2008年全国高中数学联赛试题

合集下载

08年全国高中数学联赛试题及答案

08年全国高中数学联赛试题及答案

2008年全国高中数学联赛受中国数学会委托,2008年全国高中数学联赛由重庆市数学会承办。

中国数学会普及工作委员会和重庆市数学会负责命题工作。

2008年全国高中数学联赛一试命题范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。

全卷包括6道选择题、6道填空题和3道大题,满分150分。

答卷时间为100分钟。

全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。

全卷包括3道大题,其中一道平面几何题,试卷满分150分。

答卷时问为120分钟。

一 试一、选择题(每小题6分,共36分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( )。

(A )0 (B )1 (C )2 (D )32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( )。

(A )[1,2)- (B )[1,2]- (C )[0,3] (D )[0,3)3.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( )。

(A )24181 (B )26681 (C )27481(D ) 6702434.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( )。

(A )764 cm 3或586 cm 3 (B ) 764 cm 3(C )586 cm 3或564 cm 3 (D ) 586 cm 3 5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( )。

2008年全国高中数学联赛江苏赛区复赛试题参考答案及评分标准

2008年全国高中数学联赛江苏赛区复赛试题参考答案及评分标准

2008年全国高中数学联赛江苏赛区复赛试卷第一试一、选择题(本题满分36分,每小题6分)1. 函数f (x )=cos 4x +sin 2x (x ∈R )的最小正周期是( )A .π 4B .π2C .πD .2π2. 已知平面上点的集合M ={(x ,y )|y =2x -x 2},N ={(x ,y )|y =k (x +1)}. 当M ∩N ≠∅时,k 的取值范围是( )A .[-33,33] B .[0,33] C .[-33,0] D .[33,+∞) 3. “x 2+y 2<4”是“xy +4>2x +2y ”成立的( )A .充分但不必要条件B .必要但不充分条件C .既不充分也不必要条件D .充分必要条件4. 已知关于x 的方程x 2-2ax +a 2-4a =0至少有一个模为3的复数根,则实数a 的所有取值为( ) A .1,9 B .-1,9,2-13 C .1,9,2+13 D .1,9,2-135. 设f (x )是一个三次函数,f '(x )为其导函数. 如图所示的是y =xf '(x )的图像的一部分. 则f (x )的极大值与极小值分别是( )A .f (1)与f (-1)B .f (-1)与f (1)C .f (-2)与f (2)D .f (2)与f (-2)6. 已知等比数列{a n }的公比q <0,其前n 项和为S n ,则a 9S 8与a 8S 9的大小关系是( )A .a 9S 8>a 8S 9B .a 9S 8<a 8S 9C .a 9S 8=a 8S 9D .与a 1的值有关二、填空题(本题满分54分,每小题9分)7. 集合A ={x |x =[5k6],k ∈Z ,100≤k ≤999},其中[x ]表示不大于x 的最大整数.则集合A 的元素个数为 .8. 已知数列{a n }满足a 1=5,a n =2a n -1-1a n -1- 2(n ≥2,n ∈N *),则其前100项的和是 .9. 在正八边形的八个顶点中任取三个顶点,则这三个点成为一个直角三角形的顶点的概率是 .10. 关于x 的方程x 2+a |x |+a 2-3=0(a ∈R )有惟一的实数解,则a = .11. 直线L :(2m +1)x +(m +1)y -7m -4=0被圆C :(x -1)2+(y -2)2=25截得的最短弦长为 .12. 设以F 1(-1,0)、F 2(1,0)为焦点的椭圆的离心率为e . 以F 1为顶点、F 2为焦点的抛物线与该椭圆的一个交点是P . 若|PF 1||PF 2|=e ,则e 的值为 .三、 解答题(本题满分60分,每小题20分)13.已知函数f (x )=x -k x 2-1(x ≥1),其中k 为给定的实数,0<k <1. 试求f (x )的值域.14.从双曲线x 2 9 -y 216=1的左焦点F 引圆x 2+y 2=9的切线,切点为T . 延长FT 交双曲线右支于点P . 若M 为线段FP 的中点,O 为坐标原点,求|MO |-|MT |的值.15.已知△ABC 的外接圆的直径为25,三条边的长度都是整数,圆心O 到边AB 、BC 的距离也都是整数,AB >BC . 求△ABC 的三边的长度.OABCDE2008年全国高中数学联赛江苏赛区复赛试卷加 试一. (本题满分50分)已知点O 为凸四边形ABCD 内的一点,AO =OB ,CO =OD ,∠AOB =∠COD =120°. 点E 、F 、G 分别是线段AB 、BC 、CD 的中点,求证:∆EFG 为正三角形.二. (本题满分50分)已知a ,b ,c ,d 为正实数,a +b +c +d =4,求证:a 2bc +b 2da +c 2da +d 2bc ≤4.三. (本题满分50分)求具有下述性质的最小正整数n :存在一个n +1项的数列a 0,a 1,…,a n ,满足a 0=0,a n =2008,且|a i -a i -1|=i 2,i =1,2,…,n .E F GB CD A O2008年全国高中数学联赛江苏赛区复赛参考答案第一试一、选择题(本题满分36分,每小题6分)1. 函数f (x )=cos 4x +sin 2x (x ∈R )的最小正周期是( )A .π 4B .π2 C .π D .2π选B .解:法一 由f (x +π2 )=sin 4x +cos 2x =sin 4x +cos 4x +cos 2x sin 2x =cos 4x +sin 2x =f (x );又f (0)=1、f (π 4 )=1 4 +12≠f (0);选B .法二 由f (x )=cos 4x +1-cos 2x =cos 2x (cos 2x -1)+1=1-cos 2x sin 2x =1-1 4 sin 22x =1 8 cos4x +78 .可知f (x )的最小正周期为2π 4 =π2. 选B .2. 已知平面上点的集合M ={(x ,y )|y =2x -x 2},N ={(x ,y )|y =k (x +1)}. 当M ∩N ≠∅时,k 的取值范围是( )A .[-33,33] B .[0,33] C .[-33,0] D .[33,+∞) 选B .解:集合M 的图形为以(1,0)为圆心、1为半径的圆的上半圆,集合N 的图形为过(-1,0)的直线.若直线与圆有公共点,则易得其倾斜角在[0,π6]内,故k ∈[0,33].3. “x 2+y 2<4”是“xy +4>2x +2y ”成立的( )A .充分但不必要条件B .必要但不充分条件C .既不充分也不必要条件D .充分必要条件 选A .解:由xy +4>2x +2y ⇔(x -2)(y -2)>0⇔x <2,y <2或x >2,y >2; 而 x 2+y 2<4⇒-2<x <2且-2<y <2⇒xy +4>2x +2y .4. 已知关于x 的方程x 2-2ax +a 2-4a =0至少有一个模为3的复数根,则实数a 的所有取值为( ) A .1,9 B .-1,9,2-13 C .1,9,2+13 D .1,9,2-13 选D .解:将方程写为(x -a )2=4a . 当a ≥0时,此时方程有实根,该实根之模为3,故方程有一根为3或-3. 代入,由(a ±3)2=4a ,得a =1或9;当a <0时,得x =a ±2|a |i ,故|x |2=a 2-4a =9,得a =2-13.故选D .5. 设f (x )是一个三次函数,f '(x )为其导函数. 如图所示的是y =xf '(x )的图像的一部分. 则f (x )的极大值与极小值分别是( )A .f (1)与f (-1)B .f (-1)与f (1)C .f (-2)与f (2)D .f (2)与f (-2)选C .解:如图,y =xf '(x )有三个零点,x =0,±2; 因为f '(x )为二次函数,所以它有两个零点,x =±2.由图像易知,当0<x <2时,f '(x )<0;当x >2时,f '(x )>0. 故f (2)是极小值. 类似地可知,f (-2)是极大值. 选C .6. 已知等比数列{a n }的公比q <0,其前n 项和为S n ,则a 9S 8与a 8S 9的大小关系是( ) A .a 9S 8>a 8S 9 B .a 9S 8<a 8S 9 C .a 9S 8=a 8S 9 D .与a 1的值有关 选A .解:a 9S 8-a 8S 9=a 12q 71-q(q (1-q 8)-(1-q 9))=-a 12q 7>0,选A .二、填空题(本题满分54分,每小题9分)7. 集合A ={x |x =[5k6],k ∈Z ,100≤k ≤999},其中[x ]表示不大于x 的最大整数.则集合A 的元素个数为 .填750.解:当k =100时,[5k 6 ]=83,当k =999时,[5k6 ]=832. 又易知,对于100≤k ≤999,有0≤[5(k +1) 6]-[5k6]≤1,故A 中元素可以取遍从83到832中的所有整数,所以共有750个元素. 8. 已知数列{a n }满足a 1=5,a n =2a n -1-1a n -1- 2 (n ≥2,n ∈N *),则其前100项的和是 .填400 .解:a 1=5,则a 2=3,a 3=5,a 4=3,数列周期为2,故前100项和是400.9. 在正八边形的八个顶点中任取三个顶点,则这三个点成为一个直角三角形的顶点的概率是 .填3 7. 解:连接正八边形的三个顶点共可得C 83=56个三角形,其中4条直径为一边的三角形是直角三角形,共有4×6=24个直角三角形,所以p =37.10. 关于x 的方程x 2+a |x |+a 2-3=0(a ∈R )有惟一的实数解,则a = .填3.解:f (x )=x 2+a |x |+a 2-3是偶函数,惟一的实数解必为0,所以a 2-3=0且a >0,故a =3.11. 直线L :(2m +1)x +(m +1)y -7m -4=0被圆C :(x -1)2+(y -2)2=25截得的最短弦长为 .填4 5 .解:直线L 过点D (3,1). 圆心为C (1,2). 最短弦垂直于CD ,且CD 2=5;又圆的半弦长为25,故弦长为45.12. 设以F 1(-1,0)、F 2(1,0)为焦点的椭圆的离心率为e . 以F 1为顶点、F 2为焦点的抛物线与该椭圆的一个交点是P . 若|PF 1||PF 2|=e ,则e 的值为 .填33.解:在抛物线中,p =2,准线x =-3,|PF 2|就是P 到准线的距离;在椭圆中,|PF 1||PF 2|=e ,|PF 2|也是P 到左准线的距离,故抛物线准线与椭圆左准线重合,所以a 2 c =3. 因为c =1,故易知e =33.三、 解答题(本题满分60分,每小题20分)13.已知函数f (x )=x -k x 2-1(x ≥1),其中k 为给定的实数,0<k <1. 试求f (x )的值域. 解: 当x >1时,f (x )的导数是f '(x )=1-kxx 2-1. ……5分令f '(t )=0. 因为t >1时,解得t =11-k 2. ……10分f (t )=f (11-k 2)……15分当x →+∞时,f (x )→-∞,所以f (x )的值域为[1-k 2,+∞). ……20分又解:令x =sec θ,θ∈[0,π2),则x 2-1=tan θ.f (x )=u =sec θ-k tan θ=1-k sin θcos θ⇒u cos θ+k sin θ=1⇒sin(θ+φ)=1u 2+k 2.其中sin φ=uu 2+k 2,cos φ=ku 2+k2.又u >0.由|sin θ|≤1,得u 2≥1-k 2⇒u ≥1-k 2, 又对于一切不小于1-k 2的u 值,都有1u 2+k 2≤1,从而存在φ与θ,使sin φ=u u 2+k 2,cos φ=ku 2+k2,sin(θ+φ)=1u 2+k2成立.从而u =sec θ-k tan θ,即存在x =sec θ,使x -k x 2-1=u 成立.故所求值域为[1-k 2,+∞)14.从双曲线x 2 9 -y 216=1的左焦点F 引圆x 2+y 2=9的切线,切点为T . 延长FT 交双曲线右支于点P . 若M 为线段FP 的中点,O 为坐标原点,求|MO |-|MT |的值.解: 不失一般性,将P 点置于第一象限. 设F '是双曲线的右焦点,连PF '.因为M 、O 分别为FP 与FF '的中点,所以|MO |=12|PF'|. 又由双曲线的定义得:|PF |-|PF '|=6,|FT |=|OF |2-|OT |2=4. ……10分故|MO |-|MT |=1 2 |PF '|-|MF |+|FT |=12(|PF '|-|PF |)+|FT |=-3+4=1. ……20分15.已知△ABC 的外接圆的直径为25,三条边的长度都是整数,圆心O 到边AB 、BC 的距离也都是整数,AB >BC . 求△ABC 的三边的长度.解: 如图,过圆心O 作AB ,BC 的垂线,垂足为D ,E .设AB =a ,BC =b ,OD =d ,OE =e ,则BD =a 2 ,BE =b2,其中a ,b 、d 、e 都是正整数,且a >b .因DB 2+OD 2=OB 2,故a 2+(2d )2=252, ①同理, b 2+(2e )2=252. ② 取不定方程 x 2+(2y )2=252.得两组正整数解(x ,y )=(15,10),(7,12). ……10分 由a >b ,故得a =15,b =7.即AB =15,BC =7,而OD =10,OE =12.……15分又因OD ⊥AB ,OE ⊥BC ,所以O ,D ,B ,E 共圆. 由托勒密定理,DE ·OB =OD ·BE +OE ·DB ,得DE =OD ·BE +OE ·DBOB=10.由于D 、E 分别为AB 、BC 中点,所以DE 是△ABC 的中位线,因此AC =20,即三角形三边的长度分别为15,7,20. ……20分又解:cos ∠OBA =3 5 ,sin ∠OBA =4 5 ,cos ∠OBC =7 25 ,sin ∠OBC =2425 .∴ cos ∠ABC =3 5 ×7 25 -4 5 ×24 25 =-35.∴AC 2=152+72+2×15×7×35=400 AC =20.OABCDE2008年全国高中数学联赛江苏赛区复赛参考答案与评分标准加 试一. (本题满分50分)已知点O 为凸四边形ABCD 内的一点,AO =OB ,CO =OD ,∠AOB =∠COD =120°. 点E 、F 、G 分别是线段AB 、BC 、CD 的中点,求证:∆EFG 为正三角形.证:连AC 、BD ,则EF ∥AC ,EF =1 2 AC ;FG ∥BD ,FG =12B D .因为OA =OB ,OC =OD ,且∠AOB =∠COD =120°,所以以O 为心、逆时针旋转120°,则△AOC 成为△BOD .……20分 因此AC =BD ,并且BD 逆时针转到AC 的角为60°,从而EF =FG ,并且∠GFE =60°. 故△EFG 为正三角形. ……50分 注 若不用旋转的方法,证法如下:在△AOC 与△BOD 中,OA =OB ,OC =OD ,∠AOC =∠BOD =120°+∠BOC ;所以,△AOC ≌△BOD ,∴AC =BD ,并且∠OAC =∠OBD . ……20分 设AC 分别交BD 、BO 于P 、Q ,则∠DP A =∠OBD +∠PQB =∠OAC +∠OQA =180°-∠BOA =60°,由此易知∠GFE =∠DP A =60°. 又易知EF =FG ,因此,△EFG 为正三角形. ……50分又注:该证明是在A 、O 、C 不共线的假设下证明的,若A 、O 、C 共线,则△AOC 、△BOD 均不存在,故应补充证明:若A 、O 、C 共线,则∠BOC =60°,于是B 、O 、D 也共线.显然AC =BD ,于是易得EF =FG ,且∠EFG =∠BOC =60°.从而△EFG 为正三角形.证法三:前已证△AOC ≌△BOD ,得AC =B D .∠OBP =∠OAP . 取AD 中点K ,连EK 、GK .则得EFGK 为菱形.且B 、P 、O 、A 共圆,∴ ∠APB =∠AOB =120°,故∠BPC =60°,∴ ∠EFG =60°,从而△EFG 为正三角形.证法四:前已证△AOC ≌△BOD ,得AC =B D .取OB 、OC 中点K 、L ,连OE 、OG 、KE 、KF 、LG 、LF .由已知得,OE ⊥AB ,∠OBE =30°,∴ EK =OE =1 2 OB ,同理,OG =OL =12 O C .∵ F 、K 是OB 、OC 中点,FK =12OC =OG ,∵ ∠EOG =∠EOB +∠BOC +∠COG =60°+∠BOC +60°=120°+∠BOC =∠AOC =∠EKF ,同理,∠FLG =∠EOG ,∴ △EKF ≌△EOG ,∴ EF =EG ,同理,FG =EG .从而△EFG 为正三角形. 证法五:以O 为原点,与AB 平行的直线为实轴建立复平面. 设点A 、B 、C 、D 、E 、F 、G 表示复数a 、b 、c 、d 、e 、f .则b =aω,d =cω(其中ω=cos 2π 3 +i sin 2π3).P Q OAD CB GF EK E F GB CD A O P K LEF GB CDAO于是,e =1 2 (a +b ),f =1 2 (b +c ),g =12(c +d ).向量→FE 表示复数e -f =1 2 (a -c ),→FG =g -f =1 2 (d -b )=-1 2 (a -c )ω.∴e -fg -f=-1ω=-[cos(-2π 3 )+i sin(-2π 3 )]=cos π 3 +i sin π3 .∴ 向量→FE 由→FG 旋转π 3得到,故△EFG 为正三角形.二. (本题满分50分)已知a ,b ,c ,d 为正实数,a +b +c +d =4,求证:a 2bc +b 2da +c 2da +d 2bc ≤4.证明:a 2bc +b 2da +c 2da +d 2bc =ab (ac +bd )+cd (ac +bd )=(ab +cd )(ac +bd )≤(ab +cd +ac +bd 2)2……20分=[(a +d )(b +c )]2 4 ≤1 4 (a +b +c +d 2)4=4. ……50分三. (本题满分50分)求具有下述性质的最小正整数n :存在一个n +1项的数列a 0,a 1,…,a n ,满足a 0=0,a n =2008,且|a i -a i -1|=i 2,i =1,2,…,n .解:若n ≤17,则a n =i =1Σn (a i -a i -1)+a 0≤i =1Σn|a i -a i -1|=1 6 n (n +1)(2n +1)≤16×17×18×35<2008.矛盾. ……15分若n =18,则a n =i =1Σn(a i-ai -1)+a 0≡i =1Σn|a i-ai -1|≡i =1Σni 2≡1(mod 2)这与a n =2008矛盾. ……30分若n =19,注意到 2008=12+22+…+192-2(22+52+92+112),取a 0,a 1,…,a 19如下:0,1,-3,6,22,-3,33,82,146,65,165,44,188,357,553,778,1034,1323,1647,2008. 由此知n =19可行.综上,n min =19. ……50分 注 例子不惟一,如:2008=12+22+…+192-2(12+32+102+112)=12+22+…+192-2(22+32+42+92+112). =12+22+…+192-2(12+32+52+142) =12+22+…+192-2(22+32+72+132)等等.。

2008年全国高中数学联赛江苏赛区初赛

2008年全国高中数学联赛江苏赛区初赛
2
2
2
2
2
故 a + b = 3c ]
Байду номын сангаас
a + b = 3. 2 c
2
2
三、 11. 由题意有 2 f ( x ) = - 2 ( x - 1) + 1.
1 ≤ ] 则 f ( x) ≤ 1] 1 m≥ 1.
m
5 2 | OP| = 1. 36
2
于是 ,| OP| =
36 . 5
故 f ( x ) 在 [ m . n ] 上单调减 . 于是 ,
y = 8 x ( x > 0) 或 y = 0 ( x < 0) .
2
10. 3.
已知等式即
sin A・ sin B sin A ・ sin C sin B ・ sin C = + , cos A・ cos B cos A ・ cos C cos B ・ cos C
同乘以 cos A ・ cos B ・ cos C 得
sin A ・ sin B ・ cos C = sin C ( sin A ・ cos B + cos A ・ sin B ) = sin C .
2
所以 ,
=
1
r
2
+
1
2 r′ 36
=
5
.
( 2) 由三角形面积公式得 | OP| ・ | AB | = | OA | ・ | OB | .
所以 , ab・
mx + ny = ab . a cos α , n = b sin β . a sin α , a b
2
,即 x = y =
2
时,
解法 2 :令 m =

2008年全国高中数学联赛江苏赛区复赛

2008年全国高中数学联赛江苏赛区复赛

图1
⊥BC 于 F ,则 △AFE 为直角三角形 . 因为 ∠AEF = 30° ,所以 , 1 5 3 AF = AE = , 2 2 5 3 即梯形 ABCD 的高 AF = . 2 又四边形 AEBD 为平行四边形 ,因此 , AD = EB . 1 1 故 S = ( AD + BC ) AF = EC・ AF 2 2 1 5 3 25 3 = × 10 × = . 2 2 2 四、 原不等式两边同乘以 30 得 15(3 x -1 ) -10 (4 x -2 ) ≥ 6 (6 x -3 ) -39 . 解得 x ≤ 2. 记 y = 2| x -1|+| x +4| . ( 1) 当 x ≤- 4 时 , y =- 2 ( x -1 ) - ( x +4 ) =-3 x -2 . 所以 , y 的最小值为 ( - 3) ×( -4 ) -2= 10 ,此时 x =-4 . ( 2) 当 -4 ≤x ≤ 1时,
2 13. 设函数 f ( x ) = x - k x - 1 ( x ≥ 1, k 为 给 定 的 实 数 ,0< k <1 ) . 试 求 f ( x ) 的 值域 .
参考答案
第一试
一、 1. B. 注意到 π 4 2 f x+ = sin x + cos x 2 4 4 2 2 = sin x + cos x + cos x ・ sin x 4 2 = cos x + sin x = f ( x ) . π 1 1 ≠ 又 f ( 0) =1 、 f = + f ( 0) , 故 4 4 2 选 (B) . 2. B. 由点集 M 、 N 的几何意义易知 . 3. A. xy + 4>2 x +2 y Ζ ( x - 2) ( y -2 ) >0 Ζ x < 2 , y <2 或 x >2 , y >2 .

2008年全国高中数学联赛陕西赛区预赛_刘康宁

2008年全国高中数学联赛陕西赛区预赛_刘康宁

第二试
一、 ( 15 分) 求函数
y = sin π +x 4 -sin π -x 4 sin π +x 3
参考答案
第一试
一 、 1. B. 设等差数列{ an } 的公差为 d . 则 S2 = 2 a 1 +d = 10 , S5 = 5a1 + 10 d = 55 a1 = 3, d= 4. an +2 -an 所以 , kPQ = =d =4 . ( n +2) -n 2. A 易知 ∠O 1 PO 2 为二面角 α -l -β 的平 面角 . 在平面 O 1 PO 2 内 , 过 点 O 1 、O 2 分别作 PO 1 、PO 2 的垂线 , 设两垂线的交点为 O . 由 于 ∠O 1 PO 2 = 120° , 故这样 的交点 O 是唯一 的. 因此 , 以 ⊙O 1 、⊙O 2 为截面的 球有且仅
6. 已知数列{ an } 的通项公式为 n +1 ( n ∈ N+ ) ,
其前 n 项和为 S n . 则在数列 S 1 , S 2 , … , S 2 008 中 , 有理数项共有( ) 项. ( A) 43 ( B) 44 ( C) 45 7. 函数 y =tan x ( ) . ( A) 12 2 ( C) -3 8. 已知函数 ( B) 1+ 2 2 ( D)3
2 2 2

34
中 等 数 学
平行于 BC 的一条截线段 . 10 . C. 易知 , 切点弦所在直线 AB 的方程为 3 3 2 ( m -m) x+ ( n -n) y= ( 3 k +1) . 若直线 AB 上存在整点( x 0 , y 0) ,则 ( m1 ) m( m+ 1) x0 + ( n1) n( n+ 1) y0 = ( 3k + 1) . 因( m1) m( m +1) 和( n -1) n( n +1) 都是 3 的倍数 , 所以 , 上式左端能被 3 整除 . 而右端被 3 除余 1 , 矛盾 . 故直线 AB 上不存在整点 . 二、 11 . 2. 由题设得 sin α ·cos β + cos α ·sin β = 3( sin α ·cos β -cos α ·sin β) , 即 sin α ·cos β = 2cos α ·sin β . tan α sin α ·cos β 故 = =2 . tan β cos α ·sin β 12 . 13 . 5 3 在x + 3 x +1 5 3 = [( x1) +1] + 3[ ( x1) + 1] + 1 3 2 的展开式 中 , ( x -1) 项的系 数为 C5 +3 = 13 , 所以 , a3 = 13 . 13 . 1- 2 . 注意到 2 2 2 2 xy ( x +y ) ( x +y ) = x +y -1 x +y 1 2 ( x +y ) 1 = =x +y +1 . x +y 1 2 2 2 x +y ≤x +y 1 因为 2 = 2 , 所以 , 2 - 2 ≤x +y ≤ 2 . 从而 , 2 xy =x +y + 1 ≥ - 2 +1 , 当 x +y -1 且仅当 x =y =- 2 时 , 等号成立 . 2 2 xy 故 的最小值为 1 - 2 . x +y 1 7 14 . . 51 由于已有两人分别抽到 5 和 14 两张卡 片 , 则另外两人只需从剩下的 18 张卡片中抽

2008年全国高中数学联赛试题及答案

2008年全国高中数学联赛试题及答案

AB 2 EC
2
又 DA, DC 是 e O 的切线, AC 2 ,求 f (P) 的最小值.
二(本题满分 50 分) 设 f (x) 是周期函数, T 和 1 是 f (x) 的周期且 0 T 1 .证明:
(Ⅰ)若 T 为有理数,则存在素数 p ,使 1 是 f (x) 的周期; p
(Ⅱ)若 T 为无理数,则存在各项均为无理数的数列 {an} 满足1 an an1 0 (n 1, 2, ) , 且每个 an (n 1, 2, ) 都是 f (x) 的周期.
若 c 8 ,则 a2 b2 94 64 30 , b ≤5 .但 2b2 ≥ 30 , b 4 ,从而 b 4 或 5.若 b 5 , 则 a2 5 无解,若 b 4 ,则 a2 14 无解.此时无解. 若 c 7 ,则 a2 b2 94 49 45 ,有唯一解 a 3 , b 6 . 若 c 6 ,则 a2 b2 94 36 58 ,此时 2b2 ≥ a2 b2 58 ,b2 ≥ 29 .故 b≥6 ,但 b ≤c 6 , 故 b 6 ,此时 a2 58 36 22 无解.
B.

0
,
5 1 2
C.

5 1, 2
5 1 2
D.

5 1, 2


【解答】 C.
设 a , b , c 的公比为 q ,则 b aq , c aq2 ,而
sin Acot C cos A sin AcosC cos Asin C sin(A C) sin( B) sin B b q . sin B cot C cos B sin B cosC cos Bsin C sin(B C) sin( A) sin A a 因此,只需求 q 的取值范围. 因 a , b , c 成等比数列,最大边只能是 a 或 c ,因此 a , b , c 要构成三角形的三边,必需且只需 a b c 且 b c a .即有不等式组

2008年全国高中数学联赛多维细目表

2008年全国高中数学联赛多维细目表
导数与函数
运算能力,综合解决问题能力
14
解答题
20
0.4
解析几何与平面向量
思维能力,综合解决问题能力
15
解答题
20
0.2
代数综合
思维能力,综合解决问题能力
2008年全国高中数学联合竞赛加试试卷

解答题
50
0.5
平面几何
思维能力,综合解决问题能力

解答题
50
0.3
代数
思维能力,综合解决问题能力

解答题
50
0.1
数论或组合数学
思维能力,综合解决问题能力
2008年全国高中数学联赛试题多维细目表
2008年全国高中数学联合竞赛一试试卷
题号
题型
分值
难度系数
考查内容
考查能力
1
选择题
6
0.6
不等式
思维能力
2
选择题
6
0.5
集合与数论
思维能力
3
选择题
6
0.5
概率
运算能力
4
选择题
6
0.5
立体几何
空间想象能力,运算能力
5
选择题
6
0.3
三角函数
运算能力
6
选择题
6
0.2
函数综合
思维能力,综合解决问题能力
7
填空题
9
0.5
三角函数
思维能力
8
填空题
9
0.4
函数
思维能力
9
填空题
90Biblioteka 4立体几何或解析几何空间想象能力,思维能力
10

2008年全国高中数学联合竞赛试题及解答.(B卷)

2008年全国高中数学联合竞赛试题及解答.(B卷)

2008年全国高中数学联合竞赛(B 卷)一试一、选择题:本大题共6个小题,每小题6分,共36分。

2008B1、函数xx x x f -+-=245)(2在)2,(-∞上的最小值为()A.3B.2C.1D.0◆答案:B★解析:当2x <时,20x ->,因此21(44)1()(2)x x f x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2008B 2、设)4,2[-=A ,{}04|2≤--=ax x x B ,若A B ⊆,则实数a 的取值范围为()A.)3,0[B.]3,0[C.)2,1[-D.]2,1[-◆答案:B★解析:因240x ax --=有两个实根12a x =-,22a x =+故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a <,解之得03a ≤<.2008B 3、甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为32,乙在每局中获胜的概率为31,且各局胜负相互独立,则比赛停止时已打局数ξ的数学期望是()A.243670B.81274 C.81266 D.81241◆答案:C★解析:[解法一]依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有5(2)9P ξ==,4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二]依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜.由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=,1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()(333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()(3381==,故52016266246E ξ=⨯+⨯+⨯=.2008B 4、若三个棱长均为整数(单位:cm )的正方体的表面积之和为5642cm ,则这三个正方体的体积之和为()A.5863cmB.5643cm 或5863cmC.7643cmD.7643cm 或5863cm◆答案:D★解析:设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.2008B 5、方程组⎪⎩⎪⎨⎧=+++=+=++000y xz yz xy z xyz z y x 的有理数解),,(z y x 的个数为()A.4B.3C.2D.1◆答案:C★解析:若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z ≠,则由0xyz z +=得1xy =-.①由0x y z ++=得z x y =--.②将②代入0xy yz xz y +++=得220x y xy y ++-=.③由①得1x y=-,代入③化简得3(1)(1)0y y y ---=.易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩2008B 6、设ABC ∆D 的内角C B A ,,所对的边c b a ,,成等比数列,则BC B AC A cos cot sin cos cot sin ++的取值范围为()A.),215(+∞- B.)215,215(+- C.)215,0(+ D.),0(+∞◆答案:B★解析:设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A C B C B B C B C ++=++sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩,解得1551,225151.q q q ⎧-<<⎪⎪⎨⎪><-⎪⎩或从而1122q -<<,因此所求的取值范围是11(22.二、填空题:本大题共6小题,每小题9分,共54分。

2008年全国高中数学联合竞赛一试试题(A卷)

2008年全国高中数学联合竞赛一试试题(A卷)

2008年全国高中数学联合竞赛一试试题(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分) 1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D )A .[1,2)-B .[1,2]-C .[0,3]D .[0,3)3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A.24181B.26681C.27481D.6702434.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为( A )A. 764 cm 3或586 cm 3B. 764 cm 3C. 586 cm 3或564 cm 3D. 586 cm 35.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( B ) A. 1 B. 2 C. 3 D. 4 6.设A B C ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C A B C B++的取值范围是( C )A. (0,)+∞B. 2C. 22D. )2+∞二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n = ,若7()128381f x x =+,则a b += 5 .题15图8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a=9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n = ,则通项n a =112(1)nn n -+.11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32xf x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.12.一个半径为1的小球在一个内壁棱长为则该小球永远不可能接触到的容器内壁的面积是.三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证: 2cos 1sin sin 34ααααα+=+.14.解不等式121086422log (3531)1log (1)xxx x x ++++<++.15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于P B C ∆,求P B C ∆面积的最小值.2008年全国高中数学联合竞赛加试(A 卷)试题一、(本题满分50分)如题一图,给定凸四边形A B C D ,180B D ∠+∠< ,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆; (Ⅱ)设E 是A B C ∆外接圆O 的 AB 上一点,满足:2A E A B=,1B C E C=,12E C B E C A ∠=∠,又,D A D C 是O的切线,AC =()f P 的最小值.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明: (Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期;(Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.三、(本题满分50分)设0k a >,1,2,,2008k = .证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件:(ⅰ)010n n x x x +=<<,1,2,3,n = ; (ⅱ)lim n n x →∞存在;(ⅲ)20082007111n n kn k k n k k k x x ax ax -+++==-=-∑∑,1,2,3,n = .答一图12008年全国高中数学联合竞赛一试 试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.1.[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x xx+-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2. [解] 因240x ax --=有两个实根12a x =-,22a x =+故B A ⊆等价于12x ≥-且24x <,即22a -≥-且42a +,解之得03a ≤<.3.[解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为 22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 5(2)9P ξ==,4520(4)()()9981P ξ===, 2416(6)()981P ξ===, 故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=,1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==, 故520162662469818181E ξ=⨯+⨯+⨯=.4.[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=.易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.[解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A C B C BB C B C++=++s i n ()s i n ()s i n s i n ()s i n ()s i nA CB B b q B CA A a ππ+-=====+-. 因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得2211.22q q q <<⎪⎨⎪><-⎪⎩或22q <<,因此所求的取值范围是22.二、填空题7. [解] 由题意知12()(1)n n n n f x a x a a a b --=+++++11nna a xb a -=+⋅-, 由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.[解] 2()2cos 122cos f x x a a x =--- 2212(cos )2122ax a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---.又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-+2a =--舍去).9. [解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种. 综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程12324x x x ++=. 的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===.又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种. 综上知,满足条件的分配方法共有253-31=222种. 10.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n ,由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n .令1(1)n n b a n n =++,111122b a =+=(10a =),有112n n b b +=,故12n nb =,所以)1(121+-=n n a nn .11.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++ 10031413(0)41f +-=⋅+-200822007=+. [解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x xg x g x f x f x ++-=+--+≥⋅-⋅=,答12图1答12图2即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面A B C ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S O D ∆=⋅⋅⋅,故44P D O D r ==,从而43P O P D O D r r r =-=-=.记此时小球与面P A B 的切点为1P ,连接1O P ,则2211PP PO OP =-==.考虑小球与正四面体的一个面(不妨取为P A B )相切时的情况,易知小球在面P A B 上最靠近边的切点的轨迹仍为正三角形,记为1P EF ,如答12图2.记正四面体的棱长为a ,过1P 作1P M PA ⊥于M . 因16M P P π∠=,有11cos 2PM PP M PP =⋅==,故小三角形的边长12P E PA PM a =-=-.小球与面P A B 不能接触到的部分的面积为(如答12图2中阴影部分)1P A B P E F S S ∆∆-22())4a a =--2=-.又1r =,a =1PAB P EF S S ∆∆-==由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为. 三、解答题13.[证] ()f x 的图象与直线y k x = )0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈.…5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分因此cos cos sin sin 32sin 2cos αααααα=+14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分14.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122xxx x x ++++>+.即 1210864353210x x x x x +++-->. …5分 分组分解 12108x x x +- 1086222x x x ++- 864444x x x ++- 642x x x ++-4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以 4210x x +->,22(022x x -->. …15分所以22x >,即x <x >故原不等式解集为(,)-∞+∞ . …20分[解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122xxx x x ++++>+. …5分即6422232262133122(1)2(1)x x x x x x xx+<+++++=+++,)1(2)1()1(2)1(232232+++<+x x xx, …10分令3()2g t t t =+,则不等式为221()(1)g g x x<+,显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于2211x x<+, …15分即222()10x x +->,解得22x >(22x <-),故原不等式解集为(,)-∞+∞ . …20分15. [解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线P B 的方程:00y b y b x x --=,化简得 000()0y b x x y x b --+=.又圆心(1,0)到P B 的距离为1,1= , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+, 易知02x >,上式化简得2000(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 所以0022y b c x -+=-,002x bc x -=-,则22200020448()(2)x y x b c x +--=-.因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++--48≥+=.当20(2)4x -=时,上式取等号,此时004,x y ==±.因此PBC S ∆的最小值为8. …20分2008年全国高中数学联合竞赛加试(A 卷)试题参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分;2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.一、[解法一] (Ⅰ)如答一图1,由托勒密不等式,对平面上的任意点P ,有PA BC PC AB PB AC ⋅+⋅≥⋅. 因此 ()f P PA BC PC AB PD CA =⋅+⋅+⋅P B C A P D C A ≥⋅+⋅()PB PD CA =+⋅.因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,因此当且仅当P 在A B C ∆的外接圆且在A C 上时, ()()f P PB PD CA =+⋅. …10分又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因此当且仅当P 为A B C ∆的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =⋅.故当()f P 达最小值时,,,,P A B C 四点共圆. …20分 (Ⅱ)记E C B α∠=,则2E C A α∠=,由正弦定理有s i n 2s i n 32AE ABαα==,从而i n 32s i n 2αα=,即33s i n 4s i n )4s i nc o s αααα-=,所以2cos )4cos 0αα--=,整理得24cos 0αα--=, …30分解得cos 2α=cos α=-,故30α= ,60ACE ∠= .由已知1B C E C==()sin 30sin E A C E A C∠-∠,有sin(30)1)sin EAC EAC∠-=∠ ,即1cos 1)sin 22EAC EAC EAC∠-∠=∠,整理得1i n c o s 22EAC EAC ∠=∠,故t a n 3EAC ∠==+75EAC ∠=, …40分从而45E ∠= ,45DAC DCA E ∠=∠=∠= ,A D C ∆为等腰直角三角形.因AC =1C D =.又A B C ∆也是等腰直角三角形,故BC =212215BD =+-⋅=,BD =.故min ()f P BD AC =⋅== …50分答一图1[解法二] (Ⅰ)如答一图2,连接BD 交A B C ∆的外接圆O 于0P 点(因为D 在O 外,故0P 在BD 上).过,,A C D 分别作000,,P A P C P D 的垂线,两两相交得111A B C ∆,易知0P 在AC D ∆内,从而在111A B C ∆内,记A B C ∆之三内角分别为x y z ,,,则0180AP C y z x ∠=︒-=+,又因110B C P A ⊥,110B A P C⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=,所以111A B C ∆∽A B C ∆. …10分设11B C BC λ=,11C A C A λ=,11A B AB λ=,则对平面上任意点M ,有 0000()()f P P A BC P D CA P C AB λλ=⋅+⋅+⋅ 011011011P A B C P D C A P C A B =⋅+⋅+⋅ 1112A B C S ∆=111111M A B C M D C A M C A B ≤⋅+⋅+⋅ ()MA BC MD CA MC AB λ=⋅+⋅+⋅ ()f M λ=, 从而 0()()f P f M ≤.由M 点的任意性,知0P 点是使()f P 达最小值的点.由点0P 在O 上,故0,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ),()f P 的最小值 11102()A B C f P S λ∆=2ABC S λ∆=,记E C B α∠=,则2E C A α∠=,由正弦定理有sin 2sin 32AE ABαα==,从而s i n 32s i n 2αα=,即3(3s i n 4s i n )4s i n c o s αααα-=,所以2cos )4cos 0αα--=,整理得24cos 0αα--=, …30分解得cos 2α=cos α=-,故30α= ,60ACE ∠= . 由已知1B C E C==()sin 30sin E A C E A C∠-∠,有sin(30)1)sin EAC EAC∠-=∠,即1cos 1)sin 22EAC EAC EAC∠-∠=∠,整理得1i n c o s 22EAC EAC ∠=∠,故答一图2tan 2EAC ∠==+75EAC ∠=, …40分所以45E ∠=︒,A B C ∆为等腰直角三角形,AC =,1ABC S ∆=,因为145AB C ∠=︒,1B 点在O 上,190AB B ∠=︒,所以11B BD C 为矩形,11B C BD ===,故λ=,所以mi n()10f P ==…50分[解法三] (Ⅰ)引进复平面,仍用,,A B C 等代表,,A B C 所对应的复数.由三角形不等式,对于复数12,z z ,有 1212z z z z +≥+,当且仅当1z 与2z (复向量)同向时取等号.有 PA BC PC AB PA BC PC AB ⋅+⋅≥⋅+⋅, 所以 ()()()()A P C B C P B A --+--()()()()A P C B C P B A ≥--+-- (1) P C A B C B P A =-⋅-⋅+⋅+⋅()()B P C A PB AC =--=⋅,从而 PA BC PC AB PD C A ⋅+⋅+⋅PB AC PD AC ≥⋅+⋅()PB PD AC =+⋅BD AC ≥⋅. (2) …10分 (1)式取等号的条件是复数 ()()A P C B --与()()C P B A -- 同向,故存在实数0λ>,使得()()()()A P C B C P B A λ--=--, A P B A C P C Bλ--=--,所以 arg()arg()A PB AC P C B--=--,向量PC 旋转到PA 所成的角等于BC 旋转到AB所成的角,从而,,,P A B C 四点共圆.(2)式取等号的条件显然为,,B P D 共线且P 在BD 上.故当()f P 达最小值时P 点在A B C ∆之外接圆上,,,,P A B C 四点共圆. …20分(Ⅱ)由(Ⅰ)知min ()f P BD AC =⋅. 以下同解法一.二、[证](Ⅰ)若T 是有理数,则存在正整数,m n 使得n T m=且(,)1m n =,从而存在整数,a b ,使得1m a nb +=. 于是11m a nba bT ab T m m+==+=⋅+⋅是()f x 的周期. …10分 又因01T <<,从而2m ≥.设p 是m 的素因子,则m pm '=,m *'∈N ,从而 11m pm'=⋅是()f x 的周期. …20分(Ⅱ)若T 是无理数,令 111a T T ⎡⎤=-⎢⎥⎣⎦,则101a <<,且1a 是无理数,令21111a a a ⎡⎤=-⎢⎥⎣⎦,……111n n n a a a +⎡⎤=-⎢⎥⎣⎦,……. …30分由数学归纳法易知n a 均为无理数且01n a <<.又111n n a a ⎡⎤-<⎢⎥⎣⎦,故11n n n a a a ⎡⎤<+⎢⎥⎣⎦,即111n n n n a a a a +⎡⎤=-<⎢⎥⎣⎦.因此{}n a 是递减数列. …40分最后证:每个n a 是()f x 的周期.事实上,因1和T 是()f x 的周期,故111a T T ⎡⎤=-⎢⎥⎣⎦亦是()f x 的周期.假设k a 是()f x 的周期,则111k k k a a a +⎡⎤=-⎢⎥⎣⎦也是()f x 的周期.由数学归纳法,已证得n a 均是()f x 的周期. …50分三、[证] 必要性:假设存在{}n x 满足(ⅰ),(ⅱ),(iii ).注意到(ⅲ)中式子可化为2008111()n n k n k n k k x x ax x -++-=-=-∑,n ∈*N , 其中00x =.将上式从第1项加到第n 项,并注意到00x =得111222200820082008()()()n n n n x a x x a x x a x x +++=-+-++- . …10分 由(ⅱ)可设lim n n b x →∞=,将上式取极限得112220082008()()()b a b x a b x a b x =-+-++- 20081122200820081()k k b a a x a x a x ==⋅-+++∑20081k k b a =<⋅∑,因此200811k k a =>∑. …20分充分性:假设200811k k a =>∑.定义多项式函数如下:20081()1kkk f s as ==-+∑,[0,1]s ∈,则()f s 在[0,1]上是递增函数,且(0)10f =-<,20081(1)10kk f a==-+>∑.因此方程()0f s =在[0,1]内有唯一的根0s s =,且001s <<,即0()0f s =. …30分 下取数列{}n x 为01nk n k x s==∑,1,2,n = ,则明显地{}n x 满足题设条件(ⅰ),且10011n nkn k s s x ss +=-==-∑.因001s <<,故10l i m 0n n s+→∞=,因此100lim lim 11n n n n s ssx s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ). …40分最后验证{}n x 满足(ⅲ),因0()0f s =,即2008011k k k a s ==∑,从而200820082008101111()()nk n n k n n k kkn k n k k k k x x s a s s asax x +-++-===-====-∑∑∑.综上,存在数列{}n x 满足(ⅰ),(ⅱ),(ⅲ). …50分。

2008年全国高中数学联赛二试试题与答案

2008年全国高中数学联赛二试试题与答案

2008年全国高中数学联合竞赛加试(A 卷)试题参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分;2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.一、(本题满分50分)如题一图,给定凸四边形ABCD ,180B D ∠+∠<o ,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆;(Ⅱ)设E 是ABC ∆外接圆O 的»AB 上一点,满足:3AE AB =,31BCEC=-,12ECB ECA ∠=∠,又,DA DC 是O e 的切线,2AC =,求()f P 的最小值.[解法一] (Ⅰ)如答一图1,由托勒密不等式,对平面上的任意点P ,有PA BC PC AB PB AC ⋅+⋅≥⋅. 因此 ()f P PA BC PC AB PD CA =⋅+⋅+⋅PB CA PD CA ≥⋅+⋅()PB PD CA =+⋅.因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,因此当且仅当P 在ABC ∆的外接圆且在»AC 上时, ()()f P PB PD CA =+⋅. (10)分又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因此当且仅当P 为ABC ∆的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =⋅.故当()f P 达最小值时,,,,P A B C 四点共圆. …20分 (Ⅱ)记ECB α∠=,则2ECA α∠=,由正弦定理有sin 23sin 3AE AB αα==,从而3sin 32sin 2αα=,即33(3sin 4sin )4sin cos αααα-=,所以23343(1cos )4cos 0αα---=,整理得243cos 4cos 30αα--=, …30分 解得3cos α=或cos 23α=-(舍去), 故30α=o ,60ACE ∠=o .由已知31BCEC =-=()0sin 30sin EAC EAC∠-∠,有sin(30)(31)sin EAC EAC ∠-=-∠o ,即31sin cos (31)sin 2EAC EAC EAC ∠-∠=-∠,整理得231sin cos 2EAC EAC -∠=∠,故tan 2323EAC ∠==+-,可得75EAC ∠=o, …40分从而45E ∠=o ,45DAC DCA E ∠=∠=∠=o ,ADC ∆为等腰直角三角形.因2AC =,则1CD =.又ABC ∆也是等腰直角三角形,故2BC =,212212cos1355BD =+-⋅⋅=o ,5BD =. 故min ()5210f P BD AC =⋅=⋅=. …50分[解法二] (Ⅰ)如答一图2,连接BD 交ABC ∆的外接圆O 于0P 点(因为D 在O e 外,故0P 在BD 上).过,,A C D 分别作000,,P A P C P D 的垂线,两两相交得111A B C ∆,易知0P 在ACD ∆内,从而在111A B C ∆内,记ABC ∆之三内角分别为x y z ,,,则0180AP C y z x ∠=︒-=+,又因110B C P A ⊥,110B A P C ⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=, 所以111A B C ∆∽ABC ∆. …10分设11B C BC λ=,11C A CA λ=,11A B AB λ=,则对平面上任意点M ,有0000()()f P P A BC P D CA P C AB λλ=⋅+⋅+⋅ 011011011P A B C P D C A P C A B =⋅+⋅+⋅ 1112A B C S ∆=111111MA B C MD C A MC A B ≤⋅+⋅+⋅ ()MA BC MD CA MC AB λ=⋅+⋅+⋅ ()f M λ=, 从而 0()()f P f M ≤.由M 点的任意性,知0P 点是使()f P 达最小值的点.由点0P 在O e 上,故0,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ),()f P 的最小值11102()A B C f P S λ∆=2ABC S λ∆=,记ECB α∠=,则2ECA α∠=,由正弦定理有sin 23sin 3AE AB αα==,从而3sin 32sin 2αα=,即33(3sin 4sin )4sin cos αααα-=,所以23343(1cos )4cos 0αα---=,整理得243cos 4cos 30αα--=, …30分 解得3cos α=或cos 23α=-(舍去),故30α=o ,60ACE ∠=o .由已知31BCEC =-=()0sin 30sin EAC EAC ∠-∠,有sin(30)(31)sin EAC EAC ∠-=-∠o ,即31sin cos (31)sin 2EAC EAC EAC ∠-∠=-∠,整理得231sin cos 2EAC EAC -∠=∠,故tan 2323EAC ∠==+-,可得75EAC ∠=o, …40分所以45E ∠=︒,ABC ∆为等腰直角三角形,2AC =,1ABC S ∆=,因为145AB C ∠=︒,1B 点在O e 上,190AB B ∠=︒,所以11B BDC 为矩形,11B C BD ===故λ=min ()21f P == …50分[解法三] (Ⅰ)引进复平面,仍用,,A B C 等代表,,A B C 所对应的复数.由三角形不等式,对于复数12,z z ,有 1212z z z z +≥+,当且仅当1z 与2z (复向量)同向时取等号.有 PA BC PC AB PA BC PC AB ⋅+⋅≥⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以 ()()()()A P C B C P B A --+--()()()()A P C B C P B A ≥--+-- (1)P C A B C B P A =-⋅-⋅+⋅+⋅()()B P C A PB AC =--=⋅u u u r u u u r,从而 PA BC PC AB PD CA ⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u rPB AC PD AC ≥⋅+⋅u u u r u u u r u u u r u u u r()PB PD AC =+⋅u u u r u u u r u u u r BD AC ≥⋅u u u r u u u r. (2) …10分 (1)式取等号的条件是复数 ()()A P C B --与()()C P B A -- 同向,故存在实数0λ>,使得()()()()A P C B C P B A λ--=--,A PB AC P C Bλ--=--, 所以 arg()arg()A P B AC P C B--=--,向量PC uuu r 旋转到PA u u u r 所成的角等于BC uuu r旋转到AB u u u r 所成的角, 从而,,,P A B C 四点共圆.(2)式取等号的条件显然为,,B P D 共线且P 在BD 上.故当()f P 达最小值时P 点在ABC ∆之外接圆上,,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ)知min ()f P BD AC =⋅. 以下同解法一.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明: (Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期; (Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>>(1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.[证] (Ⅰ)若T 是有理数,则存在正整数,m n 使得nT m=且(,)1m n =,从而存在整数,a b ,使得1ma nb +=. 于是11ma nb a bT a b T m m+==+=⋅+⋅ 是()f x 的周期. …10分 又因01T <<,从而2m ≥.设p 是m 的素因子,则m pm '=,m *'∈N ,从而11m p m'=⋅是()f x 的周期. …20分(Ⅱ)若T 是无理数,令111a T T ⎡⎤=-⎢⎥⎣⎦,则101a <<,且1a 是无理数,令21111a a a ⎡⎤=-⎢⎥⎣⎦,…… 111n n n a a a +⎡⎤=-⎢⎥⎣⎦,……. …30分由数学归纳法易知n a 均为无理数且01n a <<.又111n n a a ⎡⎤-<⎢⎥⎣⎦,故11n n n a a a ⎡⎤<+⎢⎥⎣⎦,即111n n n n a a a a +⎡⎤=-<⎢⎥⎣⎦.因此{}n a 是递减数列. …40分 最后证:每个n a 是()f x 的周期.事实上,因1和T 是()f x 的周期,故111a T T ⎡⎤=-⎢⎥⎣⎦亦是()f x 的周期.假设k a 是()f x 的周期,则111k k k a a a +⎡⎤=-⎢⎥⎣⎦也是()f x 的周期.由数学归纳法,已证得n a 均是()f x 的周期. …50分 三、(本题满分50分)设0k a >,1,2,,2008k =L .证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件:(ⅰ)010n n x x x +=<<,1,2,3,n =L ; (ⅱ)lim n n x →∞存在;(ⅲ)20082007111n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n =L .[证] 必要性:假设存在{}n x 满足(ⅰ),(ⅱ),(iii ).注意到(ⅲ)中式子可化为2008111()n n k n k n k k x x a x x -++-=-=-∑,n ∈*N ,其中00x =.将上式从第1项加到第n 项,并注意到00x =得111222200820082008()()()n n n n x a x x a x x a x x +++=-+-++-L . …10分 由(ⅱ)可设lim n n b x →∞=,将上式取极限得112220082008()()()b a b x a b x a b x =-+-++-L 20081122200820081()k k b a a x a x a x ==⋅-+++∑L20081k k b a =<⋅∑,因此200811k k a =>∑. …20分充分性:假设200811k k a =>∑.定义多项式函数如下:20081()1k k k f s a s ==-+∑,[0,1]s ∈,则()f s 在[0,1]上是递增函数,且(0)10f =-<,20081(1)10k k f a ==-+>∑.因此方程()0f s =在[0,1]内有唯一的根0s s =,且001s <<,即0()0f s =. …30分下取数列{}n x 为01nkn k x s ==∑,1,2,n =L ,则明显地{}n x 满足题设条件(ⅰ),且1000101n nkn k s s x s s +=-==-∑. 因001s <<,故10lim 0n n s +→∞=,因此100000lim lim 11n n n n s s s x s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ). …40分最后验证{}n x 满足(ⅲ),因0()0f s =,即2008011kk k a s ==∑,从而200820082008101111()()nk n n k n n k k k n k n k k k k x x s a s s a sa x x +-++-===-====-∑∑∑.综上,存在数列{}n x 满足(ⅰ),(ⅱ),(ⅲ). …50分。

2008年全国高中数学联赛试题及解答

2008年全国高中数学联赛试题及解答

2008年全国高中数学联合竞赛一试试题(A 卷)一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C ) A .0 B .1 C .2 D .3[解]当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x+-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2. 2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D )A .[1,2)-B .[1,2]-C .[0,3]D .[0,3)[解法一] 因240x ax --=有两个实根12a x =-22a x = 故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a <,解之得03a ≤<. [解法二](特殊值验证法)令3,[1,4],a B B A ==-⊄,排除C ,令1,[a B =-=,B A⊄排除A 、B ,故选D 。

[解法三](根的分布)由题意知240x ax --=的两根在[2,4)A =-内,令2()4f x x ax =--则a 242(2)0(4)0f f ⎧-≤<⎪⎪-≥⎨⎪>⎪⎩解之得:03a ≤<3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A.24181 B. 26681 C. 27481D. 670243 [解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为 22215()()339+=. 若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有5(2)9P ξ==, 4520(4)()()9981P ξ===, 2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=. [解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜.由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=, 1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++ 2221164()()3381==, 故520162662469818181E ξ=⨯+⨯+⨯=. 4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为AA. 764 cm 3或586 cm 3B. 764 cm 3C. 586 cm 3或564 cm 3D. 586 cm 3[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3. 5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( B ) A. 1 B. 2 C. 3 D. 4[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩, 若0z ≠,则由0xyz z +=得1xy =-. ①由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C A B C B++的取值范围是 ( C )A. (0,)+∞B.C.D. )+∞ [解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而 sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A C B C B B C B C ++=++ sin()sin()sin sin()sin()sin A C B B b q B C A A aππ+-=====+-. 因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得q q q <<⎨⎪><⎪⎩从而1122q <<,因此所求的取值范围是. 二、填空题(本题满分54分,每小题9分) 7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =,若7()128381f x x =+,则a b += 5 .[解] 由题意知12()(1)n n n n f x a x aa ab --=+++++11n n a a x b a -=+⋅-, 由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=. 8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a=2-+.[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----, (1) 2a >时,()f x 当cos 1x =时取最小值14a -;(2) 2a <-时,()f x 当cos 1x =-时取最小值1;(3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---.又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-2a =-舍去). 9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有222种.[解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程 12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===.又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =,则通项n a =112(1)n n n -+. [解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++, 即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221 =)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n .令1(1)n n b a n n =++,111122b a =+= (10a =), 有112n n b b +=,故12n n b =,所以)1(121+-=n n a n n . 11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32x f x f x +-≤⋅, (6)()632x f x f x +-≥⋅,则)2008(f =200822007+.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅,因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+答13答12图1 答12图22006200423(2221)(0)f =⋅+++++ 10031413(0)41f +-=⋅+- 200822007=+. [解法二] 令()()2xg x f x =-,则 2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤,得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为则该小球永远不可能接触到的容器内壁的面积是.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心. 因11111113P A B C A B C V S PD -∆=⋅ 1114O A B C V -=⋅111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则2211PP PO OP =-. 考虑小球与正四面体的一个面(不妨取为PAB )相切时的情况,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为1PEF ,如答12图2.记正四面体的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有11cos 2PM PP MPP =⋅=⋅=,故小三角形的边长126P E P A P a r=-=. 小球与面PAB 不能接触到的部分的面积为(如答12图2中阴影部分)1PAB P EF S S ∆∆-22())a a =--2=-. 又1r =,a =1PAB P EF S S ∆∆-=由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α, 求证: 2cos 1sin sin 34ααααα+=+. [证] ()f x 的图象与直线y kx = )0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈.…5分题15由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+14sin cos αα= …15分 22cos sin 4sin cos αααα+= 21tan 4tan αα+=214αα+=. …20分 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.即 1210864353210x x x x x +++-->. …5分分组分解12108x x x +-1086222x x x ++-864444x x x ++-642x x x ++-4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以 4210x x +->,22(0x x >. …15分所以2x >,即x <x >故原不等式解集为51(,()2--∞+∞. …20分 [解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+. …5分即6422232262133122(1)2(1)x x x x x x x x +<+++++=+++,)1(2)1()1(2)1(232232+++<+x x xx ,…10分 令3()2g t t t =+,则不等式为221()(1)g g x x<+, 显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于2211x x <+,…15分 即222()10x x +->,解得212x > (212x<舍去) 故原不等式解集为51(,()2--∞+∞. …20分 15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线PB 的方程:00y b y b x x --=,化简得 000()0y b x x y x b --+=.又圆心(1,0)到PB 的距离为11= , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+,易知02x >,上式化简得2000(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 所以0022y b c x -+=-,002x bc x -=-,则22200020448()(2)x y x b c x +--=-. 因00(,)P x y 是抛物线上的点,有2002y x =,则 220204()(2)x b c x -=-,0022x b c x -=-. …15分 所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++--48≥+=. 当20(2)4x -=时,上式取等号,此时004,x y ==±.因此PBC S ∆的最小值为8. …20分2008年全国高中数学联合竞赛加试(A 卷)试题参考答案及评分标准一、(本题满分50分)如题一图,给定凸四边形ABCD ,180B D ∠+∠<,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆;(Ⅱ)设E 是ABC ∆外接圆O 的AB 上一点,满足:2AE AB =,1BC EC =,12ECB ECA ∠=∠,又,D A D C 是O的切线,AC =()f P 的最小值.[解法一] (Ⅰ)如答一图1,由托勒密不等式,对平面上的任意点P ,有PA BC PC AB PB AC ⋅+⋅≥⋅.因此 ()f P PA BC PC AB PD CA =⋅+⋅+⋅PB CA PD CA ≥⋅+⋅()PB PD CA =+⋅.因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,因此当且仅当P 在ABC ∆的外接圆且在AC 上时,()()f P PB PD CA =+⋅. …10分 又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因此当且仅当P 为ABC ∆的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =⋅.故当()f P 达最小值时,,,,P A B C 四点共圆. …20分(Ⅱ)记ECB α∠=,则2ECA α∠=,由正弦定理有sin 2sin 32AE AB αα==,从而32sin 2αα=,即3sin 4sin )4sin cos αααα-=,所以2cos )4cos 0αα--=,答一图1解得cos α=cos α=,故30α=,60ACE ∠=.由已知1BC EC==()0sin 30sin EAC EAC ∠-∠,有sin(30)(1)sin EAC EAC ∠-=∠,即1cos 1)sin 22EAC EAC EAC∠-∠=∠,整理得21cos 22EAC EAC∠=∠,故tan 2EAC ∠==75EAC ∠=, …40分从而45E ∠=,45DAC DCA E ∠=∠=∠=,ADC ∆为等腰直角三角形.因AC =1CD=.又ABC ∆也是等腰直角三角形,故BC =212215BD =+-⋅=,BD故min ()f P BD AC =⋅= …50分[解法二] (Ⅰ)如答一图2,连接BD 交ABC ∆的外接圆O 于0P 点(因为D 在O 外,故0P 在BD 上).过,,A C D 分别作000,,P A PC P D的垂线,两两相交得111A B C ∆,易知0P 在ACD ∆内,从而在111A B C ∆内,记ABC ∆之三内角分别为x y z ,,,则0180APC y z x ∠=︒-=+,又因110B C P A ⊥,110B A PC ⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=,所以111A B C ∆∽ABC ∆. …10分设11B C BC λ=,11C A CA λ=,11A B AB λ=,则对平面上任意点M ,有0000()()f P P A BC P D CA PC AB λλ=⋅+⋅+⋅011011011P A B C P D C A PC A B =⋅+⋅+⋅1112A B C S ∆= 111111MA B C MD C A MC A B ≤⋅+⋅+⋅()MA BC MD CA MC AB λ=⋅+⋅+⋅()f M λ=,从而 0()()f P f M ≤.由M 点的任意性,知0P 点是使()f P 达最小值的点.由点0P 在O 上,故0,,,P A B C 四点共圆. …20分(Ⅱ)由(Ⅰ),()f P 的最小值11102()A B C f P S λ∆=2ABC S λ∆=,记ECB α∠=,则2ECAα∠=,由正弦定理有sin 2sin 3AE AB αα==2sin 2αα=, 34sin )4sin cosαααα-=,所以2cos )4cos 0αα--=,整理得24cos 0αα-=,…30分解得cos α=cos α=,故30α=,60ACE ∠=. 由已知1BC EC ==()0sin 30sin EACEAC ∠-∠,有sin(30)(1)sin EAC EAC∠-=∠,答一图2故tan 2EAC ∠==75EAC ∠=, …40分所以45E ∠=︒,ABC ∆为等腰直角三角形,AC =,1ABC S ∆=,因为145AB C ∠=︒,1B 点在O 上,190AB B ∠=︒,所以11B BDC 为矩形,11B C BD ==,故λ=所以min ()21f P == …50分 [解法三] (Ⅰ)引进复平面,仍用,,A B C 等代表,,A B C 所对应的复数.由三角形不等式,对于复数12,z z ,有1212z z z z +≥+, 当且仅当1z 与2z (复向量)同向时取等号.有 PA BC PC AB PA BC PC AB ⋅+⋅≥⋅+⋅, 所以 ()()()()A P C B C P B A --+-- ()()()()A P C B C P B A ≥--+-- (1)P C A B C B P A =-⋅-⋅+⋅+⋅ ()()B P C A PB AC =--=⋅, 从而PA BC PC AB PD CA ⋅+⋅+⋅ PB AC PD AC ≥⋅+⋅()PB PD AC =+⋅BD AC ≥⋅(2)…10分(1)式取等号的条件是复数 ()()A P C B --与()()C P B A --同向,故存在实数0λ>,使得()()()()A P C B C P B A λ--=--,A PB AC P C B λ--=--,所以 arg()arg()A P B A C P C B--=--, 向量PC 旋转到PA 所成的角等于BC 旋转到AB 所成的角,从而,,,P A B C 四点共圆.(2)式取等号的条件显然为,,B P D 共线且P 在BD 上.故当()f P 达最小值时P 点在ABC ∆之外接圆上,,,,P A B C 四点共圆. …20分(Ⅱ)由(Ⅰ)知min ()f P BD AC =⋅.以下同解法一.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明:(Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期; (Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)n a n =⋅⋅⋅都是()f x 的周期.[证] (Ⅰ)若T 是有理数,则存在正整数,m n 使得n T m =且(,)1m n =,从而存在整数,a b ,使得 1ma nb +=.于是11ma nb a bT a b T m m+==+=⋅+⋅是()f x 的周期. …10分 又因01T <<,从而2m ≥.设p 是m 的素因子,则m pm '=,m *'∈N ,从而11m p m'=⋅是()f x 的周期. …20分 (Ⅱ)若T 是无理数,令111a T T ⎡⎤=-⎢⎥⎣⎦,则101a <<,且1a 是无理数,令21111a a a ⎡⎤=-⎢⎥⎣⎦,…… 111n n n a a a +⎡⎤=-⎢⎥⎣⎦, ……. …30分 由数学归纳法易知n a 均为无理数且01n a <<.又111n n a a ⎡⎤-<⎢⎥⎣⎦,故11n n n a a a ⎡⎤<+⎢⎥⎣⎦, 即111n n n n a a a a +⎡⎤=-<⎢⎥⎣⎦.因此{}n a 是递减数列. …40分 最后证:每个n a 是()f x 的周期.事实上,因1和T 是()f x 的周期,故111a T T ⎡⎤=-⎢⎥⎣⎦亦是()f x 的周期.假设k a 是()f x 的周期,则111k k k a a a +⎡⎤=-⎢⎥⎣⎦也是()f x 的周期.由数学归纳法,已证得n a 均是()f x 的周期. …50分三、(本题满分50分)设0k a >,1,2,,2008k =.证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件:(ⅰ)010n n x x x +=<<,1,2,3,n =;(ⅱ)lim n n x →∞存在;(ⅲ)200820071110n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n =.[证] 必要性:假设存在{}n x 满足(ⅰ),(ⅱ),(iii ).注意到(ⅲ)中式子可化为2008111()n n k n k n k k x x a x x -++-=-=-∑,n ∈*N , 其中00x =. 将上式从第1项加到第n 项,并注意到00x =得111222200820082008()()()n n n n x a x x a x x a x x +++=-+-++-.…10分由(ⅱ)可设lim n n b x →∞=,将上式取极限得 112220082008()()()b a b x a b x a b x =-+-++-20081122200820081()k k b a a x a x a x ==⋅-+++∑20081k k b a =<⋅∑, 因此200811k k a =>∑. …20分充分性:假设200811k k a =>∑.定义多项式函数如下: 20081()1k k k f s a s ==-+∑,[0,1]s ∈,则()f s 在[0,1]上是递增函数,且(0)10f =-<,20081(1)10k k f a ==-+>∑.因此方程()0f s =在[0,1]内有唯一的根0s s =,且001s <<,即0()0f s =. …30分2008年全国高中数学联赛 通渭一中 刘黎明- 11 - 下取数列{}n x 为01n k n k x s ==∑,1,2,n =,则明显地{}n x 满足题设条件(ⅰ),且1000101n n k n k s s x s s +=-==-∑. 因001s <<,故10lim 0n n s +→∞=,因此100000lim lim 11n n n n s s s x s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ).…40分 最后验证{}n x 满足(ⅲ),因0()0f s =,即2008011k k k a s ==∑,从而200820082008100001111()()n k n n k n n k k k n k n k k k k x x s a s s a s a x x +-++-===-====-∑∑∑.综上,存在数列{}n x 满足(ⅰ),(ⅱ),(ⅲ). …50分。

2008年全国高中数学联赛初赛试题及答案(浙江赛区)

2008年全国高中数学联赛初赛试题及答案(浙江赛区)

2008年浙江省高中数学竞赛试卷一、选择题 (本大题满分36分,每小题6分)1.已知集合{}{}221,,20R A y y x x B x x x =+=+-∈=>,则下列正确的是( ) A .{}1,A B y y => B.{}2A B y y => C.{}21A B y y ⋃=-<< D. {}21A B y y y ⋃=<>-或解:因为{}{}1,1, 2A y y B x x x =≥=><-或,所以有{}1,A B y y =>正确答案为 A 。

2.当01x <<时,()lg xf x x=,则下列大小关系正确的是( ) A .22()()()f x f x f x << B. 22()()()f x f x f x << C. 22()()()f x f x f x << D. 22()()()f x f x f x <<解:当01x <<时,()0lg x f x x =<,222()0lg x f x x =<,22()0lg x f x x ⎛⎫=> ⎪⎝⎭。

又因为2222(2)0lg lg 2lg 2lg x x x x x xx x x x---==<。

所以 22()()()f x f x f x <<。

选 C 。

3.设()f x 在[0,1]上有定义,要使函数()()f x a f x a -++有定义,则a 的取值范围为( )A .1(,)2-∞-; B. 11[,]22-; C. 1(,)2+∞; D. 11(,][,)22-∞-⋃+∞解:函数()()f x a f x a -++的定义域为 [,1][,1]a a a a +⋂--。

当0a ≥时,应有1a a ≤-,即12a ≤;当0a ≤时,应有1a a -≤+,即12a ≥-。

2008年全国高中数学联赛、加赛试题及答案

2008年全国高中数学联赛、加赛试题及答案

2008全国高中数学联合竞赛一试试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分) 1.函数254()2x xf x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .3 [解] 当2x<时,20x ->,因此21(44)1()(2)22x x f x x xx+-+==+---12(2)2x x≥⋅--2=,当且仅当122xx=--时上式取等号.而此方程有解1(,2)x=∈-∞,因此()f x 在(,2)-∞上的最小值为2. 2.设[2,4)A =-,2{40}Bx x a x =--≤,若BA⊆,则实数a 的取值范围为 ( D )A .[1,2)-B .[1,2]-C .[0,3]D .[0,3) [解] 因240x a x --=有两个实根21424a ax =-+22424a ax =++故BA⊆等价于12x ≥-且24x <,即24224a a-+≥-且24424a a++,解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B )A. 24181B.26681C.27481D.670243[解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 5(2)9P ξ==,4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=,1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==, 故520162662469818181E ξ=⨯+⨯+⨯=.4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A ) A. 764 cm 3或586 cm 3 B. 764 cm 3 C. 586 cm 3或564 cm 3 D. 586 cm 3 [解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c++=,22294ab c++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b+=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =. 若8c=,则22946430a b +=-=,5b ≤.但2230b ≥,4b≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b+=-=,有唯一解3a =,6b =.若6c=,则22943658a b+=-=,此时222258b a b ≥+=,229b ≥.故6b≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z x y z z x y y z x z y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( B )A. 1B. 2C. 3D. 4 [解] 若0z=,则00.x y x y y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩, 若0z≠,则由0xyzz +=得1x y =-. ①由0x y z ++=得zx y=--. ② 将②代入0xy yz xz y +++=得22x y x y y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0yy y ---=.易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.设A B C ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin c o t c o s sin c o t c o s A C A B C B++的取值范围是( C )A. (0,)+∞B.51(02+ C.515122-+ D.51)2-+∞[解] 设,,a b c 的公比为q ,则2,ba q c a q==,而sin c o t c o s sin c o s c o s sin sin c o t c o s sin c o s c o s sin A C A A C A C B C BB C B C ++=++s i n ()s i n ()s i n s i n ()s i n ()s i nA CB B b q B CA Aa ππ+-=====+-. 因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a a q a q a q a q a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩ 解得1551,225151.22q q q ⎧-<<⎪⎪⎨⎪><-⎪⎩或从而515122q <<,因此所求的取值范围是5151)22-+.二、填空题(本题满分54分,每小题9分) 7.设()f x a x b=+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n=,若7()128381f x x =+,则a b+=5 .[解] 由题意知12()(1)nn n n f x a x aa a b--=+++++11nna a x ba -=+⋅-,由7()128381f x x =+得7128a=,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.设()co s 22(1co s )f x x a x =-+的最小值为12-,则a=23-+[解]2()2c o s 122c o s f x x a a x=---2212(c o s )2122a x a a =----,(1) 2a >时,()f x 当co s 1x =时取最小值14a -; (2) 2a <-时,()f x 当co s 1x =-时取最小值1;(3)22a -≤≤时,()f x 当c o s 2a x=时取最小值21212a a ---.又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得23a=-+23a=--舍去).9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种.又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===.又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n=,则通项n a =112(1)nn n -+.[解]1111(1)(2)(1)n n n n nnn a S S a a n n n n +++-=-=--++++,即 2nn a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n ,由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)nn b a n n =++,111122b a =+=(1a =),有112n n b b +=,故12n nb =,所以)1(121+-=n n a nn.11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32xf x f x +-≤⋅,(6)()632xf x f x +-≥⋅,则)2008(f =200822007+.[解法一] 由题设条件知答12图1(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x xx++≥-⋅-⋅+⋅=⋅,因此有(2)()32xf x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++10031413(0)41f +-=⋅+-200822007=+. [解法二] 令()()2xg x f x =-,则2(2)()(2)()223232x xx xg x g x f x f x ++-=+--+≤⋅-⋅=, 6(6)()(6)()226326320x xxxg x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥, 故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤,得()g x 是周期为2的周期函数, 所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为6则该小球永远不可能接触到的容器内壁的面积是73.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面A B C,与小球相切于点D ,则小球球心O 为正四面体111PA B C -的中心,111P O A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B CA B C V S P D-∆=⋅1114O A B CV -=⋅111143A B C S O D∆=⋅⋅⋅,故44P DO D r==,从而43P OP D O D r r r=-=-=.记此时小球与面P A B 的切点为1P ,连接1O P ,则222211(3)2P P P OO P r rr=-=-.考虑小球与正四面体的一个面(不妨取为P A B )相切时的情况,易知小球在面P A B 上最靠近边的切点的轨迹仍为正三角形,记为1P E F ,如答12图2.记正四面体答13图答12图2的棱长为a ,过1P 作1P M P A⊥于M .因16M P P π∠=,有113c o s 262P M P P M P P r r=⋅==,故小三角形的边长1226P E P A P M a r=-=-. 小球与面P A B 不能接触到的部分的面积为(如答12图2中阴影部分)1P A B P E F S S ∆∆-223(6))4a a r =--223a r r=-.又1r =,6a =123313P A B P E F S S ∆∆-==由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为73三、解答题(本题满分60分,每小题20分) 13.已知函数|sin |)(x x f =的图像与直线y k x= )0(>k有且仅有三个交点,交点的横坐标的最大值为α,求证: 2c o s 1s in s in 34ααααα+=+.[证]()f x 的图象与直线yk x=)0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈.…5分由于()c o s f x x'=-,3(,)2x ππ∈,所以s in c o s ααα-=-,即tan αα=. …10分因此c o s c o s s in s in 32s in 2c o s αααααα=+14s in c o s αα=…15分22c o s s in 4s in c o s αααα+=21ta n 4ta n αα+=214αα+=. …20分14.解不等式121086422lo g (3531)1lo g (1)xxx x x ++++<++.[解法一] 由44221lo g (1)lo g (22)x x ++=+,且2lo g y在(0,)+∞上为增函数,故原不等式等价于1210864353122xx x x x ++++>+.即 1210864353210xxx x x +++-->.…5分分组分解12108xxx+-1086222xx x++-864444x x x++-642x x x++-4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以4210x x +->,221515(022x x ---+-->. …15分所以2152x -+>,即152x-+<152x-+>.故原不等式解集为5151(,,)22---∞+∞ . …20分[解法二] 由44221lo g (1)lo g (22)x x ++=+,且2lo g y在(0,)+∞上为增函数,故原不等式等价于1210864353122xxx x x ++++>+. …5分即6422232262133122(1)2(1)x x x x x x xx+<+++++=+++,)1(2)1()1(2)1(232232+++<+xxxx, …10分令3()2g t t t=+,则不等式为221()(1)g g x x<+,显然3()2g t t t=+在R 上为增函数,由此上面不等式等价于答15图2211x x<+,…15分即222()10x x +->,解得2512x ->(2512x +<-),故原不等式解集为5151(,,)22---∞+∞ . …20分15.如题15图,P 是抛物线22y x=上的动点,点B C ,在y 轴上,圆22(1)1x y-+=内切于P B C∆,求P B C ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设bc>.直线P B 的方程:00y b y b xx --=,化简得000()0y b x x y x b --+=.又圆心(1,0)到P B 的距离为1,0022001()y b x b y b x -+=-+, …5分故2222200000()()2()y b x y b x b y b x b -+=-+-+,易知02x >,上式化简得200(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 所以0022y bc x -+=-,002x b cx -=-,则22200020448()(2)x y x b c x +--=-.因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x bc x -=-. …15分所以00000014()(2)4222P B C x S b c x x x x x ∆=-⋅=⋅=-++--448≥+=.当2(2)4x -=时,上式取等号,此时004,2x y ==±因此P B C S ∆的最小值为8. …20分2008年全国高中数学联合竞赛加试(A 卷)试题参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分;2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.一、(本题满分50分)如题一图,给定凸四边形A B C D,180B D ∠+∠<,P是平面上的动点,令()f P P A B C P D C A P C A B=⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆; (Ⅱ)设E是A B C∆外接圆O的A B 上一点,满足:32A E A B=,31B C E C=,12E C B E C A∠=∠,又,DA DC 是O的切线,2A C =,求()f P 的最小值.[解法一] (Ⅰ)如答一图1,由托勒密不等式,对平面上的任意点P ,有P A B C P C A B P B A C ⋅+⋅≥⋅. 因此 ()f P P A B C P C A B P D C A =⋅+⋅+⋅P B C A P D C A ≥⋅+⋅()P B P D C A =+⋅.因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,因此当且仅当P 在A B C ∆的外接圆且在A C 上时, ()()f P PB P DC A =+⋅. …10分又因P B P D B D +≥,此不等式当且仅当,,B P D 共线且P 在B D 上时取等号.因此当且仅当P 为A B C ∆的外接圆与B D 的交点时,()f P 取最小值m in ()f P A C B D =⋅.故当()f P 达最小值时,,,,P A B C 四点共圆. …20分(Ⅱ)记E C B α∠=,则2E C A α∠=,由正弦定理有s in 23s in 32A E A Bαα==,从而3s i n 32s i n 2αα=33(3s in 4s in )4s in c o s αααα-=,所以233(1c o s )4c o s 0αα--=,整理得23o s 4c o s 30αα--=, …30分解得3c o s 2α=c o s 23α=-故30α=,60A C E∠=.由已知31B C E C==()sin 30sin E A C E A C∠-∠,有s in (30)31)s in E A C E A C∠-=∠,即31in c o s 31)s in 22E A C E A C E A C∠-∠=∠,整理得231in c o s 22E A C E A C-∠=∠,故ta n 2323E A C∠==+-75E A C∠=, …40分从而45E ∠= ,45D A C D C A E ∠=∠=∠= ,A D C ∆为等腰直角三角形.因2A C =1C D =.又A B C ∆也是等腰直角三角形,故2B C =,212212o s 1355B D =+-⋅⋅= ,5B D =故m in ()5210f P B D A C =⋅==…50分答一图1[解法二] (Ⅰ)如答一图2,连接B D 交A B C ∆的外接圆O 于0P 点(因为D 在O 外,故0P 在B D 上).过,,A C D 分别作000,,P A P C P D 的垂线,两两相交得111A B C ∆,易知0P 在A C D ∆内,从而在111A B C ∆内,记A B C∆之三内角分别为x y z ,,,则0180A P Cy z x∠=︒-=+,又因110B C P A ⊥,110B A P C⊥,得1B y∠=,同理有1A x∠=,1C z∠=, 所以111A B C ∆∽A B C ∆. …10分设11B C B Cλ=,11C A C Aλ=,11A B A Bλ=, 则对平面上任意点M ,有0000()()f P P A B C P D C A P C A B λλ=⋅+⋅+⋅011011011P A B C P D C A P C A B =⋅+⋅+⋅1112AB C S ∆=111111M A B C M D C A M C A B ≤⋅+⋅+⋅ ()M A B C M D C A M C A B λ=⋅+⋅+⋅()f M λ=,从而 0()()f P f M ≤.由M 点的任意性,知0P 点是使()f P 达最小值的点.由点0P 在O上,故0,,,P A B C 四点共圆. …20分(Ⅱ)由(Ⅰ),()f P 的最小值11102()A B Cf P S λ∆=2A B CS λ∆=,记E C B α∠=,则2E C Aα∠=,由正弦定理有s in 23s in 32A E A Bαα==3in 32s in 2αα=,33(3s in 4s in )4s in c o s αααα-=,所以233(1c o s )4c o s 0αα--=,整理得23o s 4c o s 30αα--=, …30分解得3c o s 2α=1c o s 23α=-故30α=,60A C E∠=.由已知31B C E C==()sin 30sin E A C E A C∠-∠,有s in (30)31)s in E A C E A C∠-=∠,即31in c o s 31)s in 22E A C E A C E A C∠-∠=∠,整理得231in c o s 22E A C E A C-∠=∠,故ta n 2323E A C ∠==+-75E A C∠=, …40分所以45E ∠=︒,A B C ∆为等腰直角三角形,2A C=,1A B CS ∆=,因为145A B C ∠=︒,1B 点在O 上,190A B B∠=︒,所以11B B D C 为矩形,1112212co s 1355B C B D ==+-⋅⋅︒=故52λ=m in 5()21102f P ==…50分[解法三] (Ⅰ)引进复平面,仍用,,A B C 等代表,,A B C 所对应的复数.由三角形不等式,对于复数12,z z ,有答一图21212z z z z +≥+,当且仅当1z 与2z (复向量)同向时取等号.有 P A B C P C A B P A B CP C A B⋅+⋅≥⋅+⋅, 所以 ()()()()A P CBC P B A --+--()()()()A P C B C P B A ≥--+-- (1)P CA B C B P A=-⋅-⋅+⋅+⋅ ()()B P C A P B A C =--=⋅,从而 P A B C P C A B P D C A⋅+⋅+⋅P B A C P D A C≥⋅+⋅()P B P D A C =+⋅B D AC ≥⋅. (2)…10分(1)式取等号的条件是复数 ()()A P C B --与()()C P B A --同向,故存在实数0λ>,使得()()()()A P C B C P B A λ--=--, A P B A C PC Bλ--=--,所以a r g ()a r g ()A P B AC P C B--=--, 向量P C 旋转到P A 所成的角等于B C旋转到A B所成的角,从而,,,P A B C 四点共圆.(2)式取等号的条件显然为,,B P D 共线且P 在B D 上.故当()f P 达最小值时P 点在A B C ∆之外接圆上,,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ)知m in ()f P B D A C =⋅. 以下同解法一.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T<<.证明:(Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期;(Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.[证] (Ⅰ)若T 是有理数,则存在正整数,m n 使得n T m=且(,)1m n =,从而存在整数,a b ,使得1m a n b +=.于是11m a n ba b T a b Tm m+==+=⋅+⋅是()f x 的周期. …10分 又因01T <<,从而2m ≥.设p 是m 的素因子,则m p m '=,m *'∈N,从而11m p m'=⋅是()f x 的周期. …20分(Ⅱ)若T 是无理数,令 111a T T ⎡⎤=-⎢⎥⎣⎦,则101a <<,且1a 是无理数,令21111a a a ⎡⎤=-⎢⎥⎣⎦,……111n nn a a a +⎡⎤=-⎢⎥⎣⎦,……. …30分由数学归纳法易知n a 均为无理数且01n a <<.又111nn a a ⎡⎤-<⎢⎥⎣⎦,故11nn n a a a ⎡⎤<+⎢⎥⎣⎦,即111n n n n a a a a +⎡⎤=-<⎢⎥⎣⎦.因此{}n a 是递减数列. …40分最后证:每个n a 是()f x 的周期.事实上,因1和T 是()f x 的周期,故111a T T ⎡⎤=-⎢⎥⎣⎦亦是()f x 的周期.假设k a 是()f x 的周期,则111k kk a a a +⎡⎤=-⎢⎥⎣⎦也是()f x 的周期.由数学归纳法,已证得n a 均是()f x 的周期. …50分三、(本题满分50分)设0ka >,1,2,,2008k= .证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件: (ⅰ)010n n x x x +=<<,1,2,3,n =;(ⅱ)limn n x →∞存在;(ⅲ)20082007111nn k n k k n kk k x x a x a x -+++==-=-∑∑,1,2,3,n=.[证] 必要性:假设存在{}n x 满足(ⅰ),(ⅱ),(iii ).注意到(ⅲ)中式子可化为 2008111()n n k n k n k k x x a x x -++-=-=-∑,n ∈*N,其中00x =.将上式从第1项加到第n 项,并注意到0x =得111222200820082008()()()n n n n x a x x a x x a x x +++=-+-++- . …10分由(ⅱ)可设lim nn b x →∞=,将上式取极限得112220082008()()()b a b x a b x a b x =-+-++-20081122200820081()k k b a a x a x a x ==⋅-+++∑20081kk b a =<⋅∑,因此200811k k a =>∑.…20分充分性:假设200811k k a =>∑.定义多项式函数如下:20081()1kk k f s a s==-+∑,[0,1]s ∈,则()f s 在[0,1]上是递增函数,且(0)10f =-<,20081(1)10k k f a ==-+>∑.因此方程()0f s =在[0,1]内有唯一的根0ss =,且001s <<,即0()0f s =. …30分下取数列{}n x 为01nknk x s ==∑,1,2,n=,则明显地{}n x 满足题设条件(ⅰ),且100011n nkn k s s x s s +=-==-∑. 因001s <<,故1lim 0n n s +→∞=,因此10000limlim11n n n n s s s x s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ). …40分最后验证{}n x 满足(ⅲ),因0()0f s =,即2008011kk k a s ==∑,从而200820082008100001111()()nknn kn n k k k n k n k k k k x x s a s s a s a x x +-++-===-====-∑∑∑.综上,存在数列{}n x 满足(ⅰ),(ⅱ),(ⅲ). …50分。

2008年全国高中数学联合竞赛一试试题(A卷)

2008年全国高中数学联合竞赛一试试题(A卷)

2008年全国高中数学联合竞赛一试试题(A 卷)-----说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分) 1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D )A .[1,2)-B .[1,2]-C .[0,3]D .[0,3)3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A.24181B.26681C.27481D.6702434.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为( A )A. 764 cm 3或586 cm 3B. 764 cm 3C. 586 cm 3或564 cm 3D. 586 cm 35.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( B ) A. 1 B. 2 C. 3 D. 4 6.设A B C ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C A B C B++的取值范围是( C )A. (0,)+∞B. 2C. 22D. )2+∞二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n = ,若7()128381f x x =+,则a b += 5 .题15图8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a=9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n = ,则通项n a =112(1)nn n -+.11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32xf x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.12.一个半径为1的小球在一个内壁棱长为则该小球永远不可能接触到的容器内壁的面积是.三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证: 2cos 1sin sin 34ααααα+=+.14.解不等式121086422log (3531)1log (1)xxx x x ++++<++.15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于P B C ∆,求P B C ∆面积的最小值.2008年全国高中数学联合竞赛加试(A 卷)试题一、(本题满分50分)如题一图,给定凸四边形A B C D ,180B D ∠+∠< ,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆; (Ⅱ)设E 是A B C ∆外接圆O 的 AB 上一点,满足:2A E A B=,1B C E C=,12E C B E C A ∠=∠,又,D A D C 是O的切线,AC =()f P 的最小值.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明: (Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期;(Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.三、(本题满分50分)设0k a >,1,2,,2008k = .证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件:(ⅰ)010n n x x x +=<<,1,2,3,n = ; (ⅱ)lim n n x →∞存在;(ⅲ)20082007111n n kn k k n k k k x x ax ax -+++==-=-∑∑,1,2,3,n = .答一图12008年全国高中数学联合竞赛一试 试题参考答案及评分标准(A 卷)----说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.1.[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x xx+-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2. [解] 因240x ax --=有两个实根12a x =-,22a x =+故B A ⊆等价于12x ≥-且24x <,即22a -≥-且42a +,解之得03a ≤<.3.[解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为 22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 5(2)9P ξ==,4520(4)()()9981P ξ===, 2416(6)()981P ξ===, 故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=,1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==, 故520162662469818181E ξ=⨯+⨯+⨯=.4.[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=.易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.[解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A C B C BB C B C++=++s i n ()s i n ()s i n s i n ()s i n ()s i nA CB B b q B CA A a ππ+-=====+-. 因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得2211.22q q q <<⎪⎨⎪><-⎪⎩或22q <<,因此所求的取值范围是22.二、填空题7. [解] 由题意知12()(1)n n n n f x a x a a a b --=+++++11nna a xb a -=+⋅-, 由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.[解] 2()2cos 122cos f x x a a x =--- 2212(cos )2122ax a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---.又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-+2a =--舍去).9. [解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种. 综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程12324x x x ++=. 的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===.又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种. 综上知,满足条件的分配方法共有253-31=222种. 10.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n ,由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n .令1(1)n n b a n n =++,111122b a =+=(10a =),有112n n b b +=,故12n nb =,所以)1(121+-=n n a nn .11.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++ 10031413(0)41f +-=⋅+-200822007=+. [解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x xg x g x f x f x ++-=+--+≥⋅-⋅=,答12图1答12图2答13图即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面A B C ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S O D ∆=⋅⋅⋅,故44P D O D r ==,从而43P O P D O D r r r =-=-=.记此时小球与面P A B 的切点为1P ,连接1O P ,则2211PP PO OP =-==.考虑小球与正四面体的一个面(不妨取为P A B )相切时的情况,易知小球在面P A B 上最靠近边的切点的轨迹仍为正三角形,记为1P E F ,如答12图2.记正四面体的棱长为a ,过1P 作1P M PA ⊥于M . 因16M P P π∠=,有11cos 2PM PP M PP =⋅==,故小三角形的边长12P E PA PM a =-=-.小球与面P A B 不能接触到的部分的面积为(如答12图2中阴影部分)1P A B P E F S S ∆∆-22())4a a =--2=-.又1r =,a =1PAB P EF S S ∆∆-==由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为. 三、解答题13.[证] ()f x 的图象与直线y k x = )0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈.…5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分因此cos cos sin sin 32sin 2cos αααααα=+14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分14.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122xxx x x ++++>+.即 1210864353210x x x x x +++-->. …5分 分组分解 12108x x x +- 1086222x x x ++- 864444x x x ++- 642x x x ++-4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以 4210x x +->,22(022x x -->. …15分所以22x >,即x <x >故原不等式解集为(,)-∞+∞ . …20分[解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122xxx x x ++++>+. …5分即6422232262133122(1)2(1)x x x x x x xx+<+++++=+++,)1(2)1()1(2)1(232232+++<+x x xx, …10分令3()2g t t t =+,则不等式为221()(1)g g x x<+,显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于2211x x<+, …15分即222()10x x +->,解得22x >(22x <-),故原不等式解集为(,)-∞+∞ . …20分15. [解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线P B 的方程:00y b y b x x --=,化简得 000()0y b x x y x b --+=.又圆心(1,0)到P B 的距离为1,1= , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+, 易知02x >,上式化简得2000(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 所以0022y b c x -+=-,002x bc x -=-,则22200020448()(2)x y x b c x +--=-.因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++--48≥+=.当20(2)4x -=时,上式取等号,此时004,x y ==±.因此PBC S ∆的最小值为8. …20分2008年全国高中数学联合竞赛加试(A 卷)试题参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分;2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.一、[解法一] (Ⅰ)如答一图1,由托勒密不等式,对平面上的任意点P ,有PA BC PC AB PB AC ⋅+⋅≥⋅. 因此 ()f P PA BC PC AB PD CA =⋅+⋅+⋅P B C A P D C A ≥⋅+⋅()PB PD CA =+⋅.因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,因此当且仅当P 在A B C ∆的外接圆且在A C 上时, ()()f P PB PD CA =+⋅. …10分又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因此当且仅当P 为A B C ∆的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =⋅.故当()f P 达最小值时,,,,P A B C 四点共圆. …20分 (Ⅱ)记E C B α∠=,则2E C A α∠=,由正弦定理有s i n 2s i n 32AE ABαα==,从而i n 32s i n 2αα=,即33s i n 4s i n )4s i nc o s αααα-=,所以2cos )4cos 0αα--=,整理得24cos 0αα--=, …30分解得cos 2α=cos α=-,故30α= ,60ACE ∠= .由已知1B C E C==()sin 30sin E A C E A C∠-∠,有sin(30)1)sin EAC EAC∠-=∠ ,即1cos 1)sin 22EAC EAC EAC∠-∠=∠,整理得1i n c o s 22EAC EAC ∠=∠,故t a n 3EAC ∠==+75EAC ∠=, …40分从而45E ∠= ,45DAC DCA E ∠=∠=∠= ,A D C ∆为等腰直角三角形.因AC =1C D =.又A B C ∆也是等腰直角三角形,故BC =212215BD =+-⋅=,BD =.故min ()f P BD AC =⋅== …50分答一图1[解法二] (Ⅰ)如答一图2,连接BD 交A B C ∆的外接圆O 于0P 点(因为D 在O 外,故0P 在BD 上).过,,A C D 分别作000,,P A P C P D 的垂线,两两相交得111A B C ∆,易知0P 在AC D ∆内,从而在111A B C ∆内,记A B C ∆之三内角分别为x y z ,,,则0180AP C y z x ∠=︒-=+,又因110B C P A ⊥,110B A P C⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=,所以111A B C ∆∽A B C ∆. …10分设11B C BC λ=,11C A C A λ=,11A B AB λ=,则对平面上任意点M ,有 0000()()f P P A BC P D CA P C AB λλ=⋅+⋅+⋅ 011011011P A B C P D C A P C A B =⋅+⋅+⋅ 1112A B C S ∆=111111M A B C M D C A M C A B ≤⋅+⋅+⋅ ()MA BC MD CA MC AB λ=⋅+⋅+⋅ ()f M λ=, 从而 0()()f P f M ≤.由M 点的任意性,知0P 点是使()f P 达最小值的点.由点0P 在O 上,故0,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ),()f P 的最小值 11102()A B C f P S λ∆=2ABC S λ∆=,记E C B α∠=,则2E C A α∠=,由正弦定理有sin 2sin 32AE ABαα==,从而s i n 32s i n 2αα=,即3(3s i n 4s i n )4s i n c o s αααα-=,所以2cos )4cos 0αα--=,整理得24cos 0αα--=, …30分解得cos 2α=cos α=-,故30α= ,60ACE ∠= . 由已知1B C E C==()sin 30sin E A C E A C∠-∠,有sin(30)1)sin EAC EAC∠-=∠,即1cos 1)sin 22EAC EAC EAC∠-∠=∠,整理得1i n c o s 22EAC EAC ∠=∠,故答一图2tan 2EAC ∠==+75EAC ∠=, …40分所以45E ∠=︒,A B C ∆为等腰直角三角形,AC =,1ABC S ∆=,因为145AB C ∠=︒,1B 点在O 上,190AB B ∠=︒,所以11B BD C 为矩形,11B C BD ===,故λ=,所以mi n()10f P ==…50分[解法三] (Ⅰ)引进复平面,仍用,,A B C 等代表,,A B C 所对应的复数.由三角形不等式,对于复数12,z z ,有 1212z z z z +≥+,当且仅当1z 与2z (复向量)同向时取等号.有 PA BC PC AB PA BC PC AB ⋅+⋅≥⋅+⋅, 所以 ()()()()A P C B C P B A --+--()()()()A P C B C P B A ≥--+-- (1) P C A B C B P A =-⋅-⋅+⋅+⋅()()B P C A PB AC =--=⋅,从而 PA BC PC AB PD C A ⋅+⋅+⋅PB AC PD AC ≥⋅+⋅()PB PD AC =+⋅BD AC ≥⋅. (2) …10分 (1)式取等号的条件是复数 ()()A P C B --与()()C P B A -- 同向,故存在实数0λ>,使得()()()()A P C B C P B A λ--=--, A P B A C P C Bλ--=--,所以 arg()arg()A PB AC P C B--=--,向量PC 旋转到PA 所成的角等于BC 旋转到AB所成的角,从而,,,P A B C 四点共圆.(2)式取等号的条件显然为,,B P D 共线且P 在BD 上.故当()f P 达最小值时P 点在A B C ∆之外接圆上,,,,P A B C 四点共圆. …20分(Ⅱ)由(Ⅰ)知min ()f P BD AC =⋅. 以下同解法一.二、[证](Ⅰ)若T 是有理数,则存在正整数,m n 使得n T m=且(,)1m n =,从而存在整数,a b ,使得1m a nb +=. 于是11m a nba bT ab T m m+==+=⋅+⋅是()f x 的周期. …10分 又因01T <<,从而2m ≥.设p 是m 的素因子,则m pm '=,m *'∈N ,从而 11m pm'=⋅是()f x 的周期. …20分(Ⅱ)若T 是无理数,令 111a T T ⎡⎤=-⎢⎥⎣⎦,则101a <<,且1a 是无理数,令21111a a a ⎡⎤=-⎢⎥⎣⎦,……111n n n a a a +⎡⎤=-⎢⎥⎣⎦,……. …30分由数学归纳法易知n a 均为无理数且01n a <<.又111n n a a ⎡⎤-<⎢⎥⎣⎦,故11n n n a a a ⎡⎤<+⎢⎥⎣⎦,即111n n n n a a a a +⎡⎤=-<⎢⎥⎣⎦.因此{}n a 是递减数列. …40分最后证:每个n a 是()f x 的周期.事实上,因1和T 是()f x 的周期,故111a T T ⎡⎤=-⎢⎥⎣⎦亦是()f x 的周期.假设k a 是()f x 的周期,则111k k k a a a +⎡⎤=-⎢⎥⎣⎦也是()f x 的周期.由数学归纳法,已证得n a 均是()f x 的周期. …50分三、[证] 必要性:假设存在{}n x 满足(ⅰ),(ⅱ),(iii ).注意到(ⅲ)中式子可化为 2008111()n n kn k n k k x x ax x -++-=-=-∑,n ∈*N ,其中00x =.将上式从第1项加到第n 项,并注意到00x =得111222200820082008()()()n n n n x a x x a x x a x x +++=-+-++- . …10分 由(ⅱ)可设lim n n b x →∞=,将上式取极限得112220082008()()()b a b x a b x a b x =-+-++- 20081122200820081()k k b a a x a x a x ==⋅-+++∑20081k k b a =<⋅∑,因此200811k k a =>∑. …20分充分性:假设200811k k a =>∑.定义多项式函数如下:20081()1kkk f s as ==-+∑,[0,1]s ∈,则()f s 在[0,1]上是递增函数,且(0)10f =-<,20081(1)10kk f a==-+>∑.因此方程()0f s =在[0,1]内有唯一的根0s s =,且001s <<,即0()0f s =. …30分 下取数列{}n x 为01nk n k x s==∑,1,2,n = ,则明显地{}n x 满足题设条件(ⅰ),且10011n nkn k s s x ss +=-==-∑.因001s <<,故10l i m 0n n s+→∞=,因此100lim lim 11n n n n s ssx s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ). …40分最后验证{}n x 满足(ⅲ),因0()0f s =,即2008011k k k a s ==∑,从而200820082008100001111()()n k n n kn n k kkn k n k k k k x x s a s s asax x +-++-===-====-∑∑∑.综上,存在数列{}n x 满足(ⅰ),(ⅱ),(ⅲ). …50分。

2008年全国高中数学联赛试题及答案

2008年全国高中数学联赛试题及答案

2008年全国高中数学联赛试题及答案一 试一、选择题(每小题6分,共36分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( )。

(A )0 (B )1 (C )2 (D )3 2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( )。

(A )[1,2)- (B )[1,2]- (C )[0,3] (D )[0,3) 3.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( )。

(A )24181 (B )26681 (C )27481(D ) 6702434.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( )。

(A )764 cm 3或586 cm 3 (B ) 764 cm 3 (C )586 cm 3或564 cm 3 (D ) 586 cm 35.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( )。

(A ) 1 (B ) 2 (C ) 3 (D ) 4 6.设ABC ∆的内角A B C 、、所对的边a b c 、、成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( )。

(A )(0,)+∞ (B )(C) (D))+∞二、填空题(每小题9分,共54分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =,若7()128381f x x =+,则a b += .8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a = .9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =,则通项n a = .11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足第15题(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f = .12.一个半径为1的小球在一个内壁棱长为则该小球永远不可能接触到的容器内壁的面积是 . 三、解答题(每小题20分,共60分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.15.如图,P 是抛物线22y x =上的动点,点B C 、在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.解 答1. 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x+-+==+---2≥2=,当且仅当122x x=--时取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.故选C.2. 因为240x ax --=有两个实根12a x =,22a x =B A ⊆等价于12x ≥-且24x <,即22a -且42a ,解之得03a ≤<.故选D 。

2008年全国高中数学联赛江苏赛区初赛试题参考答案及评分标准

2008年全国高中数学联赛江苏赛区初赛试题参考答案及评分标准

3. 在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列
成等比
数列,那么 x y z 的值为
答:[A]
A. 1
B. 2
C. 3
D. 4
1
2
0.5
1
x
y
z
解 第一、二行后两个数分别为 2.5,3 与 1.25,1.5;第三、四、五列中的
x 0.5 , y 5 , z 3 ,则 x y z 1. 选 A.
36 2 24 8 12 18
如右表
6 72 4
表中每行、每列及对角线的积都是 26 1, 3 .
解 ∵ x 2 , x的值可取 2,1,0,1.
当[x]= 2 ,则 x2 0 无解; 当[x]=0,则 x2 2 无解;
当[x]= 1,则 x2 1,∴x= 1; 当[x]=1,则 x2 3 ,∴ x 3 .
所以 x 1或 3 . 7. 同时投掷三颗骰子,于少有一颗骰子掷出 6 点的概率是 P 91 (结果要求写
m
n
……10 分
m ,n 是方程 f (x) 2(x 1)2 1 1 的两个解,方程即 x
(x 1)(2x2 2x 1) =0,
解方程,得解为 1, 1
3 ,1
3 .
2
2
1 m n ,m 1 , n 1 3 . 2
……15 分
12. A、B 为双曲线 x2 y2 1上的两个动点,满足 OAOB 0 。 49
216
成既约 分数). 解 考虑对立事件, P 1 5 3 91 . 6 216
8. 已知点 O 在 ABC 内部, OA 2OB 2OC 0 . ABC与OCB 的面积之比为

2008年全国高中数学联赛江苏赛区初赛试题解析

2008年全国高中数学联赛江苏赛区初赛试题解析
所以(5n+2)Sn+3-(10n+9)Sn+2+(5n+7)Sn+1=-20.④
④-③,得(5n+2)Sn+3-(15n+6)Sn+2+(15n+6)Sn+1-(5n+2)Sn=0.
因为an+1=Sn+1-Sn
所以(5n+2)an+3-(10n+4)an+2+(5n+2)an+1=0.
又因为(5n+2) ,
当c=-arctan2时,tan(arcta-arctan2)===-2x.
即f(x)=arctan(-2x);f(-x)=arctan(-(-2x))=arctan2x=-f(x).故f(x)是(-,)内的奇函数.
13.设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且
其中A,B为常数.
高一数学竞赛训练试题(7)
一、填空题(每小题7分,共70分)
1.如果实数m,n,x,y满足 , ,其中a,b为常数,那么mx+ny的最大值为____________
2.设 为指数函数 .在P(1,1),Q(1,2),M(2,3), 四点中,函数 与其反函数 的图像的公共点只可能是点_______
1
2
0.5
1
3.在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么 的值为_________
4.如果 的三个内角的余弦值分别是 的三个内角的正弦值,那么下列命题正确的是_________
① 与 都是锐角三角形
② 是锐角三角形, 是钝角三角形
③ 是钝角三角形, 是锐角三角形

2008年全国高中数学联合竞赛一试试题(A卷) (1)

2008年全国高中数学联合竞赛一试试题(A卷) (1)

2008年全国高中数学联合竞赛一试试题(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3)3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A.24181 B. 26681 C. 27481D. 670243 4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为( A )A. 764 cm 3或586 cm 3B. 764 cm 3C. 586 cm 3或564 cm 3D. 586 cm 35.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( B ) A. 1 B. 2 C. 3 D. 4 6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( C )A. (0,)+∞B.C.D. )+∞二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =L ,若7()128381f x x =+,则a b += 5 .题15图8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a =23-.9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =L ,则通项n a =112(1)n n n -+.11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.12.一个半径为1的小球在一个内壁棱长为6的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是723.三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证: 2cos 1sin sin 34ααααα+=+. 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.2008年全国高中数学联合竞赛加试(A 卷)试题一、(本题满分50分)如题一图,给定凸四边形ABCD ,180B D ∠+∠<o ,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆;(Ⅱ)设E 是ABC ∆外接圆O 的»AB 上一点,满足:3AE AB =,31BC EC =-,12ECB ECA ∠=∠,又,DA DC 是O e 的切线,2AC =,求()f P 的最小值.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明: (Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期; (Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.三、(本题满分50分)设0k a >,1,2,,2008k =L .证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件:(ⅰ)010n n x x x +=<<,1,2,3,n =L ; (ⅱ)lim n n x →∞存在;(ⅲ)20082007111n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n =L .答一图12008年全国高中数学联合竞赛一试 试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.1.[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x+-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2. [解] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a , 解之得03a ≤<.3.[解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有5(2)9P ξ==,4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.4.[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.[解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A CB C B B C B C++=++ sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得11,2211.22q q q ⎧-<<⎪⎪⎨⎪><-⎪⎩或q <<,因此所求的取值范围是. 二、填空题7. [解] 由题意知12()(1)n n n n f x a x a a a b --=+++++L11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-+2a =-舍去).9. [解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********L表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种. 综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程 12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种. 综上知,满足条件的分配方法共有253-31=222种. 10.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),有112n n b b +=,故12n n b =,所以)1(121+-=n n a n n . 11.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+L2006200423(2221)(0)f =⋅+++++L10031413(0)41f +-=⋅+-200822007=+. [解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,答12图1答12图 2即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则222211(3)22PP PO OP r r r=-=-=. 考虑小球与正四面体的一个面(不妨取为PAB )相切时的情况,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为1P EF ,如答12图2.记正四面体的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有113cos 226PM PP MPP r r =⋅==,故小三角形的边长1226PE PA PM a r =-=-. 小球与面PAB 不能接触到的部分的面积为(如答12图2中阴影部分) 1PAB P EF S S ∆∆-223(26))a a r =--23263ar r =-. 又1r =,46a =124363183PAB PEF S S ∆∆-= 由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为723 三、解答题13.[证] ()f x 的图象与直线y kx = )0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分因此cos cos sin sin 32sin 2cos αααααα=+ 14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分 14.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.即 1210864353210x x x x x +++-->. …5分 分组分解 12108x x x +- 1086222x x x ++- 864444x x x ++- 642x x x ++- 4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以 4210x x +->,2211()(022x x ----->. …15分所以2x >,即x <x .故原不等式解集为(,)-∞+∞U . …20分 [解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+. …5分即6422232262133122(1)2(1)x x x x x x x x+<+++++=+++, )1(2)1()1(2)1(232232+++<+x x xx , …10分 令3()2g t t t =+,则不等式为221()(1)g g x x <+, 显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于2211x x<+, …15分 即222()10x x +->,解得2x >(2x <舍去),故原不等式解集为(,)-∞+∞U . …20分 15. [解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线PB 的方程:00y by b x x --=, 化简得 000()0y b x x y x b --+=.又圆心(1,0)到PB 的距离为1,1= , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+,易知02x >,上式化简得2000(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 所以0022y b c x -+=-,002x bc x -=-,则22200020448()(2)x y x b c x +--=-.因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分 所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++--48≥=.当20(2)4x -=时,上式取等号,此时004,x y ==±因此PBC S ∆的最小值为8. …20分2008年全国高中数学联合竞赛加试(A 卷)试题参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分;2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.一、[解法一] (Ⅰ)如答一图1,由托勒密不等式,对平面上的任意点P ,有PA BC PC AB PB AC ⋅+⋅≥⋅. 因此 ()f P PA BC PC AB PD CA =⋅+⋅+⋅PB CA PD CA ≥⋅+⋅()PB PD CA =+⋅.因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,因此当且仅当P 在ABC ∆的外接圆且在»AC 上时, ()()f P PB PD CA =+⋅. …10分又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因此当且仅当P 为ABC ∆的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =⋅.故当()f P 达最小值时,,,,P A B C 四点共圆. …20分 (Ⅱ)记ECB α∠=,则2ECA α∠=,由正弦定理有sin 23sin 3AE AB αα==,从而3sin 32sin 2αα=,即33(3sin 4sin )4sin cos αααα-=,所以23343(1cos )4cos 0αα---=,整理得243cos 4cos 30αα--=, …30分 解得3cos α=或cos 23α=-(舍去), 故30α=o ,60ACE ∠=o .由已知31BCEC=-=()0sin 30sin EAC EAC∠-∠,有sin(30)(31)sin EAC EAC ∠-=-∠o ,即31sin cos (31)sin 2EAC EAC EAC ∠-∠=-∠,整理得231sin cos 2EAC EAC -∠=∠,故tan 2323EAC ∠==+-,可得75EAC ∠=o, …40分 从而45E ∠=o ,45DAC DCA E ∠=∠=∠=o ,ADC ∆为等腰直角三角形.因2AC =,则1CD =.又ABC ∆也是等腰直角三角形,故2BC =,212212cos1355BD =+-⋅⋅=o ,5BD =. 故min ()5210f P BD AC =⋅=⋅=. …50分答一图1[解法二] (Ⅰ)如答一图2,连接BD 交ABC ∆的外接圆O 于0P 点(因为D 在O e 外,故0P 在BD 上).过,,A C D 分别作000,,P A P C P D 的垂线,两两相交得111A B C ∆,易知0P 在ACD ∆内,从而在111A B C ∆内,记ABC ∆之三内角分别为x y z ,,,则0180AP C y z x ∠=︒-=+,又因110B C P A ⊥,110B A P C ⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=,所以111A B C ∆∽ABC ∆. …10分设11B C BC λ=,11C A CA λ=,11A B AB λ=,则对平面上任意点M ,有 0000()()f P P A BC P D CA P C AB λλ=⋅+⋅+⋅ 011011011P A B C P D C A P C A B =⋅+⋅+⋅ 1112A B C S ∆=111111MA B C MD C A MC A B ≤⋅+⋅+⋅ ()MA BC MD CA MC AB λ=⋅+⋅+⋅ ()f M λ=, 从而 0()()f P f M ≤.由M 点的任意性,知0P 点是使()f P 达最小值的点.由点0P 在O e 上,故0,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ),()f P 的最小值 11102()A B C f P S λ∆=2ABC S λ∆=,记ECB α∠=,则2ECA α∠=,由正弦定理有sin 23sin 3AE AB αα==,从而3sin 32sin 2αα=,即33(3sin 4sin )4sin cos αααα-=,所以23343(1cos )4cos 0αα---=,整理得243cos 4cos 30αα--=, …30分 解得3cos α=或cos 23α=-(舍去),故30α=o ,60ACE ∠=o . 由已知31BCEC=-=()0sin 30sin EAC EAC∠-∠,有sin(30)(31)sin EAC EAC ∠-=-∠o ,即31sin cos (31)sin 2EAC EAC EAC ∠-∠=-∠,整理得231sin cos 2EAC EAC -∠=∠,故答一图2tan 2EAC ∠==75EAC ∠=o, …40分所以45E ∠=︒,ABC ∆为等腰直角三角形,AC =,1ABC S ∆=,因为145AB C ∠=︒,1B 点在O e 上,190AB B ∠=︒,所以11B BDC 为矩形,11B C BD ===,故λ,所以min ()21f P == …50分 [解法三] (Ⅰ)引进复平面,仍用,,A B C 等代表,,A B C 所对应的复数.由三角形不等式,对于复数12,z z ,有 1212z z z z +≥+,当且仅当1z 与2z (复向量)同向时取等号.有 PA BC PC AB PA BC PC AB ⋅+⋅≥⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,所以 ()()()()A P C B C P B A --+--()()()()A P C B C P B A ≥--+-- (1) P C A B C B P A =-⋅-⋅+⋅+⋅()()B P C A PB AC =--=⋅u u u r u u u r, 从而 PA BC PC AB PD CA ⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u rPB AC PD AC ≥⋅+⋅u u u r u u u r u u u r u u u r()PB PD AC =+⋅u u u r u u u r u u u rBD AC ≥⋅u u u r u u u r. (2) …10分(1)式取等号的条件是复数 ()()A P C B --与()()C P B A -- 同向,故存在实数0λ>,使得()()()()A P C B C P B A λ--=--, A P B AC P C Bλ--=--, 所以 arg()arg()A P B A C P C B--=--, 向量PC uuu r 旋转到PA u u u r 所成的角等于BC uuu r旋转到AB u u u r 所成的角,从而,,,P A B C 四点共圆.(2)式取等号的条件显然为,,B P D 共线且P 在BD 上.故当()f P 达最小值时P 点在ABC ∆之外接圆上,,,,P A B C 四点共圆. …20分(Ⅱ)由(Ⅰ)知min ()f P BD AC =⋅. 以下同解法一.二、[证](Ⅰ)若T 是有理数,则存在正整数,m n 使得nT m=且(,)1m n =,从而存在整数,a b ,使得 1ma nb +=. 于是11ma nb a bT a b T m m+==+=⋅+⋅ 是()f x 的周期. …10分 又因01T <<,从而2m ≥.设p 是m 的素因子,则m pm '=,m *'∈N ,从而11m p m'=⋅ 是()f x 的周期. …20分(Ⅱ)若T 是无理数,令111a T T ⎡⎤=-⎢⎥⎣⎦,则101a <<,且1a 是无理数,令21111a a a ⎡⎤=-⎢⎥⎣⎦,……111n n n a a a +⎡⎤=-⎢⎥⎣⎦,……. …30分由数学归纳法易知n a 均为无理数且01n a <<.又111n n a a ⎡⎤-<⎢⎥⎣⎦,故11n n n a a a ⎡⎤<+⎢⎥⎣⎦,即111n n n n a a a a +⎡⎤=-<⎢⎥⎣⎦.因此{}n a 是递减数列. …40分最后证:每个n a 是()f x 的周期.事实上,因1和T 是()f x 的周期,故111a T T ⎡⎤=-⎢⎥⎣⎦亦是()f x 的周期.假设k a 是()f x 的周期,则111k k k a a a +⎡⎤=-⎢⎥⎣⎦也是()f x 的周期.由数学归纳法,已证得n a 均是()f x 的周期. …50分三、[证] 必要性:假设存在{}n x 满足(ⅰ),(ⅱ),(iii ).注意到(ⅲ)中式子可化为2008111()n n k n k n k k x x a x x -++-=-=-∑,n ∈*N ,其中00x =.将上式从第1项加到第n 项,并注意到00x =得111222200820082008()()()n n n n x a x x a x x a x x +++=-+-++-L . …10分 由(ⅱ)可设lim n n b x →∞=,将上式取极限得112220082008()()()b a b x a b x a b x =-+-++-L 20081122200820081()k k b a a x a x a x ==⋅-+++∑L20081k k b a =<⋅∑,因此200811k k a =>∑. …20分充分性:假设200811k k a =>∑.定义多项式函数如下:20081()1k k k f s a s ==-+∑,[0,1]s ∈,则()f s 在[0,1]上是递增函数,且(0)10f =-<,20081(1)10k k f a ==-+>∑.因此方程()0f s =在[0,1]内有唯一的根0s s =,且001s <<,即0()0f s =. …30分下取数列{}n x 为01nkn k x s ==∑,1,2,n =L ,则明显地{}n x 满足题设条件(ⅰ),且1000101n nkn k s s x s s +=-==-∑. 因001s <<,故10lim 0n n s+→∞=,因此100000lim lim 11n n n n s s s x s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ). …40分最后验证{}n x 满足(ⅲ),因0()0f s =,即2008011kk k a s ==∑,从而200820082008101111()()nk n n k n n k k k n k n k k k k x x s a s s a sa x x +-++-===-====-∑∑∑.综上,存在数列{}n x 满足(ⅰ),(ⅱ),(ⅲ). …50分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008试题部分
第一试
一、 选择题(每小题6分,共36分) 1. 函数2
54()2x x f x x
-+=
-在(,2)-∞上的最小值是( )
(A) 0 (B) 1 (C) 2 (D) 3
2. 设[)2,4A =-,{}
240B x x ax =--≤。

若B A ⊆,则实数a 的取值范围是( ) (A) [)1,2- (B) []1,2- (C) []0,3 (D) [)0,3 3. 甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止。

设甲在每局中获胜的概率为23
,乙在每局中获
胜的概率为13
,且各局胜负相互独立。

则比赛停止时已打局数ξ的期望E ξ为( )
(A)
24181
(B) 26681
(C)
27481
(D)
670243
4. 若三个棱长均为整数(单位:cm )的正方体的表面积之和为5642cm ,则这三个正方体的体积之和为( )
(A) 7643cm 或3586cm (B) 7643cm (C) 3586cm 或3564cm (D) 3586cm
5. 方程组0
00x y z xyz xy yz xz y ++=⎧⎪
=⎨⎪+++=⎩
的有理数解(,,)x y z 的个数为( )
(A) 1 (B) 2 (C) 3 (D) 4 6. 设A B C 的A ∠、B ∠、C ∠所对的边a 、b 、c 成比例。

则sin cot cos sin cot cos A C A B C B
++
的取值范围是( )
(A) ()0,+∞
(B) 10,
2⎛

⎪ ⎪⎝

(C) 11,
2
2⎛⎫
⎪ ⎪⎝

(D) 1,2
⎛⎫
+∞ ⎪ ⎪⎝

二、 填空题(本题满分54分,每小题9分) 7. 设()f x ax b =+(a 、b 为实数),
1()()f x f x =,1()(())(1,2,)n n f x f f x n +==
若7()128381f x x =+,则a b +=__________. 8. 设()cos 22(1cos )f x x a x =-+的最小值为12
-。

则a =__________.
9. 将24个志愿者名额分配给三所学校,则每校至少有一个名额且各校名额互不相同的分配方法共有__________种.
10. 设数列{}n a 的前n 项和n S 满足()1
1,2,(1)
n n n S a n n n -+=
=+ .则通项
n a =__________.
11. 设()f x 是定义在ℜ上的函数。

若(0)2008f =,且对任意x ∈ℜ,满足
(2)()32x
f x f x +-≤⨯,(6)()632x
f x f x +-≥⨯,则(2008)f =__________.
12. 一个半径为1
的小球在一个内壁棱长为运动。

则该小球永远不可能接触到的容器内壁的面积是__________.
三、解答题(本题满分60分,每小题20分)
13. 已知函数()sin f x x =的图像与直线(0)y kx k =>有且仅有三个交点,交点的横
坐标的最大值为a 。

求证:2
cos 1sin sin 34a a a a
a
+=+
14. 解不等式
12
10
864
22log (3531)1log (1)x
x
x x x ++++<++
15. 如图1,P 是抛物线22y x =上的动点,点B 、C 在y 轴上,圆22(1)1x y -+=内
切于P B C 。

求P B C 面积的最小值。

D
E
B
图1 图2
加 试
一、(50分)如图2,给定凸四边形A B C D ,180B D ∠+∠<
,P 是平面上的动点,
令()f P PA BC PD CA PC AB =++ 。

(1)求证:当()f P 达到最小值时,P 、A 、B 、C 四点共圆;
(2)设E 是A B C 外接圆O 的 AB 上一点,满足
2
A E
A B
=,
1B C E C
=-,
1
2
E C B E C A ∠=∠,又D A 、D C 是O 的切线,AC =,求()f P 的最小值。

二、(50分)设()f x 是周期函数,T 和1是的周期且01T <<。

证明:
(1)若T 为有理数,则存在质数p ,使1p
是()f x 的周期;
(2)若T 为无理数,则存在各项均为无理数的数列{}n a 满足
()1101,2,n n a a n +>>>=
,且每个
n a ()1,2,n = 都是()f x 的周期。

三、(50分)设0k a >()1,2,,2008k = 。

证明:当且仅当2008
1
1k k a =>∑时,存在数列{}n x
满足以下条件:
(1)0=()011,2,n n x x x n +<<= ; (2)lim n n x →∞
存在;
(3)()2008
2007
111
1
1,2,n n k
n k k n k k k x x a
x a x n -+++==-=
-=∑∑ 。

相关文档
最新文档