广东省实验中学2019高二上(文科)数学期末试卷及答案
2019-2020学年广东省高二上学期期末数学试卷及答案解析
第 1 页 共 16 页2019-2020学年广东省高二上学期期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分在每小題给出的四个选项中,只有一只符合题目要求的.1.(5分)命题“∃x 0>0,x 02﹣4x 0+3<0”的否定是( ) A .∀x ≤0,x 2﹣4x +3<0 B .∃x 0≤0,x 02﹣4x 0+3<0C .∀x >0,x 2﹣4x +3≥0D .∃x 0>0,x 02﹣4x 0+3≥02.(5分)双曲线x 264−y 236=1的焦距是( )A .10B .20C .2√7D .4√73.(5分)在数列{a n }中,a 1=0,a n =3a n ﹣1+2(n ≥2),则a 3=( ) A .2B .6C .8D .144.(5分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,A =π6,B =π4,a =√6,则b =( ) A .2√3B .3√62C .3√3D .2√65.(5分)已知点P (﹣2,4)在抛物线y 2=2px (p >0)的准线上,则该抛物线的焦点坐标是( ) A .(0,2) B .(0,4) C .(2,0)D .(4,0)6.(5分)已知双曲线x 2m−y 22=1的焦点与椭圆x 24+y 2=1的焦点相同,则m =( )A .1B .3C .4D .57.(5分)“﹣1<m <3”是“方程x 2m+1+y 27−m=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件8.(5分)已知双曲线x 216−y 248=1的左、右焦点分别为F 1,F 2,点P 是该双曲线上的一点,且|PF 1|=10,则|PF 2|=( ) A .2或18B .2C .18D .49.(5分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a sin 2B =b cos A cos B ,则△ABC 的形状是( ) A .锐角三角形B .直角三角形C .钝角三角形D .不确定。
2019广东高考文科数学试卷及答案解析【word版】
2019年普通高等学校招生全国统一考试(广东卷)数学 (文科) 一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.x x212- B.x x sin 3 C.1cos 2+x D.xx 22+答案:A111:()2,(),()22(),222(), A.x x xx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为 2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 333sin ,(0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴--=+--+=+--+-===∴=∈解由得又6cos 36()3sin()3sin()3cos 3 6.66323f θππππθθθθ∴=∴-=-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 000:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,7214x x a x f x f x x a a a a a a ax x a +++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-若存在使得必须在上有解方程的两根为只能是依题意即000002574811,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a a a x a a x f x f a x f x <∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,110,()3,111,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,11),(11,1),5111),()(0,),(,1),422a a i a a f x x f x f ii a f x a a a f x <∴-+->≤--+-≤∈-<<-+--+-=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,111,,(11,1),4212525255(1)()0,0,,;222412124513)0,011,,(0,11),421775(0)()0,0,,2224124x a a x x a a f f a a x a a x x a a f f a -<<-<-+-<∈-+-->+>>--<<--<<<-+-<∈-+-->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。
2019学年广东省高二上期末文科数学试卷【含答案及解析】
2019学年广东省高二上期末文科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知命题p:∀ x ∈ R,x 2 ﹣2x+4≤0,则¬p为()A.∀ x ∈ R,x 2 ﹣2x+4≥0______________B.C.∀ x ∉ R,x 2 ﹣2x+4≤0______________D.2. 设f(x)=xe x 的导函数为f′(x),则f′(1)的值为()A.e B. e+1 C. 2e D. e+23. 已知条件p:x 2 ﹣3x+2<0;条件q:|x﹣2|<1,则p是q成立的()A.充分不必要条件______________B.必要不充分条件C.充分必要条件______________D.既不充分也不必要条件4. 已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.5. 如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系表示的图象只可能是()A. B. C.D.6. 一个几何体的三视图如图所示,则该几何体的表面积为()A.3π B. 4π C. 2π+4 D. 3π+47. 已知圆的方程为x 2 +y 2 ﹣6x﹣8y=0,设该圆内过点(﹣3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10 ___________ B.20 ___________ C.30 ___________ D.408. 已知f(x)=x 3 ﹣ax在[1,+∞)上是单调增函数,则a的取值范围是()A.(﹣∞,3 ]___________ B.(1,3) C.(﹣∞,3) D. [3,+∞)9. 若直线l:mx+ny=4和圆O:x 2 +y 2 =4没有交点,则过点(m,n)的直线与椭圆的交点个数为()A.0个 B.至多有一个 C. 1个 D. 2个10. 如图所示,过抛物线y 2 =2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线l′点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y 2 =9x B. y 2 =6x C. y 2 =3x D.11. 如图,正方体AC 1 的棱长为1,过点A作平面A 1 BD的垂线,垂足为点H,以下四个命题:①点H是△A 1 BD的垂心;②AH垂直平面CB 1 D 1③直线AH和BB 1 所成角为45°;④AH的延长线经过点C 1其中假命题的个数为()A.0 B. 1 C. 2 D. 312. 已知函数f(x)=x 3 +bx 2 +cx+d(b、a、d为常数)的极大值为f(x 1 )、极小值为f(x 2 ),且x 1 ∈ (0,1),x 2 ∈ (1,2),则的取值范围是()A.___________ B.___________ C.___________D.(5,25)二、填空题13. 已知直线ax﹣by﹣2=0与曲线y=x 2 在点P(1,1)处的切线互相垂直,则为______________ .14. 若函数f(x)=x 3 +x 2 +ax+1既有极大值也有极小值,则实数a的取值范围是______________________________ .15. 已知点F是椭圆的右焦点,点B是短轴的一个端点,线段BF的延长线交椭圆C于点D,且,则椭圆C的离心率为_________ .16. 命题p:关于x的不等式x 2 +2ax+4>0,对一切x ∈ R恒成立;命题q:函数f (x)=(3﹣2a) x 在R上是增函数.若p或q为真,p且q为假,则实数a的取值范围为___________ .三、解答题17. 已知锐角三角形ABC的内角A、B、C的对边分别为a、b、c,且a=2bsinA.(1)求B的大小;(2)若a 2 +c 2 =7,三角形ABC的面积为1,求b的值.18. 已知函数f(x)=ax 3 +bx 2 的图象经过点M(1,4),且在x=﹣2取得极值.(1)求实数a,b的值;(2)若函数f(x)在区间(m,m+1)上单调递增,求m的取值范围.19. 如图,AB是圆O的直径,C是圆O上除A、B外的一点,DC⊥平面ABC,四边形CBED为矩形,CD=1,AB=4.(1)求证:ED⊥平面ACD;(2)当三棱锥E﹣ADC体积取最大值时,求此刻点C到平面ADE的距离.20. 已知函数f(x)=x 2 ﹣lnx.(1)求曲线f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)的单调递减区间:(3)设函数g(x)=f(x)﹣x 2 +ax,a>0,若x ∈ (O,e ] 时,g(x)的最小值是3,求实数a的值.(e为自然对数的底数)21. 如图,已知椭圆C: +y 2 =1(a>1)的左、右顶点为A,B,离心率为,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线l:x=﹣分别交于M,N两点.(1)求椭圆C的方程;(2)若A为线段MS的中点,求△SAB的面积;(3)求线段MN长度的最小值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第5题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】。
广东省实验中学高二数学上学期期末考试试题 文
广东实验中学2015—2016学年(上)高二级期末考试文 科 数 学本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卷上。
2.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将答题卡收回一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合要求的.1.命题“若2x =,则2320x x -+=”的逆否命题是( )A .若2x ≠,则2320x x -+≠B .若2320x x -+=,则2x = C .若2320x x -+≠,则2x ≠ D .若2x ≠,则2320x x -+=2.“直线l 垂直于ABC △的边AB ,AC ”是“直线l 垂直于ABC △的边BC ”的 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3 .过抛物线24y x =的焦点F 的直线l 交抛物线于,A B 两点.若AB 中点M 到抛物线准线的距离为6,则线段AB 的长为( )A .6B .9C .12D .无法确定 4.圆0422=-+x y x 在点)3,1(P 处的切线方程为 ( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x5.圆心在抛物线x y 22=上,且与x 轴和抛物线的准线都相切的一个圆的方程是( )A .01222=+--+y x y xB .041222=---+y x y x C .01222=+-++y x y x D .041222=+--+y x y x6.在空间直角坐标系O xyz -中,一个四面体的顶点坐标为分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).则该四面体在xOz 平面的投影为( )A .B .C .D .7.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线平行于直线:250l x y ++=,双曲线的一个焦点在直线l 上,则双曲线方程为( )A .221205x y -=B .221520x y -=C .2233125100x y -=D .2233110025x y -=8.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥-≤+-≤-+0101205x y x y x ,则y x 的最小值是( )A .1B .4C .23D .0 9.已知a , b , c 均为直线,α, β为平面,下面关于直线与平面关系的命题: (1)任意给定一条直线a 与一个平面α,则平面α内必存在无数条与a 垂直的直线; (2)任意给定的三条直线a , b , c ,必存在与a , b , c 都相交的直线; (3)α//β,βα⊂⊂b a , ,必存在与a , b 都垂直的直线;(4)βαβαβα⊂⊂=⊥b a c , , , I ,若a 不垂直c ,则a 不垂直B .其中真命题的个数为( ) A . 1B . 2C .3D .410.已知抛物线22(0)y px p =>的焦点F 恰好是双曲线()22221x y a b a b-=>0,>0的右焦点,且两条曲线的交点的连线过点F ,则该双曲线的离心率为( ) A .2 B .2 C .2+1 D .2-111.已知抛物线方程为x y 82=,直线l 的方程为02=+-y x ,在抛物线上有一动点P 到y 轴的距离为1d ,P 到l 的距离为2d ,则21d d +的最小值为( ) A .232- B .222- C .22 D .222+PABCDE12.已知双曲线13422=-y x 的左右焦点分别为21,F F ,O 为坐标原点,P 为双曲线右支上一点,21PF F ∆的内切圆的圆心为Q ,过2F 作PQ 的垂线,垂足为B ,则OB 的长度为( )A .7B .4C .3D .2 二、填空题:本大题共4小题,每小题5分,满分20分.13.双曲线1322=-y x 的两条渐近线的夹角为 14.2015某所学校计划招聘男教师x 名,女教师y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≤-≥-6252x y x y x ,则该校招聘的教师最多是 名. 15.如图,已知⊥PA 平面ABC ,AB AC ⊥,BC AP =,︒=∠30CBA ,D 、E 分别是BC 、AP 的中点.则异面直线AC 与DE 所成角的正切值为 .16.一个透明的球形装饰品内放置了两个公共底面的圆锥如右图,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球面面积的316,则较大圆锥与较小圆锥的体积之比为___________ 三、解答题:本大题共5小题,共70分.解答须写出相应文字说明、证明过程和演算步骤.17.(满分12分) 在平面直角坐标系xoy 中,点P 到两点M ()0,3-、N ()0,3的距离之和等于4.设点P 的轨迹为C . (1) 写出轨迹C 的方程;(2) 设直线y =12x+1 与C 交于A 、B 两点, 求|AB|的长。
广东省实验中学高二上(文科)数学期末试卷及答案.doc
广东实验中学2012—201X 学年(上)高二级期末考试文 科 数 学本试卷分基础检测与能力检测两部分,共4页.满分为150分,考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷和答题卡上,并用2B 铅笔在答题卡上填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷交回.第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,xx e x ∀∈>R ”的否定是( ) A .x eR x x <∈∃0,0B .,xx e x ∀∈<R C .,xx e x ∀∈≤RD .x eR x x ≤∈∃0,0.2.设实数x 和y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .26B .24C .16D .14新$课$标$第$一$网3.抛物线22y x =的准线方程为( )A .14y =-B .18y =-C .1y =D .12y =4.“α为锐角”是“0sin >α”的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5.设双曲线)0(19222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为( ) A .4 B .3 C .2 D .16. 在空间直角坐标系中,已知点P (x ,y ,z ),给出下列四条叙述: ①点P 关于x 轴的对称点的坐标是(x ,-y ,z ) ②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z ) ③点P 关于y 轴的对称点的坐标是(x ,-y ,z ) ④点P 关于原点的对称点的坐标是(-x ,-y ,-z ) 其中正确的个数是( )A .3B .2C .1D .07.给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④8.若双曲线193622=-y x 的弦被点(4,2)平分,则此弦所在的直线方程是( ) A .02=-y x B .042=-+y x C .014132=-+y x D .082=-+y x9.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34 D .4510.椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =( )A .415B .95C .6D .711.若圆心在x 轴上、的圆O 位于y 轴左侧,且与直线0x y +=相切,则圆O 的方程是 .12.某三棱锥的三视图如图所示,该三棱锥的体积是。
2019学年广东省广州市执信等四校联考高二上期末文科数学试卷【含答案及解析】
2019学年广东省广州市执信等四校联考高二上期末文科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 若集合A={y|y=2 x },B={x|x 2 ﹣2x﹣3>0,x ∈ R},那么A∩B=()A.(0,3 ] B.[﹣1,3 ] C.(3,+∞) D.(0,﹣1)∪ (3,+∞)2. 已知命题p:∀ x ∈ R,x 2 ﹣2x+4≤0,则¬p为()A.∀ x ∈ R,x 2 ﹣2x+4≥0 B.C.∀ x ∉ R,x 2 ﹣2x+4≤0 D.3. 已知向量 =(﹣1,0), =(,),则向量与的夹角为() A. B. C. D.4. 已知函数f(x)=x 2 +a(b+1)x+a+b(a,b ∈ R),则“a=0”是“f(x)为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 ___________ D.既不充分也不必要条件5. 已知函数f(x)=sin(ωx+φ)(其中)的图象如图所示,为了得到f (x)的图象,则只需将g(x)=sin2x的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度6. 关于x的方程x 2 +x+q=0(q ∈ [0,1 ] )有实根的概率为()A. B. C. D.7. 如图所示,程序框图的输出结果是s= ,那么判断框中应填入的关于n的判断条件是()A.n≤8? B.n<8? C.n≤10? D.n<10?8. 直线x+2y﹣5+ =0被圆x 2 +y 2 ﹣2x﹣4y=0截得的弦长为()A.1 B.2 C.4 D.49. 设椭圆的两个焦点分别为F 1 、F 2 ,过F 2 作椭圆长轴的垂线交椭圆于点P,若△ F 1 PF 2为等腰直角三角形,则椭圆的离心率是()A. B. C. D.10. 一个四棱锥的底面为菱形,其三视图如图所示,则这个四棱锥的体积是()A.2 B.4 C.8 D.1211. 数列{a n }满足a 1 =2,,则a 2016 =()A.﹣2 B.﹣1 C.2 D.12. 已知函数f(x)= ,函数g(x)=3﹣f(2﹣x),则函数y=f(x)﹣g(x)的零点个数为()A.2 B.3 C.4 D.5二、填空题13. 已知变量x,y满足约束条件,则z=x﹣2y的最大值为___________ .14. 已知倾斜角为α的直线l与直线x+2y﹣3=0垂直,则=_________ .15. 已知双曲线C与双曲线有共同的渐近线,且C经过点,则双曲线C的实轴长为___________ .16. 已知直线l 1 :4x﹣3y+16=0和直线l 2 :x=﹣1,抛物线y 2 =4x上一动点P到直线l 1 的距离为d 1 ,动点P到直线l 2 的距离为d 2 ,则d 1 +d 2 的最小值为___________ .三、解答题17. 在△ ABC 中,已知A=45°,.(Ⅰ )求cosC的值;(Ⅱ )若BC=10,D为AB的中点,求CD的长.18. 已知等差数列{a n }的首项a 1 =1,公差d>0,且a 2 ,a 5 ,a 14 成等比数列.(Ⅰ )求数列{a n }的通项公式;(Ⅱ )令,求数列{b n }的前n项和S n .19. 某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85.(Ⅰ )计算甲班7位学生成绩的方差s 2 ;(Ⅱ )从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.参考公式:方差,其中.20. 如图所示,在长方体ABCD﹣A 1 B 1 C 1 D 1 中,AB=BC=2,AA 1 =4,P为线段B 1 D 1 上一点.(Ⅰ )求证:AC ⊥ BP ;(Ⅱ )当P为线段B 1 D 1 的中点时,求点A到平面PBC的距离.21. 已知二次函数f(x)=ax 2 +bx+c,满足f(0)=2,f(x+1)﹣f(x)=2x﹣1.(Ⅰ )求函数f(x)的解析式;(Ⅱ )若关于x的不等式f(x)﹣t>0在[﹣1,2 ] 上有解,求实数t的取值范围;(Ⅲ )若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求实数m的取值范围.22. 已知椭圆E:过点(0,﹣1),且离心率为.(1)求椭圆E的方程;(2)如图,A,B,D是椭圆E的顶点,M是椭圆E上除顶点外的任意一点,直线DM交x轴于点Q,直线AD交BM于点P,设BM的斜率为k,PQ的斜率为m,则点N(m,k)是否在定直线上,若是,求出该直线方程,若不是,说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。
2019-2020学年广东省广州市高二上学期期末数学试题及答案解析版
2019-2020学年广东省广州市高二上学期期末数学试题及答案解析版一、单选题 1.数列12-,14,18-,116,的一个通项公式是( )A .12n- B .(1)2n n- C .1(1)2n n+-D .1(1)2nn --【答案】B【解析】从前4项找出规律,即可得出该数列的通项公式. 【详解】()111122-=-⨯,()2211142-⨯=,()3311182--=⨯,()44111162=-⨯所以其通项公式是:(1)2nn-故选:B 【点睛】本题主要考查了利用观察法求数列通项公式,属于基础题.2.某个蜂巢里有一只蜜蜂,第一天它飞出去带回了五个伙伴,第二天六只蜜蜂飞出去各自带回五个伙伴,如果这个过程继续下去,那么第六天所有的蜜蜂归巢后蜂巢中共有蜜蜂的数量是( ) A .65只 B .56只 C .55只 D .66只【答案】D【解析】根据题意得出第n 天和第1n -天蜜蜂只数的关系,得出数列{}n a 为等比数列,根据通项公式求出即可. 【详解】设第n 天所有的蜜蜂归巢后蜂巢中共有蜜蜂n a 只,16a = 由题意可得:115n n n a a a --=+,即16nn a a -=,所以数列{}n a 为等比数列 即6n n a =所以第六天所有的蜜蜂归巢后蜂巢中共有蜜蜂的数量是666a =故选:D 【点睛】本题主要考查了等比数列的应用,属于中档题.3.已知命题p:∃,ln 20x R x x ∈+-=,命题q:∀2,2x x R x ∈≥,则下列命题中为真命题的是() A .p ∧q B .⌝p ∧q C .p ∧⌝q D .⌝p ∧⌝q【答案】C【解析】【详解】试题分析:由已知可构造函数()ln 2f x x x =+-,因为()1ln11210f +-=-<=,()2ln 222ln 2ln10f =+-==>,所以存在()1,2x ∈,使方程成立,即命题p 为真命题;又因为3x =时,有328=,239=,此时3223<,所以命题q 为假命题,则q ⌝为真,故正确答案为C.【考点】函数零点、常用逻辑用语.4.(2017新课标全国I 理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c ,若sinsin 2A Ca b A +=,则cos B =( ) A .12- B .12C. D.2【答案】B【解析】由诱导公式得sincos 22A C B+=,利用正弦定理的边化角公式以及二倍角的正弦公式得出1sin 22B =,结合二倍角的余弦公式计算即可. 【详解】sinsin =cos 2222A C B B π+⎛⎫=- ⎪⎝⎭又sinsin 2A Ca b A +=,所以sin cos sin sin 2B A B A =0,sin 0A A π<<∴≠,则1cos sin cos 2sin cos sin 222222B B B B B B =⇒=⇒= 211cos 12sin 1222B B =-=-= 故选:B 【点睛】本题主要考查了正弦定理的边化角公式,涉及诱导公式,二倍角公式,属于中档题.6.直线1l ,2l 互相平行的一个充分条件是( )A .1l ,2l 都平行于同一个平面B .1l ,2l 与同一个平面所成的角相等C .1l 平行于2l 所在的平面D .1l ,2l 都垂直于同一个平面 【答案】D【解析】由题意下列哪个选项可以推出直线1l ,2l 互相平行即可,选项A 中1l 与2l 不仅可以平行还可能相交或异面直线;选项B 中1l 与2l 不仅可以平行还可能相交或异面直线;选项C 中1l 与2l 不仅可以平行还可能异面直线;故选D 7.如图所示,一艘海轮从A 处出发,测得B 处的灯塔在海轮的正北方向20海里处,海轮按西偏南15%的方向航行了10分钟后到达C 处,此时测得灯塔在海轮的北偏东30的方向,则海轮的速度为( )A .2/分B .2海里/分C 3海里/分D 2海里/分【答案】D【解析】由正弦定理求解即可. 【详解】由题意可得:90301545BCA ∠=︒-︒-︒=︒ ,180(45105)30B ∠=︒-︒+︒=︒由正弦定理可得:sin sin AB ACBCA B =∠∠,即120sin 2102sin 22AB BAC BCA⨯⋅∠===∠1022=海里/分 故选:D 【点睛】本题主要考查了正弦定理的应用,属于中档题. 8.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .32【答案】B【解析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查. 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.9.过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于A 、B 两点,交其准线于点C ,若4AF=,,2BC BF=,且AFBF>,则此抛物线的方程为( ) A .2yx = B .22y x = C .24y x = D .28y x =【答案】C【解析】根据直角三角形的边角关系以及抛物线的性质求得60AFM ∠=︒,利用直角三角形的边角关系得出A 的坐标,代入抛物线方程,即可求出p . 【详解】过点A 作x 轴的垂线,垂足于点M ,过点B 作准线的垂线交准线于点N由抛物线的定义可知:12BNFB BC ==在直角CNB ∆中,1cos 2BN CBN BC ∠==,则60CBN ∠=︒所以60AFM ∠=︒ 又4AF=,所以sin 6023,cos602AM AF FM AF =︒==︒=则(2,23)2p A +由22122p p ⎛⎫+= ⎪⎝⎭,解得:6p =-(舍),2p = 即此抛物线的方程为24y x = 故选:C 【点睛】本题主要考查了抛物线的定义,属于中档题.10.四面体ABCD 中,AB ,BC ,BD 两两垂直,且1AB BC ==,点E 是AC 的中点,异面直线AD 与BE 所成角为θ,且cos θ=,则该四面体的体积为( )A .13B .23C .43D .83【答案】A【解析】建立空间直角坐标系,利用数量积求夹角的公式以及棱锥的体积公式求解即可. 【详解】分别以,,BC BA BD 为,,x y z 轴建立空间直角坐标系,设BD a =11(0,1,0),(0,0,0),(,,0),(0,0,)22A B E D a11(0,1,),(,,0)22AD a BE =-=cos AD BE AD BE θ===⎛⋅⋅2a =该四面体的体积为111112323⨯⨯⨯⨯= 故选:A【点睛】本题主要考查了利用向量法求线线角以及棱锥的体积公式,属于中档题. 11.以下几种说法①命题“0a ∃>,函数2()21f x ax x =+-只有一个零点”为真命题 ②命题“已知x ,y R ∈,若3x y +≠,则2x ≠或1y ≠”是真命题 ③“22x x ax +≥在[1,2]x ∈恒成立”等价于“对于[1,2]x ∈,有()2max min2()xx ax +≥”④ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,则“a b >”是“22cos A cos B <”的充要条件. 其中说法正确的序号为( ) A .①③ B .①④ C .②③ D .②④【答案】D【解析】由判别式判断①;判断其逆否命题的真假得出②的真假;取特殊值2a =判断③;由正弦定理的边化角公式,不等式的性质以及二倍角的余弦公式判断④. 【详解】当0a >时,则440a ∆=+>,则①错误;②的逆否命题“已知x ,y R ∈,若2x =且1y =,则3x y +=”为真命题,则②正确;当2a =时,满足22x x ax +≥在[1,2]x ∈恒成立,但是()2max min2)34(xx ax =<=+所以③错误;2222sin sin sin sin 12sin 12sin cos2cos2a b A B A B A B A B >⇔>⇔>⇔-<-⇔<则“a b >”是“22cos A cos B <”的充要条件,即④正确; 故选:D 【点睛】本题主要考查了判断命题的真假以及充分必要条件的证明,属于中档题.12.已知双曲线22221(0,0)x y a b a b -=>>的左、右焦点分别为1F ,2F ,过2F 且斜率为247的直线与双曲线在第一象限的交点为A ,若2121()0F F F A F A +⋅=,则此双曲线的标准方程可能为( )A .22124y x -=B .22134x y -= C .221169x y -=D .221916x y -=【答案】D【解析】由向量的加减运算和数量积的性质,可得2212AF F F c ==,由双曲线的定义可得122AF a c +=,再由三角形的余弦定理,可得35c a =,45c b =,即可得到所求方程. 【详解】因为()21210F F F A F A +⋅=, 所以()()2122120F F F A F F F A +⋅-+=得到22221AF F F =,即有2212AF F F c ==,由双曲线的定义可得122AF a c +=,根据题意,在等腰三角形12AF F 中,2124tan 7AF F ∠=-, 所以127cos 25AF F ∠=-, 即()2224422722225c c a c c c +-+=-⨯⨯,整理得35c a =,而45b c ==, 所以得到:3:4a b =,即22:9:16a b =,根据选项可知双曲线的标准方程可能为221916x y -=,故选D. 【点睛】本题考查双曲线的定义和方程、性质,考查向量数量积的性质,以及三角形的余弦定理,考查运算能力,属于中档题.二、填空题13.双曲线221412x y -=的焦点到渐近线的距离为__________.【答案】程,由点到直线的距离公式求解即可. 【详解】4c ==故双曲线的右焦点为(4,0)F0y -=则右焦点到渐近线的距离为:d ==故答案为:【点睛】本题主要考查了双曲线的基本性质以及点到直线的距离公式,属于基础题. 14.在ABC ∆中,1AB =,AC =4B π∠=,则C ∠=__________.【答案】6π【解析】由正弦定理求解即可. 【详解】由正弦定理得:1sin 1sin 2AB B C AC===,解得56C π=(舍),6C π=故答案为:6π【点睛】本题主要考查了正弦定理解三角形,属于基础题.15.已知三棱锥 A BCD -每条棱长都为1,点E ,G 分别是AB ,DC 的中点,则GE AC ⋅=__________.【答案】1-【解析】构造一个正方体,三棱锥A BCD -放入正方体中,建立坐标系利用数量积公式求解即可. 【详解】将三棱锥A BCD -放入如下图所示的正方体中,且棱长为22分别以,,OC OD OB 为,,x y z 轴222222222(,,),(,0,0),(,,0),(,,)222244442A C G E (0,02222,),(0,,)GE AC ==-- 122)(=2GE AC ∴⋅=--⨯ 故答案为:12-【点睛】本题主要考查了求空间向量的数量积,属于中档题. 16.已知数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,*n N ∈,且23n n n b a π=,记n S 为数列{}n b 的前n 项和,则2020S =__________.【答案】1-【解析】由题设条件以及等差数列的性质得出2n a n =,进而得出2cos 3n n b n π=,利用诱导公式求出32313,,k k k b b b --,即可求得2020S . 【详解】1(1)(1)n n na n a n n +=+++111n na a n n+∴-=+ ∴数列n a n ⎧⎫⎨⎬⎩⎭是等差数列,公差与首项都为121(1)nn a n a n n∴=+-⇒= 2cos3n n b n π∴=3241(32)cos 2(32)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭ 3121(31)cos 2(31)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭33cos 23k b k k k π==3231332k k k b b b --+∴=+,20203674212020(36742)101022b b ⨯-=-⨯-=-=-= ()()()1234562017201820192020202031673101022b b b b b b b b b S b ++++++++++==⨯-=-故答案为:12- 【点睛】本题主要考查了等差数列的性质,诱导公式,数列求和,属于较难题.17.已知等差数列{}n a 中,526a a -=,且1a ,6a ,21a 依次成等比数列.(1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若335n S =,求n 的值.【答案】(1)23n a n =+ (2)15n =【解析】(1)由526a a -=求出公差,由等比数列的性质求出1a ,即可得出数列{}n a 的通项公式;(2)由(1)得出数列{}n b 的通项公式,利用裂项求和法求解即可. 【详解】解:(1)设数列{}n a 的公差为d , 因为526a a -=,所以36d =,解得2d =因为1a ,6a ,21a 依次成等比数列,所以26121a a a =, 即()()211152202a a a +⨯=+⨯,解得15a =所以23n a n =+. (2)由(1)知()()1112325n n n b a a n n +==++,所以11122325n b n n ⎛⎫=- ⎪++⎝⎭, 所以1111111257792325n S n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦()525n n =+,由()352535n n =+,得15n =【点睛】本题主要考查了求等差数列的通项公式以及利用裂项求和法求数列的和,属于中档题.18.已知ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c ,若cos sin =+b a C c A .(1)求A ; (2)若a =ABC ∆面积的最大值.【答案】(1)4A π= (2)2【解析】(1)由正弦定理的边化角公式化简即可得出A ; (2)由余弦定理以及基本不等式得出三角形面积的最大值. 【详解】解:(1)由正弦定理可得:sin sin sin sin B AcosC C A =+()sin sin cos cos sin sin cos sin sin A C A C A C A C C A +=+=+∴ sin 0C ≠,cos sin A A ∴=又()0,A π∈,4A π∴=(2)1sin 24S bc A bc == 由余弦定理可得,22282cos 4a b c bc π==+- 又222b c bc +≥故(42bc ≤=+,当且仅当b c =时,等号成立.所以24S =≤所以面积最大为2. 【点睛】本题主要考查了正弦定理的边化角公式、余弦定理解三角形以及基本不等式的应用,属于中档题. 19.已知m 为实数,命题:p 方程221214x y m m -=--表示双曲线; 命题:q 函数21()lg 4f x mx x m ⎛⎫=-+⎪⎝⎭的定义域为R . (1)若命题p 为真命题,求实数m 的取值范围; (2)若命题p 与命题q 有且只有一个为真命题, 求实数m 的取值范围.【答案】(1)12m <或4m > (2)12m <或14m <≤ 【解析】(1)由双曲线的方程特点列出不等式求解即可; (2)将定义域问题转化为不等式的恒成立问题求出命题q 为真时m 的取值范围,讨论p 真q 假和p 假q 真两种情况,列出相应不等式组,求解即可得出实数m 的取值范围. 【详解】解(1)若命题p 为真命题,则()()2140m m -->, 即m 的取值范围是12m <或4m >(2)若命题q 为真,即2104mx x m -+>恒成立, 则00m >⎧⎨∆<⎩有2010m m >⎧⎨-<⎩,1m 命题p 、q 一真一假.当p 真q 假时,1421m m m ⎧<>⎪⎨⎪≤⎩或得12m < 当p 假q 真时,1421m m ⎧≤≤⎪⎨⎪>⎩得14m <≤ 1m ∴<或14m <≤【点睛】本题主要考查了根据方程表示双曲线求参数的范围以及根据命题的真假求参数的范围,属于中档题.20.在平面直角坐标系xOy 中,动点P 到点()1,0F 的距离和它到直线1x =-的距离相等,记点P 的轨迹为C . (1)求C 的方程;(2)设点A 在曲线C 上,x 轴上一点B (在点F 右侧)满足AF FB=,若平行于AB 的直线与曲线C 相切于点D ,试判断直线AD 是否过点()1,0F ?并说明理由.【答案】(1)24y x = (2)直线AD 过点(1,0)F ,理由见解析【解析】(1)由抛物线的定义求出C 的方程;(2)根据抛物线的定义表示出点,A B 的坐标,根据坐标写出直线AB 的斜率,进而得到直线l 的方程,将直线l 与抛物线方程联立,结合判别式得出1m k =,进而得出点D 的坐标,求出直线AD 的斜率,讨论21k ≠和21k =,得出直线AD 的方程,即可判断直线AD 是否过点()1,0F . 【详解】解:(1)根据抛物线的定义得,动点P 的轨迹是以()1,0F 为焦点,直线1x =-的抛物线.24y x =(2)由题设()00,A x y ,则01AF x =+,又AFFB=,故()02,0B x +令平行于AB 的直线:l y kx m =+,则02AB y k k ==-,()2,2A k k ∴-将直线:l y kx m =+代入24y x =,得2()4kx m x +=, 整理222(24)0k x km x m +-+=……①222(24)40km k m ∴∆=--=,1km ∴=当0AB k =时,直线AB 为x 轴,此时不存在平行于AB 的直线与曲线C 相切于点D 即0k ≠10m k∴=≠ 所以①可以化为222120k x x k -+=21D x k ∴=,2D y k =,212,D k k ⎛⎫∴ ⎪⎝⎭当21k ≠时2222222111AD kk k k k k k k k+===--- ()222:21kAD y k x k k∴+=--, 22:(1)1kAD y x k∴=--,过定点(1,0)F 当21k =时,:1AD x =也过点(1,0)F ,故直线AD 过点(1,0)F 【点睛】本题主要考查了利用定义求抛物线的方程以及抛物线中直线过定点问题,属于较难题. 21.如图1,在矩形ABCD中,AB =BC =E 、P分别在线段DC 、BC 上,且5DE =,152DP =,现将AED ∆沿AE 折到'AED ∆的位置,连结'CD ,'BD ,如图2(1)证明:'AE D P ⊥;(2)记平面'AD E 与平面'BCD 的交线为l .若二面角'B AE D --为23π,求l 与平面'D CE 所成角的正弦值.【答案】(1)证明见解析 (2)15【解析】(1)建立坐标系证明AE DP ⊥,再由线面垂直的判定定理以及线面垂直的性质证明'AE D P ⊥;(2)根据公理3得到平面'AD E 与平面'BCD 的交线,再根据二面角定义得到二面角 'B AE D --的平面角,建立空间直角坐标系,利用向量法求l 与平面'D CE 所成角的正弦值. 【详解】解:(1)证明:如图1,线段,DP AE 交于点O 在Rt PCD ∆中,由35DC AB ==,152DP =,2235PC DP DC =-=以点A 为坐标原点,建立直角坐标系,则(5,25AE =,3535,PD ⎛⎫=- ⎪ ⎪⎝⎭即35355250AE PD ⋅=-⨯+⨯= AE DP ∴⊥,从而有AE OD ⊥,AE OP ⊥,即在图2中有AE OD '⊥,AE OP ⊥,OD OP O '⋂=,,OD OP '⊂平面POD ' AE ∴⊥平面POD 'D P '⊂平面POD ',AE D P '∴⊥;(2)延长AE ,BC 交于点Q ,连接'D Q根据公理3得到直线'D Q 即为l ,再根据二面角定义得到23D OP π'∠=.在平面'POD 内过点O 作底面垂线,O 为原点,分别以OA 、OP 、及所作为x 轴、y 轴、z 轴建立空间直角坐标 则(0,3D '-,(1,0,0)E -,(11,0,0)Q -,(3,4,0)C -, (11,1,3D Q '=--,(2,4,0)EC =-,(1,3ED '=-, 设平面'D EC 的一个法向量为(, , )n x y z =,由24030n EC x y n ED x y z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩', 取1y =,得32,1,3n ⎛=- ⎝⎭. l ∴与平面D CE '所成角的正弦值为15cos ,n D Q n D Q n D Q '⋅'=='⋅【点睛】本题主要考查了由线面垂直证线线垂直以及利用向量法证明线面角,属于较难题.22.已知椭圆22:236C x y +=.(1)求椭圆C 的短轴长和离心率;(2)过点()2,0的直线l 与椭圆C 相交于两点M ,N ,设MN 的中点为T ,点()4,0P ,判断TP 与TM 的大小,并证明你的结论.【答案】(1)短轴长e =(2)TM TP >,证明见解析【解析】(1)由椭圆的性质求解即可;(2) 当l 为斜率k 不存在时,由直线l 方程与椭圆方程的交点求得TM ,TP 从而判断TP 与TM 的大小;当l 为斜率k 存在时,由直线l 方程与椭圆方程联立,结合韦达定理得出12x x +,12x x ,再由数量积公式以及圆的性质求解即可.【详解】解:(1)由题意可知,椭圆22:236C x y +=可变形为22:13618x y C +=6a ∴=,b =c =故短轴长为2e =(2)解:当l 为斜率k 不存在时,l 为2x =时,代入22:236C x y +=可得4y =±,此时()2,0T ,4TM ∴=,2TP =,TM TP ∴>,当l 为斜率k 存在时,设:(2)l y k x =-代入到22:236C x y +=,得2222(2)36x k x +-=()22222188360k x k x k ∴+-+-=令()11,M x y ,()22,N x y 则2122821k x x k +=+,212283621k x x k -=+,此时()114,PM x y =-,()224,PN x y =-,()()()()()()212121212444422PM PN x x y y x x k x x ∴⋅=--+=--+-- ()()()()212124422x x k x x =--+--()()()2221212142164k x x k x x k =+-++++()()()222222283618421642121k k k k k k k -++=-++++ ()()()()()222222222291424214212121k k k k k k k k k ⎡⎤-++++⎢⎥=-+⨯+++⎢⎥⎣⎦ 22654021k k --=⨯<+ 90MPN ∴∠>︒,点P 在以MN 为直径的圆内部. 所以TM TP >, 综上所述,TMTP > 【点睛】本题主要考查了椭圆的基本性质以及直线与椭圆的位置关系,属于较难题.。
19-20学年广东省高二上学期期末数学试卷 (含答案解析)
19-20学年广东省高二上学期期末数学试卷一、选择题(本大题共12小题,共60.0分)1.命题“∃x≤0,x2≥0”的否定是()A. ∀x≤0,x2≥0B. ∀x≤0,x2<0C. ∃x>0,x2>0D. ∃x<0,x2≤02.双曲线x210−y210=1的焦距为()A. 3√2B. 4√5C. 3√3D. 4√33.在数列{a n}中,a1=1,a n=1+(−1)na n−1(n≥2),则a5等于()A. 32B. 53C. 85D. 234.在△ABC中,若c=2,a=√3,∠A=π6,则sinC=()A. √33B. √32C. 13D. √225.已知点P(−2,4)在抛物线y2=2px(p>0)的准线上,则该抛物线的焦点坐标是()A. (0,2)B. (0,4)C. (2,0)D. (4,0)6.已知双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线截椭圆x24+y2=1所得弦长为4√33,则此双曲线的离心率等于()A. √2B. √3C. √62D. √67.“1<m<3”是“方程x2m−1+y23−m=1表示椭圆”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知双曲线C:x216−y248=1的左、右焦点分别为F1,F2,P为C上一点,F1Q⃗⃗⃗⃗⃗⃗⃗ =QP⃗⃗⃗⃗⃗ ,O为坐标原点,若|PF1|=10,则|OQ|=()A. 10B. 1或9C. 1D. 99.在△ABC中,cos2A2=b+c2c,则△ABC的形状为()A. 直角三角形B. 等腰三角形或直角三角形C. 正三角形D. 等腰直角三角形10. 已知直线y =kx +3与椭圆x 216+y 24=1有两个公共点,则实数k 的取值范围是( )A. (√54,+∞) B. (−∞,−√54) C. (−∞,−√54)∪(√54,+∞) D. (−√54,√54)11. 等差数列{a n }中,已知a 7>0,a 3+a 9<0,则{a n }的前n 项和S n 的最小值为( )A. S 4B. S 5C. S 6D. S 712. 已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2作平行于C 的渐近线的直线交C 于点P.若PF 1⊥PF 2,则C 的离心率为( )A. √2B. √3C. 2D. √5二、填空题(本大题共4小题,共20.0分) 13. 椭圆x 2a2+y 2b 2=1(a >b >0)的离心率为√32,短轴长为4,则椭圆的方程为______ .14. 设a >0,b >0,且a +b =1,则1a +1b +1ab 的最小值为______ .15. 如图,一辆汽车在一条水平公路上向西行驶,到A 处测得公路北侧有一山顶D 在西偏北30°方向上,行驶300m 后到达B 处,测得此山顶在西偏北75°方向上,仰角为30°,则此山的高度CD =________m .16. 已知抛物线C :y 2=4x ,直线l 与抛物线C 交于A ,B 两点,若线段AB 的中点坐标为(2,2),则直线l 的方程为______ .三、解答题(本大题共6小题,共70.0分)17. 已知命题p :(x +2)(x −6)≤0,q :2−m ≤x ≤2+m .(Ⅰ)若m =5,“p 或q ”为真命题,“¬p ”为真命题,求实数x 的取值范围; (Ⅱ)若q 是p 的充分不必要条件,求实数m 的取值范围.18. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,且△ABC 的面积为10√3,a +b =13,∠C =60°,求这个三角形的各边长.19. 已知抛物线C :x 2=8y 的焦点为F ,直线l 与抛物线C 交于M ,N 两点.(1)若直线l 的方程为y =x +3,求|MF|+|NF|的值;(2)若直线l 的斜率为2,l 与y 轴的交点为P ,且MP⃗⃗⃗⃗⃗⃗ =2NP ⃗⃗⃗⃗⃗⃗ ,求|MN|.20. 已知数列{a n }的前n 项和为S n ,且满足2a n =S n +1(n ∈N ∗)(1)求数列{a n }的通项公式;(2)若b n =(2n +1)⋅a n ,求数列{b n }的前n 项和T n .21.如图,在四棱锥P−ABCD中,底面ABCD是边长为2的菱形,PD⊥平面ABCD,∠PAD=∠DAB=60°,E为AB的中点.(1)证明:PE⊥CD.(2)求二面角A−PE−C的余弦值.22.设椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=12,左顶点肘(−a,0)到直线xa+yb=1的距离d=8√217.(1)求C的方程;(2)设直线l:y=kx+m与C相交于A,B两点,与x轴,y轴分别交于P,Q两点,O为坐标,求△OPQ面积的取值范围.原点,若直线OA,OB的斜率之积为−34-------- 答案与解析 --------1.答案:B解析:本题考查命题的否定,全称量词命题与存在量词命题的否定关系,是基础题. 直接利用存在量词命题的否定是全称量词命题,写出结果即可. 解:因为存在量词命题的否定是全称量词命题,所以,命题“∃x ≤0,使得x 2≥0”的否定是∀x ≤0,x 2<0. 故选B .2.答案:B解析:解:双曲线x 210−y 210=1中,a 2=10,b 2=10,∴c 2=a 2+b 2=20. ∴c =2√5, ∴2c =4√5.双曲线的焦距为:4√5. 故选:B . 双曲线x 210−y 210=1中,a 2=10,b 2=10,求出c ,从而得到焦距2c . 本题考查双曲线的简单性质,确定c 是关键.3.答案:D解析:本题考查数列的递推关系式的应用,考查计算能力. 利用数列的递推关系式,求出前5项即可. 解:数列{a n }中,a 1=1,a n =1+(−1)n a n−1(n ≥2),则a2=1+1=2,a3=1+−12=12,a4=1+112=3,a5=1+−13=23.故选:D.4.答案:A解析:解:在△ABC中,由于:c=2,a=√3,∠A=π6,利用正弦定理:asinA =csinC,解得:sinC=2⋅1 2√3=√33,故选:A.直接利用正弦定理和特殊角的三角函数的值求出结果.本题考查的知识要点:正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.5.答案:C解析:本题考查抛物线的简单几何性质,抛物线的焦点坐标及准线方程,考查计算能力,属于基础题.由题意求得抛物线方程,求得焦点坐标,即可求解.解:由P(−2,4)在抛物线y2=2px(p>0)的准线上,即−2=−p2,则p=4,故抛物线的焦点坐标为:(2,0),故选:C.6.答案:B解析:本题考查椭圆以及双曲线的简单性质的应用,考查转化思想以及计算能力,属于基础题. 求出双曲线的渐近线方程,与椭圆的方程联立,利用弦长转化求解即可. 解:设双曲线x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线为bx −ay =0,则:{bx −ay =0x 24+y 2=1, 消去y 可得:x =√a 2+4b 2,y =√a 2+4b 2, 一条渐近线截椭圆x 24+y 2=1所得弦长为4√33,可得:4a 2+4b 2a 2+4b 2=(2√33)2=43,可得2a 2=b 2=c 2−a 2,解得e =ca =√3. 故选:B .7.答案:B解析:本题主要考查充分条件和必要条件的判断,根据椭圆的定义和方程是解决本题的关键,属于基础题. 根据椭圆的定义和性质,利用充分条件和必要条件的定义进行判断即可. 解:若方程x 2m−1+y 23−m =1表示椭圆, 则满足{m −1>03−m >0m −1≠3−m ,即{m >1m <3m ≠2,即1<m <3且m ≠2,此时1<m <3成立,即必要性成立, 当m =2时,满足1<m <3,但此时方程x 2m−1+y 23−m =1等价为x 21+y 21=1为圆,不是椭圆,不满足条件,即充分性不成立, 故“1<m <3”是“方程x 2m−1+y 23−m =1表示椭圆”的必要不充分条件,故选B .8.答案:D解析:本题考查双曲线的简单性质的应用,考查转化思想以及计算能力. 利用双曲线的定义,结合已知条件,转化求解|OQ|即可.解:双曲线C :x 216−y 248=1可得a =4,b =4√3,c =8,c −a =4,由双曲线的定义可知:||PF 1|−|PF 2||=2a =8, 因为|PF 1|=10,所以|PF 2|=18或|PF 2|=2(舍去), P 为C 上一点,F 1Q ⃗⃗⃗⃗⃗⃗⃗ =QP ⃗⃗⃗⃗⃗ ,所以Q 为线段PF 1的中点, 所以|OQ|=12|PF 2|=9. 故选:D .9.答案:A解析:本题考查三角形形状的判断,考查正弦定理与两角和的正弦的应用,属于中档题. 解:在△ABC 中,∵cos 2A2=1+cosA 2=b+c 2c=b 2c +12, ∴cosA 2=sinB 2sinC,∴sinB =sin(A +C)=sinAcosC +cosAsinC =cosAsinC , ∴sinAcosC =0, ∵sinA >0, ∴cosC =0,C =π2, ∴△ABC 的形状是直角三角形, 故选A .10.答案:C解析:本题主要考查了直线与椭圆的位置关系的应用,解题的关键是熟练掌握直线与椭圆直线与椭圆的位置关系的计算,根据已知及直线与椭圆的位置关系的计算,求出实数k 的取值范围.解:由{y =kx +3,x 216+y 24=1得(4k 2+1)x 2+24kx +20=0, 当Δ=16(16k 2−5)>0,即k >√54或k <−√54时,直线和椭圆有两个公共点.故选C .11.答案:C解析:利用等差数列通面公式推导出a 6<0.a 7>0,由此能求出{a n }的前n 项和S n 的最小值.本题考查数列的前n 项和的最小值的求法,考查等差数列、等比数列的性质等基础知识,考查运算求解能力,是基础题.解:∵等差数列{a n }中,a 3+a 9<0,∴a 3+a 9=2a 6<0, 即a 6<0.又a 7>0,∴{a n }的前n 项和S n 的最小值为S 6. 故选:C .12.答案:D解析:本题考查求双曲线的离心率,考查计算能力,注意解题方法的积累,属于中档题. 设P(x,y),通过联立直线PF 2的方程、直线PF 1的方程及双曲线方程,计算即可得出答案. 解:如图,设P(x,y),根据题意可得F 1(−c,0)、F 2(c,0),双曲线的渐近线为y=bax,直线PF2的方程为y=ba(x−c),①即直线PF1的方程为y=−ab(x+c),②又点P(x,y)在双曲线上,∴x2a2−y2b2=1,③联立①③,得x=a2+c22c,联立①②,得x=b2−a2a2+b2×c=b2−a2c,∴a2+c22c =b2−a2c,即a2+a2+b2=2b2−2a2,∴b2=4a2,∴e=ca=√c2a2=√a2+b2a2=√5a2a2=√5.故选D.13.答案:x216+y24=1解析:解:椭圆x2a2+y2b2=1(a>b>0)的离心率为√32,短轴长为4,即有b=2,e=ca =√32,a2−b2=c2,解得a=4,c=2√3,则椭圆方程为x216+y24=1.故答案为:x216+y24=1.由题意可得b=2,e=ca =√32,a2−b2=c2,解方程可得a=4,进而得到椭圆方程.本题考查椭圆的方程和性质,主要椭圆的离心率的运用,考查运算能力,属于基础题.14.答案:8解析:解:∵a>0,b>0,且a+b=1,则1a+1b+1ab=2ab≥2(a+b2)2=8,当且仅当a=b=12时取等号.故答案为:8.a>0,b>0,且a+b=1,可得1a +1b+1ab=2ab,再利用基本不等式的性质即可得出.本题考查了基本不等式的性质,属于基础题.15.答案:50√6解析:解:由题意可知∠BAC=30°,∠ABC=180°−75°=105°,AB=300,∠CBD=30°,在△ABC中,由三角形的内角和定理可知∠ACB=45°,由正弦定理得:,即√22=BC12,解得BC=150√2.在Rt△BCD中,tan∠CBD=CDBC =√33,∴CD=√33BC=50√6.故答案为50√6.在△ABC中根据正弦定理计算BC,在△BCD中,根据锐角三角函数的定义计算CD.本题考查了正弦定理解三角形,属于基础题.16.答案:x−y=0解析:解:设A(x1,y1),B(x2,y2),由中点坐标公式可得,y1+y2=4,则y12=4x1,y22=4x2,两式相减可得(y1−y2)(y1+y2)=4(x1−x2),∴k AB=1,∴直线AB的方程为y−2=1×(x−2)即x−y=0.故答案为:x−y=0.设A(x1,y1),B(x2,y2),则y12=4x1,y22=4x2,两式相减,可求直线AB的斜率,进而可求直线AB 的方程本题考查直线与抛物线的位置关系的应用,考查抛物线的性质,考查运算求解能力,解题时要认真审题,注意韦达定理的灵活运用.属于基础题.17.答案:解:对于p:由(x+2)(x−6)≤0,解得−2≤x≤6,(Ⅰ)当m=5时,q:−3≤x≤7,∵“p或q”为真命题,“¬p”为真命题,∴p假q真,由{x<−2或x>6−3≤x≤7,得−3≤x<−2或6<x≤7,∴实数x的取值范围为[−3,−2)∪(6,7].(Ⅱ)设A=[−2,6],B=[2−m,2+m],∵q是p的充分不必要条件,∴B⊊A.当B=⌀时,2−m>2+m,解得m<0,当B≠⌀时,∴{2−m≤2+m2−m≤−22+m≥6,得m≥4,∴实数m的取值范围为(−∞,0)∪[4,+∞).解析:本题考查了复合命题的真假判断方法、充要条件、集合之间的关系、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.对于p:由(x+2)(x−6)≤0,解得−2≤x≤6,(Ⅰ)当m=5时,q:−3≤x≤7.由“p或q”为真命题,“¬p”为真命题,可得p假q真,解出即可.(Ⅱ)设A=[−2,6],B=[2−m,2+m],由于q是p的充分不必要条件,可得B⊊A.分类讨论:当B=⌀时,当B≠⌀时,即可得出.18.答案:解:∵△ABC中,S=12ab⋅sin C,∴10√3=12absin60°,即ab=40,又a+b=13,∴解得:a=5,b=8或a=8,b=5,∴c2=a2+b2−2abcos C=49,∴解得:c=7.故三角形三边长为a =5 cm ,b =8 cm ,c =7 cm 或a =8 cm ,b =5 cm ,c =7 cm .解析:由已知及三角形面积公式可求ab =40,结合a +b =13,可得a ,b 的值,利用余弦定理可求c ,从而得解.本题主要考查了三角形面积公式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.19.答案:(1)设M(x 1,y 1),N(x 2,y 2),联立{x 2=8y y =x +3,整理得y 2−14y +9=0,则y 1+y 2=14, 因为M ,N 在抛物线上,所以|MF|+|NF|=y 1+2+y 2+2=18; (2)设P(0,t),则直线l 的方程为y =2x +t , 联立{x 2=8y y =2x +t ,整理得x 2−16x −8t =0,则x 1+x 2=16,x 1x 2=−8t , 由Δ=162+32t >0可求出t >−8,又MP ⃗⃗⃗⃗⃗⃗ =2NP ⃗⃗⃗⃗⃗⃗ ,所以点N 为线段MP 的中点,所以x 1=2x 2, 从而可求出x 1=323,x 2=163,此时−8t =5129,t =−649>−8,计算可知|MN|=√1+k 2|x 1−x 2|=16√53.解析:本题考查抛物线的性质及几何意义、直线与抛物线的位置关系,属于中档题.(1)设M(x 1,y 1),N(x 2,y 2),联立{x 2=8yy =x +3,整理得y 2−14y +9=0,利用韦达定理和抛物线的定义求解;(2)设P(0,t),则直线l 的方程为y =2x +t ,联立{x 2=8yy =2x +t ,整理得x 2−16x −8t =0,利用韦达定理,结合MP ⃗⃗⃗⃗⃗⃗ =2NP⃗⃗⃗⃗⃗⃗ ,即x 1=2x 2,由弦长公式求解|MN|. 20.答案:解:(1)当n =1时,2a 1=S 1+1=a 1+1,解得a 1=1.n ≥2时,2a n−1=S n−1+1,可得:2a n −2a n−1=a n ,可得a n =2a n−1.. 数列{a n }是首项为1,公比为2的等比数列,a n =2n−1.(2)b n =(2n +1)⋅a n =(2n +1)⋅2n−1.∴数列{b n }的前n 项和T n =3×1+5×2+7×22+⋯+(2n +1)⋅2n−1. 2T n =3×2+5×22+⋯+(2n −1)⋅2n−1+(2n +1)⋅2n , ∴−T n =3+2×(2+22+⋯+2n−1)−(2n +1)⋅2n=1+2×2n −12−1−(2n +1)⋅2n ,可得:T n =(2n −1)⋅2n +1.解析:(1)当n =1时,2a 1=S 1+1=a 1+1,解得a 1.n ≥2时,2a n−1=S n−1+1,可得:a n =2a n−1..利用等比数列的通项公式可得a n .(2)b n =(2n +1)⋅a n =(2n +1)⋅2n−1.利用错位相减法即可得出.本题考查了数列递推关系、等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.21.答案:证明:(1)连结DE ,BD ,∵四边形ABCD 是菱形,且∠DAB =60°,E 为AB 的中点, ∴DE ⊥AB ,∵PD ⊥平面ABCD ,∴PD ⊥AB , 又DE ∩PD =D ,∴AB ⊥平面PDE , ∴AB ⊥PE ,∵AB//CD ,∴PE ⊥CD . 解:(2)设AC ,BD 交点为O ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,如图,则P(−1,0,2√3),A(0,−√3,0),E(12,−√32,0),C(0,√3,0),AP ⃗⃗⃗⃗⃗ =(−1,√3,2√3),AE ⃗⃗⃗⃗⃗ =(12,√32,0),PC ⃗⃗⃗⃗⃗ =(1,√3,−2√3),CE ⃗⃗⃗⃗⃗ =(12,−3√32,0), 设平面APE 的法向量n⃗ =(x,y ,z), 则{n ⃗ ⋅AP⃗⃗⃗⃗⃗ =−x +√3y +2√3z =0n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =12x +√32y =0,取z =1,得n ⃗ =(√3,−1,1), 设平面PCE 的法向量m⃗⃗⃗ =(x,y ,z), 则{m ⃗⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ =x +√3y −2√3z =0m⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =12x −3√32z =0,取y =1,得m ⃗⃗⃗ =(3√3,1,2),设二面角A −PE −C 的平面角为θ,由图知θ为钝角, ∴cosθ=−|n ⃗⃗ ⋅m ⃗⃗⃗ ||n ⃗⃗ |⋅|m ⃗⃗⃗ |=√5⋅√32=−√104. ∴二面角A −PE −C 的余弦值为−√104.解析:(1)连结DE ,BD ,推导出DE ⊥AB ,PD ⊥AB ,从而AB ⊥平面PDE ,进而AB ⊥PE ,由此能证明PE ⊥CD .(2)设AC ,BD 交点为O ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,利用向量法能求出二面角A −PE −C 的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.22.答案:解:(1)由e =12,得c =12a ,又b 2=a 2−c 2,所以b =√32−a .由左顶点M(−a,0)到直线xa +yb =1,即bx +ay −ab =0的距离d =8√217, 得√a 2+b 2=8√217,即√a 2+b2=8√217, 把b =√32−a 代入上式,解得a =4,所以b =2√3,c =2.所以椭圆C 的方程为x 216+y 212=1. (2)设A(x 1,y 1),B(x 2,y 2),将直线AB 的方程y =kx +m(k ≠0)与椭圆方程联立,得{x 216+y 212=1,y =kx +m,即(3+4k 2)x 2+8kmx +4m 2−48=0, 则Δ=48(16k 2+12−m 2). 所以x 1+x 2=−8km3+4k 2,x 1x 2=4m 2−483+4k 2.因为k OA⋅k OB=−34⇒34x1x2+y1y2=0.所以(34+k2)x1x2+km(x1+x2)+m2=0.所以4m2−483+4k2(34+k2)−8k2m23+4k2+m2=0.整理得m2=8k2+6,此时Δ>0,又点P(−mk,0),Q(0,m),所以S▵OPQ=12⋅|m|⋅|mk|=12⋅m2|k|=4k2+3|k|=4|k|+3|k|≥4√3,(当且仅当k2=34,取“=”)综上所述,△OPQ面积的取值范围是[4√3,+∞).解析:本题主要考查直线与椭圆位置关系,椭圆综合应用题,属困难题.(1)根据左顶点(−a,0)到直线xa+yb=1距离公式得√a2+b2=8√217,把b=√32−a代入上式即可求得椭圆方程;(2)直线l与椭圆联立,用k把△OPQ面积表示出来,然后利用基本不等式即可求得面积的范围.。
2019学年广东省高二上学期期末文科数学试卷【含答案及解析】
2019学年广东省高二上学期期末文科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R 2 如下,其中拟合效果最好的模型是()A.模型1的相关指数R 2 为0.98 B.模型2的相关指数R 2 为0.80C.模型3的相关指数R 2 为0.50 D.模型4的相关指数R 2 为0.252. 数列,,,,…的第10项是()A. B. C. D.3. 下列有关命题的说法正确的是()A.命题“若x 2 =1,则x=1”的否命题为:“若x 2 =1,则x≠1”B.若p ∨ q 为真命题,则p,q均为真命题C.命题“存在x ∈ R,使得x 2 +x+1<0”的否定是:“对任意x ∈ R,均有x 2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题4. 工人月工资(元)依劳动生产率(千元)变化的回归直线方程为 =60+90x,下列判断正确的是()A.劳动生产率为1000元时,工资为50元B.劳动生产率提高1000元时,工资提高150元C.劳动生产率提高1000元时,工资提高90元D.劳动生产率为1000元时,工资为90元5. 设△ ABC 的角A,B,C的对边分别为a,b,c,若a=2,c=4,B=60°,则b等于()A.28 B.2 C.12 D.26. 曲线y=xlnx在点(1,0)处的切线方程是()A.y=x﹣1 B.y=x+1 C.y=2x﹣2 D.y=2x+27. m=0是方程x 2 +y 2 ﹣4x+2y+m=0表示圆的()条件.A.充分不必要 B.必要不充分C.充要 ___________ D.既不充分也不必要8. 用反证法证明“若a+b+c<3,则a,b,c中至少有一个小于1”时,“假设”应为()A.假设a,b,c至少有一个大于1 B.假设a,b,c都大于1C.假设a,b,c至少有两个大于1 D.假设a,b,c都不小于19. 在下列函数中,最小值是2的是()A.(x ∈ R且x≠0) B.C.y=3 x +3 ﹣x (x ∈ R) ___________ D.)10. 设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是()A. ________ B.C. D.11. 数列{a n }满足:a 1 =2,a n+1 = (n ∈ N * )其前n项积为T n ,则T 2014 =()A.﹣6 B.﹣ C. D.612. 椭圆C的两个焦点分别是F 1 ,F 2 ,若C上的点P满足,则椭圆C的离心率e的取值范围是()A. _________________ B.C. _________ D.或二、填空题13. 双曲线4x 2 ﹣y 2 =16的渐近线方程是___________ .14. 在等差数列a n 中,若a 3 +a 4 +a 5 +a 6 +a 7 =450,则a 2 +a 8=___________ .15. 设a>0,b>0,且a+b=1,则 + 的最小值为___________ .16. 设x,y满足约束条件,则目标函数z=x+y的最大值为___________ .三、解答题17. 在△ ABC 中,内角A,B,C的对边分别为a,b,c,且bsinA= a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.18. 在对人们休闲方式的一次调查中,共调查120人,其中女性70人、男性50人,女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.(Ⅰ )根据以上数据建立一个2×2的列联表:(Ⅱ )休闲方式与性别是否有关?参考数据:参考公式:随机变量K 2 = .19. 已知命题P:函数f(x)=log a x在区间(0,+∞)上是单调递增函数;命题Q:不等式(a﹣2)x 2 +2(a﹣2)x﹣4<0对任意实数x恒成立.若P ∨ Q 是真命题,且P ∧ Q为假命题,求实数a的取值范围.20. 已知{a n }为等差数列,且a 1 +a 3 =8,a 2 +a 4 =12.(Ⅰ )求{a n }的通项公式(Ⅱ )记{a n }的前n项和为S n ,若a 1 ,a k ,S k+2 成等比数列,求正整数k 的值.21. 已知a为实数,f(x)=(x 2 ﹣4)(x﹣a).(1)求导数f′(x);(2)若f′(﹣1)=0,求f(x)在[﹣2,2 ] 上的最大值和最小值;(3)若f(x)在(﹣∞,﹣2)和(2,+∞)上都是递增的,求a的取值范围.22. 过直角坐标平面xOy中的抛物线y 2 =2px(p>0)的焦点F作一条倾斜角为的直线与抛物线相交于A、B两点.(1)求直线AB的方程;(2)试用p表示A、B之间的距离;(3)当p=2时,求∠ AOB 的余弦值.参考公式:(x A 2 +y A 2 )(x B 2 +y B 2 )=x A x B [x A x B +2p(x A +x B )+4p 2 ] .参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。
2019学年广东省高二上学期期末考试文科数学试卷【含答案及解析】
2019学年广东省高二上学期期末考试文科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 命题“若,则”的逆否命题是(_________ )A.若,则 B.若,则C.若,则 D.若,则2. “直线垂直于的边,”是“直线垂直于的边”的(________ )A.充分非必要条件____________________________ B.必要非充分条件C.充要条件 D.既非充分也非必要条件3. 过抛物线的焦点的直线交抛物线于两点.若中点到抛物线准线的距离为6,则线段的长为(_________ )A._________________________________ B._________________________________ C.________________________ D.无法确定4. 圆在点处的切线方程为 (_________ )A._________ B.C._________ D.5. 圆心在抛物线上,且与x轴和抛物线的准线都相切的一个圆的方程是(___________ )A. ____________________ B.C. ____________________ D.6. 在空间直角坐标系中,一个四面体的顶点坐标为分别为,,,.则该四面体在平面的投影为(_________ )7. 已知双曲线的一条渐近线平行于直线,双曲线的一个焦点在直线上,则双曲线方程为(_________ )A ._________B .___________C .________D .8. 已知变量满足约束条件,则的最小值是(___________ )A.1___________________________________ B.___________________________________ C.___________________________________ D.09. 已知a, b, c均为直线, , 为平面,下面关于直线与平面关系的命题:(1)任意给定一条直线a与一个平面,则平面内必存在无数条与a垂直的直线;(2)任意给定的三条直线a, b, c,必存在与a, b, c都相交的直线;(3) // ,,必存在与a, b都垂直的直线;(4),若a不垂直c,则a不垂直B.其中真命题的个数为()A. 1___________________ B. 2 ___________ C.3 ______________ D.410. 已知抛物线的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过点F,则该双曲线的离心率为(________ )A. _________ B.2 ___________ C.+1____________________ D.-111. 已知抛物线方程为,直线的方程为,在抛物线上有一动点P到轴的距离为,P到的距离为,则的最小值为(________ )A. ________ B. ________ C.________ D.12. 已知双曲线的左右焦点分别为,O为坐标原点,P为双曲线右支上一点,的内切圆的圆心为Q,过作PQ的垂线,垂足为B,则OB的长度为(_________ )A.____________________________ B.4 ______________ C.3______________ D.2二、填空题13. 双曲线的两条渐近线的夹角为________________________14. 2015某所学校计划招聘男教师名,女教师名,和须满足约束条件,则该校招聘的教师最多是______________ 名.15. 如图,已知平面,,, ,、分别是、的中点则异面直线与所成角的正切值为____________________________ .16. 一个透明的球形装饰品内放置了两个公共底面的圆锥如右图,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球面面积的,则较大圆锥与较小圆锥的体积之比为___________三、解答题17. 在平面直角坐标系中,点到两点M 、N 的距离之和等于4.设点的轨迹为C.(1)写出轨迹C的方程;(2)设直线y= x+1 与C交于、两点,求|AB|的长。
广东省2019-2020学年第一学期高二期末考试数学试题及答案
(1)当 a = 3 时,若 p 为真命题,求 m 的取值范围;
(2)当 a 0 时,若 p 为假命题是 q 为真命题的充分不必要条件,求 a 的取值范围.
18.
ABC 的内角
A,B
,C
的对边分别为 a , b
, c ,已知 b
=
2a
,
c2 a2
=1+ 4
3 sin C .
(1)求 C ;
(2)若 c = 2 7 ,求 ABC 的面积.
6
4
()
A. 2 3
B. 3 6 2
C. 3 3
D. 2 6
5. 已知点 P (−2, 4) 在抛物线 y2 = 2 px ( p 0) 的准线上,则该抛物线的焦点坐标是( )
A. (0, 2)
B. (0, 4)
C. (2,0)
D. (4,0)
6. 已知双曲线 x2 − y2 = 1 的焦点与椭圆 x2 + y2 = 1的焦点相同,则 m = ( )
广东省 2019~202分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150 分.考试时间 120 分钟. 2. 请将各题答案填写在答题卡上. 3. 本试卷主要考试内容:人教 A 版必修 5,选修 2—1.
第Ⅰ卷 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项符合题目 要求的.
m2
4
A. 1
B. 3
C. 4
D. 5
1
7. “ −1 m 3 ”是“方程 x2 + y2 = 1表示椭圆”的( ) m+1 7−m
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
2019-2020学年广东省高二上学期期末数学试及答案
2019-2020学年广东省高二上学期期末数学试及答案一、单选题1.命题“00x ∃>,200430x x -+<”的否定是( ) A .0x ∀≤,200430x x -+< B .0x ∀>,2430x x -+≥ C .00x ∃≤,200430x x -+≥ D .00x ∃>,200430x x -+≥【答案】B【解析】本题中所给的命题是一个特称命题,其否定是一个全称命题,按规则写出其否定即可. 【详解】解:命题“00x ∃>,200430x x -+<”是特称命题, 故其否定为:0x ∀>,2430x x -+≥ 故选:B 【点睛】本题考查命题的否定,正确解答本题,关键是掌握住命题的否定的定义及书写规则,对于两特殊命题特称命题与全称命题的否定,注意变换量词,属于基础题.2.双曲线2216436x y -=的焦距是()A .10B .20C .D .【答案】B【解析】双曲线的方程得8a =,6b =,可求10c ==,即可求出焦距.解:双曲线2216436x y -=中8a =,6b =,10c ∴==, 220c ∴=.故选:B . 【点睛】本题考查的重点是双曲线的几何性质,解题的关键是掌握c ,属于基础题.3.在数列{}n a 中,10a =,()1322n n a a n -=+≥,则3a =( ) A .2 B .6 C .8 D .14【答案】C【解析】根据数列的递推公式求出2a ,即可求得3a . 【详解】解:因为10a =,132n n a a -=+, 所以21322a a =+=, 则32328a a =+=. 故选:C 【点睛】本题考查利用递推公式求数列的项的问题,属于基础题. 4.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,6A π=,4B π=,a =b =()A .BC .D .【解析】直接利用正弦定理得到sin sin a Bb A=,代入数据计算得到答案. 【详解】根据正弦定理sin sin a b A B =,所以sin 21sin 2a Bb A===.故选:A 【点睛】本题考查了正弦定理,意在考查学生的计算能力. 5.已知点()2,4P -在抛物线()220y px p =>的准线上,则该抛物线的焦点坐标是( ) A .()0,2 B .()0,4 C .()2,0 D .()4,0【答案】C【解析】首先表示出抛物线的准线,根据点()2,4P -在抛物线的准线上,即可求出参数p ,即可求出抛物线的焦点. 【详解】 解:抛物线()220ypx p =>的准线为2p x =-因为()2,4P -在抛物线的准线上22p∴-=- 4p ∴=28y x ∴=故其焦点为()2,0故选:C 【点睛】本题考查抛物线的简单几何性质,属于基础题.6.已知双曲线2212x y m -=的焦点与椭圆2214x y +=的焦点相同,则m =( ) A .1 B .3 C .4 D .5【答案】A【解析】由椭圆的方程可得焦点坐标,根据双曲线的性质即可得m 的值. 【详解】在椭圆2214x y +=中,2a =,1b =,c =即椭圆的焦点坐标为(),∴双曲线2212x y m -=的焦点为(),∴23m +=,解得1m =, 故选:A. 【点睛】本题主要考查椭圆的焦点坐标以及双曲线的焦点坐标,属于中档题.7.“13m -<<”是“方程22117x y m m +=+-表示椭圆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】方程22117x y m m +=+-表示椭圆解得13m -<<或37m <<,根据范围大小判断得到答案. 【详解】因为方程22117x ym m +=+-表示椭圆,所以107017m m m m +>⎧⎪->⎨⎪+≠-⎩,解得13m -<<或37m <<.故“13m -<<”是“方程22117x y m m +=+-表示椭圆”的充分不必要条件. 故选:A 【点睛】本题考查了充分不必要条件,意在考查学生的推断能力.8.已知双曲线2211648x y -=的左、右焦点分别为12,F F ,点P 是该双曲线上的一点,且110PF =,则2PF =( ) A .2或18 B .2C .18D .4【答案】C【解析】首先根据1PF a c <+可判断出点P 在该双曲线左支上,再根据双曲线的定义即可得结果. 【详解】在双曲线2211648x y -=中,4a =,b =8c =,因为11012PF a c =<+=,所以点P 在该双曲线左支上,则212241018PF a PF =+=⨯+=,故选:C. 【点睛】本题主要考查了双曲线的定义,判断出点P 的位置是解题的关键,属于中档题.9.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos cos a B b A B =,则ABC ∆的形状是()A .锐角三角形B .直角三角形C .钝角三角形D .不确定【答案】B【解析】根据正弦定理得到2sin sin sin cos cos A B B A B =,化简得到()sin cos 0B A B -+=,计算得到答案. 【详解】2sin cos cos a B b A B =,所以2sin sin sin cos cos A B B A B =,所以()sin sin sin cos cos 0B A B A B -=,即()sin cos 0B A B -+=. 因为0A π<<,0B π<<,所以2A B π+=,故ABC ∆是直角三角形. 故选:B 【点睛】本题考查了正弦定理和三角恒等变换,意在考查学生对于三角公式的综合应用. 10.直线l :2y kx =+与椭圆C :2212x y +=有公共点,则k 的取值范围是( )A .22⎡-⎢⎣⎦B .6,,22⎛⎡⎫-∞-+∞ ⎪⎢ ⎪⎝⎦⎣⎭C .⎡⎣D .(),6,⎡-∞+∞⎣【答案】B【解析】联立直线与曲线方程消元,利用根的判别式求出参数的取值范围. 【详解】解:联立直线与椭圆方程得22212y kx x y =+⎧⎪⎨+=⎪⎩消去y 得()2212860k xkx +++=二次项系数2121k +≥因为直线l :2y kx =+与椭圆C :2212x y +=有公共点, ()()22841260k k ∴∆=-⨯+⨯≥解得k ≥或k ≤即6,,k ⎛⎡⎫∈-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭故选:B 【点睛】本题考查直线与椭圆的位置关系求参数的取值范围,属于基础题.11.已知等差数列{}n a 的前n 项和n S 有最小值,且111210aa -<<,则使得0n S >成立的n 的最小值是( ) A .11 B .12 C .21 D .22【答案】D【解析】由题意可知公差0d >,又111210a a -<<,故120a >,110a <,且11120a a +>,根据前n 项和公式及下标和公式,可得其220S >,21S 0<即可得解.【详解】解:由题意可得等差数列{}n a 的公差0d >.因为111210a a -<<,所以120a >,110a <,所以11120a a +>,则()()1121211122221102a a a a S +==+>,2111S 210a =<.故使得0n S >成立的n 的最小值是22.故选:D 【点睛】本题考查等差数列的性质及前n 项和公式,属于基础题.12.双曲线()222210,0x y a b a b -=>>的左、右焦点分别为1F ,2F ,渐近线分别为1l ,2l ,过点1F 且与1l 垂直的直线l 交1l 于点P ,交2l 于点Q ,若12PQ F P =,则双曲线的离心率为( ) ABC .2D .3【答案】B【解析】设1l :b y x a =-,2l :by x a =,联立方程得到2,a ab P c c ⎛⎫- ⎪⎝⎭,再计算2PQ b =,OQ =4224430c a c a -+=,计算得到答案.【详解】记O 为坐标原点.由题意可得()1,0F c -,不妨设1l :by x a=-,2l :b y x a= 则直线l :()a y x c b =+.联立()a y x c b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩,解得2a x cab y c ⎧=-⎪⎪⎨⎪=⎪⎩则2,a ab P c c ⎛⎫- ⎪⎝⎭故1PF b =,OP a =.因为12PQ F P =,所以12PQ PF =所以2PQ b =,OQ =22221cos QOF ∠=.因为2tan b QOF a ∠=,所以2cos aQOF c∠=, 22220ac=,整理得4224430c a c a -+=,则42430e e -+=解得e =故选:B 【点睛】本题考查了双曲线的离心率问题,综合性强,计算量大,意在考查学生的综合应用能力和计算能力.二、填空题13.椭圆224624x y +=的短轴长是______. 【答案】4【解析】椭圆标准方程为22164x y +=,再直接利用椭圆的短轴公式得到答案. 【详解】 椭圆方程为22164x y +=,则2b =,则短轴长是24b =. 故答案为:4 【点睛】本题考查了椭圆的短轴长,属于简单题.14.已知0a b >>,且2a b +=,则515a b +的最小值是______. 【答案】185【解析】变形得到()51151525a b a b a b ⎛⎫+=++ ⎪⎝⎭,展开利用均值不等式得到答案. 【详解】因为2a b +=,所以()511511526525255b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭. 因为0a b >>,所以525b a a b +≥,当且仅当53a =,13b =时,等号成立所以511261825255a b ⎛⎫+≥⨯+= ⎪⎝⎭. 故答案为:185【点睛】本题考查了利用均值不等式求最值,变换()51151525a b a b a b ⎛⎫+=++ ⎪⎝⎭是解题的关键. 15.从某建筑物的正南方向的A 处测得该建筑物的顶部C 的仰角是45︒,从该建筑物的北偏东30的B 处测得该建筑物的顶部C 的仰角是30,A ,B 之间的距离是35米,则该建筑物的高为______米. 【答案】【解析】设该建筑物的高OC h =(O 为该建筑物的底部),由题意可得OA h =,OB =,利用余弦定理求得h 的值.【详解】解:设该建筑物的高OC h =(O 为该建筑物的底部),由题意可得OA h =,OB =,35AB =,150AOB ∠=︒,则2222cos AB OA OB OA OB AOB =+-∠,即2222353h h ⎛=+-⨯ ⎝⎭,解得h =【点睛】本题考查利用余弦定理解三角形,属于基础题. 16.已知抛物线C :24y x =,点Q 在x 轴上,直线l :()2240m x y m ---+=与抛物线C 交于M ,N 两点,若直线QM与直线QN 的斜率互为相反数,则点Q 的坐标是______. 【答案】()2,0-【解析】设出()22121212,,,,4,04,y y M y N y y y Q a ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭,线l :()2240m x y m ---+=与抛物线C 交于M ,N 两点,即,,M N P 三点共线,//PM PN ,根据直线QM 与直线QN 的斜率互为相反数,MQ NQ k k =,即可求出Q 点坐标. 【详解】考虑直线l :()2240m x y m ---+=,即()2240m x x y ---+=, 所以直线恒过定点()2,0P ,设()22121212,,,,4,04,y y M y N y y y Q a ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭, 直线l :()2240m x y m ---+=与抛物线C 交于M ,N 两点, 即,,M N P 三点共线,//PM PN ,2212122,,2,44y y PM y PN y ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, 22122122044y y y y ⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭,2212212122044y y y y y y --+= 化简得:()1212204y y y y ⎛⎫+-= ⎪⎝⎭所以128y y =-,直线QM 与直线QN 的斜率互为相反数,1222124,4MQ NQ y y k k yy a a =+-=-即222112044y y y a y a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭恒成立 22121212044y y y y ay ay -+-= ()121204y y a y y ⎛⎫-+= ⎪⎝⎭,则1204y y a -= 所以1224y y a ==- 即点Q 的坐标是 ()2,0- 故答案为:()2,0- 【点睛】此题考查直线与抛物线的位置关系,关键在于合理使用点的坐标关系将题目所给条件转化为代数运算求解参数.三、解答题17.已知p :函数()()0f x ax m a =-≠在区间[)1,+∞上单调递增,q :关于x 的不等式20x mx m ++≤的解集非空.(1)当3a =时,若p 为真命题,求m 的取值范围; (2)当0a >时,若p 为假命题是q 为真命题的充分不必要条件,求a 的取值范围.【答案】(1)(],3-∞; (2)[)4,+∞.【解析】(1)当3a =时,()3f x x m =-,根据单调性得到13m≤,计算得到答案.(2)p 为假命题,则m a >;q 为真命题,则0m ≤或4m ≥;根据充分不必要条件得到范围大小关系得到答案. 【详解】(1)当3a =时,()3f x x m =-.因为p 为真命题,所以13m ≤,即3m ≤,故m 的取值范围是(],3-∞. (2)因为p 为假命题,所以1ma>,因为0a >,所以m a >.记满足p 为假命题的m 的取值集合为(),A a =+∞. 因为q 为真命题,所以240m m -≥,解得0m ≤或4m ≥. 记满足q 为真命题的m 的取值集合为(][),04,B =-∞+∞. 因为p 为假命题是q 为真命题的充分不必要条件 所以集合A 是集合B 的真子集,则4a ≥.故a 的取值范围是[)4,+∞.【点睛】本题考查了命题的真假判断,充分不必要条件,根据充分不必要条件得到范围的大小关系是解题的关键.18.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b a =,221c C a =+. (1)求C ; (2)若c =ABC ∆的面积.【答案】(1)23C π=; (2)【解析】(1)利用余弦定理得到22254cos c a a C =-,再根据221c C a=+整理得到1sin 62C π⎛⎫+= ⎪⎝⎭,计算得到答案.(2)根据(1)代入数据计算得到c =2a =,24b a ==.,代入面积公式计算得到答案. 【详解】(1)因为2b a =,所以222222cos 54cos c a b ab C a a C =+-=-.所以2254cos 1c C C a =-=+,整理得1sin 62C π⎛⎫+= ⎪⎝⎭. 又因为()0,C π∈,所以23C π=.(2)由(1)可知23C π=,22254cos c a a C =-,又因为c = 所以2a =,24b a ==. 所以1sin 232ABC S ab C ∆.【点睛】本题考查了余弦定理和面积公式的应用,意在考查学生对于三角公式的灵活运用. 19.已知抛物线2:8C x y =的焦点为F ,直线l 与抛物线C 交于,M N 两点.(1)若直线l 的方程为3yx,求||||MF NF +的值;(2)若直线l 的斜率为2,l 与y 轴的交点为P ,且2MP NP =,求||MN .【答案】(1)18;(2【解析】(1)设出点的坐标联立直线与抛物线的方程,消去x ,由韦达定理可得1214y y +=,由抛物线上的点到焦点的距离和到准线的距离相等即可得结果.(2)可设直线l 的方程为2y x t =+,联立直线与抛物线的方程,消去y ,结合韦达定理以及2MP NP =可解出1323x =,2163x =,根据弦长公式12|||MN x x =-即可得结果.【详解】(1)设()11,M x y ,()22,N x y .联立28,3,x y y x ⎧=⎨=+⎩整理得21490y y -+=,则1214y y +=.因为,M N 均在抛物线C 上,所以12||||418MF NF y y +=++=. (2)设(0,)P t ,则直线l 的方程为2y x t =+.联立28,2,x y y x t ⎧=⎨=+⎩整理得21680x x t --=,则1216x x +=,128x x t =-, 且216320t ∆=+>,即8t >-.因为2MP NP =,所以点N 为线段MP 的中点,所以122x x =. 因为1216x x +=,所以1323x =,2163x =, 此时51289t -=,6489t =->-,故123216|||333MN x x ⎛⎫=-=-=⎪⎝⎭.【点睛】本题主要考查了直线与抛物线的位置关系,直线与抛物线相交时所得的弦长问题,注意抛物线性质的应用,属于中档题.20.已知数列{}n a 的前n 项和为n S ,且()*123n n S a a n N =-∈,数列{}n b 满足14b =,()*21n n n b S na n N =++∈.(1)求{}n a 的通项公式; (2)求{}n b 的前n 项和nT .【答案】(1)13-=n na; (2)()25354n nn T +⨯-=.【解析】(1)利用公式1n n n a S S -=-化简得到()*132,n n a a n n N -=≥∈,再利用14b =计算11a =得到数列{}n a 的通项公式.(2)由(1)可得13-=n na ,则()133n n b n -=+⨯,再利用错位相减法计算前n 项和. 【详解】(1)因为()*123n n S a a n N =-∈,所以()*111232,n n S a a n n N --=-≥∈, 所以()*12332,n n n a a a n n N -=-≥∈,即()*132,n n a a n n N -=≥∈. 因为14b =,()*21n n n b S na n N =++∈,所以111214b S a =++=,所以11a =.故数列{}n a 是以1为首项,以3为公比的等比数列,1113n n n a a q --==.(2)由(1)可得13-=n na,则()()121333n n n n n b S na n a n -=++=+=+⨯,从而()214536333n n T n -=+⨯+⨯+⋅⋅⋅++⨯,① ()23343536333n n T n =⨯+⨯+⨯+++⨯,②①-②得()212433333n nn T n --=+++⋅⋅⋅+-+⨯()335254333222n n nn n -+=+-+⨯=-⨯, 故()25354n nn T +⨯-=.【点睛】本题考查了求通项公式,利用错位相减法计算前n 项和,意在考查学生对于数列公式的灵活运用.21.如图,在四棱锥P ABCD -中,AB AD ⊥,//AD BC ,PA PB PD ==,2PE EC =,O为BD 的中点.(1)证明:OP ⊥平面ABCD ; (2)若2AB =,243BC AD ==4PA =,求二面角C BD E --的余弦值.【答案】(1)证明见解析;(2)25.【解析】(1)取AD 的中点F ,连接,PF OF ,易得AD PF ⊥,OF AD ⊥,由线面垂直判定定理可得AD ⊥平面POF ,进而AD OP ⊥,再将PO BD ⊥与线面垂直判定定理相结合即可得结果.(2)建立如图所示的空间直角坐标系O xyz -,可求出平面BDE 的一个法向量(3,1,4)m =-,取平面BCD 的一个法向量(0,0,1)n =,根据图象结合||cos |cos ,|||||m n m n m n θ⋅=〈〉=即可得结果. 【详解】(1)证明:取AD 的中点F ,连接,PF OF . 因为PA PD =,F 为AD 的中点,所以AD PF ⊥. 因为O 为BD 中点,F 为AD 的中点,所以//OF AB .因为AB AD ⊥,所以OF AD ⊥,因为OF PF F ⋂=,OF ⊂平面POF ,PF ⊂平面POF ,所以AD ⊥平面POF .又OP ⊂平面POF ,所以AD OP ⊥.因为PB PD =,O 为BD 的中点,所以PO BD ⊥. 因为ADBD D =,AD ⊂平面ABCD ,BD ⊂平面ABCD ,所以OP ⊥平面ABCD .(2)解:以O 为坐标原点,FO 所在直线为x 轴,平行AD的直线为y 轴,OP 所在直线为z 轴建立如图所示的空间直角坐标系O xyz -,∵PA PB PD ==, ∴122OA OB OD BD ====,∴3OP =则(0,0,0)O ,(1,3,0)B ,(3,0)D -,(1,33,0)C ,(0,0,3)P ,因为2PE EC =,所以223,23,3E ⎛ ⎝⎭,故(2,3,0)BD =-,5233,33DE ⎛⎫= ⎪ ⎪⎝⎭.设平面BDE 的法向量(,,)m x y z =,则22305233033m BD x m DE x y z ⎧⋅=-+=⎪⎨⋅=++=⎪⎩不妨取3x =3,1,4)m =-平面BCD 的一个法向量(0,0,1)n =,记二面角C BD E --的大小为θ,由图可知θ为锐角,则||cos |cos ,|||||25m n m n m n θ⋅=〈〉===【点睛】本题主要考查了直线与平面垂直的判定,利用向量法求二面角的大小,求出面的法向量是解题的关键,属于中档题.22.已知椭圆E :()222210x y a b a b+=>>的焦距为,点A 在椭圆E 上,且OA O 为坐标原点).(1)求椭圆E 的标准方程.(2)已知动直线l 与圆O :()2220xy t t +=>相切,且与椭圆E交于P ,Q 两点.是否存在实数t ,使得OP OQ ⊥?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22142x y +=;(2)存在3t =【解析】(1)根据焦距和椭圆的几何意义即可求出椭圆标准方程;(2)分别对斜率不存在和斜率存在两种情况讨论,相切即圆心到直线距离等于半径,OP OQ ⊥即向量的数量积为零,进行代数运算即可求解. 【详解】(1)因为OA 的最小值是,所以b =因为椭圆E 的焦距为2c =,即c =所以2224a b c =+=,故椭圆E 的标准方程是22142x y +=;(2)①当直线l 的斜率不存在时,因为直线l 与圆O 相切,所以直线l 的方程为x t =±,则直线l 与椭圆E的交点为,2t ⎛⎫± ⎪ ⎪⎝⎭或,2t ⎛-± ⎪⎝⎭, 因为OP OQ ⊥,所以2212128204t x x y y t -+=-=,所以243t =,即t =,②当直线l 的斜率存在时,可设直线l 的方程为y kx m =+,()11,P x y ,()22,Q x y .联立22142x y y kx m ⎧+=⎪⎨⎪=+⎩,整理得()222214240k x kmx m +++-=,则122421km x x k +=-+,21222421-=+m x x k ,因为()11,P x y ,()22,Q x y 在直线l 上,所以()()()2212121212y y kx m kx m k x x km x x m =++=+++,将122421km x x k +=-+,21222421-=+m x x k 代入上式,得()2222212222442121k m k m y y m k k -=-+++222421m k k -=+,因为OP OQ ⊥,所以22212122224402121m m k x x y y k k --+=+=++,即()22341m k =+,因为动直线l 与圆Ot =,所以222413m t k ==+,即3t =,综上,存在t =,使得OP OQ ⊥.【点睛】此题考查根据椭圆的几何意义求解椭圆方程,根据直线与曲线的位置关系结合韦达定理解决探索性问题.第 21 页共 21 页。
广东实验中学18-19高二上年末考试--数学(文)
广东实验中学18-19高二上年末考试--数学(文)数学〔文〕本试卷分基础检测与能力检测两部分,共4页、总分值为150分,考试用时120分钟、 本卷须知1、答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷和答题卡上,并用2B 铅笔在答题卡上填涂学号、2、选择题每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上、3、非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液、不按以上要求作答的答案无效、4、考生必须保持答题卡的整洁,考试结束后,将答题卷交回、第一部分 基础检测(共100分)【一】选择题:本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的、 A 、x e R x x <∈∃0,0B 、,x x e x ∀∈<RC 、,x x e x ∀∈≤RD 、x e R x x ≤∈∃0,0、2、设实数x 和y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,那么23z x y =+的最小值为〔〕A 、26B 、24C 、16D 、14 3、抛物线22y x =的准线方程为〔〕 A 、14y =-B 、18y =-C 、1y =D 、12y =4、“α为锐角”是“0sin >α”的〔〕 A 、充分非必要条件B 、必要非充分条件C 、非充分非必要条件D 、充要条件5、设双曲线)0(19222>=-a y ax 的渐近线方程为023=±y x ,那么a 的值为()A 、4B 、3C 、2D 、16、在空间直角坐标系中,点P 〔x ,y ,z 〕,给出以下四条表达: ①点P 关于x 轴的对称点的坐标是〔x ,-y ,z 〕 ②点P 关于yOz 平面的对称点的坐标是〔x ,-y ,-z 〕 ③点P 关于y 轴的对称点的坐标是〔x ,-y ,z 〕 ④点P 关于原点的对称点的坐标是〔-x ,-y ,-z 〕 其中正确的个数是〔〕A 、3B 、2C 、1D 、07、给定以下四个命题:①假设一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行;②假设一个平面通过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④假设两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是〔〕A 、①和②B 、②和③C 、③和④D 、②和④ 8、假设双曲线193622=-y x 的弦被点〔4,2〕平分,那么此弦所在的直线方程是〔〕A 、02=-y xB 、042=-+y xC 、014132=-+y xD 、082=-+y x 9、设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,那么E 的离心率为〔〕 A 、12B 、23C 、34D 、4510、椭圆221259x y +=的左焦点为1F ,点P 在椭圆上,假设线段1PF 的中点M 在y 轴上,那么1PF =〔〕 A 、415B 、95C 、6D 、7【二】填空题:本大题共3小题,每题5分,共15分、11、假设圆心在x的圆O 位于y 轴左侧,且与直线0x y +=相切,那么圆O 的方程是.12、某三棱锥的三视图如下图,该三棱锥的体积是 . 13、抛物线)0(22>=p px y 上一点M 到焦点F 的距离.2p MF = 那么M 的坐标是.【三】解答题:本大题共3小题,共35分、解承诺写出文字说明、证明过程或演算14、(此题总分值10分)圆C 方程为:224x y +=.〔1〕直线过点()1,2P ,且与圆C 交于A 、B两点,假设||AB =线的方程;〔2〕过圆C 上一动点M 作平行于x 轴(与x 轴不重合)的直线m ,设m 与y 轴的交点为N ,假设向量OQ OM ON =+,求动点Q 的轨迹方程.15、(此题总分值12分)设椭圆)0(12222>>=+b a by a x C :通过点)4,0(,离心率为53〔1〕求C 的方程;〔2〕求过点)0,3(且斜率为54的直线被C 所截线段的中点坐标、16、〔本小题总分值13分〕如图,AB ⊥平面ACD ,DE ∥AB ,2AD AC DE AB ====2,且F 是CD的中点、AF =〔1〕求证:AF ∥平面BCE ; 〔2〕求证:平面BCE ⊥平面CDE ; (3)求此多面体的体积、第二部分能力检测(共50分)【四】填空题:本大题共2小题,每题5分,共10分、17、以下有关命题的说法正确有_________________________(填写序号)A BCDEF①“假设b a bm am <<则,22”的逆命题为真;②命题“假设1,0232==+-x x x 则”的逆否命题为:“假设023,12≠+-≠x x x 则”;③“命题q p ∨为真”是“命题q p ∧为真”的必要不充分条件; ④关于常数n m ,,“0>mn ”是“方程122=+ny mx 的曲线是椭圆”的充分不必要条件.18、在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,假设直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,那么k 的最大值是___.【五】解答题:本大题共3小题,共40分、解承诺写出文字说明、证明过程或演算步骤、19、〔本小题总分值14分〕如图,等边三角形OAB 的边长为且其三个顶点均在抛物线)0(22>=p py x C :上. 〔1〕求抛物线C 的方程;〔2〕设圆M 过)2,0(D ,且圆心M 在抛物线C 上,EG 是圆M 在x 轴上截得的弦,试探究当M 运动时,弦长EG 是否为定值?什么原因? 20、(本小题总分值12分)数列}{n a 的前n 项和)1,0(≠≠+=p p q p S n n ,求证数列}{n a 是等比数列的充要条件是.1-=q21、(本小题总分值14分)一动圆与圆221:(1)1O x y -+=外切,与圆222:(1)9O x y ++=内切.〔1〕求动圆圆心M 的轨迹L 的方程;〔2〕设过圆心1O 的直线:1l x my =+与轨迹L 相交于A 、B 两点,请问2ABO ∆〔2O 为圆2O 的圆心〕的面积是否存在最大值?假设存在,求出那个最大值及直线的方程,假设不存在,请说明理由.参考答案【一】选择题 1 2 3 4 5 6 7 8 9 10 DDBACCDACA【二】填空题11.22(2)2x y ++=;12.340;13.)3,23(p p±;17.②③;18.34【三】解答题14.解:〔Ⅰ〕①当直线垂直于x 轴时,那么如今直线方程为1=x ,与圆的两个交点坐标为()3,1和()3,1-,其距离为32满足题意………1分②假设直线不垂直于x 轴,设其方程为()12-=-x k y ,即02=+--k y kx 设圆心到此直线的距离为d ,那么24232d -=,得1=d …………3分 ∴1|2|12++-=k k ,34k =,故所求直线方程为3450x y -+=综上所述,所求直线为3450x y -+=或1=x …………5分〔Ⅱ〕设点M 的坐标为()00,y x 〔00y ≠〕,Q 点坐标为()y x , 那么N 点坐标是()0,0y …7分∵OQ OM ON =+, ∴()()00,,2x y x y =即x x =0,20y y =…………9分 ∵42020=+y x ,∴224(0)4y x y +=≠∴Q 点的轨迹方程是221(0)416x y y +=≠10分15.(1)将(0,4)代入椭圆C 的方程得16b 2=1,∴b =4.……2分又e =c a =35得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,……5分∴C 的方程为x 225+y 216=1.……6分(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),……7分 设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1……8分即x 2-3x -8=0.……10分 解得x 1=3-412,x 2=3+412,∴AB 的中点坐标x =x 1+x 22=32,y =y 1+y 22=25(x 1+x 2-6)=-65.即中点为⎝ ⎛⎭⎪⎫32,-65.……12分16.解:〔1〕取CE 中点P ,连结FP 、BP , ∵F 为CD 的中点,∴FP ∥DE ,且FP=.21DE又AB ∥DE ,且AB=.21DE ∴AB ∥FP ,且AB=FP ,∴ABPF 为平行四边形,∴AF ∥BP 、……………………2分 又∵AF ⊄平面BCE ,BP ⊂∴AF ∥平面BCE …………4分〔2〕∵2AF CD ==,因此△ACD 为正三角形,∴AF ⊥CD …………y2=4y5分∵AB ⊥平面ACD ,DE//AB ∴DE ⊥平面ACD 又AF ⊂平面ACD ∴DE ⊥AF 又AF ⊥CD ,CD ∩DE=D ∴AF ⊥平面CDE …………7分 又BP ∥AF ∴BP ⊥平面CDE又∵BP ⊂平面BCE ∴平面BCE ⊥平面CDE ………9分(3)此多面体是一个以C 为定点,以四边形ABED 为底边的四棱锥,(12)232ABEDS +⨯==,………10分 ABDE ADC⊥∴面面等边三角形AD 边上的高确实是四棱锥的高………12分133C ABDEV -=⨯=13分 19.解:(1)由题意知)1234,(B ………3分 抛物线C 方程是24x y =………5分〔2〕设圆的圆心为(,)M a b ,∵圆M 过D (0,2),∴圆的方程为2222()()(2)x a y b a b -+-=+-……………………………7分令0y =得:22440x ax b -+-=设圆与x 轴的两交点分别为1(,0)x ,2(,0)x方法1:不妨设12x x >,由求根公式得1x =2x =………9分∴12x x -=又∵点(,)M a b 在抛物线24x y =上,∴24a b =,………10分 ∴124x x -=,即EG =4………………………13分 ∴当M运动时,弦长EG为定值4…………………………………………………14分 〔方法2:∵122x x a +=,1244x x b ⋅=-∴22121212()()4x x x x x x -=+-⋅22(2)4(44)41616a b a b =--=-+ 又∵点(,)M a b 在抛物线24x y =上,∴24a b =,∴212()16x x -=124x x -=∴当M 运动时,弦长EG 为定值4〕 20.证明:①必要性:a 1=S 1=p +q .…………1分当n ≥2时,a n =S n -S n -1=p n -1(p -1) ∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p (3)分假设{a n }为等比数列,那么nn a a a a 112+==p ∴qp p p +-)1(=p ,…………5分∵p ≠0,∴p -1=p +q ,∴q =-1…………6分 ②充分性当q =-1时,∴S n =p n-1(p ≠0,p ≠1),a 1=S 1=p -1…………7分 当n ≥2时,a n =S n -S n -1=p n-p n -1=p n -1(p -1) ∴a n =(p -1)p n -1(p ≠0,p ≠1)…………9分211)1()1(-----=n n n n p p p p a a =p 为常数…………11分∴q =-1时,数列{a n }为等比数列.即数列{a n }是等比数列的充要条件为q =-1.……………………12分21.解:〔1〕设动圆圆心为()M x y ,,半径为R 、 由题意,得11MO R =+,23MO R =-,124MO MO +=∴、…………3分由椭圆定义知M 在以12O O ,为焦点的椭圆上,且21a c ==,,222413b a c =-=-=∴、 ∴动圆圆心M 的轨迹L 的方程为22143x y +=、……6分(2)设11(,)A x y 、22(,)B x y (120,0y y ><), 那么2121122121122ABO S O O y O O y y y =⋅+⋅=-△,……8分 由221143x my x y =+⎧⎪⎨+=⎪⎩,得22(34)690m y my ++-=, 解得1y=,2y =,…………10分 ∴2234ABO S m=+△,令t =,那么1t ≥,且221m t =-, 有22212121213(1)4313ABO t t S t t t t ===-+++△,令1()3f t t t=+, 0)13)((1313)()(,1211211221221>--=--+=-<≤t t t t t t t t t f t f t t 设 )()(12t f t f >∴)(t f ∴在[1,)+∞上单调递增,有()(1)4f t f ≥=,21234ABO S ≤=△, 如今1t =,0m =∴存在直线:1l x =,2ABO ∆的面积最大值为3.…………14分。
广东实验中学2019-2020学年第一学期高二年级开学摸底考试数学
广东实验中学2019-2020学年第一学期高二年级开学摸底考试数 学本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟第一部分选择题(共60分)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的。
1、下列六个关系式:①{}{}a b b a ,,⊆②{}{}a b b a ,,=③Φ=0④{}00∈⑤{}0∈Φ⑥{}0⊆Φ其中正确的个数为( )A.6个B.5个C.4个D.少于4个2、若)0,1(),2,1(==→→b a ,则→→b a 与夹角的余弦值为( ) A.31 B.22 C.55 D.1 3、下列四组函数中,表示同一函数的是 ( )A.1,0==y x yB.12)(,12)(-=-=u u g x x fC.22,x x y x y ==D.12,12+-=-=x x y x y 4、设R b a ∈,,下列不等式中一定成立的是( )A.a a 232>+B.022>+b aC.2233ab b a b a +≥+D.21≥+a a 5、下列四条直线,其倾斜角最大的是( )A.032=++y xB.012=+-y xC.01=++y xD.01=+x6、使数列1111311211110,10,10,10n 前n 项和大于510的自然数n 的最小值为( )A.8B.9C.10D.117、将函数)(sin cos 3R x x x y ∈+=的图像向左平移m (m>0)个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.12π B.6π C.3π- D.65π 8、在直角坐标平面上,点),(y x P 的坐标满足方程0222=+-y x x ,点),(b a Q 的坐标满足方程0248622=+-++b a b a ,则ax b y --的取值范围是( ) A. []2,2- B.⎥⎦⎤⎢⎣⎡+374-,37-4- C.⎥⎦⎤⎢⎣⎡--31,3 D.⎥⎦⎤⎢⎣⎡+376,37-6 9、如图,在三棱柱111C B A ABC -中,1111C B A AA 底面⊥,23,1,901====∠AC CC BC ABC ,P 为1BC 上的动点,则1PA CP +的最小值为( ) A.52 B.231+ C.5 D.521+10、已知函数⎪⎩⎪⎨⎧≥+--<-=1,2)2(1,)1(log )(25x x x x x f ,则方程)()21(R a a x x f ∈=-+的实数根个数不可能是( ) A.5个 B.6个 C.7个 D.8个11、如函数2222224)1(log 12log 2)1(4log 1)(a a a a x a a x x f +++++=的定义域为R ,则实数a 的取值范围为( )A. ()⎪⎭⎫ ⎝⎛--1,31321,0B.()1,0C.⎪⎭⎫ ⎝⎛--1,3132 D.()0,1- 12、数学家默拉在1765年提出定理,三角形的外心,重心,垂心(外心是三角形三条边的垂直平分线的交点,重心是三角形三条中线的交点,垂心是三角形三条高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线,已知ABC ∆的顶点AC AB C B =-),2,0(),0,1(,则ABC ∆的欧拉线方程为( )A.0342=--y xB.0342=++y xC.0324=--y xD.0342=-+y x第二部分非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分。
广东省实验中学高二数学上学期期末考试试题文02040437
俯视图侧视图正视图22112广东省实验中学高二数学上学期期末考试试题文02040437文 科 数 学本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将答题卷和答题卡一并收回。
一、选择题(每小题5分,共60分)1.已知A (2,0),B (3,3),直线l ∥AB ,则直线l 的斜率k 等于( )A .-3B .3C .-13D . 132.圆心为(1,1)且过原点的圆的标准方程是( )A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 3.抛物线y =4x 2的焦点坐标是( )A .(1,0)B .(0,1)C . 1(,0)16 D . 1(0,)164.已知向量a b 、满足1,4,a b ==,且2⋅=a b ,则a 与b 的夹角为( )A .6π B .4π C .3π D .2π5.已知ABC ∆中,a 、b 、c 分别为A,B,C 的对边,30,34,4=∠==A b a ,则B ∠等于( )A . 30B . 30或 150C . 60D . 60或120 6. 某空间几何体的三视图及尺寸如图,则该几何体的体积是( ) A .2 B . 1 C . 23 D . 137.若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线方程为( )A . y =±2xB . y =±2xC . y =±12xD . y =±22x 8.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为( )A .2B .3C .4D .99.一动圆与两圆:x 2+y 2=1和x 2+y 2-6x +5=0都外切,则动圆圆心的轨迹为( )A .抛物线B .双曲线C .双曲线的一支D .椭圆 10.,m n 是空间两条不同直线,,αβ是两个不同平面,下面有四个命题: ①,//,//m n m n αβαβ⊥⇒⊥ ②,//,//m n m n αβαβ⊥⊥⇒ ③,//,//m n m n αβαβ⊥⇒⊥ ④,//,//m m n n ααββ⊥⇒⊥ 其中真命题的个数是( )A .1B .2C .3D .411.将正方形ABCD 沿对角线BD 折起,使平面ABD⊥平面CBD ,E 是CD 中点,则AED ∠的大小为( )A .45B .30C .60D .90 12.函数cos()sin()23y x x ππ=++-具有性质( ). A .图像关于点(,0)6π对称,最大值为3 B .图像关于点(,0)6π对称,最大值为1C .图像关于直线6x π=对称,最大值为3 D .图像关于直线6x π=对称,最大值为1二、填空题(每小题5分,共20分)13.双曲线2x 2-y 2=8的实轴长是 .14.已知圆C :()()22324x y -+-=与直线3y kx =+相交于M,N 两点,若23MN ≥,则k 的取值范围是 .15.直线l :4x -y -6=0交双曲线x 2-y 24=1于A ,B 两点,则线段AB 的长为________.16.已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.则数列⎭⎬⎫⎩⎨⎧+-12121n n a a 的前50项和T 50=________.三、解答题题(六小题 共70分) 17.(本小题满分10分)1C 1B 1D 1F E如图,在长方体1111D C B A ABCD -中,a AD AA ==1,a AB 2=,E 、F 分别为11C D 、11D A 的中点.(1)求证:⊥DE 平面BCE ; (2)求证://AF 平面BDE .18.(本小题满分10分)一束光线l 自A (-3,3)发出,射到x 轴上的点M 后,被x 轴反射到⊙C :x 2+y 2-4x -4y +7=0上.(1)求反射线通过圆心C 时,光线l 的方程; (2)求满足条件的入射点M 的横坐标的取值范围.19.(本小题满分12分)已知函数f (x )=-sin 2x +sin x +a ,(1)当f (x )=0有实数解时,求a 的取值范围; (2)若2x [,]63ππ∈,恒有1≤f (x )≤417,求a 的取值范围。
广东省广州市海珠实验中学2019年高二数学文上学期期末试题含解析
广东省广州市海珠实验中学2019年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列命题中正确的是( )A.的最小值是2B.的最小值是2C.的最大值是D.的最小值是参考答案:D【考点】基本不等式.【专题】计算题.【分析】根据基本不等式的使用范围:正数判断A不对,利用等号成立的条件判断B不对,根据判断C正确、D不对.【解答】解:A、当x=﹣1时,f(﹣1)=﹣2,故A不对;B、∵=≥2,当且仅当时取等号,此时无解,故最小值取不到2,故B不对;C、∵x>0,∴,当且仅当时等号成立,∴,故C 正确;D、、∵x>0,∴,当且仅当时等号成立,则,故D不对;故选D.【点评】本题考查了基本不等式的应用,利用基本不等式求函数的最值,注意“一正、二定、三相等”的验证.2. 过点(-1,0)作抛物线的切线,则其中一条切线为( )A. B. C. D.参考答案:D3. 已知=(3,2),=(-1,0),向量λ+与-2垂直,则实数λ的值为()A. B.-C. D.-参考答案:D4. 已知双曲线的离心率为2,那么双曲线的渐近线方程为()A.B.x±y=0C.2x±y=0D.参考答案:D【考点】双曲线的简单性质.【分析】利用双曲线的离心率,转化求出a,b关系,即可求解双曲线的渐近线方程.【解答】解:双曲线的离心率为2,可得,即,可得,双曲线的渐近线方程为:y=±,即.故选:D.5. 已知△ABC中,a=4,b=4,A=30°,则角B等于()A.30°B.30°或150°C.60°或120°D.60°参考答案:C【考点】正弦定理.【专题】解三角形.【分析】利用正弦定理即可得出.【解答】解:∵,∴ ==,∵b>a,B∈[0°,180°),∴B=60°或120°.故选:C.【点评】本题考查了正弦定理的应用,属于基础题.6. 下列不等式证明过程正确的是()A.若,则B.若,,则C.若,则D.若,则参考答案:D对于A:a,b∈R,不满足条件,对于B,x,y∈R+,lgx,lgy与0的关系无法确定,对于C:x为负实数,则,故错误,对于D:正确,故选D.7. 设等比数列的公比,前项和为,则()A.2 B.4 C. D.参考答案:C8. 已知. 、分别是椭圆的左、右焦点,是椭圆上一动点,圆与的延长线、的延长线以及线段相切,若为其中一个切点,则( ) A.B.C.D.与的大小关系不确定参考答案:A9. 设,,在中,正数的个数是()A. 25B. 50C. 75D. 100参考答案:D试题分析:∵∴全是正数.考点:三角函数的周期.10. 不等式对一切恒成立,则实数的取值范围是()A. B. C. D..参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,是函数的导数,若表示的导数,则.参考答案:12. 已知α,β是平面,m,n是直线. 给出下列命题:①.若m∥n,m⊥α,则n⊥α②.若m⊥α,,则α⊥β③.若m⊥α,m⊥β,则α∥β④.若m∥α,α∩β=n,则m∥n其中,真命题的编号是_ (写出所有正确结论的编号).参考答案:①②③略13. .球O被平面所截得的截面圆的面积为π,且球心到的距离为,则球O的体积为______.参考答案:【分析】先求出截面圆的半径,利用勾股定理可求得球的半径,再利用球的体积公式可得结果. 【详解】设截面圆的半径为,球的半径为,则,∴,∴,∴,球的体积为,故答案为.【点睛】本题主要考查球的性质以及球的体积公式,属于中档题.球的截面问题,做题过程中主要注意以下两点:①多面体每个面都分别在一个圆面上,圆心是多边形外接圆圆心;②注意运用性质.14. 已知函数f(x)=ax+b e x图象上在点P(-1,2)处的切线与直线y=-3x平行,则函数f(x)的解析式是____________.参考答案:略15. 抛物线的焦点坐标为▲.参考答案:略16. 设,分别是椭圆的左、右焦点,若在直线上存在点,使线段的中垂线过点,则椭圆的离心率的取值范围是__________.参考答案:设直线与轴的交点为,连接,∵的中垂线过点,∴,可得,又∵,且,∴,即,∴,,结合椭圆的离心率,得,故离心率的取值范围是.17. 函数f(x)=log2(x2﹣x+a)在[2,+∞)上恒为正,则a的取值范围是.参考答案:a>﹣1【考点】其他不等式的解法;函数恒成立问题.【分析】根据函数f(x)=log2(x2﹣x+a)在[2,+∞)上恒为正,我们易根据对数函数的单调性,判断出其真数部分大于1恒成立,构造真数部分的函数,易判断其在[2,+∞)的单调性,进而得到一个关于a的不等式,解不等式即可得到结论.【解答】解:∵f(x)=log2(x2﹣x+a)在[2,+∞)上恒为正∴g(x)=x2﹣x+a>1在[2,+∞)上恒成立又∵g(x)=x2﹣x+a在[2,+∞)单调递增∴g(2)=2+a>1恒成立即a>﹣1故答案为:a>﹣1三、解答题:本大题共5小题,共72分。
广东省广州市中学(高中部)2019-2020学年高二数学文上学期期末试题含解析
广东省广州市中学(高中部)2019-2020学年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 双曲线的虚轴长是实轴长的2倍,则实数的值为()参考答案:A略2. 已知函数,则其导数A. B. C. D.参考答案:D3. 已知集合,函数y=ln(2x+1)的定义域为集合B,则A∩B=( )A.B.C.D.参考答案:A考点:对数函数的定义域.专题:函数的性质及应用.分析:由对数的真数大于零求出集合B,由交集的运算求出A∩B.解答:解:由2x+1>0得x,则集合B=(),又集合,则A∩B=(],故选:A.点评:本题考查对数函数的定义域,以及交集的运算,属于基础题.4. 已知两条直线l1:(a-1)x+2y+1=0,l2:x+ay+l=0平行,则a=A.-1B.2C.0或-2D.-1或2参考答案:A5. 已知平面的法向量为,点不在内,则直线与平面的位置关系为A.B.C.与相交不垂直D.参考答案:D6. 如图是用斜二测画法画出△AOB的直观图,则△AOB的面积为▲;图11参考答案:略7. 在等比数列中,已知,,则a17+a18+a19+a20=()A、32B、-32C、64D、-64参考答案:A略8. 若、为实数,则下面一定成立的是()A.若,则 B.若,则C.若,则 D.若,则参考答案:C9. 利用反证法证明“若,则x=0且y=0”时,下列假设正确的是()A.x≠0且y≠0 B.x=0且y≠0C.x≠0或y≠0 D.x=0或y=0参考答案:C10. 将一根长为a的铁丝随意截成三段,构成一个三角形,此事件是()A.必然事件 B.不可能事件C.随机事件D.不能判定参考答案:C【考点】随机事件.【分析】首先要了解随机事件的概念:在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,然后判断题目是可能事件非必然事件,排除即得到答案.【解答】解:将一根长为a的铁丝随意截成三段,构成一个三角形,这个事件是可能发生的事件,但不是必然事件.所以事件是随机事件.故答案选择C.二、填空题:本大题共7小题,每小题4分,共28分11. 若是上的增函数,且,设,若“”是“的充分不必要条件,则实数的取值范围是______.参考答案:12. 已知椭圆的方程为,过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线与x轴交于点M,若为正三角形,则椭圆的离心率等于_________.参考答案:【分析】先求出FQ的长,在直角三角形FMQ中,由边角关系得,建立关于离心率的方程,解方程求出离心率的值.【详解】解:由已知得:,因为椭圆的方程为,过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线与x轴交于点M,若为正三角形,所以,所以,故答案:.13. 从6名短跑运动员中选4人参加4×100米接力,如果其中甲不能跑第一棒,乙不能跑第四棒,则共有____________多少种参赛方法(用数字作答).参考答案:252略14. 两平行线与直线之间的距离.参考答案:15. 若0<α<,0<β <且tanα=,tanβ=,则α+β的值是________.参考答案:略16. 已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若S△ABC=3S,则椭圆的离心率为.参考答案:【考点】椭圆的简单性质.【分析】如图所示,S△ABC=3S,可得|AF2|=2|F2C|.A,直线AF2的方程为:y=(x﹣c),代入椭圆方程可得:(4c2+b2)x2﹣2cb2x+b2c2﹣4a2c2=0,利用x C×(﹣c)=,解得x C.根据,即可得出.【解答】解:如图所示,∵S△ABC=3S,∴|AF2|=2|F2C|.A,直线AF2的方程为:y﹣0=(x﹣c),化为:y=(x﹣c),代入椭圆方程+=1(a>b>0),可得:(4c2+b2)x2﹣2cb2x+b2c2﹣4a2c2=0,∴x C×(﹣c)=,解得x C=.∵,∴c﹣(﹣c)=2(﹣c).化为:a2=5c2,解得.故答案为:.17. 执行如图的程序框图,若输入x=12,则输出y=.参考答案:考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x,y的值,当x=4,y=时由于||<1,此时满足条件|y﹣x|<1,退出循环,输出y的值为.解答:解:模拟执行程序框图,可得x=12,y=6,不满足条件|y﹣x|<1,x=6,y=4不满足条件|y﹣x|<1,x=4,y=由于||<1,故此时满足条件|y﹣x|<1,退出循环,输出y的值为.故答案为:.点评:本题主要考查了循环结构的程序框图,正确判断退出循环时y的值是解题的关键,属于基础题.三、解答题:本大题共5小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东实验中学2019—2019学年(上)高二级期末考试文 科 数 学本试卷分基础检测与能力检测两部分,共4页.满分为150分,考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷和答题卡上,并用2B 铅笔在答题卡上填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷交回.第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,xx e x ∀∈>R ”的否定是( ) A .x eR x x <∈∃0,0B .,xx e x ∀∈<R C .,xx e x ∀∈≤RD .x eR x x ≤∈∃0,0.2.设实数x 和y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .26B .24C .16D .14新$课$标$第$一$网3.抛物线22y x =的准线方程为( )A .14y =-B .18y =-C .1y =D .12y =4.“α为锐角”是“0sin >α”的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5.设双曲线)0(19222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为( ) A .4 B .3 C .2 D .16. 在空间直角坐标系中,已知点P (x ,y ,z ),给出下列四条叙述: ①点P 关于x 轴的对称点的坐标是(x ,-y ,z ) ②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z ) ③点P 关于y 轴的对称点的坐标是(x ,-y ,z ) ④点P 关于原点的对称点的坐标是(-x ,-y ,-z ) 其中正确的个数是( )A .3B .2C .1D .07.给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④8.若双曲线193622=-y x 的弦被点(4,2)平分,则此弦所在的直线方程是( ) A .02=-y x B .042=-+y x C .014132=-+y x D .082=-+y x9.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34 D .4510.椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =( )A .415B .95C .6D .711.若圆心在x 轴上、的圆O 位于y 轴左侧,且与直线0x y +=相切,则圆O 的方程是 .12.某三棱锥的三视图如图所示,该三棱锥的体积是。
13.抛物线)0(22>=p px y 上一点M 到焦点F 的距离.2p MF =则M 的坐标是 .三、解答题:本大题共3小题,共35分.解答应写出文字说明、证明过程或演算 14.(本题满分10分) 已知圆C 方程为:224x y +=.(1)直线l 过点()1,2P ,且与圆C 交于A 、B两点,若||AB =l 的方程; (2)过圆C 上一动点M 作平行于x 轴(与x 轴不重合)的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+,求动点Q 的轨迹方程.15.(本题满分12分) 设椭圆)0(12222>>=+b a b y a x C :经过点)4,0(,离心率为53(1)求C 的方程; (2)求过点)0,3(且斜率为54的直线被C 所截线段的中点坐标.16.(本小题满分13分) 如图,已知AB ⊥平面ACD ,DE ∥AB ,2AD AC DE AB ====2,且F 是CD的中点.AF =(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE ; (3) 求此多面体的体积.第二部分 能力检测(共50分)A BCDEF17.下列有关命题的说法正确有_________________________(填写序号)① “若b a bm am <<则,22”的逆命题为真;② 命题“若1,0232==+-x x x 则”的逆否命题为:“若023,12≠+-≠x x x 则”; ③ “命题q p ∨为真”是“命题q p ∧为真”的必要不充分条件;④ 对于常数n m ,,“0>mn ”是“方程122=+ny mx 的曲线是椭圆”的充分不必要条件.18.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y k x =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是____.五、解答题:本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤.19.(本小题满分14分)如图,等边三角形OAB 的边长为且其三个顶点均在抛物线)0(22>=p py x C :上. (1)求抛物线C 的方程;(2)设圆M 过)2,0(D ,且圆心M 在抛物线C 上,EG 是圆M 在x轴上截得的弦,试探究当M 运动时,弦长EG 是否为定值?为什么?20.(本小题满分12分) 已知数列}{n a 的前n 项和)1,0(≠≠+=p p q p S nn ,求证数列}{n a 是等比数列的充要条件是.1-=q21.(本小题满分14分) 一动圆与圆221:(1)1O x y -+=外切,与圆222:(1)9O x y ++=内切.(1)求动圆圆心M 的轨迹L 的方程;(2)设过圆心1O 的直线:1l x my =+与轨迹L 相交于A 、B 两点,请问2ABO ∆(2O 为圆2O 的圆心)的面积是否存在最大值?若存在,求出这个最大值及直线l 的方程,若不存在,请说明理由.高二文科数学解答:一.选择题11.22(2)2x y ++=;12.3;13.)3,2(p ±; 17.②③; 18. 314.解(Ⅰ)①当直线l 垂直于x 轴时,则此时直线方程为1=x ,l 与圆的两个交点坐标为()3,1和()3,1-,其距离为32满足题意 ……… 1分新 课 标 第一 网②若直线l 不垂直于x 轴,设其方程为()12-=-x k y ,即02=+--k y kx 设圆心到此直线的距离为d ,则24232d -=,得1=d …………3分 ∴1|2|12++-=k k ,34k =,故所求直线方程为345x y -+=综上所述,所求直线为3450x y -+=或1=x …………5分 (Ⅱ)设点M 的坐标为()00,y x (00y ≠),Q 点坐标为()y x , 则N 点坐标是()0,0y …7分 ∵OQ OM ON =+, ∴()()00,,2x y x y = 即x x =0,20yy =…………9分 ∵4202=+y x ,∴224(0)4y x y +=≠ ∴Q 点的轨迹方程是221(0)416x y y +=≠ 10分 15. (1)将(0,4)代入椭圆C 的方程得16b2=1,∴b =4. …… 2分又e =c a =35得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,…… 5分∴C 的方程为x 225+y216=1. …… 6分(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),…… 7分设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1 …… 8分y2=4y,即x 2-3x -8=0. …… 10分 解得x 1=3-412,x 2=3+412,∴AB 的中点坐标x =x 1+x 22=32,y =y 1+y 22=25(x 1+x 2-6)=-65.即中点为⎝ ⎛⎭⎪⎫32,-65. …… 12分16.解:(1)取CE 中点P ,连结FP 、BP , ∵F 为CD 的中点, ∴FP ∥DE ,且FP=.21DE 又AB ∥DE ,且AB=.21DE ∴AB ∥FP ,且AB=FP ,∴ABPF 为平行四边形,∴AF ∥BP .…2分新*课*标*第*一*网]又∵AF ⊄平面BCE ,BP ⊂∴AF ∥平面BCE …………4分(2)∵2AF CD ==,所以△ACD 为正三角形,∴AF ⊥CD …………5分 ∵AB ⊥平面ACD ,DE//AB ∴DE ⊥平面ACD 又AF ⊂平面ACD ∴DE ⊥AF 又AF ⊥CD ,CD ∩DE=D ∴AF ⊥平面CDE …………7分 又BP ∥AF ∴BP ⊥平面CDE又∵BP ⊂平面BCE ∴平面BCE ⊥平面CDE ………9分 (3)此多面体是一个以C 为定点,以四边形ABED 为底边的四棱锥,(12)232ABED S +⨯==,………10分 ABDEADC ⊥∴面面等边三角形AD 边上的高就是四棱锥的高………12分133C ABDE V -=⨯=…………13分19.解: (1)由题意知)1234,(B ………3分 抛物线C 方程是24x y =………5分(2)设圆的圆心为(,)M a b ,∵圆M 过D (0,2),∴圆的方程为 2222()()(2)x a y b a b -+-=+- ……………………………7分 令0y =得:22440x ax b -+-= 设圆与x 轴的两交点分别为1(,0)x ,2(,0)x方法1:不妨设12x x >,由求根公式得1x=2x =………9分∴12x x -=又∵点(,)M a b 在抛物线24x y =上,∴24a b =, (10)分∴ 124x x -==,即EG =4---------------------------------13分 ∴当M 运动时,弦长EG 为定值4…………………………………………………14分 〔方法2:∵122x x a +=,1244x x b ⋅=- ∴22121212()()4x x x x x x -=+-⋅22(2)4(44)41616a b a b =--=-+又∵点(,)M a b 在抛物线24x y =上,∴24a b =, ∴ 212()16x x -= 124x x -=∴当M 运动时,弦长EG 为定值4〕 20.证明:①必要性:a 1=S 1=p +q . …………1分当n ≥2时,a n =S n -S n -1=p n -1(p -1)∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p …………3分若{a n }为等比数列,则n n a a a a 112+==p ∴qp p p +-)1(=p , …………5分 ∵p ≠0,∴p -1=p +q ,∴q =-1…………6分②充分性当q =-1时,∴S n =p n -1(p ≠0,p ≠1),a 1=S 1=p -1…………7分当n ≥2时,a n =S n -S n -1=p n -p n -1=p n -1(p -1)∴a n =(p -1)p n -1 (p ≠0,p ≠1) …………9分211)1()1(-----=n n n n pp p p a a =p 为常数…………11分 ∴q =-1时,数列{a n }为等比数列.即数列{a n }是等比数列的充要条件为q =-1. …12分 21.解:(1)设动圆圆心为()M x y ,,半径为R .由题意,得11MO R =+,23MO R =-, 124MO MO +=∴. …………3分 由椭圆定义知M 在以12O O ,为焦点的椭圆上,且a 222413b a c =-=-=∴.∴动圆圆心M 的轨迹L 的方程为22143x y +=. ……6分 (2) 设11(,)A x y 、22(,)B x y (120,0y y ><), 则2121122121122ABO S O O y O O y y y =⋅+⋅=-△, ……8分 由221143x my x y =+⎧⎪⎨+=⎪⎩,得22(34)690m y my ++-=,解得1y =,2y =, …………10分∴2ABO S =△,令t =,则1t ≥,且221m t =-, 有22212121213(1)4313ABO t t S t t t t===-+++△,令1()3f t t t =+, 0)13)((1313)()(,1211211221221>--=--+=-<≤t t t t t t t t t f t f t t 设 )()(12t f t f >∴ )(t f ∴在[1,)+∞上单调递增,有()(1)4f t f ≥=,21234ABO S ≤=△, 此时1t =,0m = ∴存在直线:1l x =,2ABO ∆的面积最大值为3. …………14分。