第八章超静定结构解法

合集下载

建筑力学教材课件第八章 超静定结构的内力分析

建筑力学教材课件第八章 超静定结构的内力分析

⑶求系数和自由项
11
1 1 2 256 4 4 4 4 4 4 EI 2 3 3EI 1 1 1280 80 4 4 EI 3 3EI
1P
⑷求解多余力
⑸绘制内力图 各杆端弯矩可按 M X 1 M 1 M P 计算,最后弯矩图如图8-7c所示。
图(a)所示刚架有两个刚结点,现在两个刚结点
都发生了角位移和线位移,但在忽略杆件的轴向变形
时,这两个线位移相等,即独立的结点线位移只有一 个,因此用位移法求解时,该结构的基本未知量是两 个角位移C和 D 以及一个线位移Δ。
(b)
同理,图( b)所示排架有三个铰结点,其水 平线位移相同,故该结构的基本未知量是一个线位 移Δ。
M 1M P 1 1 ql 2 3l ql 4 dx l EI EI 3 2 4 8 EI
同理可用 M 1 图与 M P 图相图乘计算 1P ,得
1P
将11 和1P 之值代入力法基本方程由此求出:
X1 1P
11
ql 4 l 3 3ql / 8 EI 3EI 8
• 即:n次超静定结构力法的基本方程,通常称为力法典型方程。这一 方程组的物理意义为:基本结构在全部多余未知力和荷载共同作用下, 在去掉多余联系处沿各多余未知力方向的位移,应与原结构相等。 • 典型方程中,多余未知力系数主对角线上称为主系数,其物理意义为: 当单位力单独作用时,在其自身方向上所引起的位移,恒为正且不为 零。其它系数称为副系数,其物理意义为:当单位力单独作用时,所 引起方向的位移。各式最后一项称为自由项,它是荷载单独作用时所 引起的方向的位移。副系数和自由项的值可能为正、负或零。

超静定结构的解法

超静定结构的解法

超静定结构的解法
迭代解法主要利用迭代计算的方法,在每次迭代中修正应力和应变的分布,直到趋于稳定。

该方法的基本步骤如下:
1.假设受力的初始状态,即假设一些节点处的节点位移和内力;
2.利用结构的几何约束和材料力学性质,计算一些节点处的内力和位移;
3.判断内力和位移是否满足力学静平衡条件,若满足则计算结束,否则进入下一步;
4.通过一定的修正方法,调整节点内力和位移;
5.重复步骤2至步骤4,直到内力和位移满足力学静平衡条件。

迭代解法的优点是通用性强,适用于各种超静定结构,但收敛速度较慢,计算量较大。

弹性势能法是利用结构的势能原理,将结构的力学行为转化为弹性势能的变化来求解结构的内力和位移。

该方法的基本步骤如下:
1.根据结构的受力情况和约束条件,建立适当的势能表达式;
2.利用力学静平衡方程,将势能表达式表示为内力和位移的函数;
3.求解势能的极值点,即通过对内力和位移偏导等于零,解得内力和位移的方程;
4.建立适当的边界条件,如位移边界条件和约束条件;
5.通过求解得到的方程,计算结构的内力和位移。

弹性势能法的优点是求解过程相对简单,收敛速度较快,但要求结构能够满足一定的连通性和对称性条件。

在解超静定结构的过程中,还可以采用其他方法来辅助计算,如虚功法、位移法、能量法等。

此外,有些超静定结构也可以通过变形补偿或者加固措施等方法使之退化为静定结构,进而采用常规的静力计算方法来求解。

总之,解超静定结构是一个相对复杂的过程,需要利用附加条件和弹性支承约束来求解。

通过迭代解法和弹性势能法等方法可以得到结构的内力和位移,为实际工程中的设计和分析提供重要的参考和依据。

(整理)力法求解超静定结构的步骤:.

(整理)力法求解超静定结构的步骤:.

第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。

二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。

即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。

多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。

多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。

即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。

3、物理条件:即变形或位移与内力之间的物理关系。

精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。

力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。

五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。

超静定结构的解法

超静定结构的解法
X1 X1 X2 X2 X3 X3
n3
n 3 X1 X1 X 2 X 2 X 3 X 3
高速铁路新型板式轨道设计理论与力学性能研究《建筑力学》 第八章:超静定结构解法
8.1 超静定结构及超静定次数的确定
解除多余约束的几种情况: 1. 去掉一个支座链杆相当于解除一个约束。
可变体系 X1
X1
静定基不唯一
力法:以力为未知数求解超静定问题的方法。
求解超静定问题的方法有多种,力法是最基本、也是历史最悠 久的一种。它是以多余约束力为未知数,列出变形补充方程求解 后,其他未知力和变形等就可按静定结构来计算。
力法的基本思路:
1. 解除多余约束,使之成为静定结构——静定基; 2. 在静定基上施加与多余约束相对应的多余力——基本
课堂练习: 判定下列结构的超静定次数:
1
1
1
n3
3
n3
高速铁路新型板式轨道设计理论与力学性能研究《建筑力学》 第八章:超静定结构解法
8.1 超静定结构及超静定次数的确定
组成无多余约束几何不变体系的基本规则:
(1) 两刚片法则: 两个刚片用三根不共点的链杆相连,或者,两刚片用
一铰和一不通过铰心的链杆相连,可组成一个无多余约束 的几何不变体系。 (2) 三刚片法则(三角形法则):
X3
X1
X2
X1 X2 X3
高速铁路新型板式轨道设计理论与力学性能研究《建筑力学》 第八章:超静定结构解法
8.1 超静定结构及超静定次数的确定
解除多余约束的几种情况:
5.切断一根梁相当于解除三个约束。
或:切开一个闭合框相当于解除三个约束。
X1
X1
X1
X1
X2 X2 X3

第八章超静定结构解法

第八章超静定结构解法

第八章超静定结构解法
超静定结构是指结构中的节点数超过了杆件数,即结构中的自由度超过了平衡条件的数量。

对于超静定结构的解法,需要进行位移计算和支反力计算。

位移计算可以通过以下步骤进行:
1.建立结构的刚度方程。

根据杆件的刚度和支座的自由度约束,可以建立结构的刚度矩阵。

刚度矩阵是一个n×n的矩阵,其中n是结构的自由度数量。

2.确定约束条件。

根据结构的支座约束,可以确定支座位移为零的约束条件。

3.应用边界条件。

将约束条件应用到刚度方程中,可以得到一个未知位移的方程组。

4.解未知位移。

通过解这个方程组,可以得到结构的未知位移值。

支反力计算可以通过以下步骤进行:
1.利用位移计算中得到的未知位移值,计算杆件的应力。

应力可以通过应变和材料的本构关系得到。

2.根据杆件的几何特征和应力,计算杆件的应力。

应力可以根据杆件的截面积和应力得到。

3.根据杆件的几何特征和应力,计算杆件的内力。

内力可以根据截面受力平衡的条件得到。

4.根据内力和支座约束,计算支座的反力。

反力可以通过力的平衡条件得到。

总的来说,超静定结构的解法需要进行位移计算和支反力计算。

在位移计算中,需要建立结构的刚度方程,并将约束条件以及边界条件应用到方程中,来解未知位移。

在支反力计算中,需要利用位移计算中得到的未知位移值,计算杆件的应力和内力,并根据杆件的几何特征和应力来计算支座的反力。

超静定问题

超静定问题
2.4m
l >
B端必接触
C
40kN 1.2m
静力平衡方程
RA RB 100kN
B
变形协调条件为 l
RB
RA
A
60kN 2.4m 1.2m
轴 力 图
15kN
85kN
⊕ 25kN
C
40kN 1.2m
B

RA 103 1.2 ( RA 60) 103 2.4 RB 103 1.2 l 9 6 9 6 9 6 210 10 600 10 210 10 600 10 210 10 300 10
3
FC
A
FC
C
L
2
L
B
2
P
例题 6.10
当系统的温度升高时,下列结构中的____不会 A 产生温度应力.
A
B
C
D
例题 6.11
图示静不定梁承受集中力F和集中力偶Me作用, 梁的两端铰支,中间截面C处有弹簧支座.在下列 关于该梁的多余约束力与变形协调条件的讨论 中,___是错误的. C
RB
RA 85kN
RB 15kN
三、扭转超静定问题 扭转变形计算公式
Tl GI p
T ( x) dx GI p l
例3.两端固定的圆截面等直杆AB,在截面
C受外力偶矩m作用,求杆两端的支座反力
偶矩。
m
A C B
a
b
解:
A
m
ɑ
mA
C
B
b
m
静力平衡方程为: m A mB m 变形协调条件为:
5 ql 8
B
L
q

超静定问题——精选推荐

超静定问题——精选推荐

西南交通大学应用力学与工程系材料力学教研室第八章简单的超静定问题§8-1 概述静定结构: 仅靠静力平衡方程就可以求出结构的全部未知的约束反力或内力FAB2A F1BααC平面任意力系:3个平衡方程平面共点力系:2个平衡方程独立平衡方程数:超静定结构(静不定结构): 仅凭静力学平衡方程不能求解全部未知内力或反力的结构。

超静定结构的未知力的数目多于独立的平衡方程的数目;两者的差值称为超静定的次数。

BD C A 132FααF F CF B F A BC ABCADA FααF N1y xF N3F N2BD C A 132FααF F CF B F A BC AA FααF N1y xF N3F N2•习惯上把维持物体平衡并非必需的约束称为多余约束,相应的约束反力称为多余未知力。

•超静定的次数就等于多余约束或多余未知力的数目。

•注意:从提高结构的强度和刚度的角度来说,多余约束往往是必需的,并不是多余的。

超静定的求解:根据静力学平衡条件确定结构的超静定次数,列出独立的平衡方程;然后根据几何、物理关系列出需要的补充方程;则可求解超静定问题。

F F CF B F A BC A•补充方程的数目=多余未知力的数目=多余约束数。

•根据变形几何相容条件,建立变形几何相容方程,结合物理关系(胡克定律),则可列出需要的力的补充方程。

•补充方程的获得,体现了超静定问题的求解技巧与关键。

此处我们将以轴向拉压、扭转、弯曲的超静定问题进行说明。

BD C A 132FααF F CF B F A BC AA FααF N1yxF N3F N2§8.2 拉压超静定问题1拉压超静定问题解法例两端固定的等直杆AB ,在C 处承受轴向力F 如图,杆的拉压刚度为EA ,求杆的支反力.解:一次超静定问题=−+F F F B A F BA F AB ablFC (1) 由节点A 的平衡条件列出杆轴线方向的平衡方程(2)变形:补充方程(变形协调条件)可选取固定端B 为多余约束,予以解除,在该处的施加对应的约束反力F B ,得到一个作用有原荷载和多余未知力的静定结构--称为原超静定结构的基本静定系或相当系统注意原超静定结构的 B 端约束情况,相当系统要保持和原结构相等,则相当系统在B 点的位移为零。

超静定问题及其解法

超静定问题及其解法
核心问题:静力平衡方程不够?一 寻求补充方程
•确定超静定次数,列出静力平衡方程;
•根据变形协调条件列出变形相容方程; •将物理关系代入变形相容方程得补充方 程; •联立补充方程与静力平衡方程求 解; •求解杆件的内力,应力与变形等。
♦超静定问题及其解法 _
♦超静定问题及1
多余约束
♦超静定问题及其解法
(2).与多余约束相对应的反力称为多余未知力,多 余未知力的数目称为结构的超静定次数。
—次超静定
♦超静定问题及其解法
—次超静定
♦超静定问题及其解法
q
M
二次超静定
♦超静定问题及其解法 _
多次超静定
♦超静定问题及其解法
二.超静定问题的一般解法
超静定问题及其解法
♦超静定问题及其解法
—、= 本概念
1.静定问题:结构的约束反力或构件内力通过静力 学平衡方程可以确定的问题。
拉压静定问题
♦超静定问题及其解法
扭转静定问题
弯曲静定问题
.超静定问题及其解法 ,
2.超静定问题:单凭静力平衡方程不能完全确定结 构约束反力或构件内力的问题。
拉压超静定问题
♦超静定问题及其解法
扭转超静定问题 弯曲超静定问题
♦超静定问题及其解法
超静定问题的工程实例
大型空间 桁架结构
♦超静定问题及其解法 _
大型桥梁结构
♦超静定问题及其解法 _
大型塔吊结构
♦超静定问题及其解法 _
大型铣床
♦超静定问题及其解法
3.多余约束与超静定次数 (1).在超静定结构中,超过维持静力学平衡所必须 的约束称为多余约束。

材料力学

材料力学

5 Pa RD a RD a 6 EI 3EI 3EI
如何得到?
A D
P
B
自行完成
C D
RD
例题 6
图示结构AB梁的抗弯刚度为EI,CD杆的抗拉刚度为EA,
已知P、L、a。求CD杆所受的拉力。
D
a
A
C
L
2
L
B
2
P
解:变形协调条件为 wC lCD
D
a
C
FC
A
( P FC ) L wC 48EI FC L lCD EA
温度应力:
FB E t A
6 1 12 . 5 10 碳素钢线胀系数为 C0
温度应力:超静定结构中,由于温度变化,使构
件膨胀或收缩而产生的附加应力。
不容忽视!!!
路、桥、建筑物中的伸缩缝 高温管道间隔一定距离弯一个伸缩节
例题 11
图示阶梯形杆上端固定,下端与支座距离=1mm, 材料的弹性模量E=210GPa,上下两段杆的横截 面面积分别为600平方毫米和300平方毫米。试 作杆的轴力图。
C
A
FA
B
L2
FC
FA FB FC qL 0
L2
M
A
0
FB
变形协调方程
L qL2 FC FB L 0 2 2
3 FB qL 16
FA 3 qL 16
C q C FC 0
7.5kNm
5qL4 FC L3 5 0 FC qL 8 384 EI Z 48EI Z
由于超静定结构能有效降低结构的内力及变形,在 工程上(如桥梁等)应用非常广泛。
●超静定问题的解法:

建筑力学第八章:

建筑力学第八章:

个约束;
高速铁路新型板式轨道设计理论与力学性能研究《建筑力学》 第八章:超静定结构解法
8.1 超静定结构及超静定次数的确定
课堂练习: 判定下列结构的超静定次数:
3 3
3
3
n 12
2
3
1
n6 高速铁路新型板式轨道设计理论与力学性能研究《建筑力学》 第八章:超静定结构解法
8.1 超静定结构及超静定次数的确定
高速铁路新型板式轨道设计理论与力学性能研究《建筑力学》 第八章:超静定结构解法
8.1 超静定结构及超静定次数的确定
解除多余约束的几种情况: 1. 去掉一个支座链杆相当于解除1个约束。
2. 在杆件内添加一个铰,相当于解除1个约束; 3. 去掉一个固定铰支座,或拆开一个单铰相当于解除
2个约束; 4. 去掉一个固定端支座相当于解除3个约束; 5. 切断一根梁(杆)或切开一个闭合框相当于解除3
A B C A B
高速铁路新型板式轨道设计理论与力学性能研究《建筑力学》 第八章:超静定结构解法
C
8.1 超静定结构及超静定次数的确定
超静定次数的确定: 超静定次数=多余约束的个数 确定方法:如果从原结构中去掉 n个约束后,结构成为静 定结构,则原结构的超静定次数=n
B B
X1
n 1
X 1 ——多余约束力
静定基不唯一
8.1 超静定结构及超静定次数的确定
解除多余约束的几种情况: 2. 在杆件内添加一个铰,相当于解除一个约束;
X3
X1
X2
也称:刚结点(刚性联结)变铰结点相当于解除一个约束;
高速铁路新型板式轨道设计理论与力学性能研究《建筑力学》 第八章:超静定结构解法
8.1 超静定结构及超静定次数的确定

超静定结构的解法1位移法

超静定结构的解法1位移法
位移法是计算超静定 结构的基本方法之一.
P
力法计算,9个基本未知量
位移法计算, 1个基本未知量
4.3 位移法
一.单跨超静定梁的形常数与载常数
1.等截面梁的形常数 杆端位移引起的杆端内力称为形常数.
i=EI/l----线刚度
2.等截面梁的载常数 荷载引起的杆端内力称为载常数.
4.3 位移法
一.单跨超静定梁的形常数与载常数
4.3 位移法
一.单跨超静定梁的形常数与载常数 二.位移法基本概念 三.位移法基本结构与基本未知量
基本未知量:独立的 结点位移.包括角位移和线位移 基本结构:增加附加约束后,使得原结构的结点不能
发生位移的结构.
1.无侧移结构(刚架与梁不计轴向变形) 基本未知量为所有刚结点的转角 基本结构为在所有刚结点上加刚臂后的结构
MP
EA Z1=1
r11
M1
Z1
3i/l
5P/16
3i / l 2
R1P
r11
3i / l 2
Z1---位移法
基本未知量
r11 6i / l 2 R1P 5P / 16
Z1 5Pl 2 / 96i
M M1Z1 MP
Z1
q
EI
EI
Z1 q
Z1
=
Z1
=
Z1=1
Z1
q
+
Z1
q
EI
EI
Z1
位移法的基本结构 ----单跨梁系.
=
=
Z1
q
EI
EI
Z1
R1
q
EI
EI
ql 2 / 8
R1P
q
位移法的基本方程 ----平衡方程.

1超静定结构的解法

1超静定结构的解法

1超静定结构的解法超静定结构是指结构的支座反力数目多于静力平衡方程的数目,即结构的自由度多余零,不能通过直接求解静力平衡方程得到结构的内力、位移等参数。

因此,需要使用超静定结构的解法来求解结构的响应。

超静定结构的解法主要有两种:力法和位移法。

在这里,我将分别介绍这两种方法的基本原理。

1.力法力法是指通过引入虚功原理,利用未知内力的线性平衡方程组与已知荷载、位移或位移力系数之间的关系,构建方程并求解未知内力的方法。

使用力法解决超静定结构的基本步骤如下:(1)确定支座反力。

根据结构的约束条件,计算支座反力数目;(2)选择剪力或弯矩作为未知内力。

在超静定结构中,选择剪力或弯矩作为未知内力比较常见;(3)建立线性平衡方程组。

将剪力或弯矩作为未知量,根据结构的几何条件和约束条件,建立线性平衡方程组;(4)引入荷载、位移或位移力系数。

根据结构的受力情况,将已知荷载、位移或位移力系数引入线性平衡方程组;(5)求解未知内力。

通过求解线性平衡方程组,得到未知内力。

2.位移法位移法是指通过引入位移的概念,利用位移与剪力/弯矩之间的关系,将超静定结构的内力求解问题转化为线性代数方程组的求解问题。

使用位移法解决超静定结构的基本步骤如下:(1)确定支座反力。

根据结构的约束条件,计算支座反力数目;(2)选择支座位移为未知量。

在超静定结构中,支座位移比较容易确定;(3)建立位移-力关系方程。

根据结构的几何条件和材料性质,建立位移-力关系方程,将剪力或弯矩表示为位移的函数;(4)引入荷载或位移。

根据结构的受力条件,将已知荷载或位移引入位移-力关系方程;(5)求解未知位移。

通过求解位移-力关系方程,得到未知位移;(6)求解未知内力。

将未知位移代入位移-力关系方程,求解出未知内力。

需要注意的是,在力法和位移法中,由于超静定结构的自由度数目大于零,未知内力或未知位移存在无穷多个解。

因此,需要加入合理的边界条件,如位移边界条件、力边界条件等,来确定唯一的解。

第8章 超静定结构的内力分析

第8章 超静定结构的内力分析
C
C
l/2
A
A
A
C C EI1 FP EI2 B
A X2 =1 X2 =1 X2 =1
0.054 FP l 0.054 FP l 0.054C P l F
C
A
A
A
A
B
B
l
Bl
(e) ll 2图 M (e) M 2图(e) M 图 2 (a) 0.054 F
C X2 0.143 FP l X1 FP 0.143 FP l 0.143 FP l B l 0.161 FPB B B 0.161 FP l 0.161 FP l (f) M 图 (f) M 图 (f) M 图 (b) 基本体系
0.0540.054 FP FP 0.054 FP B B
B
(d) MB 1图
(g)(g) F Q 图 FQ 图 (g) F Q 图
(h) F(h) F N 图 N图 (h) F N 图
• 以上两例刚架还可以怎么取基本结构使计算简化?
A EI1 FP B l (a) l C A C A (b) 基本体系 EI2 FP B X1 A X2
FP l 3 1 l3 1 3 l3 X1 3 EI l X 1 2 X 2 8 0 EI1 2 5FP l 3 1 l3 l3 X1 X 2 0 2 EI 2 3 48
C
A X2 =1
22
1 B 1 2 l3 l l l EI 2 (d)2 1图 3 3EI 2 M
B
l (e) M 2图
0.1
1 1 l3 12 21 l l l EI2 2 2EI2

超静定结构解法力法.pptx

超静定结构解法力法.pptx

P
EI
EI
l
P
解:
X1
l
X1=1
Pl
P
1 0
11 X1 1P 0 11 l 3 / 3EI
1P Pl 3 / 2EI
X1 3P / 2()
M M1 X1 M P
l
M1
Pl
MP
第8页/共21页
3 Pl M 2
力法基本思路小结
解除多余约束,转化为静定结构。多余约 束代以多余未知力——基本未知力。
分析基本结构在单位基本未知力和外界因 素作用下的位移,建立位移协调条件——力 法方程。
从力法方程解得基本未知力,由叠加原理 获得结构内力。超静定结构分析通过转化为 静定结构获得了解决。
第9页/共21页
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。 这是科学研究的 基本方法之一。
X1
X2
X3
X1
X2
X3
去掉一个链杆或切断 一个链杆相当于去掉 一个约束
X1 X2
X3
第12页/共21页
X2 X1
X3
X3
X2 X1
X3 X1
X1 X2 X3
X2
去掉一个固定端支 座或切断一根弯曲 杆相当于去掉三个 约束.
将刚结点变成铰结 点或将固定端支座 变成固定铰支座相 当于去掉一个约束.
几何可变体系不能 X3 作为基本体系
M
1 0
1 11 1P 0
11 X1 11
力法 方程
11 X1 1P 0
1 11 l 3 / 3EI
1P ql 4 / 8EI
X1 3ql / 8() M M1 X1 M P
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
31
21
3 X1 31 X1
31
33 23
32
13
33 23
P (c )
21
22 22
32
(d )
(e )
(f )
式中 11 , 21 , 31 分别是X1方向的单位荷载在X1,X2,X3方向所引 起的位移,见图(d) 同理也可求出其他内力X2,X3在此三方向上所引起的位移。由于 结构在C处是连续的,因此,所有外荷载及各多余约束力在该处引起 的相对变形应为零。
end
例 8-1 图示一对称刚架,即平分刚架的左、右两半部分,不但由轴线所构 成的几何图形是对称的,而且所用材料、截面尺寸、支座条件也是相同的。 设尺寸和受力如图,杆的刚度为EI,试作其弯矩图。
B P l A C
X3
X2
X3 X1 X2
l
EI D (a) 1 1
P
X1
P
MP
(c )
(b)
M10
l
0 M2
其中
i i li
(8-1)
典型方程
Mi M P dsi Ei I i Ei I i dsi
i 0 M0 M j i li
0
ij
M i0 M 0 j
li
Ei I i
dsi ji
ij ji ——位移互等定理
对于n次的超静定结构,当然也可以写出类似的n个变形补充方程, 可解出n个多余约束力。多余约束力解出后,问题就变成静定的了,其他 未知反力、内力、位移等都可按静定结构的计算方式进行计算。
(a ) 1次
(b) 2次
(c) 4次
(c) 1次
(e) 1次
(f) 3次
(g) 3次 (i ) 4 次 (h) 9次
end
8-2 力法和典型方程
以一封闭刚架为例来说明其解法,并由此导得用力法求解超静定问题 的一个典型方程。
C
X3
X2
X3 X1 X2
P
(a) A B
P
X1
(b)
今设在刚架中央截面C处截开,则得两个半刚架的静定基,超静定 次数为3,故加三对多余约束力X1, X2, X3以取代解除的约束作用;
end
1 1P 11 X 1 12 X 2 13 X 3 0 2 2 P 21 X 1 22 X 2 23 X 3 0 3 3P 31 X 1 32 X 2 33 X 3 0
iP
0 M3(d)源自ll /2 (e)
l /2
1 1 (f )
本题为刚架,用图形互乘法求解较方便。作出外载和各单位荷载在 静定基上的内力图 (c ,d ,e ,f ),不难求得典型方程中各系数如下:
end
1 Pl 2 2 Pl3 1P l EI 2 3 3EI
转角位移方程解法
*8-7 矩阵位移法
8-8 力矩分配法
退出
8-1 超静定结构及超静定次数的确定
超静定结构也叫静不定结构,是工程中常见的一类结构。从结构 组成分析来讲,就是有多余约束的几何不变体。由于有多余约束存在, 相应地就有多余约束力,因此单靠静力学平衡方程就不能确定所有未 知力,故名静不定。
求解超静定问题的方法有多种,力法是最基本、也是历史最悠 久的一种。它是以多余约束力为未知数,列出变形补充方程求解后, 其他未知力和变形等就可按静定结构来计算。
end
总结一下力法的解题步骤如下:
(1)判断结构的超静定次数;
(2)解除多余约束,代以相应的多余约束力Xi,选好静定基; (3)分别求出外荷载和多余约束力在静定基的解除约束处和其约束相 应的位移 iP , ij ; (4)将 iP , ij 代入典型方程,求出多余约束力Xi; (5) 用叠加法作出超静定结构的内力图后,可进行各种计算。 以作弯矩图为例,本题中的弯矩计算式可写为: 0 0 0 M M P X1 M1 X 2 M2 X 3 M3 (6)校核:对力法计算结果的校核,主要是看解算典型方程时是否有 问题。因为从理论上讲,满足超静定结构平衡方程的多余约束力可有无 限多,但只有又满足变形连续条件的那一组多余约束力,才是超静定结 构中唯一的那组真实的力。所以在求得多余约束力后,再按计算静定结 构位移的方法,计算一下超静定结构的位移,看它是否满足巳知的变形 条件或连续性条件。如满足,则结果正确。
end
然后再分别求出外荷载P及各未知内力例如X1在解除约束处的相 应位移 1 P , 2 P , 3 P , 1 X , 2 X , 3 X 。由于是线弹性结构,所以:
1 1 1
1 X1 11 X1
1P 3P 2P
31
21
2 X1 21 X1
退出
目的:了解力法、位移法求解超静定结构的过程。 要求: 能正确判定超静定次数,恰当地选好求解 的方法;了解矩阵位移法的解题过程及超 静定结构的性质。
退出
8-1 8-2
超静定结构及超静定次数的确定 力法和典型方程
8-3
对称性的利用
*8-4 超静定结构在温度变化和支座移动时的计算
8-5
8-6
位移法的基本概念
2 l 2 2 2l 3 11 l EI 2 3 3EI
2 P
1 Pl2 1 Pl3 l EI 2 2 4 EI
1 Pl 2 Pl 2 3P 1 EI 2 2 EI
2 22 EI
1 l 2 l l 2 l 7l 3 2 2 3 2 2 12EI
所谓超静定次数,就是多余约束的个数,它可从超静定结构中 解除多余约束的个数来确定,即它等于将有多余约束的几何不变体 变为无多余约束的几何不变体时所要解除的约束数。
end
★ 切断一根链杆或在杆件内添加一个铰,相当于解除1个约束; ★ 而在体系内去掉一个铰,则相当于解除2个约束; ★ 切断一根梁(杆)则相当于解除3个约束。 超静定次数的多少就等于使超静定结构成为无多余约束的几何不变体所 要解除的约束数。
相关文档
最新文档