2021中考数学必刷题 (122)

合集下载

中考数学试卷必刷

中考数学试卷必刷

一、选择题1. 已知a、b、c是等差数列的三项,且a+b+c=12,则该等差数列的公差是()A. 2B. 3C. 4D. 62. 若函数f(x)=x^2-4x+3在区间[1,3]上的最大值为M,最小值为m,则M-m=()A. 2B. 3C. 4D. 53. 在直角坐标系中,点A(2,3)关于直线y=x的对称点为B,则直线AB的斜率是()A. -1B. 1C. 2D. -24. 若一个三角形的三边长分别为a、b、c,且满足a^2+b^2=c^2,则该三角形是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 不规则三角形5. 已知函数f(x)=ax^2+bx+c,若f(1)=2,f(2)=6,则a+b+c=()A. 2B. 4C. 6D. 8二、填空题6. 若等差数列{an}的首项为a1,公差为d,则第n项an=______。

7. 若函数f(x)=x^2+2x-3在区间[-2,1]上的最大值为M,则M=______。

8. 在直角坐标系中,点P(1,2)关于原点的对称点为Q,则点Q的坐标为______。

9. 若一个三角形的三边长分别为a、b、c,且满足a^2+b^2=c^2,则该三角形的面积S=______。

10. 已知函数f(x)=ax^2+bx+c,若f(1)=2,f(2)=6,则a+b+c=______。

三、解答题11. (1)已知等差数列{an}的首项为a1,公差为d,求证:an=2a1+(n-1)d。

(2)若等差数列{an}的前n项和为Sn,且a1=3,d=2,求Sn。

12. (1)已知函数f(x)=x^2-4x+3,求f(2)的值。

(2)若函数g(x)=x^2-2x+1在区间[1,3]上的最大值为M,求M。

13. (1)在直角坐标系中,点A(2,3)关于直线y=x的对称点为B,求直线AB 的方程。

(2)若点C(x,y)在直线AB上,且x+y=5,求点C的坐标。

14. (1)已知三角形的三边长分别为a、b、c,且满足a^2+b^2=c^2,求三角形的面积S。

2021中考数学必刷题 (129)

2021中考数学必刷题 (129)

2021中考数学必刷题129一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.在平面直角坐标系中,点(-6,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列函数中,自变量的取值范围是x>3的是( )A.y=x-3 B.1x-3C.x-3 D.1x-33.若正比例函数y=kx(k≠0的常数)的图象在第二、四象限,则一次函数y=2x+k的图象大致是( )4.如图,直线y=kx+b(k≠0)经过点A(-2,4),则不等式kx+b>4的解集为( ) A.x>-2B.x<-2C.x>4D.x<45.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数y=-3x的图象上,且x1>x2>0>x3,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y36.已知:将直线y=x-1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( )A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1) D.y随x的增大而减小7.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是( )8.如图,直线y =x -b 与y 轴交于点C ,与x 轴交于点B ,与反比例函数y =mx 的图象在第一象限交于点A(3,1),连接OA ,则△AOB 的面积为( )A .1 B.32C .2D .39.已知点P 为抛物线y =x 2+2x -3在第一象限内的一个动点,且P 关于原点的对称点P′恰好也落在该抛物线上,则点P′的坐标为( ) A .(-1,-1) B .(-2,-3) C .(-2,-22-1) D .(-3,-23)10.如图是二次函数y =ax 2+bx +c(a≠0)图象的一部分,对称轴为直线x =12,且经过点(2,0),有下列说法:①abc<0;②2a+b =0; ③4a+2b +c =0;④若(0,y 1),(1,y 2)是抛物线上的两点,则y 1=y 2,上述说法正确的是( )A .①②④B .③④C .①③④D .①②二、填空题(每小题3分,共15分)11.如图,在平面直角坐标系中,点A 的坐标为(2.5,1),连接OA 并延长至点B ,使OA =AB ,则点B 的坐标是________.12.如图,A ,B 是反比例函数y =kx 图象上的两点,过点A 作AC⊥y 轴,垂足为C ,AC 交OB 于点D.若D 为OB 的中点,△AOD 的面积为6,则k 的值为________.13.如图,一个横断面为抛物线形的拱桥,当水面宽4 m时,拱顶离水面2 m.以桥孔的最高点为原点,过原点的水平线为x轴,建立平面直角坐标系.当水面下降1 m时,此时水面的宽度增加了______m(结果保留根号).14.在一次越野赛中,甲选手匀速跑完全程,乙选手1.5 h后速度为10 km/h,两选手的行程y(km)随时间x(h)变化的图象(全程)如图所示,则乙比甲晚到________h.15.如图,在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(72,32),那么点A3的纵坐标是________,点A n的纵坐标是________.三、解答题(本大题共6个小题,满分55分)16.(8分)如图,直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴的负半轴于点C,且OB∶OC=3∶1.(1)求点B的坐标;(2)求直线BC的函数关系式;(3)若点P(m,2)在△ABC的内部,求m的取值范围.17.(8分)如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2,m),B(n,-2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>k2x的解集;(3)若P(p,y1),Q(-2,y2)是函数y=k2x图象上的两点,且y1≥y2,求实数p的取值范围.18.(8分)已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B 关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:x…-1 0 1 3 4 …y…8 0 0 …(1)抛物线的对称轴是________.点A(________,________),B(________,________);(2)求二次函数y=ax2+bx+3的解析式;(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?图①图②19.(8分)“五一”期间,甲、乙两家商店以同样价格销售相同的商品,两家优惠方案分别为:甲店一次性购物中超过200元后的价格部分打七折;乙店一次性购物中超过500元后的价格部分打五折,设商品原价为x 元(x≥0),购物应付金额为y 元. (1)求在甲商店购物时y 与x 之间的函数关系;(2)两种购物方式对应的函数图象如图所示,求交点C 的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.20.(10分)郑州市雾霾天气趋于严重,丹尼斯商场根据民众健康需要,代理销售每台进价分别为600元、560元的A 、B 两种型号的空气净化器,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)商场准备用不多于17 200元的金额再采购这两种型号的空气净化器共30台.(1)请分析以上的信息,提出一个用二元一次方程组或一元一次方程解决的问题,并解决这个问题;(2)分析题目中各个量之间的关系,请写出一个函数关系式,并说明是什么函数关系;(3)超市销售完这30台空气净化器能否实现利润为6 200元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(13分)在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,直线y =x +4经过A ,C 两点.(1)求抛物线的解析式;(2)在AC 上方的抛物线上有一动点P.①如图①,当点P 运动到某位置时,以AP ,AO 为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P 的坐标;②如图②,过点O ,P 的直线y =kx 交AC 于点E ,若PE∶OE=3∶8,求k 的值.图①图②参考答案1.B 2.D 3.A 4.A 5.D 6.C 7.B 8.A 9.D 10.C 11.(5,2) 12.16 13.26-4 14.0.3 15.94,(32)n -116.解:将A(6,0)代入y =-x -b ,得0=-6-b ,解得b =-6, ∴直线AB 解析式为y =-x +6, ∴B 点坐标为(0,6); (2)∵OB∶OC=3∶1, ∴OC=2,∴点C 的坐标为(-2,0),设直线BC 的解析式是y =kx +6,则0=-2k +6, 解得k =3,∴直线BC 的解析式是:y =3x +6; (3)把y =2代入y =-x +6中,得x =4; 把y =2代入y =3x +6中,得x =-43.结合图象可知m 的取值范围是-43<m <4.17.解:(1)把A(2,m),B(n ,-2)代入y =k 2x ,得k 2=2m =-2n ,即m =-n , 则A(2,-n),如解图,过A 作AE⊥x 轴于E ,过B 作BF⊥y 轴于F ,延长AE 、BF 交于D ,∵A(2,-n),B(n ,-2),∴BD=2-n ,AD =-n +2,BC =|-2|=2, ∵S △ABC =12BC·BD,∴12×2×(2-n)=5, 解得n =-3,即A(2,3),B(-3,-2),把A(2,3)代入y =k 2x ,得k 2=6,即反比例函数的解析式是y =6x;把A(2,3),B(-3,-2)代入y =k 1x +b ,得⎩⎪⎨⎪⎧3=2k 1+b -2=-3k 1+b , 解得:⎩⎪⎨⎪⎧k 1=1b =1,即一次函数的解析式是y =x +1; (2)∵A(2,3),B(-3,-2),∴不等式k 1x +b >k 2x的解集是-3<x <0或x >2;(3)分为两种情况:当点P 在第三象限时,要使y 1≥y 2,实数p 的取值范围是p≤-2,当点P 在第一象限时,要使y 1≥y 2,实数p 的取值范围是p >0,综上,实数p 的取值范围是p≤-2或p >0.18.解:(1)根据当x =1和3时,y =0,得出抛物线的对称轴是直线x =2,∵抛物线y =ax 2+bx +3与y 轴的交点为A , ∴当x =0时,y =3,则点A( 0,3 ),故B(4,3 ); (2)∵二次函数的图象过(1,0),(3,0), ∴设抛物线为y =a(x -1)(x -3), 把(0,3)代入可得3=a(0-1)(0-3), 解得a =1,故二次函数的解析式为y =(x -1)(x -3)=x 2-4x +3; (3)如解图①,∵AB∥x 轴,AB =4, 当0<m <4时,点M 到AB 的距离为3-n , ∴S △ABM =12(3-n)×4=6-2n ,又∵n=m 2-4m +3,∴S 1=-2m 2+8m ,∴当m <0或m >4时,点M 到直线AB 的距离为n -3, ∴S 2=12×4(n-3)=2n -6,而 n =m 2-4m +3,S 2=2m 2-8m ,S =⎩⎪⎨⎪⎧-2m 2+8m (0<m <4)2m 2-8m (m <0或m >4), 故函数图象如解图①(x 轴上方部分)所示,S 不存在最大值,从图象可知:当m <0或m >4时,S 的值可以无限大.图①图②19.解:(1)当0≤x≤200时,y 1=x ,当x >200时,y 1=0.7(x -200)+200=0.7x +60.(2)直线BC 的解析式为y =0.5(x -500)+500=0.5x +250,由⎩⎪⎨⎪⎧y =0.5x +250y =0.7x +60,解得⎩⎪⎨⎪⎧x =950y =725, ∴点C 的坐标(950,725).(3)由图象可知,当0≤x≤200或x =950时,选择甲、乙两家商店购物费用一样.当200<x <950时,选择甲商店购物费用更优惠, 当x >950时,选择乙商店购物费用更优惠.20.解:(1)问题:A ,B 两种型号的空气净化器的销售单价是多少? 设A 、B 两种型号的空气净化器的销售单价分别是x 元、y 元,由题意,得⎩⎪⎨⎪⎧4x +5y =71006x +10y =12 600,解得⎩⎪⎨⎪⎧x =800y =780,答:A ,B 两种型号的空气净化器的销售单价分别是800元、780元; (2)设新购进的两种净化器的销售利润为w 元,购进A 种型号的空气净化器a 台,则w =(800-600)a +(780-560)(30-a)=-20a +6 600, w 与x 的函数关系式是一次函数;(3)超市销售完这30台空气净化器能实现利润为6 200元的目标, 理由:由题意可得, 600a +560(30-a)≤17 200, 解得a≤10.∵w=-20a +6 600,∴当a =0时,w 取得最大值,此时w =6 600,当a =10时,w 取得最小值,此时w =6 400,∵6 600>6 200,6 400>6 200, ∴能够实现利润为6 200元的目标, ∴有十一种购买方案,方案一:购买A ,B 两种型号的空气净化器分别为0台、30台; 方案二:购买A ,B 两种型号的空气净化器分别为1台、29台; 方案三:购买A ,B 两种型号的空气净化器分别为2台、28台;方案四:购买A ,B 两种型号的空气净化器分别为3台、27台; 方案五:购买A ,B 两种型号的空气净化器分别为4台、26台; 方案六:购买A ,B 两种型号的空气净化器分别为5台、25台; 方案七:购买A ,B 两种型号的空气净化器分别为6台、24台; 方案八:购买A ,B 两种型号的空气净化器分别为7台、23台; 方案九:购买A ,B 两种型号的空气净化器分别为8台、22台; 方案十:购买A ,B 两种型号的空气净化器分别为9台、21台; 方案十一:购买A ,B 两种型号的空气净化器分别为10台、20台. 21.解:(1)∵直线y =x +4经过A ,C 两点, ∴A 点坐标是(-4,0),C 点坐标是(0,4), 又∵抛物线过A ,C 两点,∴⎩⎪⎨⎪⎧-12×(-4)2-4b +c =0c =4,解得⎩⎪⎨⎪⎧b =-1c =4,∴抛物线的解析式为y =-12x 2-x +4.(2)①如解图①. ∵y=-12x 2-x +4,∴抛物线的对称轴是直线x =-1.∵以AP ,AO 为邻边的平行四边形的第四个顶点Q 恰好也在抛物线上, ∴PQ∥AO,PQ =AO =4. ∵点P ,Q 都在抛物线上,∴点P ,Q 关于直线x =-1对称, ∴P 点的横坐标是-3,∴当x =-3时,y =-12×(-3)2-(-3)+4=52,∴P 点的坐标是(-3,52);②如解图②,过P 点作PF∥OC 交AC 于点F , ∵PF∥OC, ∴△PEF∽△OEC, ∴PE OE =PF OC. 又∵PE OE =38,OC =4,∴PF=32,设点F(x ,x +4),∴(-12x 2-x +4)-(x +4)=32,化简得:x 2+4x +3=0,解得:x 1=-1,x 2=-3. 当x =-1时,y =-12x 2-x +4=92;当x =-3时,y =-12x 2-x +4=52,即P 点坐标是(-1,92)或(-3,52).又∵点P 在直线y =kx 上, ∴k=-92或-56.图①图②。

【2021中考数学冲刺】勾股定理综合必刷题含答案

【2021中考数学冲刺】勾股定理综合必刷题含答案

2021年九年级中考数学二轮复习勾股定理综合必刷题1.已知点A(﹣2,3),B(4,3),C(﹣1,﹣3).(1)求A,B两点之间的距离;(2)求点C到x轴的距离;(3)求三角形ABC的面积;(4)观察线段AB与x轴的关系,若点D是线段AB上一点(不与A,B重合),则点D 的坐标有什么特点?2.已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.3.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A (2)已知S△ABC运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.4.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.5.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.6.如图,在Rt△ABC中,∠B=90°,AC=60,AB=30.D是AC上的动点,过D作DF⊥BC 于F,过F作FE∥AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当△DEF是直角三角形时,求x的值.7.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.8.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.9.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.10.如图,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM上时,以CD为一边且在CD的下方作等边△CDE,连接BE.(1)填空:∠ACB=度;(2)当点D在线段AM上(点D不运动到点A)时,试求出的值;(3)若AB=8,以点C为圆心,以5为半径作⊙C与直线BE相交于点P、Q两点,在点D 运动的过程中(点D与点A重合除外),试求PQ的长.11.在△ABC中,∠ABC=90°,D为平面内一动点,AD=a,AC=b,其中a,b为常数,且a<b.将△ABD沿射线BC方向平移,得到△FCE,点A、B、D的对应点分别为点F、C、E.连接BE.(1)如图1,若D在△ABC内部,请在图1中画出△FCE;(2)在(1)的条件下,若AD⊥BE,求BE的长(用含a,b的式子表示);(3)若∠BAC=α,当线段BE的长度最大时,则∠BAD的大小为;当线段BE的长度最小时,则∠BAD的大小为(用含α的式子表示).12.如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB =13,BC =10,求AF 的长度; (2)如图2,若AF =BC ,求证:BF 2+EF 2=AE 2.13.(1)如图(1),分别以Rt △ABC 三边为直径向外作三个正方形,其面积分别用S 1,S 2,S 3表示,写出S 1,S 2,S 3之间关系.(不必证明)(2)如图(2),分别以Rt △ABC 三边为边向外作三个半圆,其面积分别用S 1,S 2,S 3表示,确定它们的关系证明;(3)如图(3),分别以Rt △ABC 三边为边向外作正三角形,其面积分别用S 1,S 2,S 3表示,确定它们的关系并证明.14.如图,已知Rt △ABC 中,∠C =90°,∠A =60°,AC =3cm ,AB =6m ,点P 在线段AC 上以1cm /s 的速度由点C 向点A 运动,同时,点Q 在线段AB 上以2cm /s 的速度由点A 向点B 运动,设运动时间为t (s ).(1)当t =1时,判断△APQ 的形状,并说明理由;(2)当t 为何值时,△APQ 与△CQP 全等?请写出证明过程.15.在△ABC中,AB=13,BC=14.(1)如图1,AD⊥BC于点D,且BD=5,则△ABC的面积为;(2)在(1)的条件下,如图2,点H是线段AC上任意一点,分别过点A,C作直线BH 的垂线,垂足为E,F,设BH=x,AE=m,CF=n,请用含x的代数式表示m+n,并求m+n 的最大值和最小值.参考答案1.解:(1)∵点A(﹣2,3),B(4,3),∴AB==6;(2)∵点C坐标为(﹣1,﹣3),∴点C到x轴的距离为|﹣3|=3;(3)过C作CD⊥AB,∵A(﹣2,3),B(4,3),C(4,3),∴CD=|﹣2﹣4|=6,AB=4﹣(﹣2)=4+2=6,=AB•CD=×6×6=18;∴S△ABC(4)∵A(﹣2,3),B(4,3),∴AB∥x轴,∵点D在线段AB上,∴点D横坐标的范围是﹣2<x<4,纵坐标为3.2.(1)如图1,证明:∵∠DAE=∠BAC,∴∠DAE+∠CAE=∠BAC+∠CAE,即∠DAC=∠BAE.在△ACD与△ABE中,,∴△ACD≌△ABE(SAS),∴CD=BE;(2)连接BE,∵CD垂直平分AE∴AD=DE,∵∠DAE=60°,∴△ADE是等边三角形,∴∠CDA=∠ADE=×60°=30°,∵△ABE≌△ACD,∴BE=CD=4,∠BEA=∠CDA=30°,∴BE⊥DE,DE=AD=3,∴BD=5;(3)如图,过B作BF⊥BD,且BF=AE,连接DF,则四边形ABFE是平行四边形,∴AB=EF,设∠AEF=x,∠AED=y,则∠FED=x+y,∠BAE=180°﹣x,∠EAD=∠AED=y,∠BAC=2∠ADB=180°﹣2y,∠CAD=360°﹣∠BAC﹣∠BAE﹣∠EAD=360°﹣(180°﹣2y)﹣(180°﹣x)﹣y=x+y,∴∠FED=∠CAD,在△ACD和△EFD中,,∴△ACD≌△EFD(SAS),∴CD=DF,而BD2+BF2=DF2,∴CD2=BD2+4AH2.3.(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC==5x,∴AB=AC,∴△ABC是等腰三角形;=×5x×4x=40cm2,而x>0,(2)解:S△ABC∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.①当MN∥BC时,AM=AN,即10﹣t=t,∴t=5;当DN∥BC时,AD=AN,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②∵点E是边AC的中点,CD⊥AB,∴DE=AC=5,当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;当t=4时,点M运动到点D,不构成三角形当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.如果DE=DM,则t﹣4=5,∴t=9;如果ED=EM,则点M运动到点A,∴t=10;如果MD=ME=t﹣4,过点E作EF⊥AB于F,如图3所示:∵ED=EA,∴DF=AF=AD=3,在Rt△AEF中,EF=4;∵BM=t,BF=7,∴FM=t﹣7则在Rt△EFM中,(t﹣4)2﹣(t﹣7)2=42,∴t=.综上所述,符合要求的t值为9或10或.4.解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.5.(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ===2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t=;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE===4.8(cm)∴CE==3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.6.解:(1)∵在Rt△ABC中,∠B=90°,AC=60,AB=30,∴∠C=30°,∵CD=x,DF=y.∴y=x;(2)∵四边形AEFD为菱形,∴AD=DF,∴y=60﹣x∴方程组,解得x=40,∴当x=40时,四边形AEFD为菱形;(3)①当∠EDF=90°,∵∠FDE=90°,FE∥AC,∴∠EFB=∠C=30°,∵DF⊥BC,∴∠DEF+∠DFE=∠EFB+∠DFE,∴∠DEF=∠EFB=30°,∴EF=2DF,∴60﹣x=2y,与y=x,组成方程组,得解得x=30.②当∠DEF=90°时,在Rt△ADE中,AD=60﹣x,∠AED=90°﹣∠FEB=90°﹣∠A=30°,AE=2AD=120﹣2x,在Rt△EFB中,EF=AD=60﹣x,∠EFB=30°,∴EB=EF=30﹣x,∵AE+EB=30,∴120﹣2x+30﹣x=30,∴x=48.综上所述,当△DEF是直角三角形时,x的值为30或48.7.解:(1)连接OQ,如图1,∵PQ∥AB,OP⊥PQ,∴OP⊥AB,在Rt△OBP中,∵tan∠B=,∴OP=3tan30°=,在Rt△OPQ中,∵OP=,OQ=3,∴PQ==;(2)连接OQ,如图2,在Rt△OPQ中,PQ==,当OP的长最小时,PQ的长最大,此时OP⊥BC,则OP=OB=,∴PQ长的最大值为=.8.解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,当t=6时,点P与A重合,也符合条件,∴当或6时,P在△ABC的角平分线上;(3)在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4﹣2t=3,∴t=,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=BC=,∴PB=AB,即2t﹣3﹣4=,解得:t=,②PB=BC,即2t﹣3﹣4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=×5,解得:t=,∴当时,△BCP为等腰三角形.9.解:(1)在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=(4﹣t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(4﹣t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.10.解:(1)60;(3分)(2)如图(2),∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE(5分)∴△ACD≌△BCE(SAS)∴AD=BE,∴=1(7分)(3)如图(3),①当点D在线段AM上(不与点A重合)时,由(2)可知△ACD≌△BCE,则∠CBE=∠CAD =30°,作CH⊥BE于点H,则PQ=2HQ,连接CQ,则CQ=5.在Rt△CBH中,∠CBH=30°,BC=AB=8,则CH=BC•sin30°=8×=4.在Rt△CHQ中,由勾股定理得:HQ=,则PQ=2HQ=6.(9分)②如图5,当点D在线段AM的延长线上时,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠DCB=∠DCB+∠DCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD=30°,同理可得:PQ=6(11分)③如图4,当点D在线段MA的延长线上时,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCE=∠BCE+∠ACB=180°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD∵∠CAM=30°∴∠CBE=∠CAD=150°∴∠CBQ=30°同理可得:PQ=6综上,PQ的长是6.(13分)11.解:(1)如图,(2)连接BF.∵将△ABD沿射线BC方向平移,得到△FCE,∴AD∥EF,AD=EF;AB∥FC,AB=FC.∵∠ABC=90°,∴四边形ABCF为矩形.∴AC=BF.∵AD⊥BE,∴EF⊥BE.∵AD=a,AC=b,∴EF=a,BF=b.∴.(3)①如图,当线段BE的长度最大时,E点在BF的延长线上,∵四边形ABCF是矩形,∠BAC=α,∴∠BFC=α,∴∠EFC=180°﹣α.∴∠BAD=180°﹣α.②如图,当线段BE的长度最小时,E点在BF上,∵四边形ABCF是矩形,∠BAC=α,∴AC=BF,且互相平分,∴∠BAC=∠ABF,∠BFC=∠ACF,∵∠AOB=∠COF,∴∠BAC=∠ABF=∠BFC=∠ACF,∴∠BFC=∠BAC=α,∴∠BAD=α.故答案为:180°﹣α,α.12.(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD===12,Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CH,在△CHB 和△AEF 中, ∵,∴△CHB ≌△AEF (SAS ),∴AE =CH ,∠AEF =∠BHC ,∴∠CEF =∠CHE ,∴CE =CH ,∵BD =CD ,FD ⊥BC ,∴CF =BF ,∴∠CFD =∠BFD =45°,∴∠CFB =90°,∴EF =FH ,Rt △CFH 中,由勾股定理得:CF 2+FH 2=CH 2,∴BF 2+EF 2=AE 2.13.解:(1)S 2+S 3=S 1,由三个四边形都是正方形则:∵S 3=AC 2,S 2=BC 2,S 1=AB 2,∵三角形ABC 是直角三角形,∴AC 2+BC 2=AB 2,∴S 2+S 3=S 1.(2)∵S 3=AC 2,S 2=BC 2,S 1=AB 2,∵三角形ABC 是直角三角形,∴AC 2+BC 2=AB 2,∴S 2+S 3=S 1.(3)∵S1=AB2,S2=BC2,S3=AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.14.解:(1)△APQ是等边三角形,理由是:∵t=1,∴AP=3﹣1×1=2,AQ=2×1=2,∴AP=AQ,∵∠A=60°,∴△APQ是等边三角形;(2)存在t,使△APQ和△CPQ全等.当t=1.5s时,△APQ和△CPQ全等.理由如下:∵在Rt△ACB中,AB=6,AC=3,∴∠B=30°,∠A=60°,当t=1.5,此时AP=PC时,∵t=1.5s,∴AP=CP=1.5cm,∵AQ=3cm,∴AQ=AC.又∵∠A=60°,∴△ACQ是等边三角形,∴AQ=CQ,在△APQ和△CPQ中,,∴△APQ≌△CPQ(SSS);即存在时间t,使△APQ和△CPQ全等,时间t=1.5;15.解:(1)在Rt△ABD中,AB=13,BD=5,∴AD===12.∵BC=14,∴==84.故答案为:84.(2)∵S ABC=S ABH+S,△BHC∴.∴xm+xn=168.∴m+n=∵AD=12,DC=14﹣5=9,∴AC==15.∵m+n与x成反比,∴当BH⊥AC时,m+n有最大值.∴(m+n)BH=AC•BH.∴m+n=AC=15.∵m+n与x成反比,∴当BH值最大时,m+n有最小值.∴当点H与点C重合时m+n有最小值.∴m+n=,∴m+n=12.∴m+n的最大值为15,最小值为12.。

2021中考数学必刷题 (4)

2021中考数学必刷题 (4)

数学题库04一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分)1.(3分)下列说法中正确的是()A.的算术平方根是±4B.12是144的平方根C.的平方根是±5D.a2的算术平方根是a2.(3分)下列计算正确的是()A.3x﹣x=3B.a3÷a4=C.(x﹣1)2=x2﹣2x+1D.(﹣2a2)3=﹣6a63.(3分)已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+54.(3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2B.(12+π)cm2C.6πcm2D.8πcm25.(3分)若x2+2(m﹣3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则n m 的值为()A.﹣4B.16C.4或16D.﹣4或﹣16 6.(3分)下列命题中是真命题的是()A.确定性事件发生的概率为1B.平分弦的直径垂直于弦C.正多边形都是轴对称图形D.两边及其一边的对角对应相等的两个三角形全等7.(3分)如图,从一块直径为2的圆形铁皮上剪出一个圆心角为90°的扇形CAB,且点C,A,B都在⊙O上,将此扇形围成一个圆锥,则该圆锥底面圆的半径是()A.B.C.D.8.(3分)若整数a使关于x的分式方程﹣2=有整数解,则符合条件的所有a之和为()A.7B.11C.12D.169.(3分)若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=510.(3分)如图,已知AD为△ABC的高,AD=BC,以AB为底边作等腰Rt△ABE,EF∥AD,交AC于F,连ED,EC,有以下结论:①△ADE≌△BCE②CE⊥AB③BD=2EF④S△BDE=S△ACE其中正确的是()A.①②③B.②④C.①③D.①③④二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.(3分)某物体质量为325000克,用科学记数法表示为克.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)若函数y=(k﹣2)x是关于x的二次函数,则k=.14.(3分)若+=2,则分式的值为.15.(4分)如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为.16.(4分)如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=米,背水坡CD的坡度i=1:(i为DF与FC 的比值),则背水坡CD的坡长为米.17.(4分)如图,长方形ABCD的长为8,宽为5,E是AB的中点,点F在BC上,若△DEF的面积为16,则△DCF的面积为.18.(4分)如图,在平面直角坐标系中,直线l1:y=x+1与x轴交于点A,与y轴交于点B,以x轴为对称轴作直线y=x+1的轴对称图形的直线l2,点A1,A2,A3…在直线l1上,点B1,B2,B3…在x正半轴上,点C1,C2,C3…在直线l2上,若△A1B1O、△A2B2B1、△A3B3B2、…、△A n B n B n﹣1均为等边三角形,四边形A1B1C1O、四边形A2B2C2B1、四边形A3B3C3B2…、四边形A n B n∁n B n﹣1的周长分别是l1、l2、l3、…、l n,则l n为(用含有n的代数式表示)三、解答题(本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(7分)(1)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°(2)先化简,再求值:+(+1)÷,然后从﹣≤x≤的范围内选取一个合适的整数作为x的值代入求值.20.(8分)“金山银山,不如绿水青山”.鄂尔多斯市某旗区不断推进“森林城市”建设,今春种植四类树苗,园林部门从种植的这批树苗中随机抽取了4000棵,将各类树苗的种植棵数绘制成扇形统计图,将各类树苗的成活棵数绘制成条形统计图,经统计松树和杨树的成活率较高,且杨树的成活率为97%,根据图表中的信息解答下列问题:(1)扇形统计图中松树所对的圆心角为度,并补全条形统计图.(2)该旗区今年共种树32万棵,成活了约多少棵?(3)园林部门决定明年从这四类树苗中选两类种植,请用列表法或树状图求恰好选到成活率较高的两类树苗的概率.(松树、杨树、榆树、柳树分别用A,B,C,D表示)21.(8分)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.22.(9分)牧民巴特尔在生产和销售某种奶食品时,采取客户先网上订购,然后由巴特尔付费选择甲或乙快递公司送货上门的销售方式,甲快递公司运送2千克,乙快递公司运送3千克共需运费42元:甲快递公司运送5千克,乙快递公司运送4千克共需运费70元.(1)求甲、乙两个快递公司每千克的运费各是多少元?(2)假设巴特尔生产的奶食品当日可以全部出售,且选择运费低的快递公司运送,若该产品每千克的生产成本y1元(不含快递运费),销售价y2元与生产量x千克之间的函数关系式为:y1=,y2=﹣6x+120(0<x<13),则巴特尔每天生产量为多少千克时获得利润最大?最大利润为多少元?23.(8分)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.24.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.25.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.参考答案一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分)1.【分析】直接利用算术平方根以及平方根的定义分别分析得出答案.【解答】解:A、=4,4的算术平方根是2,故此选项错误;B、12是144的平方根,正确;C、=5,5的平方根是±,故此选项错误;D、a2的算术平方根是|a|,故此选项错误.故选:B.【点评】此题主要考查了算术平方根以及平方根的定义,正确把握相关定义是解题关键.2.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x,故A错误;(C)原式=x2﹣2x+1,故C错误;(D)原式=﹣8a6,故D错误;故选:B.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.【分析】根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将抛物线y=x2+3向左平移2个单位所得直线的解析式为:y=(x+2)2+3;故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.5.【分析】利用完全平方公式,以及多项式乘以多项式法则确定出m与n的值,代入原式计算即可求出值.【解答】解:∵x2+2(m﹣3)x+1是完全平方式,(x+n)(x+2)=x2+(n+2)x+2n不含x的一次项,∴m﹣3=±1,n+2=0,解得:m=4,n=﹣2,此时原式=16;m=2,n=﹣2,此时原式=4,则原式=4或16,故选:C.【点评】此题考查了完全平方式,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.6.【分析】根据概率的求法、垂径定理、轴对称图形的概念和三角形确定的判定定理进行判断即可.【解答】解:确定性事件发生的概率为1或0,故A错误;平分弦(不是直径)的直径垂直于弦,故B错误;正多边形都是轴对称图形,故C正确;两边及其一边的对角对应相等的两个三角形不一定全等,故D错误,故选:C.【点评】本题考查的是命题的真假判断,掌握概率的求法、垂径定理、轴对称图形的概念和三角形确定的判定定理是解题的关键.7.【分析】连接BC,如图,利用圆周角定理得到BC为⊙O的直径,则AB=AC=,设该圆锥底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解方程即可.【解答】解:连接BC,如图,∵∠BAC=90°,∴BC为⊙O的直径,BC=2,∴AB=AC=,设该圆锥底面圆的半径为r,∴2πr=,解得r=,即该圆锥底面圆的半径为.故选:D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.8.【分析】根据分式方程的解为整数解,即可得出a=﹣1,1,2,4,7,据此计算即可.【解答】解:解分式方程﹣2=,得:x=,∵分式方程的解为整数,且x≠2,∴a=﹣1,1,4,7.故符合条件的所有a之和为:﹣1+1+4+7=11.故选:B.【点评】本题考查了分式方程的解,注意分式方程中的解要满足分母不为0的情况.9.【分析】根据题目中的新规定和二次函数的性质、不等式的性质,可以判断各个选项中的结论是否正确,本题得以解决.【解答】解:∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣1+,x2=﹣1﹣,故选项B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+)2+>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选:D.【点评】本题考查抛物线与x轴的交点、非负数的性质、解一元一次方程、解一元一次不等式,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.10.【分析】只要证明△ADE≌△BCE,△KAE≌△DBE,EF是△ACK的中位线即可一一判断;【解答】解:如图延长CE交AD于K,交AB于H.设AD交BE于O.∵∠ODB=∠OEA,∠AOE=∠DOB,∴∠OAE=∠OBD,∵AE=BE,AD=BC,∴△ADE≌△BCE,故①正确,∴∠AED=∠BEC,DE=EC,∴∠AEB=∠DEC=90°,∴∠ECD=∠ABE=45°,∵∠AHC=∠ABC+∠HCB=90°+∠EBC>90°,∴EC不垂直AB,故②错误,∵∠AEB=∠HED,∴∠AEK=∠BED,∵AE=BE,∠KAE=∠EBD,∴△KAE≌△DBE,∴BD=AK,∵△DCK是等腰直角三角形,DE平分∠CDK,∴EC=EK,∵EF∥AK,∴AF=FC,∴AK=2EF,∴BD=2EF,故③正确,∵EK=EC,∴S△AKE=S△AEC,∵△KAE≈△DBE,∴S△KAE=S△BDE,∴S△BDE=S△AEC,故④正确.故选:D.【点评】本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:某物体质量为325000克,用科学记数法表示为3.25×105克.故答案为:3.25×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.【分析】根据二次函数的定义列出不等式求解即可.【解答】解:由y=(k﹣2)x是关于x的二次函数,得,解得k=﹣3,故答案为:﹣3.【点评】本题考查二次函数的定义,二次函数的次数是二,系数不等于零是解题关键.14.【分析】已知等式整理得到关系式,代入原式计算即可求出值.【解答】解:已知等式整理得:=2,即x+y=2xy,则原式===﹣11.故答案为:﹣11【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.15.【分析】根据线段中点的定义得到AD=3,根据角平分线的定义得到∠BAG=∠EAF,根据相似三角形的性质即可得到结论.【解答】证明:∵AB=6,D是边AB的中点,∴AD=3,∵AG是∠BAC的平分线,∴∠BAG=∠EAF,∵∠ADE=∠C,∴△ADF∽△ACG;∴==,故答案为:.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.16.【分析】由题意可得四边形AEFD是矩形,由AB的坡角α=45°,得出AE的长,利用背水坡CD的坡度i=1:(i为DF与FC的比值)得出∠C的度数,即可求解.【解答】解:∵迎水坡AB的坡角α=45°,坡长AB=米,∴AE=6×sin45°=6(m),∵背水坡CD的坡度i=1:(i为DF与FC的比值),∴tan∠C==,∴∠C=30°,则DC=2DF=2AE=12m,故答案为:12.【点评】此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.17.【分析】设BF=x,则CF=5﹣x,则可以表示出△ADE,△EBF,△DCF的面积,因为矩形ABCD的面积可求,列出方程求出x,即可求出CF的长,再根据面积可求结果.【解答】解:设BF=x,则CF=5﹣x,△DCF的面积=DC•CF=×8(5﹣x)=20﹣4x.△BEF的面积=×4x=2x.△DAE的面积=×5×4=10.∵△DEF的面积=16又∵□ABCD的面积=AD•AB=40.∴40=16+10+2x+20﹣4x∴x=3,∴CF=5﹣3=2,∴△DCF的面积为:×2×8=8.故答案为:8.【点评】本题考查了三角形的面积;解题的关键是根据矩形的性质,三角形的面积等性质进行解答.18.【分析】依据直线l1:y=x+1,可得∠BAO=30°,进而得出∠AA1O=30°,AO=A1O=,C1O=A1B1=,分别求得四边形A1B1C1O、四边形A2B2C2B1、四边形A3B3C3B2的周长,根据规律可得四边形A n B n∁n B n﹣1的周长.【解答】解:由直线l1:y=x+1,可得A(﹣,0),B(0,1),∴AO=,BO=1,∴∠BAO=30°,又∵∠A1OB1=60°,∴∠AA1O=30°,∴AO=A1O=,由轴对称图形可得,C1O=A1B1=,∴四边形A1B1C1O的周长l1为4;同理可得,AB1=A2B1=2,四边形A2B2C2B1的周长l2为8,AB2=A3B2=4,四边形A3B3C3B2的周长l3为16,以此类推,A n B n∁n B n﹣1的周长l n为,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,等边三角形的判定与性质以及等腰三角形的性质的运用,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.三、解答题(本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.)19.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:(1)原式=2+1﹣9﹣4×=2﹣8﹣2=﹣8;(2)原式=+•=﹣+=,∵﹣≤x≤,∴所以x可取﹣2,﹣1,0,1由于当x取﹣1、0、1时,分式的分母为0,所以x只能取﹣2.当x=﹣2时,原式=8.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.【分析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.【解答】解:(1)扇形统计图中松树所对的圆心角为360°×(1﹣20%﹣15%﹣25%)=144°,杨树的棵数=4000×25%×97%=970(棵),补全条形统计图如图所示,故答案为:144;(2)320000××100%=300000(棵),答:成活了约300000棵;(3)所有等可能的情况有12种,其中恰好选到成活率较高的两类树苗有2种,∴恰好选到成活率较高的两类树苗的概率==.【点评】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.21.【分析】(1)连接OD,由等腰三角形的性质证出∠A=∠ODB,得出OD∥AC,证出DF⊥OD,即可得出结论;(2)证明△OBD是等边三角形,由等边三角形的性质得出∠BOD=60°,求出∠G=30°,由直角三角形的性质得出OG=2OD=2×6=12,由勾股定理得出DG=6,阴影部分的面积=△ODG的面积﹣扇形OBD的面积,即可得出答案.【解答】(1)证明:连接OD,如图所示:∵AC=BC,OB=OD,∴∠ABC=∠A,∠ABC=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:∵AC=BC,∠A=60°,∴△ABC是等边三角形,∴∠ABC=60°,∵OD=OB,∴△OBD是等边三角形,∴∠BOD=60°,∵DF⊥OD,∴∠ODG=90°,∴∠G=30°,∴DG=OD=6,∴阴影部分的面积=△ODG的面积﹣扇形OBD的面积=×6×6﹣=18﹣6π.【点评】本题考查了等腰三角形的性质,平行线的判定和性质,切线的判定,勾股定理、直角三角形的性质、等边三角形的判定与性质,是一道综合题,难度中等.22.【分析】(1)设甲快递公司每千克的运费各是x元,乙快递公司每千克的运费是y元,根据题意列方程组即可得到结论;(2)设产量为xkg时,获得的利润为W元,①当0<x<8时,②当8≤x<13时,根据二次函数的性质即可得到结论.【解答】解:(1)设甲快递公司每千克的运费各是x元,乙快递公司每千克的运费是y 元,根据题意得,,解得:,答:甲快递公司每千克的运费是6元,乙快递公司每千克的运费是10元;(2)设产量为xkg时,获得的利润为W元,①当0<x<8时,W=x(﹣6x+120+2x﹣58)﹣6x=﹣4x2+56x=﹣4(x﹣7)2+196,∴当x=7时,W的值最大,最大值为196;②当8≤x<13时,W=x(﹣6x+120﹣42)﹣6x=﹣6(x﹣6)2+216,(不合题意,舍去),当x=8时,W的值最大,最大值为192;∴巴特尔每天生产量为7千克时获得利润最大,最大利润为196元.【点评】本题考查了待定系数法求函数解析式及二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型.23.【分析】(1)作AE、BF分别垂直于x轴,垂足为E、F,根据△AOE∽△BOF,则设A 的横坐标是m,则可利用m表示出A和B的坐标,利用待定系数法求得k的值;(2)根据AC∥x轴,则可利用m表示出C的坐标,利用三角形的面积公式求解.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S△ABC=×8m×=8.【点评】本题考查了待定系数法确定函数关系式以及相似三角形的判定与性质,正确利用m表示出个点的坐标是关键.24.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN 的面积最大,而BD最大是AB+AD=14,即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大.25.【分析】(1)由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入求出a 即可解决问题;(2)利用勾股定理求出AN的长,分三种情形分别求解即可解决问题;(3)①设B(m,﹣2),则直线AB的解析式为y=x+,由直线l⊥AB,推出直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,只要证明△>0即可;②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,求出方程的两根即可解决问题;【解答】(1)解:由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣4,即y=x2﹣2x﹣2.(2)解:由题意:A(2,﹣1.5),N(0,﹣2).∴AN==,当P A=AN时,可得P1(2,﹣),P3(2,﹣﹣).当NA=NP时,可得P2(2,﹣),当PN=P A时,设P4(2,a),则有(a+)2=22+(a+2)2,解得a=﹣,∴P4(2,﹣),综上所述,满足条件的点OP坐标为P1(2,﹣),P2(2,﹣),P3(2,﹣﹣),P4(2,﹣);(3)①证明:如图2中,设B(m,﹣2),则直线AB的解析式为y=x+,∵直线l⊥AB,∴直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,∴△=[4(1﹣m)]2﹣4•1•4(m2﹣2m)=16>0,∴直线l与抛物线有两个交点.②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,∵x2+4(1﹣m)x+4(m2﹣2m)=0,∴x==,∴x2=,x1=,∴EF=x2﹣x1=4.【点评】本题考查二次函数综合题、一次函数的应用、等腰三角形的判定和性质、一元二次方程的根判别式等知识,解题的关键是学会利用参数解决问题,学会构建一次函数,利用方程组解决问题,属于中考压轴题.。

2021年浙江省绍兴市中考数学考前必刷真题试卷附解析

2021年浙江省绍兴市中考数学考前必刷真题试卷附解析

2021年浙江省绍兴市中考数学考前必刷真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在□ABCD 中,过点A 的直线与BC 相交于点 E ,与 DC 的延长线相交于点F ,若 43BE EC =,则CF DF 等于( ) A .43 B .34 C .47 D .372.劳技课上,王红制成了一顶圆锥形纸帽,已知纸帽底面圆半径为10cm ,•母线长50cm ,则制成一顶这样的纸帽所需纸面积至少为( )A .250πcm 2B .500πcm 2C .750πcm 2D .100πcm 2 3.下列图形中,不是中心对称图形的是( ) A . 等边三角形B . 正方形C . 矩形D . 菱形 4.如图,在□ABCD 中,∠B=100°,延长AD 至点F ,延长CD 至点E ,连结EF ,则∠E+∠F 等于( )A .100°B .80°C .50°D .40 °5.在频数分布直方图中,每个小长形的高度等于( )A .组距B .组数C .每小组的频率D .每小组的频数6.将△ABC 的三个顶点的横坐标都乘-l ,纵坐标保持不变,则所得图形( )A .与原图形关于x 轴对称B .与原图形关于k 轴对称C .与原图形关于原点对称D .向x 轴的负方向平移了一个单位 7.下列不等式组无解的是( )A .1020x x -<⎧⎨+<⎩B .1020x x -<⎧⎨+>⎩C .1020x x ->⎧⎨+<⎩D .1020x x ->⎧⎨+>⎩ 8.下列计算结果正确的是( )A .(mn )6÷(mn )3=mn 3B .(x+y )6÷(x+y )2·(x+y )3=x+yC .x 10÷x 10=0D .(m-2n )3÷(-m+2n )3=-1 9.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是( )A .△OCDB .△OABC .△OAFD .△OEF10.如图所示,△ABC和△A′B′C′关于直线l对称,那么下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠A′B′C′;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上.A.4个B.3个C.2个D.1个11.下列说法中不正确的是()A.在同一平面内,若OA⊥OB,OB⊥OC垂足为0,则A、0、C在同一直线上B.直线外一点P与直线l上各点连结的线段中,最短的线段长为2 cm,则点P到直线l的距离为2 cmC.过点M画MN⊥l,则MN就是垂线段D.测量跳远成绩时,一定要使皮尺与起跳线垂直12.我们知道,32+和32-互为相反数,现有A、B、C、D 四个同学分别提出有关相反数的语句,正确的说法是()A.符号相反的两个数B.互为相反数的两个数肯定是一正、一负C.32-的相反数可以用3()2--表示D.因为32+的相反数是32-,所有有理数的相反数小于它本身二、填空题13.两圆有多种位置关系,图中不存在的位置关系是.14.对120个数据进行整理并绘制成频数分布表,各组的频数之和等于,各组的频率之和等于.15.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2 m,其侧面图如图所示,则购买地毯至少需要元.16.已知 A ,B 的坐标分别为(-2,0),(4,0),点P 在直线2y x =+上,如果△ABP 为等腰三角形,这样的 P 点共有 个.17.严驰同学在杭州市动物园的大门口看到这个动物园的平面示意图如图所示,试借助刻度尺、量角器解决下列问题: (1)表演厅在大门的北偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m . (2)虎山在大门的南偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m .(3)猴山在大熊猫馆南偏 约 度的方向上,到大熊猫馆的图上距离约为cm ,实际距离为 m .18.请举出一个主视图和俯视图相同,但是左视图不同的几何体: .19.被减式为232x xy -,差式为2243x xy y -+,则减式为 .20.若(a+2)2+│b-3│=0,则ba =________.21. 在数-6,7. 2,0,13+,35-,+7 中,正数有 ,负数有 . 三、解答题22.小明和小乐做摸球游戏,一只不透明的口袋里放有 3 个红球和 5 个绿球,每个球除颜色外都相同,每次摸球前都将袋中的球充分搅匀,从中任意摸出一个球,记录颜色后再放回,若是红球,小明得 3 分,若是绿球,小乐得 2 分,游戏结束时得分多者获胜.你认为这个游戏对双方公平吗?若你认为公平,请说明理由;若你认为不公平,也请说明理由,并修改规则,使该游戏对双方公平.23.如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,BC= ;(2)判断△ABC 与△DEF 是否相似,并证明你的结论.24.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O,E 、F 是直线AC 上的两点,并且AE=CF,求证:四边形BFDE 是平行四边形.25.如图,△ABC 的顶点坐标分别为 A(3,6)、 B(1,3)、C(4,2). 若将 △ABC 绕点 C 顺时针旋转90°,得到A B C ''∆,在图中画出A B C ''∆,并分别求出A B C ''∆的顶点A '、B '的坐标.26.已知一个长方形ABCD ,长为6,宽为4.(1)如图①建立直角坐标系,求A 、B 、C 、D 四点的坐标.(2)如图②建立直角坐标系,求A 、B 、C 、D 四点的坐标.图①图②27.在如图的网格上,找出4个格点(小方格的顶点),使每一个格点与A、B两点构造等腰三角形,并画出这4个等腰三角形.28.如图所示,把一张长为 b、宽为 a 的长方形纸板的四个角剪去,剪去的部分都是边长为 x 的小正方形,然后做成无盖纸盒. 请你用三种方法求出盒子的表面积(阴影部分面积).29.检验括号中的数是否为方程的解?(1)3x-4=8(x=3,x=4)(2)1372y+=(y=8,y=4)30.如图,正方形网格中的每个小正方形的边长都是 1,每个小格的顶点叫格点,以格点为顶点分别接下列要求画图形.(1)画一个面积为 4 的三角形(在图①中画一个即可).(2)画一个面积为 8 的正方形(在图②中画一个即可).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.A4.B5.D6.B7.C8.D9.C10.B11.CC二、填空题13.内切14.120,115.480°16.417.(1)西,79,2,200;(2)西,76,4.4,440;(3)东,70,1.3,130 18.答案不唯一,如横放的圆柱19.223x xy y---20.-821.7.2,13+,+7;-6,35-三、解答题22.(1)不公平;(2)()3 8P=摸出红球,()58 P=摸出绿球∵小明平均每次得分39388⨯=(分)小乐平均每次得分55284⨯=(分)∵9584<,∴游戏不公平.可修改为:①口袋里只放 2 个红球和 3 个绿球;或②摸出红球小明得 5 分,摸出绿球小乐得3分.(1)∠ABC= 135 °, BC=22 ;(2)能判断△ABC 与△DEF 相似(或△ABC ∽△DEF )这是因为∠ABC =∠DEF = 135 ° ,2==EF BC DE AB ,∴△ABC ∽△DEF. 24.证明:∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD ,又∵AE=CF ,∴OE=OF ,∴四边形BFDE 是平行四边形.25.图略,A ′(8,3)、B ′(5,5)26.(1)A(6,4),B(0,4),C(0,O),D(6,0);(2)A(3,2),B(一3,2),C(-3,-2),D(3,-2) 27.略28.方法一:24ab x -; 方法二:2(2)2(2)4a b x x a x ab x -+-=-,方法三:2(2)2(2)4b a x x b x ab x -+-=-29.(1)x=4 是方程的解,x=3不是 (2)y=8是方程的解,y=4不是30.略。

九年级数学中考分类训练:锐角三角函数实际应用 必刷题

九年级数学中考分类训练:锐角三角函数实际应用 必刷题

2021年九年级数学中考分类训练:锐角三角函数实际应用必刷题1.如图1是一个手机的支架,由底座、连杆和托架组成,如图2是它的平面示意图,底座AD,连杆AB和托架BC始终在一个平面内.连杆AB可以绕着点A在5°﹣120°范围内旋转,托架BC可以绕着点B在5°﹣90°范围内旋转,连杆BA的长度为18厘米,托架CB的长度为8厘米.当连杆AB和托架BC旋转至图3位置,∠DAB=∠ABC =60°,请你计算此时点C到底座AD的距离CM的长.(结果保留根号)2.如图,在一条笔直公路BD的正上方A处有一探测仪,AD=24m,∠D=90°,一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°.(参考数据:tan31°≈0.6,tan50°≈1.2)(1)求B,C两点间的距离(结果精确到1m);(2)若规定该路段的速度不得超过15m/s,判断此轿车是否超速.3.小强洗漱时的侧面示意图如图所示,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时身体前倾,下半身与地面的夹角∠FGK=80°,上半身与下半身所成夹角∠EFG=125°,脚与洗漱台距离GC=15cm,点D,C,G,K在同一直线上.(1)求此时小强腰部点F到墙AD的距离.(2)此时小强头部点E是否恰好在洗漱盆AB的中点O的正上方?若是,请说明理由;若不是,则他应向前还是向后移动多少厘米,使头部点E恰好在洗漱盆AB的中点O的正上方?(计算过程及结果的长度均精确到1cm.参考数据;sin80°≈0.98,cos80°≈0.17,≈1.41)4.如图①,在我国古建筑的大门上常常悬挂着巨大的匾额,图②中的线段BC就是悬挂在墙壁AM上的某块匾额的截面示意图.已知BC=1米,∠MBC=37°.从水平地面点D处看点C的仰角∠ADC=45°,从点E处看点B的仰角∠AEB=53°,且DE=2.4米.(1)求点C到墙壁AM的距离;(2)求匾额悬挂的高度AB的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)5.某学习小组,为了测量旗杆AB的高度,他们在大楼MN第10层D点测得旗杆底端B 的俯角是32°,又上到第35层,在C点测得旗杆顶端A的俯角是60°,每层楼高度是2.8米,请你根据以上数据计算旗杆AB的高度.(精确到0.1米,已知:sin32°≈0.37,cos32°≈0.93,tan32°≈0.62,≈1.73)6.如图是某堤坝经过改造后的横断面梯形ABCD,高DH=10米,斜坡CD的坡度是1:1,此处,堤坝的正上方有高压线通过,点P,D,H在一条直线上,点P是高压线上离堤面AD最近的点,测得∠PCD=26°.(1)求斜坡CD的坡角α.(2)电力部门要求此处高压线离堤面AD的安全距离不低于18米,此次改造是否达到了安全要求?(参考数据:sin26°≈0.44,tan26°≈0.49,sin71°≈0.95,tan71°≈2.90)7.如图,已知在Rt△ABC中,∠C=90°,sin∠ABC=,点D在边BC上,BD=4,联结AD,tan∠DAC=.(1)求边AC的长;(2)求cot∠BAD的值.8.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处(点A、B、C在同一直线上).某测量员从悬崖底C点出发沿水平方向前行60米到D点,再沿斜坡DE方向前行65米到E点(点A、B、C、D、E在同一平面内),在点E处测得5G 信号塔顶端A的仰角为37°,悬崖BC的高为92米,斜坡DE的坡度i=1:2.4.(1)求斜坡DE的高EH的长;(2)求信号塔AB的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)9.为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某高架路有一段限速每小时60千米的道路AB(如图所示),当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是37°,无人机继续向右水平飞行220米到达D处,此时又测得起点A的俯角是30°,同时测得限速道路终点B的俯角是45°(注:即四边形ABDC 是梯形).(1)求限速道路AB的长(精确到1米);(2)如果李师傅在道路AB上行驶的时间是1分20秒,请判断他是否超速?并说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)10.吴兴区某中学开展研学实践活动,来到了“两山”理论发源地﹣﹣安吉余村,看到了“两山”纪念碑.如图,想测量纪念碑AB的高度,小明在纪念碑前D处用测角仪测得顶端A的仰角为60°,底端B的俯角为45°;小明又在同一水平线上的E处用测角仪测得顶端A的仰角为30°,已知DE=8m,求该纪念碑AB的高度.(≈1.7,结果精确到0.1m)11.某校为检测师生体温,在校门安装了某型号的测温门,如图为该“测温门”截面示意图.身高1.6米的小聪做了如下实验:当他在地面M处时“测温门”开始显示额头温度,此时在额头B处测得A的仰角为30°;当他在地面N处时,“测温门”停止显示额头温度,此时在额头C处测得A的仰角为53°.如果测得小聪的有效测温区间MN的长度是0.98米,求测温门顶部A处距地面的高度约为多少米?(注:额头到地面的距离以身高计,sin53°≈0.8,cos53°=0.6,cot53°≈0.75,≈1.73.)12.为了监控大桥下坡路段车辆行驶速度,通常会在下引桥处设置电子眼进行区间测速.如图,电子眼位于点P处,离地面的铅锤高度PQ为9米,区间测速的起点为下引桥坡面点A处,此时电子眼的俯角为30°;区间测速的终点为下引桥坡脚点B处,此时电子眼的俯角为60°(A、B、P、Q四点在同一平面).(1)求路段BQ的长(结果保留根号);(2)当下引桥坡度i=1:2时,求电子眼区间测速路段AB的长(结果保留根号).13.如图,是小明家房屋的纵截面图,其中线段AB为屋内地面,线段AE、BC为房屋两侧的墙,线段CD、DE为屋顶的斜坡.已知AB=6米,AE=BC=3.2米,斜坡CD、DE的坡比均为1:2.(1)求屋顶点D到地面AB的距离;(2)已知在墙AE距离地面1.1米处装有窗ST,如果阳光与地面的夹角∠MNP=β=53°,为了防止阳光通过窗ST照射到屋内,所以小明请门窗公司在墙AE端点E处安装一个旋转式遮阳棚(如图中线段EF),公司设计的遮阳棚可作90°旋转,即0°<∠FET=α≤90°,长度为1.4米,即EF=1.4米.试问:公司设计的遮阳棚是否能达到小明的要求?说说你的理由.(参考数据:≈1.41,≈1.73,≈2.24,≈3.16,sin53°=0.8,cos53°=0.6,tan53°=).14.如图,海中有一个小岛A,它的周围25海里内有暗礁,今有货船由西向东航行,开始在A岛南偏西60°的B处,往东航行20海里后到达该岛南偏西45°的C处后,货船继续向东航行,你认为货船在航行途中有没有触礁的危险.15.如图,为了测量河宽,在河的一边沿岸选取B、C两点,对岸岸边有一块石头A,在△ABC中,测得∠B=64°,∠C=45°,BC=50米,求河宽(即点A到边BC的距离)(结果精确到0.1米).(参考数据:≈1.41,sin64°=0.90,cos64°=0.44,tan64°=2.05)参考答案1.解:延长AM、BC交于E,由题意得BC=8厘米,BA=18厘米,∵∠DAB=∠ABC=60°,∴△ABE是等边三角形,∴∠E=60°,BE=BA=18厘米,∴CE=BE﹣BC=10,∵CM⊥AD,∴∠CME=90°,∴∠ECM=90°﹣60°=30°,∴EM=CE=5,∴CM===5(厘米),答:此时点C到底座AD的距离CM的长是5厘米.2.解:(1)在Rt△ACD中,,∴,在Rt△ABD中,,∴.∴BC=BD﹣CD=20(m);∴B,C两点间的距离为BD﹣CD=20(m);(2)此轿车的速度,所以此轿车在该路段没有超速.3.解:(1)如图,过点F作FN⊥DK于点N,作FM⊥AD于点M.在Rt△FGN中,∵∠FGK=80°,FG=100cm,∴GN=FG⋅cos∠FGK=100⋅cos80°≈17(cm).∴DN=DC+CG+GN=48+15+17=80(cm).∵FN⊥DK,FM⊥AD,∴∠FMD=∠FND=90°,∵四边形ABCD是矩形,∴∠D=90°.∴四边形MDNF是矩形.∵MF=DN=80(cm).∴此时小强腰部点F到墙AD的距离为80cm.(2)此时小强头部点E没有在洗漱盆AB中点O的正上方.如图,过点E作EP⊥AB于点P,延长OB交FN于点H.∵∠EFG=125°,∴∠EFM=125°+10°﹣90°=45°.∵EF=166﹣FG=166﹣100=66(cm),∴FQ=66⋅sin45°≈47(cm).∴PH≈47(cm).∵AB=48cm,点O为AB的中点,∴AO=BO=24(cm).∵GN≈17cm,CG=15cm,∴OH=24+15+17=56(cm).∵56>47.∴此时小强头部点E没有在洗漱盆AB中点O的正上方.∴OP=OH﹣PH=56﹣47≈9(cm).∴他应向前移动9cm.4.解:(1)过C作CF⊥AM于F,过C作CH⊥AD于H,则四边形AHCF是矩形,∴AF=CH,CF=AH.在Rt△BCF中,BC=1米,∠CBF=37°.∴BF=BC cos37°≈0.8(米),CF=BC sin37°≈0.6(米);答:点C到墙壁AM的距离为0.6米;(2)在Rt△BAE中,∠BEA=53°,∴AE=AB,在Rt△CDH中,∠CDH=45°,。

人教中考数学重难点题型分类必刷题 人教版七年级下学期数学

人教中考数学重难点题型分类必刷题 人教版七年级下学期数学

人教中考数学重难点题型分类必刷题人教版七年级下学期数学在人教版七年级下学期数学教材中,有一些题型被认为是重难点题型,考生需要特别关注和重点复习。

本文将对这些题型进行分类,并介绍一些必刷题,帮助同学们更好地备考。

一、整数的加减法运算整数的加减法运算是初中数学中的基础知识,也是中考中相对较为简单的题型之一。

但是,加减法题目中常常融合了其他知识点,比如小数、分数等,需要同学们运用多种知识进行联想和综合运算。

在此我们推荐一道必刷题:例题:已知a=-3,b=5,则a-(-4)-b+(2-a)的值是多少?解析:根据运算符的优先级,先计算括号中的式子,再依次进行减法、加法运算。

将a、b的值代入得:-3-(-4)-5+(2-(-3))=-7+6=-1。

二、平方根与立方根求平方根与立方根是数学中的重要知识点,也是中考中较为常见的题型之一。

在做这类题目时,同学们需要熟悉根号的运算规则,并且要注意约分化简。

以下是一道建议练习的必刷题:例题:将8的平方根与立方根分别化简。

解析:8的平方根为√8,化简为2√2。

8的立方根为∛8,化简为2。

三、比例与百分数比例和百分数在中考数学中也是常考题型之一。

同学们需要掌握比例的概念和计算方法,以及百分数与小数、分数之间的转化。

以下是一道必刷题:例题:某商店原价150元的商品现在打8折出售,小明买了5件,请问小明买这些商品的总价是多少?解析:由于打折是按照商品原价的比例进行的,打折后的价格为150×0.8=120元。

小明买了5件商品,所以总价为120×5=600元。

四、图形的周长与面积图形的周长和面积是中考数学中的重点知识,同学们需要熟悉各种图形的计算公式,并根据题目要求进行计算。

以下是一道必刷题:例题:长方形的长是7cm,宽是5cm,求其周长和面积。

解析:周长=2×(长+宽)=2×(7+5)=2×12=24cm,面积=长×宽=7×5=35cm²。

2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练

2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练

2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练一. 选择题.1.对于任意实数m,下列函数一定是二次函数的是( )A.y=mx2+3x-1B.y=(m-1)x2C.y=(m-1)2x2D.y=(-m2-1)x22.二次函数y=x2-3x+2的图象不经过第象限.A.一B.二C.三D.四3.已知二次函数y=1-11x-6x2,其二次项系数为a,一次项系数为b,常数项为c,则a+b+c= ( )A.+16B.6C.-6D.-164.二次函数2=-的图象是一条抛物线,下列关于该抛物线的说法,正确的23y x是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线1x=D.抛物线与x轴有两个交点5.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是( )6.如图,二次函数y=ax2+bx+c的图象过点(-1,0)和点(3,0),则下列说法正确的是( )A.bc<0B.a+b+c>0C.2a+b=0D.4ac>b27.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax 2+bx+c(a ≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为 ( )A.10 mB.15 mC.20 mD.22.5 m8.如图,二次函数y=ax 2+bx+c 的图象过点(-1,0)和点(3,0),则下列说法正确的是( )A.bc<0B.a+b+c>0C.2a+b=0D.4ac>b 29.一位运动员在距篮下4 m 处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5 m 时,达到最大高度3.5 m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05 m,该运动员身高1.9 m,在这次跳投中,球在头顶上方0.25 m 处出手时,他跳离地面的高度是( )A.0.1 mB.0.2 mC.0.3 mD.0.4 m10.已知二次函数2y ax bx c =++满足:(1)a b c <<;(2)0a b c ++=;(3)图象与x 轴有2个交点,且两交点间的距离小于2;则以下结论中正确的有( ) ①0a <;②0a b c -+<;③0c >;④20a b ->;⑤124b a -<. A .1个 B .2个 C .3个 D .4个二.填空题.11.抛物线y=4(x-2)2+1的顶点坐标是 .12.已知(-1,y1),(-2,y2),(-4,y3)是抛物线y=-2x2-8x+m上的点,则y1,y2,y3的大小关系为.13.如图,抛物线y=ax2+bx+4(a≠0)经过点A(-3,0),点B在抛物线上,CB∥x轴,且AB平分∠CAO,则此抛物线的解析式是 .14.如图是某个二次函数的图象,根据图象可知,该二次函数的解析式是 .15.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为米.16.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB 向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s 的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,那么经过s,四边形APQC的面积最小.17.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,为使每天所获销售利润最大,销售单价应定为元.18. 如图为函数y=ax2+bx+c与y=x的图象,下列结论:①b2-4ac>0;②3b+c+6=0;③当1<x<3时,x2+(b-1)x+c<0;④=3. 其中正确的有 .三.解答题.19. 在平面直角坐标系中,二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示.(1)求这个二次函数的解析式;(2)当-2≤x≤2时,求y的取值范围.20. 如图所示,甲、乙两船分别从A地和C地同时开出,各沿箭头所指方向航行,已知AC=10海里,甲、乙两船的速度分别是每小时16海里和每小时12海里,同时出发多长时间后,两船相距最近?最近距离是多少?21. 某公司从年初以来累计利润S(万元)与时间t(月)之间的关系(即前t个月的利润总和S和t之间的关系)为二次函数关系.试根据图象提供的信息,解答下列问题:(1)求累计利润S(万元)与时间t(月)之间的函数解析式;(2)截至几月末该公司累计利润可达16万元?(3)第10个月该公司所获利润是多少万元?。

初三中考数学必刷试卷答案

初三中考数学必刷试卷答案

一、选择题1. 下列各数中,不是有理数的是()A. -3.14B. √2C. 0.5D. 1/2答案:B解析:有理数包括整数和分数,而√2是无理数,不属于有理数。

2. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -1答案:B解析:绝对值表示数与0的距离,0的绝对值最小。

3. 下列各方程中,无解的是()A. x + 3 = 6B. 2x - 4 = 0C. 3x + 5 = 0D. 5x - 2 = 10答案:C解析:将方程两边同时除以3得到x + 5/3 = 0,显然无解。

4. 已知一元二次方程x^2 - 5x + 6 = 0,则方程的解为()A. x1 = 2, x2 = 3B. x1 = 3, x2 = 2C. x1 = -2, x2 = -3D. x1 = -3,x2 = -2答案:A解析:将方程因式分解得(x - 2)(x - 3) = 0,解得x1 = 2, x2 = 3。

5. 在直角坐标系中,点P(2, 3)关于x轴的对称点坐标为()A. (2, -3)B. (-2, 3)C. (2, 6)D. (-2, -3)答案:A解析:点P关于x轴的对称点,横坐标不变,纵坐标取相反数,故坐标为(2, -3)。

二、填空题6. 若a = -3,则|a| + |a - 1|的值为()答案:4解析:|a| + |a - 1| = |-3| + |-3 - 1| = 3 + 4 = 7。

7. 已知一元二次方程x^2 - 4x + 3 = 0,则方程的解为()答案:x1 = 1, x2 = 3解析:将方程因式分解得(x - 1)(x - 3) = 0,解得x1 = 1, x2 = 3。

8. 在等腰三角形ABC中,底边AB = 4,腰AC = 5,则顶角A的度数为()答案:36°解析:由等腰三角形的性质,底边上的高CD等于底边AB的一半,即CD = 2。

在直角三角形ACD中,根据勾股定理,AD = √(AC^2 - CD^2) = √(5^2 - 2^2) = √21。

中考数学必刷题基础练习册

中考数学必刷题基础练习册

中考数学必刷题基础练习册【练习一:有理数的加减法】1. 计算下列各题的和:- 5 + (-3)- (-8) + 7- 12 + (-9) + 62. 填空题:- 如果 a = -3,b = 5,那么 a + b = ____- 如果 x = 2,y = -4,那么 x - y = ____- 如果 m = -7,n = 3,那么 m + n = ____【练习二:有理数的乘除法】1. 计算下列各题的积:- (-2) × 3- 4 × (-5)- (-6) × (-7)2. 计算下列各题的商:- 12 ÷ (-3)- (-18) ÷ 6- 24 ÷ (-4)【练习三:绝对值和相反数】1. 求下列各数的绝对值:- |-5|- |4|- |-9|2. 求下列各数的相反数:- -3 的相反数是 ____- 0 的相反数是 ____- 7 的相反数是 ____【练习四:解一元一次方程】1. 解下列方程:- 3x + 5 = 14- 2x - 7 = 1- 4x = 202. 应用题:- 一个数的3倍加上5等于14,求这个数。

- 一个数的2倍减去7等于1,求这个数。

- 如果一个数的4倍是20,求这个数。

【练习五:代数式求值】1. 已知 a = 2,b = -3,求下列代数式的值: - 3a + 2b- a - b2. 已知 x = 4,y = -1,求下列代数式的值: - 2x + 3y- x^2 - y^2【练习六:几何图形的周长与面积】1. 计算下列图形的周长:- 一个正方形,边长为5厘米。

- 一个长方形,长为8厘米,宽为4厘米。

2. 计算下列图形的面积:- 一个圆,半径为3厘米。

- 一个三角形,底为6厘米,高为4厘米。

【结束语】通过本练习册的练习,同学们应该能够掌握中考数学中的基础知识点,包括有理数的加减乘除、绝对值和相反数、一元一次方程的解法、代数式的求值以及几何图形的周长与面积的计算。

2021中考数学必刷题 (202)

2021中考数学必刷题 (202)

(Ⅰ)解不等式①,得

(Ⅱ)解不等式②,得

(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不均每天体育锻炼时间”的情况,某地区教育部门随机
调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解
答下列问题:
(I)本次接受随机抽样调查的中学生人数为
点 E.
(I)如图①,点 P 在线段 OA 上,若∠OBQ=15°,求∠AQE 的大小; (Ⅱ)如图②,点 P 在 OA 的延长线上,若∠OBQ=65°,求∠AQE 的大小. 22.(10 分)如图,一枚运载火箭从距雷达站 C 处 5km 的地面 O 处发射,当火 箭到达点 A,B 时,在雷达站 C 处测得点 A,B 的仰角分别为 34°,45°,其中点 O, A,B 在同一条直线上.求 AC 和 AB 的长(结果保留小数点后一位)(参考数据: sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)
A.
B.
C.
D.
4.(3 分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧 130 000
000kg 的煤所产生的能量.把 130 000 000kg 用科学记数法可表示为( )
A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg
5.(3 分)如图是一个由 5 个相同的正方体组成的立体图形,它的俯视图是( )
,图①中 m 的值是

(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据统计数据,估计该地区 250000 名中学生中,每天在校体育锻炼时间
大于等于 1.5h 的人数.
21.(10 分)已知 OA,OB 是⊙O 的半径,且 OA⊥OB,垂足为 O,P 是射线 OA

必刷卷05(解析版)-2021年中考数学考前信息必刷卷(河北专用)

必刷卷05(解析版)-2021年中考数学考前信息必刷卷(河北专用)

绝密★启用前2021年中考数学考前信息必刷卷第五模拟中考新动向2021年中考数学稳中有变,题型仍然是16道选择题,3道填空题,7道解答题,但考查内容要关注综合性、应用型,即:一要关注数学主干知识,对数学基本概念、基本原理和思想方法的考查;二是关注对知识的综合运用的考查。

备考过程中,要关注数学基本概念、知识的形成,性质的理解运用。

考题大预测本套试卷的第12题就以生活实际为背景考查学生用方程解决实际问题;第21题属于几何知识综合运用类题目,在平时的模拟考试中虽然常见,但本题重点考查旋转变换,切入点有所变化;第25题考查抛物线上的动点问题,难度较大。

注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的相反数是()A.﹣B.﹣C.D.解:﹣的相反数是:.答案:D.2.下列计算正确的是()A.a6+a6=2a12B.2﹣2÷20×23=32C.(﹣ab2)•(﹣2a2b)3=a3b3D.a3•(﹣a)5•a12=﹣a20解:A、a6+a6=2a6,故此选项错误;B、2﹣2÷20×23=2,故此选项错误;C、(﹣ab2)•(﹣2a2b)3=(﹣ab2)•(﹣8a6b3)=4a7b5,故此选项错误;D、a3•(﹣a)5•a12=﹣a20,正确.答案:D.3.关于反比例函数y=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称解:A、把(1,1)代入得:左边≠右边,故A选项错误;B、k=4>0,图象在第一、三象限,故B选项错误;C、沿x轴对折不重合,故C选项错误;D、两曲线关于原点对称,故D选项正确;答案:D.4.下列计算正确的是()A.7ab﹣5a=2b B.(a+)2=a2+C.(﹣3a2b)2=6a4b2D.3a2b÷b=3a2解:7ab与﹣5a不是同类项,不能合并,因此选项A不正确;根据完全平方公式可得(a+)2=a2++2,因此选项B不正确;(﹣3a2b)2=9a4b2,因此选项C不正确;3a2b÷b=3a2,因此选项D正确;答案:D.5.一次函数y=2x﹣1的图象大致是()A.B.C.D.解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.答案:B.6.如图,已知四边形ABCD是平行四边形,下列结论中错误的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形D.当∠ABC=90°时,它是正方形解:A、∵四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形,故本选项不符合题意;B、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项不符合题意;C、∵四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;D、∵四边形ABCD是平行四边形,又∵∠ABC=90°,∴四边形ABCD是矩形,不一定是正方形,故本选项符合题意;答案:D.7.关于的叙述正确的是()A.在数轴上不存在表示的点B.=+C.=±2D.与最接近的整数是3解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D、与最接近的整数是3,故选项正确.答案:D.8.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.解:三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B.答案:B.9.如图,△ABC是等边三角形,D是线段BC上一点(不与点B,C重合),连接AD,点E,F分别在线段AB,AC的延长线上,且DE=DF=AD,点D从B运动到C的过程中,△BED周长的变化规律是()A.不变B.一直变小C.先变大后变小D.先变小后变大解:∵AD=DE=DF,∴∠DAE=∠DEA,∠DAF=∠DF A,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DF A=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DF A,∵∠ACB=∠CFD+∠CDF=60°,∴∠CDF=∠BED,且∠EDB=∠DF A,DE=DF,∴△BDE≌△CFD(AAS),∴BD=CF,BE=CD,∴△BED周长=BD+BE+DE=BD+CD+AD=BC+AD,∴点D在BC边上从B至C的运动过程中,∴AD的长先变小后变大,∴△BED周长先变小后变大,答案:D.10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M 和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.4解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC:S△ABC=AC•AD:AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.答案:D.11.实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>n B.﹣n>|m|C.﹣m>|n|D.|m|<|n|解:因为m、n都是负数,且m<n,|m|>|n|,A、m>n是错误的;B、﹣n>|m|是错误的;C、﹣m>|n|是正确的;D、|m|<|n|是错误的.答案:C.12.十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15B.﹣=15C.﹣=20D.﹣=20解:设原计划每天铺设钢轨x米,可得:,答案:A.13.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3D.2解:如图,延长BF交CD的延长线于H,∵四边形ABCD是平行四边形,∴AB=CD=5,AB∥CD,∴∠H=∠ABF,∵EF∥AB,∴EF∥CD,∵E是边BC的中点,∴EF是△BCH的中位线,∴BF=FH,∵∠BFC=90°,∴CF⊥BF,∴CF是BH的中垂线,∴BC=CH=8,∴DH=CH﹣CD=3,在△ABF和△GHF中,,∴△ABF≌△GFH(AAS),∴AB=GH=5,∴DG=GH﹣DH=2,答案:D.14.关于x的一元二次方程ax2﹣2x+2=0有两个相等实数根,则a的值为()A.B.﹣C.1D.﹣1解:∵关于x的一元二次方程ax2﹣2x+2=0有两个相等实数根,∴,∴a=.答案:A.15.如图,在等腰三角形ABC中,AB=AC,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE的面积是()A.20B.22C.24D.26解:如图,根据题意得△AFH∽△ADE,∴=()2=()2=设S△AFH=9x,则S△ADE=16x,∴16x﹣9x=7,解得x=1,∴S△ADE=16,∴四边形DBCE的面积=42﹣16=26.答案:D.16.如图,在四边形OAPB中,∠AOB=120°,OP平分∠AOB,且OP=2,若点M、N分别在直线OA、OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上解:在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,°∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON.∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.答案:D.二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.实数8的立方根是2.解:∵23=8,∴8的立方根是2.答案:2.18.已知a﹣3b=3,则6b+2(4﹣a)的值是2.解:∵a﹣3b=3,∴原式=6b+8﹣2a=﹣2(a﹣3b)+8=﹣6+8=2,答案:219.△ABC中,BD平分∠ABC,E为BD上一点,EF⊥AC于F,∠A=40°,∠C=78°,则∠DEF的度数为19°.解:∵∠A=40°,∠C=78°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣40°﹣78°=62°,∵BD平分∠ABC,∴∠ABD=∠ABC=×62°=31°,由三角形的外角性质得,∠BDC=∠ABD+∠A=31°+40°=71°,∵EF⊥AC,∴∠DEF=90°﹣∠BDC=90°﹣71°=19°.答案:19°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.(9分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.(9分)已知△ABC是等腰直角三角形,∠BAC=90°,CD=BC,DE⊥CE,DE=CE,连接AE,点M是AE的中点.(1)如图1,若点D在BC边上,连接CM,当AB=4时,求CM的长;(2)如图2,若点D在△ABC的内部,连接BD,点N是BD中点,连接MN,NE,求证:MN⊥AE;(3)如图3,将图2中的△CDE绕点C逆时针旋转,使∠BCD=30°,连接BD,点N是BD中点,连接MN,探索的值并直接写出结果.解:(1)∵△ABC是等腰直角三角形,∴AB=AC=4,∠BAC=90°,∴∠B=∠ACD=45°,BC==4,∵DC=BC=2,∵ED=EC,∠DEC=90°,∴DE=EC=2,∠DCE=∠EDC=45°,∴∠ACE=90°,在RT△ACE中,AE===2,∵AM=ME,∴CM=AE=.(2)如图2中,延长EN至F使NF=NE,连接AF、BF.在△DNE和△BNF中,,∴△DNE≌△BNF,∴BF=DE=EC,∠FBN=∠EDN,∵∠ACB=∠DCE=45°,∴∠ACE=90°﹣∠DCB,∴∠ABF=∠FBN﹣∠ABN=∠BDE﹣∠ABN=180°﹣∠DBC﹣∠DGB﹣∠ABN=180°﹣∠DBC﹣∠DCB﹣∠CDE﹣∠ABN=180°﹣(∠DBC+∠ABN)﹣∠DCB﹣45°=180°﹣45°﹣45°﹣∠DCB=90°﹣∠DCB=∠ACE,在△ABF和△ACE中,,∴△ABF≌△ACE.∴∠F AB=∠EAC,∴∠F AE=∠F AB+∠BAE=∠BAE+∠EAC=90°,∵N为FE中点,M为AE中点,∴AF∥NM,∴MN⊥AE.(3)如图3中,延长DM到G使得MG=MD,连接AG、BG,延长AG、EC交于点F.∵△AMG≌△EMD,∴AG=DE=EC,∠GAM=∠DEM,∴AG∥DE,∴∠F=∠DEC=90°,∵∠F AC+∠ACF=90°,∠BCD+∠ACF=90°,∠BCD=30°,∴∠CAF=30°,∠BAG=∠BAC+∠CAF=120°,∴∠BAG=∠ACE=120°,在△ABG和△CAE中,,∴△ABG≌△CAE,∴BG=AE,∵BN=ND,DM=MG,∴BG=AE=2MN,∵∠F AC=∠BCD=30°,设BC=2a,则CD=a,DE=EC=a,AC=a,CF=a,AF=a,EF=a,∴AE==a,∴MN =a,∴==.22.(9分)(1)填表:n(凸多边形的边数)345…m(凸多边形中角度等于135°的内角123…个数的最大值)(2)猜想给定一个正整数n,凸n边形最多有m个内角等于135°,则m与n之间有怎样的关系?(3)取n=7验证你的猜想是否成立?如果不成立,请给出凸n边形中最多有多少个内角等于135°?并说明理由.解:(1)∵三角形中只有一个钝角,∴三边形中角度等于135°的内角个数的最大值为1;∵四边形的内角和为360°,∴四边形中角度等于135°的内角个数的最大值为2;∵五边形的内角和为540°,∴五边形中角度等于135°的内角个数的最大值为3;答案:1,2,3;(2)由(1)得:凸n边形中角度等于135°的内角个数的最大值为:n﹣2.即m=n﹣2;(3)取n=7时,m=6,验证猜想不成立;设凸n边形最多有m个内角等于135°,则每个135°内角的外角都等于45°,∵凸n边形的n个外角和为360°,∴k≤=8,只有当n=8时,m才有最大值8,讨论n≠8时的情况:(1)当时n>8,显然,m的值是7;(2)当n=3,4,5时,m的值分别为1,2,3;(3)当n=6,7时,m的值分别为5,6;综上所述,当3≤n≤5时,凸n边形最多有n﹣2个内角等于135°;当6≤n≤7时,凸n边形最多有n ﹣1个内角等于135°;当n=8时,凸n边形最多有8个内角等于135°;当n>8时,凸n边形最多有7个内角等于135°.23.(9分)将图中的A型(正方形)、B型(菱形)、C型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)解:(1)搅匀后从中摸出1个盒子,可能为A型(正方形)、B型(菱形)或C型(等腰直角三角形)这3种情况,其中既是轴对称图形又是中心对称图形的有2种,∴盒中的纸片既是轴对称图形又是中心对称图形的概率是;答案:;(2)画树状图为:共有6种等可能的情况,其中拼成的图形是轴对称图形的情况有2种:A和C,C和A,∴拼成的图形是轴对称图形的概率为.24.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?解:(1)设租用一辆轿车的租金为x元,由题意得:300×2+3x=1320,解得x=240,答:租用一辆轿车的租金为240元;(2)设租赁商务车m辆,租赁轿车n辆,根据题意可得6m+4n≥34,得4n=﹣6m+34,解得,当不租赁商务车时,需要租赁轿车9辆,所用租金为:9×240=2160(元);租1辆赁商务车(坐满)时,则需租赁轿车7辆,所用租金为:1×300+7×240=2040(元);租2辆赁商务车(坐满)时,则需租赁轿车6辆,所用租金为:2×300+6×240=1980(元);租3辆赁商务车(坐满)时,则需租赁轿车4辆,所用租金为:3×300+4×240=1860(元);租4辆赁商务车(坐满)时,则需租赁轿车3辆,所用租金为:4×300+3×240=1920(元);租5辆赁商务车(坐满)时,则需租赁轿车1辆,所用租金为:5×300+1×240=1740(元);所以租用商务车5辆和轿车1辆时,所付租金最少为1740元.25.(10分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是CF、DE、DF.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,垂足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,答案:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,=2,∴∠APB=90°,∠AOP=×180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=8×=4,在Rt△CFB中,BF====CF,∵PB=PF+BF,∴PB=CF+BF,即:4=CF+CF,解得:CF=6﹣2;(3)①∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵CA=CB,∴∠ADC=∠BDC,同(1)得:四边形DEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P逆时针旋转90°,得到△A′PF,P A′=P A,如图3所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(70﹣x),在Rt△ACB中,AC=BC=AB=×70=35,∴S△ACB=AC2=×(35)2=1225,∴y=S△P A′B+S△ACB=x(70﹣x)+1225=﹣x2+35x+1225;②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B===50,∵S△A′PB=A′B•PF=PB•A′P,∴×50×PF=×40×30,解得:PF=24,∴S四边形PEDF=PF2=242=576(m2),∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.26.(12分)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A(﹣3,0),B(﹣1,0),C(0,18),D(﹣2,﹣6);(2)如图1,直线DC交x轴于点E,若tan∠AED=,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x=﹣2,故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);答案:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a﹣6),函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,令y=0,则x=﹣2,故点E(﹣2,0),则OE=﹣2,tan∠AED===,解得:a=,故点C、E的坐标分别为(0,﹣)、(,0),则CE==;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y=x2+x﹣,故点A、C的坐标分别为(﹣5,0)、(0,﹣),则点N(0,﹣),由点A、N的坐标得,直线AN的表达式为:y=﹣x﹣;设点P(t,t2+t﹣),则点F(t,﹣t﹣);则PF=﹣t2﹣3t+,由点E(,0)、C的坐标得,直线CE的表达式为:y=x﹣,则点J(t,t﹣),故FJ=﹣t+,∵FH⊥DE,JF∥y轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故,则FH=,f=PF+FH=﹣t2﹣3t++(﹣t+1)=﹣t2﹣4t+;②f=﹣t2﹣4t+=﹣(t+3)2+(﹣5<t≤m且m<0);∴当﹣5<m<﹣3时,f max=﹣m2﹣4m+;当﹣3≤m<0时,f max=.。

湖北武汉专用2021年中考数学必刷试卷02含解析

湖北武汉专用2021年中考数学必刷试卷02含解析

中考数学必刷试卷02第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)---的结果等于()1.计算(6)(3)A.-9 B.9C.-3 D.3【答案】C---=-3,【解析】(6)(3)故选C.2有意义,则x的取值范围是()A.x≥3B.x≤3C.x≥﹣3 D.x≤﹣3【答案】C【解析】根据题意得:x+3≥0,解得:x≥﹣3.故选:C.3.计算3x2+2x2的结果()A.5 B.5x2C.5x4D.6x2【答案】B【解析】3x2+2x2,=(3+2)x2,=5x2故选B.4.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次()A.只有①正确B.只有②正确C.①②都正确D.①②都错误【答案】D【解析】①“明天的降水概率为80%”是指是指明天下雨的可能性是80%,不是有80%的时间在下雨,故①错误;②“连续抛一枚硬币50次,出现正面朝上的次数一定是25次”,这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,故②错误;①和②都是错误的.故选D.5.计算(a-1)2正确的是()A.a2-1 B.a2-2a+1 C.a2-2a-1 D.a2-a+1【答案】B【解析】∵(a−1)²=a²−2a+1,∴与(a−1)²相等的是B,故选:B.6.如图,四边形ABCD是平行四边形,点A、B、C的坐标分别为(2,0)、(0,1)、(1,2),则AB+BC的值为()A B.3 C.4 D.5 【答案】A【解析】∵点A、B的坐标分别为(2,0)、(0,1),∴OA=2,OB=1,∴AB=过C作CE⊥y轴于E,∵点C的坐标为(1,2),∴CE=1,OE=2,∴BE=1,∴BC=∴AB+BC故选:A.7.如图,下面几何体的左视图是()A.B.C.D.【答案】B【解析】从左边看,有两列,左边一列有三个正方形,右边有一个正方形故选B8.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、30【答案】C【解析】由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选C.9.如图,在底边BC为腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为( )A.B.C.4 D.【答案】B【解析】∵DE垂直平分AB,∴BE=AE,∴△ACE的周长故选B.10.如图,以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若23ADDB=,且AB=10,则CB的长为()A.B.C.D.4 【答案】A【解析】如图,若23ADDB=,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=故选A.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)11_______.【答案】3,3,故答案为312.化简a2a−1−1−2a1−a的结果为_____.【答案】a-1【解析】原式=a2−2a+1a−1=a﹣1,故答案为:a﹣1,13.如图,在3×3的方格纸中,点A,B,C,D,E分别位于格点上.从A,D,E三点中任意取一点,以所取的这一点及B,C为顶点画三角形,则所画三角形是直角三角形的概率是______________.【答案】2 3【解析】以所取的这一点及B,C为顶点画三角形有△ABC、△DBC、△EBC三种情况,其中所画三角形是直角三角形的有△ABC、△DBC这2种结果,所以所画三角形是直角三角形的概率是23,故答案为23.14.如图,▱ABCD中,AD=2AB,AH⊥CD于点H,N为BC中点,若∠D=68°,则∠NAH=_____.【答案】34°【解析】∵四边形ABCD是平行四边形,∴AD=BC,∠B=∠D=68°,∠BAD=180°﹣∠D=112°,∵N 为BC 中点, ∴BC =2BN , ∵BC =AD =2AB , ∴AB =BN ,∴∠BAN =∠ANB =12(180°﹣68°)=56°, ∵AH ⊥CD ,∴∠DAH =90°﹣∠D =22°,∴∠NAH =∠BAD ﹣∠BAN ﹣∠DAH =34°; 故答案为:34°.15.如图,在Rt△ABC 中,∠C=90o ,AB=5,AC=4,线段AD 由线段AB 绕点A 按逆时针方向旋转90o 得到,△EFG 由△ABC 沿CB 方向平移得到,且直线EF 过点D ,BD 交AE 于H ,则AH=________.【答案】257【解析】根据旋转的性质可知∠ADB=∠ABD=45°,根据平移的性质可知AB∥FD, ∴∠FDB=∠ABD=45°.∴∠ADE=45°+45°=90°,∴∠ADE=∠ACB. 又∵∠EAB+∠EAD=90°,∠EAB+∠BAC=90°,∴∠EAD=∠BAC. ∴△ADE∽△ACB.∴aaaa =aaaa =aaaa ,可得AE=aaaa ×aa =54×5=254,DE=aaaa ×aa =54×3=154,∵∠AHB=∠DHE, ∠FDB=∠ABD,∴△ABH∽△EDH,∴aaaa=aaaa,可得aaaa=34,∵AE=254,∴AH=257,故答案为257.16.二次函数y=﹣x2+2kx﹣4在﹣1≤x≤2时,y≤0恒成立,则实数k的取值范围是____.【答案】52 2-k≤≤.【解析】根据题意:函数图象对称轴为x=﹣22k-=k,①当k≤﹣1时,此时只需x=-1时y≤0即可,k≥5-2,故512-k≤≤-符合条件;②当﹣1<k<2时,此时只需x=k时y≤0即可,即22240-k k+-≤,故﹣1<k<2符合条件;③当k≥2时,此时只需x=2时y≤0即可,k≤2,故k=2符合题意,所以k的取值范围为52 2-k≤≤,故答案为52 2-k≤≤.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:235 321 x yx y-=-⎧⎨+=-⎩【解析】235 321 x yx y-=-⎧⎨+=-⎩①②依题意①×2得4x-6y=-10③②×3得9x+6y=-3④③+④得:13x=-13,解得x=-1,把x=-1代入①,解得y=1,∴原方程组的解为11x y =-⎧⎨=⎩18.(本小题满分8分)如图,已知A 、B 、C 、D 四点顺次在同一条直线上,AE∥FD,AE =FD ,AB =CD ,求证:∠ACE=∠DBF.【解析】∵AE∥DF, ∴∠A=∠D. ∵AB=CD , ∴AB+BC=CD+BC . 即AC =BD .在△AEC 和△DFB 中,AE DF A D AC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△AEC≌△DFB(SAS ), ∴∠ACE=∠DBF.19.(本小题满分8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图1补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.【解析】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%, ∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%, ∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人. 20.(本小题满分8分)武商量贩销售A ,B 两种商品,售出4件B 种商品所得利润为400元;售出3件A 种商品和5件B 种商品所得利润为1100元.(1) 求每件A 种商品和每件B 种商品售出后所得利润分别为多少元;(2) 由于需求量大,A ,B 两种商品很快售完,武商量贩决定再一次购进A ,B 两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么武商量贩至少需购进多少件A 种商品?【解析】(1)设每件A 种商品售出后所得利润为x 元,每件B 种商品售出后所得利润为y 元.由题意,得4400351100y x y =⎧⎨+=⎩解得:200100x y =⎧⎨=⎩.答:每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34-a)件.由题意,得200a+100(34-a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.21.(本小题满分8分)如图,△ABC内接于⊙O,BC为直径,∠BAC的平分线与BC和⊙O分别相交于D和E,P为CB延长线上一点,PB=5,PA=10,且∠DAP=∠ADP.(1)求证:PA与⊙O相切;(2)求sin∠BAP的值;(3)求AD•AE的值.【解析】(1)证明:连接OA,如图1所示:∵AE平分∠BAC,∴∠BAD=∠CAD,∵∠DAP=∠BAD+∠PAB,∠ADP=∠CAD+∠C,∠DAP=∠ADP,∴∠PAB=∠C,∵OA=OC,∴∠OAC=∠C=∠PAB,∵BC为直径,∴∠BAC =90°,即∠OAC +∠OAB =90°, ∴∠PAB +∠OAB =90°,即∠OAP =90°, ∴AP ⊥OA , ∴PA 与⊙O 相切;(2)解:∵∠P =∠P ,∠PAB =∠C , ∴△PAB ∽△PCA ,∴1,2AB PB AC PA == ∵∠CAB =90°,∴AB BC ==∴sin∠BAP =sin∠C ; (3)解:连接CE ,如图2所示: ∵PA 与⊙O 相切,∴PA 2=PB ×PC ,即102=5×PC , ∴PC =20, ∴BC =PC ﹣PB =15,∵5AB BC =∴AB BC ==2AC AB == ∵AE 是∠BAC 的角平分线,∴∠BAD =∠CAE , ∵∠E =∠ABD , ∴△ACE ∽△ADB ,∴AE ACAB AD=∴90AD AE AB AC ⋅=⋅==.22.(本小题满分10分)矩形AOBC 中,OB =8,OA =4.分别以OB ,OA 所在直线为x 轴,y 轴,建立如图1所示的平面直角坐标系.F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数y =kx(k >0)的图象与边AC 交于点E .(1)当点F 运动到边BC 的中点时,求点E 的坐标; (2)连接EF 、AB ,求证:EF∥AB;(3)如图2,将△CEF 沿EF 折叠,点C 恰好落在边OB 上的点G 处,求此时反比例函数的解析式. 【解析】(1)∵四边形OACB 是矩形,OB =8,OA =4, ∴C (8,4),∵点F是BC中点,∴F(8,2),∵点F在y=kx上,∴k=16,反比例函数解析式为y=16 x∵点E在反比例函数图像上,且E点的纵坐标为4,∴4=16 x∴x=4∴E(4,4).(2)连接AB,设点F(8,a),∴k=8a,∴E(2a,4),∴CF=4﹣a,EC=8﹣2a,在Rt△ECF中,tan∠EFC=8-24EC aFC a=-=2,在Rt△ACB中,tan∠ABC=ACBC=2,∴tan∠EFC=tan∠ABC,∴∠EFC=∠ABC,(3)如图,设将△CEF 沿EF 折叠后,点C 恰好落在OB 上的G 点处, ∴∠EGF =∠C =90°,EC =EG ,CF =GF , ∴∠MGE +∠FGB =90°, 过点E 作EM ⊥OB , ∴∠MGE +∠MEG =90°, ∴∠MEG =∠FGB , ∴Rt△MEG ∽Rt△BGF ,∴EM EGGB GF=, ∵点E (4k ,4),F (8,8k ), ∴EC =AC ﹣AE =8﹣4k ,CF =BC ﹣BF =4﹣8k, ∴EG =EC =8﹣4k ,GF =CF =4﹣8k , ∵EM =4,∴84448kkGB -=-,在Rt△GBF 中,GF 2=GB 2+BF 2,即:(4﹣8k )2=(2)2+(8k )2, ∴k =12,∴反比例函数表达式为y =12x. 23.(本小题满分10分)如图(1),AB⊥BC,CD⊥BC,点E 在线段BC 上,AE⊥ED,求证:(1)AB CEBE CD. (2)在△ABC 中,记tanB =m ,点E 在边AB 上,点D 在直线BC 上.①如图(2),m =2,点D 在线段BC 上且AD⊥EC,垂足为F ,若AD =2EC ,求CDBE;②如图(3),m =3,点D 在线段BC 的延长线上,ED 交AC 于点H ,∠CHD=60°,ED =2AC ,若CD =BC =,直接写出△BED 的面积. 【解析】(1)∵AB⊥BC,CD⊥BC,AE⊥ED, ∴∠B=∠C=∠AED=90°, ∴∠A+∠AEB=∠AEB+∠DEC=90°, ∴∠A=∠DEC,∴△ABE∽△ECD,∴AB CEBE CD=; (2)如图,过点A 作AM⊥BC 于点M ,过点E 作EH⊥BC 于点H ,∵tanB=m =2=EH AMBH BM=, ∴设EH =2x ,BH =x ,AM =2BM ,∵AF⊥EC,AM⊥CD,∴∠ADC+∠DCE=90°,∠ADC+∠DAM=90°, ∴∠DAM=∠DCE,且∠AMD=∠EHC=90°, ∴△EHC∽△DMA,且AD =2EC ,∴2AD DM AMEC EH HC===, ∴DM=2EH =4x ,AM =2HC , ∵AM=2HC ,AM =2BM , ∴HC=BM , ∴HC﹣HM =BM ﹣HM , ∴BH=MC =x ,∴DC=DM+MC =5x ,∴CD BE == (3)如图,作∠BCF=∠B,交AB 于点F ,过点D 作GD⊥BD 交BA 的延长线于点G ,过点F 作FM⊥BC 于点M ,∵tanB=m =3, ∴∠B=30°, ∵∠BCF=∠B=30°,∴BF=FC ,且FM⊥BC,BC =∴BM=MC = ∴FM=2,BF =FC =4,∵CD=BC =,∴BD=又∵∠BCF=∠B=30°,GD⊥BD,∴∠G=60°,∠AFC=60°,GD =7,BG =2DG =14,∵∠BCA=∠BDE+∠CHD=∠BDE+60°=∠BCF+∠ACF=30°+∠ACF,∴∠ACF=30°+∠BDE,且∠AEH=∠B+∠BDE=30°+∠BDE,∴∠ACF=∠AEH,且∠G=∠AFC=60°,∴△GED∽△FCA, ∴DE GD EG AC AF FC==,且DE =2AC , ∴GD=2AF ,EG =2FC =8, ∴AF=72, ∴BE=BG ﹣EG =14﹣8=6,∵S △BGD =12,∴S △BED 668=+24.(本小题满分12分)已知开口向下的抛物线y =ax 2﹣2ax +3与x 轴的交点为A 、B 两点(点A 在点B 的左边),与y 轴的交点为C ,OC =3OA(1)请直接写出该抛物线解析式;(2)如图,D 为抛物线的顶点,连接BD 、BC ,P 为对称轴右侧抛物线上一点.若∠ABD =∠BCP ,求点P 的坐标(3)在(2)的条件下,M 、N 是抛物线上的动点.若∠MPN =90°,直线MN 必过一定点,请求出该定点的坐标.【解析】(1)当x=0时,y=ax2﹣2ax+3=3,∴C(0,3),OC=3OA=3,∴OA=1,A(﹣1,0),把点A(﹣1,0)代入抛物线解析式得:a+2a+3=0,解得:a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;(2)如图1,若点P在抛物线对称轴右侧且在x轴上方,过点P作PE∥y轴交BC于点E,PF⊥BC于点F,过点D作DH⊥x轴于点H,∴∠CFP=∠BHD=90°,∵当y=﹣x2+2x+3=0时,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4),∴DH=4,BH =3﹣1=2,==,∴Rt△BDH 中,sin∠ABD=5DH BD ==, ∵C(0,3)PC设直线BC 解析式为y =kx+b , ∴3003k b b +=⎧⎨+=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 解析式为y =﹣x+3,设P (p ,﹣p 2+2p+3)(1<p <3),则E (p ,﹣p+3),∴PE=﹣p 2+2p+3﹣(﹣p+3)=﹣p 2+3p ,∵S △BCP =12PE•OB=12BC•PF,∴PF=22PE OB BC ⋅==, ∵∠ABD=∠BCP,∴Rt△CPF 中,sin∠BCP=PE PC ,PC , ∴PF 2=45PC 2, 解得:p 1=﹣1(舍去),p 2=53,∴﹣p2+2p+3=329,∴点P坐标为(53,329)如图2,若点P在x轴下方,∵tan∠ABD=DHBH=2>tan45°,∴∠ABD>45°,∵∠BCP<∠BOC即∠BCP<45°,∴∠ABD与∠BCP不可能相等.综上所述,点P坐标为(53,329);(3)如图3,过P作PH∥y轴,分别过点M、N作MG⊥PH于G,NH⊥PH于H.设直线MN的解析式为y=kx+n,M(x1,y1)、N(x2,y3),令kx+n =﹣x 2+2x+3,即=x 2+(k ﹣2)x+n ﹣3=0,∴x 1+x 2=2﹣k ,x 1x 2=n ﹣3,∴y 1+y 2=k (x 1+x 2)+2n =k (2﹣k )+2n ,y 1y 2=(kx 1+n )(kx 2+n )=k 2x 1x 2+nk (x 1+x 2)+n 2=﹣3k 2+2nk+n 2,∵∠G=∠MPN=∠H,∴△MPG∽△PNH, ∴MG GP PH HN= , ∵P 坐标为(53,329), MG =53﹣x 1,PH =y 1﹣329,HN =253x -,GP =2329y -, ∴12115323932593x y y x --=--, 整理,得12121212255321024()()93981x x x x y y y y -++=++-, ∴222255321024(2)3(22)3293981k n y k k n k nk n --+-=-++---, 解得 k 1=﹣3n+233,k 2=332515n -+, ∴直线MN ;y =(﹣3n+233)x+n =(﹣3x+1)n+233,过定点(13,239); 或y =(332515n -+)x+n =(513x -+)n+3215,过定点(53,329)即P 点,舍去.1 3,239).∴直线MN过定点(。

初中必刷题中考数学试卷

初中必刷题中考数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. -32. 如果a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 < b - 2C. a + 3 < b + 3D. a - 3 < b - 33. 下列各式中,不是分式的是()A. 3/xB. 5/(2x + 1)C. 7/√xD. x/(x - 1)4. 已知一元二次方程x^2 - 5x + 6 = 0的两个实数根为a和b,那么a + b的值是()A. 5B. 6C. 10D. 125. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)6. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 梯形7. 若等差数列的前三项分别为a、b、c,且a + b + c = 9,a + c = 6,则b的值为()A. 3B. 4C. 5D. 68. 下列函数中,在定义域内是增函数的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^39. 已知圆的半径为r,则圆的周长与直径的比是()A. πB. 2πC. 4πD. 8π10. 下列关于平行四边形的说法中,正确的是()A. 对角线互相垂直的平行四边形是矩形B. 对角线互相平分的四边形是平行四边形C. 对边相等且对角线相等的四边形是菱形D. 对角线互相平分且相等的四边形是矩形二、填空题(每题3分,共30分)11. 若a > 0,b < 0,那么a - b的值是______。

12. 已知等腰三角形的底边长为8cm,腰长为10cm,则其高是______cm。

13. 一个数的平方根是±2,那么这个数是______。

2021年中考数学必刷卷B(安徽)参考答案

2021年中考数学必刷卷B(安徽)参考答案

2021年中考数学必刷卷B (安徽)参考答案1.D【解析】对于A ,0既不是正数也不是负数,说法正确,不符合题意;对于B ,经过两点有一条直线,并且只有一条直线,说法正确,不符合题意; 对于C ,两点之间,线段最短,说法正确,不符合题意;对于D ,射线AB 与射线BA 的端点不同,延伸方向不同,故“射线AB 与射线BA 是同一条射线”这一说法错误,符合题意.故选:D .2.B【解析】解:A .(x2)3=x6,故本选项不符合题意;B .(x3)5=x15,故本选项符合题意;C .x4·x5=x9,故本选项不符合题意;D .-(-x3)2=-x6 ,故本选项不符合题意;故选:B .3.A【解析】解:从左面看到该几何体的形状图是:故选:A .4.B【解析】解:由60万用科学记数法表示为5610 ;故选B .5.D【解析】解:因为方程是一元二次方程,所以k≠0,又因为一元二次方程有实数根,所以△≥0,即△=4-4k≥0,于是有k≤1,从而k 的取值范围是k≤1且k≠0.故选:D .6.C【解析】解:设原数据为x1,x2,…,xn ,其平均数为x ,方差为s2.根据题意,得新数据为112x ,212x ,…,12n x ,其平均数为12x .根据方差的定义可知,新数据的方差为()()(222222212121111111111])22222244n n x x x x x x x x x x x x s n n ⎡⎛⎫⎛⎫⎛⎫⎡⎤-+-++-=⨯-+-++-=⎢ ⎪ ⎪ ⎪⎦⎣⎝⎭⎝⎭⎝⎭⎢⎣.故选择:C.7.C【解析】解不等式组1832x x x a +⎧>-⎪⎨⎪≥⎩,得:4x x a >-⎧⎨≥⎩, ∵不等式组1832x x x a +⎧>-⎪⎨⎪≥⎩的解集为4x >-,∴4a ≤-.∵一次函数(7)3y a x =++图象不经过第四象限,∴70a +>,即7a >-综上,74a -<≤-,∵a 为整数,∴a 可以为:-6,-5,-4.∴满足条件的整数a 的和为-6-5-4=-15.故选C .8.D【解析】过点D 作DE ⊥AB 于E ,∴∠DEB=∠B=∠C=90°,∴四边形DEBC 是矩形,∴BE=DC=2米,DE=BC=5米,∵5sin 13A =,∴513DE AD =, ∴AD=13米,∴12=米,∴AB=AE+BE=12+2=14米,故选:D ..9.A【解析】解:∵弦AB//CD ,∠BAC=32°,∴∠ACD =∠BAD =32°,∴ ∠AOD=2∠ACD =2×32°=64°.故选:A10.D【解析】解:①∵由函数图象开口向下可知,a <0,由函数的对称轴12b a ->-,故12b a<, ∵a <0,∴b >2a ,∴2a -b <0,①正确;②∵a <0,对称轴在y 轴左侧,a ,b 同号,图象与y 轴交于负半轴,则c <0,故abc <0;②正确;③当x=1时,y=a+b+c <0,③正确;④当x=-1时,y=a -b+c <0,④错误;⑤当x=2时,y=4a+2b+c <0,⑤错误;⑥∵图象与x 轴无交点,∴b2-4ac <0,⑥正确;故正确的有①②③⑥,共4个.故选:D .11.02x ≤<【解析】解:由①得:2x <,由②得:0x ≥,∴不等式组的解集为02x ≤<12.(1)见解析;(2)见解析;(3)旋转中心为(1,1)--【解析】解:(1)11A BC 如图所示; (2)222ABC ∆如图所示;(3)如图所示,旋转中心为(1,1)--.13.(1)张老师实际付款 6900 元;(2)该品牌电脑的原价是 6500 元/台.【解析】解:(1)5000×910+(8000﹣5000)×810=6900(元) 答:张老师实际付款6900元.(2)设该品牌电脑的原价为x 元/台.∵实际付费为5700元,超过5000元,少于8500元∴5000<x <10000依题意有:5000×910+(x ﹣5000)×810=5700 4500+0.8x ﹣4000=57000.8x =5200x =6500∴电器原价为6500元答:该品牌电脑的原价是6500元/台.14.(1)11(1)n n n n-+⨯+;(2)见解析. 【解析】解:(1)若n 为正整数,则11(1)n n n n n -=+⨯+; (2)11(1)n n n n-+⨯+ (1)(1)1n n n n+-=+ 211n n n-=+ 2n n= n = ∴11(1)n n n n n-=+⨯-. 15.(1)S =ab ﹣a ﹣b+1;(2)矩形中空白部分的面积为2;【解析】(1)S =ab ﹣a ﹣b+1;(2)当a =3,b =2时,S =6﹣3﹣2+1=2;16.(1)见解析;(2)①GC =;②12. 【解析】解:(1),EFD ECD BAC EFD ∠=∠∠=∠BAC ECD ∴∠=∠90ACB ∠=︒90CEA CAE ∴∠+∠=︒90ECD ACD BAC ACD ∴∠+∠=∠+∠=︒90ADC ∴∠=︒CD AB ∴⊥AB ∴与O 相切;(2)①:3:2,6AF FG AF ==4FG ∴= 10AG ∴=连接CFCD 为直径90CFD ∴∠=︒90FCD CDF ∴∠+∠=︒90,CEA CAE CEA CDF ∠+∠=︒∠=∠CAE FCD ∴∠=∠FGC FGC ∠=∠FGC CGA ∴FG GC CG AG∴= 241040CG FG GA ∴=⋅=⨯=GC ∴=②过点F 作FN CD ⊥,AB 与O 相切,AB CD ∴⊥//FN AB ∴32AF DN FG GN ∴==设2,3(0)GN x ND x x ==>90CNF FND ∠=∠=︒+=90FCN CFN CFN NFD ∠∠=∠+∠︒FCN NFD ∴∠=∠FCN DFN ∴FN CN DN FN∴= 2FN DN CN ∴=⋅CAE FCD ∠=∠,FGC FGC ∠=∠FGC CGA ∴FG GC CG AG∴= :3:2AF FG =2252CG FG ∴= 在Rt FNG 中,222FN FG GN =-DN CN ∴⋅=22FG GN -2223()45x CG GN CG x ∴⋅+=- 即2223(2)45x CG x CG x ⋅+=- 设CG m = 22223645xm x m x ∴+=- 即22231005m xm x --=22,3,105a b x c x ==-=- 222224(3)4(10)255b ac x x x∴∆=-=--⨯⨯-= 1351045xx m x +∴=== 23554225b x x m x a --===-(舍去)10,12,6CG x CN x FN DN CN x ∴===⋅=61tan 122FN x FCN CN x ∠=== CAE FCN ∠=∠2ta 1ta n n FCN CAE ∴∠==∠. 17.(1)50;(2)72°;(3)60 【解析】解:(1)学生的总数是:2040%=50(人), (2)参加书法比赛的学生所占的比例是20%,则扇形的圆心角的度数是:360×20%=72°;(3)参加绘画比赛的人数所占的比例是1-40%-28%-20%=12%∴参加绘画比赛的人数是:500×12%=60(人).18.(1)y=40x+270;(2)2020年底该家庭能达到人均年纯收入8000元的标准;(3)b 的最小值为61;(4)a 至少应为0.07.【解析】(1)设人均月纯收入y 与月份代码x 之间的函数表达式为y=kx+m,将数据(1,310),(2,350)代入得:310,3502,k m k m =+⎧⎨=+⎩解得40,270,k m =⎧⎨=⎩故函数表达式为y=40x+270.(2)2020年1月对应x=13,2020年12月对应x=24,则2020年该家庭的人均年纯收入为12个月人均月纯收入之和,即(13×40+270)+(14×40+270)+…+(24×40+270)=270×12+40×(13+14+…+24)=12120>8000, 故2020年底该家庭能达到人均年纯收入8000元的标准.(3)该家庭2019年12月人均月纯收入为:12×40+270=750(元)该家庭2020年3月份的人均月纯收入为750×23=500(元); 由题意得,152+15b+c=500,∴c=275-15b,又242+24b+c≥1400,∴b≥61,故b 的最小值为61.(4)由题意,1000+500+500(1+a)+500(1+a)2+…+500(1+a)9≥8000,得(10500[1)111a a ⎤+-⎦+-≥7000,其中(1+a)10≈1+10a+45a2+120a3(|a|<0.15),整理得:120a2+45a -4≥0.令120a2+45a -4=0,得,∴a1≈0.07,a2≈-0.45, 故不等式的解集为a≤-0.45(舍去)或a≥0.07,∴a 至少应为0.07.19.(1)见解析;(2)6013DE =【解析】(1)证明:AB AC =,BD CD =,AD BC ∴⊥,B C ∠=∠,DE AB ∵⊥,90DEB ADC ︒∴∠=∠=,BDECAD ∴∆∆. BD DE AC AD∴=. BD AD DE AC ∴⋅=⋅.(2)解:AB AC =,AD BC ⊥,152BD CD BC ∴===, 在Rt ADB ∆中,12AD ==, 1122AD BD AB DE ⋅⋅=⋅⋅, 6013DE ∴=. 20.34【解析】23=4⎝⎭故答案为:34. 21.(3)(3)x x -+【解析】()()2933x x x -=+- , 故答案为:()()33x x +-.22.6【解析】连接AA ',联立y =﹣3x+9与反比例函数y =k x并整理得:3x2﹣9x+k =0, 由韦达定理可得xA+xB =3,即xA =3﹣xB ,对于y =﹣3x+9,令y =0,即﹣3x+9=0,解得x =3,故点C (3,0), ∵点A '是点A 关于x 轴的对称点,∴A y '=﹣yA ,则AA '=2yA ,A BC '的面积为A AC A AB SS ''-=12×AA '×(xC ﹣xB )=yA×(3﹣xB )=yA•xA =6, 而k =yA•xA =6,故答案为6.23.8 【解析】解:连接CG 并延长,交AD 于点M ,连接EM ,作AN ⊥EM 于N , ∵四边形ABCD 为菱形,∠B=60°,∴AD ∥BC ,AD=BC=AB∴∠EAM=120°,∠DMG=∠HCG ,∵G 为DH 中点,∴DG=HG ,∵∠MGD=∠CGH ,∴△DMG ≌△HCG ,∴DM=HC ,CG=MG,∵H 为BC 中点, ∴1122DM CH BC AD ===, ∴AM=1AD 2, ∵E 为AB 中点,∴AE=1AB 2, ∴AE=AM ,∵F 为CE 中点,G 为CM 中点, ∴FG 为△CEM 中位线,∴2ME FG ==∵AE=AM ,∠EAM=120°,AN ⊥EM ,∴EN=12EM=AEN=30°, ∴AE=2AN=4,∴AB=2AE=8.故答案为:8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021中考数学必刷题122一、选择题(本大题共12个小题,每小题3分,共36分)1.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )2.在下列图形中,既是轴对称图形又是中心对称图形的是( )3.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是( )A.58°B.60°C.64°D.68°4.如图,在平面直角坐标系中,已知点B,C的坐标分别为点B(-3,1),C(0,-1),若将△ABC绕点C沿顺时针方向旋转90°后得到△A1B1C,则点B对应点B1的坐标是( ) A.(3,1) B.(2,2) C.(1,3) D.(3,0)5.如图是由若干个小正方体堆砌而成的几何体的俯视图,视图中小正方形标注的数字为堆砌小正方体的个数,则这个几何体的主视图是( )6.在平面直角坐标系中,△OAB各顶点的坐标分别为O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,-6),则A点的对应点A′坐标为( ) A.(-2,-4) B.(-4,-2)C.(-1,-4) D.(1,-4)7.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )A .40°B.50°C.60°D.80°8.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA +PC=BC,则符合要求的作图痕迹是( )9.如图,点P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为( )A.2 2B.3 2C.3D .无法确定10.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是( )A.3 3 B.6 C.4 D.511.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )A.3个B.4个C.5个D.无数个12.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB 绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA,ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是( )A .8-π B.5π4C .3+πD .π第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5个小题,每小题4分,共20分)13.如图,在4×4的正方形网格中,已有4个小方格涂成了灰色,现在要从其余白色小方格中选出一个也涂成灰色,使整个灰色部分的图形构成轴对称图形,这样的白色小方格有______个.(第13题图)(第14题图)14.如图,A ,B ,C ,D 是⊙O 上的四个点,AB ︵=BC ︵,若∠AOB=58°,则∠BDC=________°.15.如图,平面直角坐标系中,矩形OABC 的顶点A(-6,0),C(0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为________________.16.如图,长方体的底面边长分别为2 cm 和4 cm ,高为5 cm.若一只蚂蚁从点P 开始经过4个侧面爬行一圈到达点Q ,则蚂蚁爬行的最短路径长为________cm.17.如图,已知扇形AOB 的半径为6 cm ,圆心角的度数为120°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面积为________cm 2.三、解答题(本大题共7个小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤) 18.(本题满分7分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上,请解答下列问题:(1)作出△ABC 向左平移4个单位长度后得到的△A 1B 1C 1,并写出点C 1的坐标;(2)作出△ABC 关于原点O 对称的△A 2B 2C 2,并写出点C 2的坐标; (3)已知△ABC 关于直线l 对称的△A 3B 3C 3的顶点A 3的坐标为(-4,-2),请直接写出直线l 的函数表达式.19.(本题满分7分)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4,求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问) 20.(本题满分8分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD=25,CF=2,求AE和BG的长.21.(本题满分9分)如图,△ABC内接于⊙O,AC为⊙O的直径,PB是⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙O于点D,连接BD.(1)求证:BD平分∠PBC;(2)若⊙O的半径为1,PD=3DE,求OE及AB的长.22.(本题满分10分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD.设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.23.(本题满分11分)如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B′落在AC上,B′C′交AD于点E,在B′C′上取点F,使B′F=AB.(1)求证:AE=C′E;(2)求∠FBB′的度数;(3)已知AB=2,求BF的长.24.(本题满分12分)在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P′DF′,连接P′C,F′B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF′在∠BDC内部时,求证:△DP′C∽△DF′B;②如图3,若点P是CD的中点,△DF′B能否为直角三角形?如果能,试求出此时tan∠DBF′的值;如果不能,请说明理由.参考答案1.C2.D3.A4.B5.A6.A7.D8.D9.B 10.B 11.C12.A13.3 14.29 15.(-23,6) 16.13 17.4π 18.解:(1)如图所示,点C 1的坐标为(-1,2). (2)如图所示,点C 2的坐标是(-3,-2).(3)直线l 的函数表达式为y =-x.19.解:(1)如图所示.(去掉DE 线段与OH 线段,即为所求⊙O).(2)如图,作OH⊥BC 于点H. ∵AC 是⊙O 的切线, ∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°, ∴四边形ECHO 是矩形, ∴OE=CH =52,BH =BC -CH =32.在Rt△OBH 中,OH =(52)2-(32)2=2, ∴EC=OH =2,BE =EC 2+BC 2=2 5.∵∠EBC=∠EBD,∠BED=∠C=90°, ∴△BCE∽△BED, ∴DE EC =BD BE ,∴DE 2=525, ∴DE= 5.20.(1)证明:如图,连接OD ,AD.∵AB 为⊙O 的直径,∴∠ADB=90°,即AD⊥BC.∵AB=AC ,∴BD=CD. 又∵OA=OB ,∴OD∥AC. ∵DF⊥AC,∴OD⊥DF, ∴直线DF 与⊙O 相切.(2)解:如图,连接BE. ∵BD=25,∴CD=2 5. ∵CF=2,∴DF=(25)2-22=4, ∴BE=2DF =8. ∵cos∠C=cos∠ABC, ∴CF CD =BD AB ,∴225=25AB ,∴AB=10,∴AE=102-82=6. ∵BE⊥AC,DF⊥AC,∴BE∥GF, ∴△AEB∽△AFG,∴AB AG =AE AF ,∴1010+BG =62+6, ∴BG=103.21.(1)证明:如图,连接OB.∵PB 是⊙O 的切线,∴OB⊥PB,∴∠PBO=90°, ∴∠PBD+∠OBD=90°. ∵OB=OD ,∴∠OBD=∠ODB.∵OP⊥BC,∴∠BED=90°,∴∠DBE+∠BDE=90°, ∴∠PBD=∠EBD,∴BD 平分∠PBC. (2)解:如图,作DK⊥PB 于点K.∵BD 平分∠PBE,DE⊥BE, DK⊥PB,∴DK=DE , ∴sin∠P=BE BP =DK PD =DE PD =13.∵∠OBE+∠PBE=90°,∠PBE+∠P=90°, ∴∠OBE=∠P.∵∠OEB=∠BEP=90°, ∴△BEO∽△PEB, ∴OE BO =BE PB =13. ∵BO=1,∴OE=13.∵OE⊥BC,∴BE=EC. ∵AO=OC ,∴AB=2OE =23.22.(1)证明:∵AB 是⊙O 的直径, ∴∠ADB=90°, ∴∠A+∠ABD=90°.∵∠A=∠DEB,∠DEB=∠DBC, ∴∠A=∠DBC.∵∠DBC+∠ABD=90°, ∴BC 是⊙O 的切线.(2)解:如图,连接OD.∵BF=BC =2,且∠ADB=90°, ∴∠CBD=∠FBD. ∵OE∥BD, ∴∠FBD=∠OEB. ∵OE=OB , ∴∠OEB=∠OBE, ∴∠CBD=∠OEB=∠OBE= 13∠ADB=13×90°=30°, ∴∠C=60°, ∴AB=3BC =23, ∴⊙O 的半径为3,∴S 阴影=S 扇形DOB -S △DOB =16π×3-34×3=π2-334.23.(1)证明:∵四边形ABCD 为矩形,∴△ABC 为直角三角形. 又∵AC=2AB ,cos∠BAC=AB AC =12,∴∠CAB=60°,∴∠ACB=∠DAC=30°,∴∠B′AC′=60°, ∴∠C′AD=30°=∠AC′B′,∴AE=C′E. (2)解:∵∠BAC=60°,AB =AB′, ∴△ABB′为等边三角形, ∴BB′=AB ,∠AB′B=60°.又∵∠AB′F=90°, ∴∠BB′F=150°. ∵B′F=AB =BB′, ∴∠B′BF=∠BFB′=15°.(3)解:如图,连接AF ,过A 作AM⊥BF 于点M.由(2)可知△AB′F 是等腰直角三角形,△ABB′是等边三角形, ∴∠AFB′=45°,∴∠AFM=30°,∠ABF=45°. 在Rt△ABM 中,AM =BM =AB·cos∠ABM=2×22=2,在Rt△AMF 中,MF =AM tan∠AFM =233=6,∴BF=2+ 6.24.(1)证明:∵PF∥DE, ∴∠EDF=∠DFP. 由翻折知∠PFD=∠DFE, ∴∠EDF=∠DFE, ∴△DEF 是等腰三角形.(2)①证明:∵△PDF绕点D逆时针方向旋转得到△P′DF′,∴DP=DP′,DF=DF′,∠BDF′=∠CDP′.又∵PF∥BC,∴DPDC=DFDB,∴DP′DC=DF′DB,∴△DP′C∽△DF′B.②解:存在△DF′B为直角三角形.当∠F′DB=90°时,如图所示.∵DF′=DF=12BD,∴DF′BD=12,∴tan∠DBF′=DF′BD=12.当∠DBF′=90°,此时DF′是斜边,即DF′>DB,不符合题意.当∠DF′B=90°时,如图所示.∵DF′=DF=12BD,∴∠DBF′=30°,∴tan∠DBF′=33.。

相关文档
最新文档