、YL-CG2003型传感器实验台仪器的使用一、电源部分1.总电源空气式带漏电保护开关切换整个实验台的单相220V电源,额定电流最大为3A,安全可靠。
2.指示灯—电源插入电网后即亮,表示实验台已接入电源。
3.AC220输出双路多功能插座可输出220V单相电源,功率不大于300W二、温度控制部分1.温度控制仪面板说明(1)将K型热电偶接入主控箱面板温度中的Ei(+、-)标准值插孔中,合上热源开关。
仪表将首先按A、B、C程序自检2.通过切换开关可控制直流电压表输入端。
当为内接输入位置可测量指示2V-15V直流稳压输出电压。
外接输入分两档0-2V或0-20V。
A、所有数码管及所有指示灯全部点亮,用来检测发光系统是否正常,此时如发现有不能点亮的发光文件,请停止使用该仪表送修。
B、PV窗口显示“TYPE”,SV窗口显示仪表目前所应配输入类型。
C、显示仪表的控制范围,SV窗口显示下限测量控制值,PV窗口显示上限控制值。
(2)仪表进行完以上三步自检后,即投入正常测控状态,上排PV窗口显示测量值,下排SV 窗口设定值。
(3)要想修改设定值,请在正常显示方式下,按一下SET键,PV窗口显示,“SP”,SV窗口显示已设置的值,此时按▲键向上调节设定值,按键▼向下调节设定值。
2.温控仪电源开关—控制整个温控部分电源开或关。
(1)指示灯一亮表示电源部分总电源开关已打开,实验仪在工作。
(2)温控传感器输入插口一通过JK插头与9号温度实验模块E型热电偶连接用。
(3)加热源电源输出端—可提供20V交流5A功率电源。
与9号实验模块电源输入端进行加热温控。
控制温度精度±1℃。
三、数显单元和2V~15V直流电源部分1.直流电压显示为132数字电压表读数V。
2.通过切换开关可控制直流电压表输入端。
传感器实验指导书
一、人体动脉血压的测量一、实验目的通过实践学习,掌握间接测量人体动脉血压的原理和方法,了解血压测量的意义,要求能较准确地测出人体肱动脉的收缩压与舒张压的正常值,了解人体的正常血压及脉压标准。
二、实验原理血压是指血管内血液对于单位面积血管壁的侧压力,也即压强。
血压的单位通常用kPa或mmHg来表示。
人体动脉血压通常是用汞柱血压计和听诊进行测量的(也可用弹簧血压计或电子血压计进行测量),汞柱血压计的结构原理如附图1-2-3所示;测量部位通常为右上臂肱(GONG)动脉。
血液在血管内流动时一般没有声音,但如果血液通过狭窄处形成涡流时,便会使血管壁振动而发出声音。
当将空气打入缠于上臂的袖带内使其压力超过收缩压时,则完全阻断了肱动脉内的血流,此时在被压迫的肱动脉远端听不到声音,也触不到桡动脉的搏动。
如徐徐放气,降低袖带内压,当其压力刚低于收缩压而高于舒张压时,血液便断续地冲过受压血管,形成涡流使血管壁振动而发出声音,此时即可在被压的肱动脉远端听到,也可触到桡(RAO)动脉脉搏。
如继续放气,当外加压力等于舒张压时,则血管内血流由断续变成连续,声音便会突然由强变弱或消失。
因此当听到第一声音时的最大外加压力相当于收缩压;而当声音突然由强变弱或消失前最后声响时的外加压力则相当于舒张压。
此法即Korotkoff听诊法。
三、实验对象人体四、实验器材血压套件(水银柱血压计、压力表、听诊器、充气球、气管和联接用三通),电子血压计,胶布。
五、实验步骤与方法1.熟悉血压计构造血压计由检压计、袖带和气囊三部分组成。
检压计是一个标有0~260 mm(或0~300 mm)刻度的玻璃管。
上端通大气,下端和水银储槽相通。
袖带是一个外包布套的长方形橡皮囊,通过橡皮管分别与检压计水银储槽和橡皮球相通。
打气球是一个带有螺丝帽的橄榄球状橡皮囊,螺丝帽的拧紧和放松分别用于充气或放气。
2.测量过程1)受试者脱去右臂衣袖,取坐位,全身放松,右肘关节轻度弯曲,置于实验桌上,使上臂中心部与心脏位置同高,准备测量。
传感器实验指导书
传感器(检测与转换)实验指导书李欣编著目录实验一电阻式传感器的单臂电桥性能实验 (3)实验二电阻式传感器的半桥性能实验 (6)实验三电阻式传感器的全桥性能实验 (8)实验四变面积式电容传感器特性实验 (10)实验五差动式电容传感器特性实验 (13)实验六差动变压器的特性实验 (14)实验七自感式差动变压器的特性实验 (16)实验八光电式传感器的转速测量实验 (18)实验九接近式霍尔传感器实验 (20)实验十涡流传感器的位移特性实验 (22)实验十一温度传感器及温度控制实验(AD590) (24)实验十二超声波传感器的位移特性实验 (27)附录一计算机数据采集系统的使用说明 (29)附录二检测与转换技术(传感器)实验台使用手册 (31)实验一电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。
2、掌握电阻应变式传感器放大电路的调试方法。
3、掌握单臂电桥电路的工作原理和性能。
二、实验所用单元电阻应变式传感器、调零电桥、差动放大器板、直流稳压电源、数字电压表、位移台架。
三、实验原理及电路1、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R=Kε,ΔR为电阻丝变化值,K为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L。
通过测量电路将电阻变化转换为电流或电压输出。
2、电阻应变式传感如图1-1所示。
传感器的主要部分是下、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为±3mm。
11─外壳2─电阻应变片3─测杆4─等截面悬臂梁5─面板接线图图1-1 电阻应变式传感器3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R为电阻应变片,输出电压U O=EKε,E为电桥转换系数。
图1-2 电阻式传感器单臂电桥实验电路图四、实验步骤1、固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm 左右。
传感器实验指导书
实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。
(E为供桥电压)。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1),应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。
2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。
3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW2使数显表显示为零。
4、在传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表(1-1)。
机械工程《传感器与检测技术》测试技术实验指导书
机械工程《传感器与检测技术》测试技术实验指导书机械工程测试技术实验指导书——传感器与检测技术罗烈雷编机械工程系机械工程测试技术实验指导书——传感器与检测技术一、测试技术实验的地位和作用《传感器与检测技术》课程,在高等理工科院校机械类各专业的教学打算中,是一门重要的专业基础课,而实验课是完成本课程教学的重要环节。
其要紧任务是通过实验巩固和消化课堂所讲授理论内容的明白得,把握常用传感器的工作原理和使用方法,提高学生的动手能力和学习爱好。
其目的是使学生把握非电量检测的差不多方法和选用传感器的原则,培养学生独立处理问题和解决问题的能力。
二、应达到的实验能力标准1、通过应变式传感器实验,把握理论课上所讲授的应变片的工作原理,并验证单臂、半桥、全桥的性能及相互之间关系。
2、通过差动变压器静态位移性能测试和差动变压器零点残余电压的补偿电路设计,把握理论课上所讲授的差动变压器的工作原理和零点残余电压的补偿措施。
3、通过电涡流式传感器的静态标定和被测体材料对电涡流式传感器特性的阻碍实验,把握理论课上所讲授的电涡流式传感器的原理及工作性能,验证不同性质被测体材料对电涡流式传感器性能的阻碍。
4、通过差动面积式电容传感器的静态及动态特性测试,了解差动面积式电容传感器的工作原理及其特性。
5、通过磁电感应式传感器的性能和霍尔式传感器直流静态位移特性的测试方法,把握磁电感应式传感器的工作原理及其性能和霍尔式传感器的工作原理及其特能。
6、通过压电式传感器的动态响应和引线电容对电压放大器与电荷放大器的阻碍实验,把握压电式传感器的原理、结构及应用和验证引线电容对电压放大器的阻碍,了解电荷放大器的原理和使用方法。
7、通过光敏三极管和光敏电阻的性能测试,把握光电传感器的原理与应用方法。
8、热电偶和热敏电阻的性能测试的方法,把握热电偶的原理和 NTC 热敏电阻的工作原理和使用方法,并对传感器灵敏度线性度进行分析。
9、通过差动放大器和低通滤波器设计和测试,把握差动放大器和滤波器的设计方法和性能测试方法。
传感器技术实验指导书_3
实验二直流全桥的应用――电子秤实验 (7)实验三电容式传感器的位移特性实验 (9)实验五直流激励时霍尔式传感器位移特性实验 (13)实验七光纤传感器的位移特性实验 (18)实验二直流全桥的应用――电子秤实验一、实验目的:了解应变直流全桥的应用及电路的标定。
二、基本原理:电子秤实验原理为实验一,全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量纲(g)即成为一台原始电子秤。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码四、实验步骤:1、按实验一中2的步骤,将差动放大器调零,应变式传感器实验模板按全桥接线,合上主控台电源开关,调节电桥平衡电位R W1,使数显表显示0.00V。
2、将10只砝码全部置于传感器的托盘上,调节电位器R W3(增益即满量程调节)使数显表显示为0.200V(2V档测量)或-0.200V。
3、拿去托盘上的所有砝码,调节电位器R W4(零位调节)使数显表显示为0.0000V。
4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量纲g,就可以称重。
成为一台原始的电子秤。
5、把砝码依次放在托盘上,填入下表2-1。
6、根据上表,计算误差与非线性误差。
五、思考题1、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。
2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻。
实验三电容式传感器的位移实验一、实验目的:了解电容式传感器结构及其特点。
二、基本原理:利用平板电容C=εA/d和其它结构的关系式通过相应的结构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。
三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。
传感器与检测技术实验指导书
实验一金属箔式应变片性能研究一、实验目的1、了解金属箔式应变片,单臂电桥的工作原理和工作情况。
2、了解金属箔式应变片,半桥的工作原理和工作情况。
3、了解金属箔式应变片,全桥的工作原理和工作情况。
4、验证单臂、半桥、全桥的性能及相互之间的关系。
二、实验原理电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应工程结构件的内部变形转化为电阻变化的传感器。
此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的形变,然后由电阻应变片将弹性元件的形变转化为电阻的变化,再通过测量电路将电阻的变化转换成电压或者电流变化信号输出。
它可用于能转化成形变的的各种物理量的检测。
本实验以金属箔式应变片为研究对象。
箔式应变片的基本结构:金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或者金属箔制成,如图所示:(a)丝式应变片(b) 箔式应变片图1-1金属箔式应变片结构金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。
电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。
描述电阻应变效应的关系式为△R/R=Kε。
式中△R/R为电阻丝电阻的相对变化,K为应变灵敏系数,ε=△L/L为电阻丝长度相对变化。
为了将电阻应变式传感器的电阻变化转化成电压或者电流信号,在应用中一般采用电桥电路作为测量电路。
电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。
能较好地满足各种应变测量要求,因此在测量应变中得到了广泛的应用。
电路电桥按其工作方式分有单臂、半桥、全桥三种,单臂工作输出信号最小,线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂的四倍,性能最好。
因此,为了得到较大的输出电压一般采用半桥或者全桥工作。
三、需用器件与单元:可调直流稳压电源、电桥、差动放大器、双平行梁、测微头、应变片、电压/频率表、主、副电源。
传感器技术实验指导书(孙红兵)
传感器技术实验指导书淮阴师范学院物理与电子电气工程学院2012.9.10THSRZ-1型传感器系统综合实验装置简介实验台主要由试验台部分、三源板部分、处理(模块)电路部分和数据采集通讯部分组成。
1. 实验台部分这部分设有1k~10kHz 音频信号发生器、1~30Hz 低频信号发生器、直流稳压电源±15V、+5V、±2-±10V、2-24V可调四种、数字式电压表、频率/转速表、定时器以及高精度温度调节仪组成。
2. 三源板部分热源:0~220V交流电源加热,温度可控制在室温~120 o C转动源:2~24V直流电源驱动,转速可调在0~4500 RPM(转/分)振动源:装有振动台1Hz—30Hz(可调)3. 处理(模块)电路部分包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、温度检测与调理、压力检测与调理等共十个模块。
4. 数据采集、分析部分为了加深对自动检测系统的认识,本实验台增设了USB数据采集卡及微处理机组成的微机数据采集系统(含微机数据采集系统软件)。
14位A/D转换、采样速度达300kHz,利用该系统软件,可对学生实验现场采集数据,对数据进行动态或静态处理和分析,并在屏幕上生成十字坐标曲线和表格数据,对数据进行求平均值、列表、作曲线图等处理,能对数据进行分析、存盘、打印等处理,实现软件为硬件服务。
二、实验内容结合本装置的数据采集系统,不用外配示波器,可以完成大部分常用传感器的实验及应用。
实验一、 金属箔应变片的性能研究实验1 金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V 、±4V 电源、万用表(自备)。
三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=K ε,式中ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=Δl/l 为电阻丝长度相对变化。
传感器原理及应用实验指导书
传感器原理及应用实验指导书目录1.实验一: 应变片单臂特性实验2.实验二:应变片全桥特性实验3.实验三: 电容式传感器的位移实验4.实验四:压电式传感器测振动实验5.实验五: 线性霍尔式传感器位移特性实验6.实验六:NTC热敏电阻温度特性实验CSY-XS-01传感器系统实验箱说明书一、产品简介CSY-XS-01传感器系统实验箱是在本公司多年生产传感技术教学实验仪器的基础上,结合了TK-9XX系列和TK-2000系列的各自优点,根据院校实验室的实际情况,为适应不同类别、不同层次的专业需要,最新主推的手提式传感器实验仪,是高联公司外销的主要产品。
CSY-XS-01传感器系统实验箱主要用于各大、中专院校开设的“传感器原理”“自动检测技术”“非电量电测技术”“测量与控制”“机械量电测”等课程的实验教学。
CSY-XS-01实验箱的传感器采用原理与实际相结合,便于学生加强对书本知识的理解,并在实验过程中,通过信号的拾取,转换,分析,培养学生作为一个科技工作者具有的基本操作技能与动手能力。
二、实验箱组成TK-XS传感器实验箱如下图所示:主要由机头、主板、信号源、传感器、数据采集卡、PC接口、软件等各部分组成。
1、机头由应变梁(含应变片、PN结、NTC R T热敏电阻、加热器等);振动源(振动台);升降调节杆;测微头和传感器的安装架(静态位移安装架);传感器输入插座;光纤座及温度源等组成。
2、主板部分主板部分有八大单元电路组成:智能调节仪单元;频率/电压显示(F/V表)单元;音频振荡器(1KHz~10KHz可调)和低振荡器 (1Hz~30Hz可调)单元;直流稳压电源输出单元(提供高稳定的±15V、+5V、±4V、+1.2V~+12V可调等);数据采集和RS232 PC接口单元;传感器的输出口单元;转动源单元;各种传感器的调理电路单元。
3、信号源1)温度源<150℃(可调);、2)振动源 1Hz~30Hz;3)转动源 0~2400r/min4、传感器:详见四、传感器(共十九种传感器)5、数据采集卡及处理软件:详见五、V9.0数据采集卡及处理软件6、实验箱:供电:AC 220V 50Hz 功率0.2kW实验箱尺寸为515×420×185(mm)。
传感器实验指导书(天煌)
传感器实验指导书(天煌)传感器实验指导书(天煌)一、实验目的本实验旨在帮助学生理解传感器的工作原理和应用场景,培养学生的实验操作能力和数据分析能力。
二、实验器材1:传感器模块 - 1个2: Arduino开发板 - 1个3:连接线 - 若干4:电阻 - 若干5: LED灯 - 若干6:温度计 - 1个三、实验步骤1:搭建电路连接:a:将传感器模块连接至Arduino开发板的数模转换口。
b:将Arduino开发板通过USB线与电脑连接。
c:根据传感器模块的数据手册接入合适的电源。
2:编写程序:a:在Arduino开发环境中创建新的项目。
b:导入传感器模块的库文件。
c:编写代码,初始化传感器模块并设置参数。
d:编写数据采集和数据处理的代码逻辑。
e:将编写好的代码烧录到Arduino开发板中。
3:实验数据采集:a:打开串口监视器,设定合适的波特率。
b:通过串口监视器输出传感器采集到的数据。
c:单独测试和观察每个传感器模块的输出。
d:记录实验数据。
4:数据处理和分析:a:根据传感器的特性和实验需求,对采集到的数据进行初步处理和筛选。
b:运用统计学方法对数据进行分析,计算平均值、标准差等统计量。
c:绘制数据分布直方图、折线图等可视化图表。
d:根据分析结果进一步讨论和解释实验现象。
四、实验注意事项1:在电路连接和编写程序时,务必参考传感器模块的数据手册,遵循正确的接线和设置流程。
2:实验过程中请注意安全,不得擅自改变电路接线或开关设置。
3:在实验数据采集时,应保持传感器模块与待测物理量之间的适当距离和相对位置。
4:在进行数据处理和分析时,遵循科学规范,严谨处理实验数据。
5:实验结束后,关闭所有设备,清理实验台面。
五、实验结果实验数据显示,传感器模块对待测物理量的测量准确性较高,且具有较好的稳定性。
通过数据分析,我们可以得出以下结论:::六、附件本文档涉及的附件包括:1:传感器模块数据手册2: Arduino开发板示例程序3:实验数据记录表七、法律名词及注释1:版权:著作权法规定的对具有独创性的文学、艺术和科技作品所享有的权利。
传感器实验指导书(天煌)
传感器实验指导书(天煌)1000字
传感器实验指导书(天煌)
实验目的:
1.了解传感器的原理和应用
2.掌握传感器的工作原理和特性
3.学习传感器的调试和使用方法
实验器材:
1.电路板
2.传感器
3.电源
4.跳线
5.万用表
实验原理:
传感器是一种具有灵敏度的检测设备,它可以将非电信号转化为电信号。
传感器的工作原理是根据某物理量或化学量的变化而发生变化,通过一定的转换过程将检测到的信号转化为标准的电信号。
传感器可以将测量对象的感觉量转化为可以识别的电信号,常见的传感器有温度传感器、湿度传感器、光传感器等。
实验步骤:
1.将电路板上的电源与传感器相连,使用跳线将两者连接起来。
2.使用万用表检测传感器的工作状态,表检测该传感器是否能够正常工作。
3.使用万用表进行电路调试,将电路连接正确,传感器的电压和电流等参数达到正常范围。
4.按照传感器的使用方法使用传感器,完成出数据。
可以用数据收集仪器对数据进行记录和分析。
实验结果:
通过本次实验,可以了解传感器的原理和应用,掌握传感器的工作原理和特性,学习传感器的调试和使用方法。
在实验中,还可以发现传感器的灵敏度可以通过调整电路参数进行变化,从而对测量对象的感受变化提供更具体的数值。
传感器实验指导书
实验设备简介(一)传感器种类:金属箔应变片式传感器、半导体应变片、电容传感器、电涡流传感器、霍尔位移传感器、光电传感器、磁电传感器、温度传感器和湿度传感器等。
(二)实验台信号及显示部分1、气压装置:由气泵、气压表、流量计、储气箱组成。
2、低频振荡器:1~30Hz输出连续可调,V P-P值20V,Vi端插口可提供用作电流放大器。
3、音频振荡器:1~10kHz输出连续可调,V P-P值20V,180°为反相输出。
4、直流稳压电源:(1)±15V,提供仪器电路工作电源和温度实验时的加热电源,最大输出电流1.5A。
(2)±2V~±10V,档距2V,分五档输出,提供直流信号源,最大输出电流1.5A。
(3)2~24V可调直流电源5、数字式电压表:分20mv、2V、20V三档,由Vin接线口接出,在“显示选择”处显示。
6、频率/转速表:在Fin接线口接出。
(三)处理电路:由电桥电路、差动放大电路、光电变换电路等组成,具体见实验模板。
使用本仪器时打开电源开关,检查交、直流信号及显示仪表是否正常。
请注意,本仪器是实验性仪器,各电路完成的实验主要目的是对各种传感器测试电路做定性的验证,而非工程应用型的传感器定量测试。
传感器基础知识一、传感器的定义传感器(transducer 或senor)是将各种非电量(包括物理量、化学量、生物量等)按一定规律转换成便于处理和传输的另一种物理量(一般为电量)的装置。
合格的传感器应该满足:输出电量都应当不失真地复现输入量的变化。
这主要取决于传感器的静态特性和动态特性。
二、静态特性传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为静态特性。
通常,要求传感器在静态情况下的输出—输入关系保持线性。
1、线性度(非线性误差)在规定条件下,传感器校准曲线与拟合直线间最大偏差与满量程(F²S)输出值的百分比称为线性度。
非线性误差是以一定的拟合直线或理想直线为基准直线算出来的。
传感器实验指导书
测试技术与传感器实验指导书罗志增、倪红霞、席旭刚编倪红霞校杭州电子科技大学自动化学院二○一○年五月前言本实验指导书是为了配合“测试技术与传感器”、“传感器原理及应用”“集成传感器与应用”等课程而编写的,实验仪器是杭州高联教学仪器设备有限公司生产的传感器综合实验仪CSY-910,实验过程中大部分实验需由双踪示波器配合测试完成。
本实验指导书中的实验编排基本按照教材《测试技术与传感器》讲课进程,每个实验从易到难,从静态测量到动态实验的规律安排。
全书共列四个实验,涉及七种不同传感器,计划每个实验2学时,教师可根据不同教学要求,按需要选做。
目录实验一、应变片与直流电桥(单臂、半桥、全桥比较) (3)实验二、应变片与交流电桥、应变片电桥的应用 (6)实验三、差动变压器性能、零残及补偿、标定实验 (9)实验四、涡流传感器、霍耳传感器、压电加速度、电容传感器实验 (12)附录A 实验报告格式、要求 (17)附录B 实验设备介绍 (17)实验一 应变片与直流电桥(单臂、半桥、全桥比较)一、金属箔式应变片性能——单臂单桥实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。
实验准备:预习实验仪器和设备:直流稳压电源、电桥、差动放大器、测微头、应变片、电压表。
实验原理:当电桥平衡(或调整到平衡)时,输出为零,当桥臂电阻变化时,电桥产生相应输出。
实验注意事项:直流稳压电源打到4V 档,接线过程应关闭电源,电压表打到2V 档,如实验过程中指示溢出则改为20V 档,接线过程注意电源不能短接。
实验时位移起始点不一定在10mm 处,可根据实际情况而定。
为确保实验过程中输出指示不溢出,差动放大增益不宜过大,可先置中间位置,如测得的数据普遍偏小,则可适当增大,但一旦设定,在整个实验过程中不能改变。
实验内容:(1)观察双平行梁上的应变片、测微头的位置,每一应变片在传感器实验操作台上有引出插座。
(2)将差动放大器调零。
方法是用导线将差动放大器正负输入端相连并与地端连接起来,然后将输出端接到电压表的输入插口。
传感器实验指导书 6学时
实验一应变片单臂特性实验一、实验目的:(1)了解电阻应变片的工作原理;(2)掌握应变效应、电阻传感器的应变系数(灵敏度系数)的基本概念;(3)掌握电阻应变片的和差特性与应用并掌握应变片测量电路;(4)掌握单臂测量电路的接线方法和应用特点。
二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。
一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。
可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。
1、测量电路:为了将电阻应变式传感器的电阻变化转换成电压或电流信号,在应用中一般采用电桥电路作为其测量电路。
电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。
能较好地满足各种应变测量要求,因此在应变测量中得到了广泛的应用。
电桥电路按其工作方式有单臂、双臂和全桥三种,单臂工作输出信号最小、线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂时的四倍,性能最好。
因此,为了得到较大的输出电压信号一般都采用双臂或全桥工作。
基本电路如图1-2(a)、(b)、(c)所示。
(a )单臂()()()()()()(){}1344/4431/(12)12441344/3441212344/4/1,/(1/4)(4/4)(1/4)(/)(1/4)O O U U U R R R R R R R R ER R R R R R R R R R R R R E R R R R R R R R R R K U R R E R R E K E εε=-=+∆+∆+-+⎡⎤⎣⎦=++∆-++∆++∆+⎡⎤⎡⎤⎣⎦⎣⎦===∆=∆∆=≈∆=∆=设,且。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器实验指导书实验一电位器传感器的负载特性的测试一、实验目的:1、了解电桥的工作原理及零点的补偿;2、了解电位器传感器的负载特性;3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。
二、实验仪器与元件:1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表;2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕);3、运算放大器LM358;4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。
三、基本原理:❖电位器的转换原理❖电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为电位器输出端接有负载电阻时,其特性称为负载特性。
当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。
❖电位器输出端接有负载电阻时,其特性称为负载特性。
四、实验步骤:1、在面包板上设计负载电路。
3、改进电路的负载电阻RL,用以测量的电位器的负载特性。
4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。
序号 1 2 3 4 5 6 7 8五、实验报告1、 画出电路图,并说明设计原理。
2、 列出数据测试表并画出负载特性曲线。
电源电压5V ,测试表格1.曲线图:画图说明,x 坐标是滑动电阻器不带负载时电压;y 坐标是对应1000欧姆(负载两端电压)或100k 欧姆(负载两端电压),100欧和100K 欧两电阻可以得到两条曲线。
O12345UKUR1UR23、 说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困难及解决方法。
实验二声音传感器应用实验-声控LED旋律灯一、实验目的:1、了解声音传感器的工作原理及应用;2、掌握声音传感器与三极管的组合电路调试。
二、实验仪器与元件:1、直流稳压电源、数字万用表、电烙铁等;2、电子元件有:声音传感器(带脚咪头)1个;弯座1个;线1个;5MM白发蓝LED 5个;9014三极管2个1M电阻 1个;10K电阻 1个;电阻 1个;1UF电解电容 1个;47UF电解电容 1个;万能电路板一块。
三、基本原理:声控LED旋律灯工作电压。
其功能为:本电路制作成功后5只LED会随着音乐或是其它声音的节奏闪动起来,可放置于音响附近,让灯光为音乐伴舞!电路原理图如图1所示。
图1 声控LED旋律灯当发出声音时,声音波传入声音传感器,声音传感器把声音波转换成电压波动。
这个电压波动可以通过电容C2,传到Q1三极管的基极。
然后这个电压波变Q1和Q2两级放大之后,输出较大的电压波。
最后这个电压波使得5只LED闪动起来。
四、实验步骤:1、领取元件,然后检查各个元件是否有损坏。
2、按照图1,焊接各个元件。
3、检查元件是否有虚焊,短路等现象,无误后上电调试运行。
4、发出声音,是否有LED亮,是否出现LED按照声音的节奏显示和熄灭。
若现象不正确,请出现调试。
5、当传感器是否感应有声音时,测量Q2的基极电压分别是多少?五、实验报告内容1、简述声音传感器的工作原理。
2、调试运行“声控LED旋律灯”过程中,是否遇到虚焊、短路、连线错误等现象?如何解决的?3、电路板调试正常后,有声音的时候,LED有什么现象?没有声音的时候,LED灯有什么现象?4、有声音或没有声音时,测量Q2的基极电压分别是多少?5、对本次实验进行小结,提出改进的建议。
实验三热敏电阻测温实验一、实验目的:1、进一步了解热敏电阻温度传感器的分类和特性;2、了解热敏电阻的测温方法;3、掌握测温电路的原理。
二、实验仪器与元件:1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表;2、传感器实验箱(测温模块、数字电压表模块);3、水容器、冷水、60℃以上热水、搅棒,把热水和冷水混合配成不同温度的水,进行测量。
三、基本原理:热敏电阻匹配阻值约10k欧姆。
热敏电阻测温方法有2种。
方法一公式法。
NTC负温度系数热敏电阻 NTC热敏电阻是指具有负温度系数的热敏电阻。
公式如下:?R:周围温度T (K) 时的电阻值(K:绝对温度)R0:周围温度T0 (K) 时的电阻值,R0=10 000?ΩB:热敏电阻的B常数,B=3950T:现在测量的温度,单位KT0:环境温度,通常t0为298K(绝对温度)(即:25度)方法二:查表法型号:?MF55-103F-3950F,温度与电阻值表格如下:其他表格自己在网上查找?由NTC热敏电阻MF55-103F-3950F为温度传感器的测温电路如图1所示。
图1 热敏电阻测温电路图1中,VCC点接电源电压5V,R电阻的阻值为8kΩ左右,C电容为10uf,其中电阻R 与热敏电阻串联,中间的连接点为输出的电压Uout。
当被测温度升高时该点电位降低,输出电压降低,以指示较高的温度值;反之当被测温度降低时,输出电压升高,以指示较低的温度值。
四、实验步骤:1、准备好盛水容器、冷水、60℃以上热水、水银温度计、搅棒;把热水和冷水混合配成不同温度的水,进行测量。
2、把传感器和水银温度计放入盛水容器中,接通电路电源。
3、水杯中加入热水和冷水,配成不同温度的水进行实验。
直接将热敏电阻放入水中,用万用表直接测量热敏电阻的电阻值,将测量数据写入表1。
表电阻值随温度变化数据水温t(℃) 35 40 45 50 55 热敏电阻阻值/kΩ45、水杯中加入热水和冷水,配成不同温度的水进行实验。
电压表的电压值与温度之间有数学关系;温度不同时,输出电压值不同。
用热敏电阻测量不同的温度的水,进行测量,将输出电压,填入表格2中。
表2 输出电压随温度变化的数据水温t(℃) 40 45 50 55 60 65 70 75 80输出电压(V)6、作出V-t曲线,指出线性范围,并求出灵敏度。
五、实验报告内容1、整理实验数据,将表1和表2记录在实验报告中。
2、当温度升高时,热敏电阻的阻值如何变化?热敏电阻的热电特性是PTC还是NTC呢?3、根据表2的实验数据,以温度为x轴,输出电压为y轴,画出相应的趋势曲线,同时计算出温度与电压之间数学关系。
4、分析趋势曲线可以得出的温度与输出电压U之间的变化关系是什么?如果使用的是PTC型热敏电阻,那么温度与输出电压之间的变化关系是什么?实验四红外传感器应用实验一、实验目的:1、了解红外收发二极管的工作原理及应用;2、掌握红外对管与放大器的组合电路调试。
二、实验仪器与元件:1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表;2、传感器实验箱(红外模块、超声波模块、数字电压表模块);三、基本原理:实验电路如图所示。
DD D图红外发射管在接到正12V电压时会发出峰值波长为940nm的红外光,W1为限流电阻,调节W1改变红外发射管的电流,电流越大,红外发射管的发射距离越远。
而红外接收管则反接在+12V电压上,在没有接受到峰值波长为940nm的红外光是反映二级管的反相截止特性,A点电压相当于电源电压(12V),当红外发射管(完全)接受到红外光时,红外接收管呈反向光电流增大,A点电压变小。
(由于接收到的红外光的程度不同,红外接收管的导通程度也会不同,A点电压会有相应的误差。
若红外接收管正向连接,则其表现为随遮挡而变化的电阻)。
本实验电路为红外反射式电路,在一定范围能若有物体挡住红外光,红外光反射回红外接受管,接受到信号后才生电平的变化。
(注:黑色物体会把红外光吸收,无法反射)U1A为LM358的一个运放,这里的作用是作射随器,射随电路的特点是输出电压不变,电流放大一般用于输入,输出,缓冲级用于阻抗匹配。
U1B为LM358的另一个运放,这里的作用是做一个比较器,比较同相输入端与反相输入端的电压(即B点于C点)。
当B点电压大于C点电压时,输出高电平(+12V)。
当B点电压小于C点电压时,输出低电平(-12V)。
电路中用一个指示灯来观察输出的电平。
W2作用是反相端电压调整,适当调整C点电压,使其与B点电压比较,才能达到输出端的电平变换。
四、实验步骤:1、测量A,B点电压。
直接用万用表测量A(J4)点电压及B(J3)点电压,记录数值在表中,然后用物体放在红外管前(15mm内)测出A点电压及B点电压,记录数据。
表实验数据记录表,测量C(J2)点电压,调节C点电压大于B点电压,用手遮挡红外管,观察指示灯亮灭情况并记录。
(2)状态二,C点电压小于B点电压:调节C点电压小于B点电压(根据实验原理适当调节),用手遮挡红外管,观察指示灯亮灭情况,填入表中。
表实验数据记录表1、示红外接收管接收到反射的红外光。
反复调节,观察红外发射的距离变化情况(记录最大和最小距离)。
用黑色物体来遮挡,观察指示灯是否变化。
五、实验报告内容1、简述整个电路的工作原理。
2、整理实验数据,记录表和表,分析实测数据变化规律。
3、总结本次实验过程中遇到的问题及解决方法。
提出对红外实验模块的改进意见。
4、观察红外发射的距离变化情况(记录最大或最小距离)。
实验五电子称的原理与测试一、实验目的:1、了解电子秤的工作原理;2、了解悬臂梁应变传感器的特点和使用;3、通过对电子秤的测试,分析传感器的基本特性。
二、实验仪器与元件:1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表;2、传感器实验箱(电子秤模块、数字电压表模块);3、托盘、砝码6个5g、10 g、20 g、20 g、50 g、100。
三、实验原理:在全桥测量电路中,将受力性质相同的两只应变片接到电桥的对边,不同的两只接入邻边,如图所示。
当应变片初始值相等,变化量也相等时,其桥路输出为U o=KE ?(2-1)式中,E为电桥电源电压。
式(2-1)表明,全桥输出灵敏度比半桥又提高了一倍,非线性误差得到进一步改善。
图电子称模块利用的全桥测量原理,通过调节放大电路对电桥输出的放大倍数,使电路输出电压值为重量的对应值,将电压量纲(V)改为重量量纲(g),即制成一台比较原始的电子称。
四、实验步骤:1、悬臂梁应变式称重传感器已安装在电子秤实验模块上,可参考图。
电子秤电路如图所示。
图2、将差动放大器调零。
检查实验箱一切正常后,打开主控台电源,按下相应电子秤模块开关。
保持托盘上无任何重物,输出端U o2接数显电压表(选择2V挡),调节电位器R w4,使电压表显示为0V。
R w4的位置确定后不能改动。
3、在应变传感器托盘上放置一只砝码,调节R w3,改变差动放大器的增益,使数显电压表显示左右,读取数显表数值。
保持R w3不变,依次增加砝码(至少3只),读取相应的数显表值,记下实验结果,填入表中,关闭电源。
表实验数据记录表重量/g电压/V五、实验报告内容1、简述实验原理。
2、整理实验数据记录表,在坐标轴上画出各个数据点,然后用直线拟合,得出重量与电压的数学关系。