公开学术报告--罗金亮

合集下载

全氢聚硅氮烷涂层在光电领域的研究进展

全氢聚硅氮烷涂层在光电领域的研究进展

收稿日期:2022-10-03ꎮ基金项目:国家自然科学基金面上项目(21875096)ꎮ作者简介:孟帅(1985 )ꎬ男ꎬ博士ꎬ研究方向为化学领域专利审查ꎮ㊀∗通信作者:冯刚(1982 )ꎬ男ꎬ教授ꎬ博士ꎬ研究方向为催化化学ꎮE ̄mail:fenggang@ncu.edu.cnꎮ孟帅ꎬ李开扬ꎬ叶润平ꎬ等.全氢聚硅氮烷涂层在光电领域的研究进展[J].南昌大学学报(工科版)ꎬ2023ꎬ45(2):128-135.MENGSꎬLIKYꎬYERPꎬetal.Researchprogressofperhydropolysilazanecoatinginthefieldofoptoelectronics[J].JournalofNan ̄changUniversity(Engineering&Technology)ꎬ2023ꎬ45(2):128-135.全氢聚硅氮烷涂层在光电领域的研究进展孟帅1ꎬ李开扬1ꎬ叶润平2ꎬ张荣斌2ꎬ冯刚2∗(1.国家知识产权局专利局化学发明审查部ꎬ北京100088ꎻ2.南昌大学化学化工学院ꎬ江西南昌330031)㊀㊀摘要:以全氢聚硅氮烷(PHPS)作为前驱体制备的涂层在光电领域有较高的应用价值ꎮ介绍了PHPS分子结构和PHPS涂层的形成机理ꎬ搜集整理了PHPS涂层的期刊文献与专利文献ꎬ根据功能将PHPS涂层分为介电层㊁阻隔层㊁光学层ꎬ以及其他功能层ꎬ分析了不同功能涂层中PHPS结构㊁改性原料㊁制备方法㊁涂层结构等因素对涂层性能的影响ꎬ对PHPS涂层在我国应用现状进行总结并提出未来的展望ꎮ关键词:全氢聚硅氮烷ꎻ涂层ꎻ光电ꎻ专利中图分类号:TQ127.2㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀文章编号:1006-0456(2023)02-0128-08ResearchprogressofperhydropolysilazanecoatinginthefieldofoptoelectronicsMENGShuai1ꎬLIKaiyang1ꎬYERunping2ꎬZHANGRongbin2ꎬFENGGang2∗(1.ChemicalInventionExaminationDepartmentꎬSIPOꎬBeijing100088ꎬChinaꎻ2.SchoolofChemistryandChemicalEngineeringꎬNanchangUniversityꎬNanchang330031ꎬChina)Abstract:Coatingspreparedwithperhydropolysilazane(PHPS)asprecursorshavehighapplicationvalueinthefieldofoptoelec ̄tronics.ThemolecularstructureofPHPSandtheformationmechanismofPHPScoatingwereintroducedbasedonthecollectsandsortsjournalliteratureandpatentliteratureofPHPScoating.Thecoatingsweredividedintodielectriclayerꎬgasbarrierlayerꎬopticallayerandotherfunctionallayersaccordingtotheirfunctions.TheinfluenceofPHPSstructureꎬmodifiedrawmaterialsꎬpreparationmethodsꎬcoatingstructureandotherfactorsonthecoatingperformancewereanalyzedindifferentfunctionalcoatings.InadditionꎬtheapplicationstatusofPHPScoatinginourcountrywassummarizedandtheperspectivesinthisfieldwasprovided.KeyWords:perhydropolysilazaneꎻcoatingꎻoptoelectronicꎻpatent㊀㊀聚硅氮烷是主链由Si N键构成的聚合物ꎬ其性质比较活泼ꎬ与水㊁极性化合物㊁氧气等具有高的反应活性ꎬ在陶瓷㊁航空航天㊁涂料等领域具有广泛的应用ꎮ聚硅氮烷可分为有机聚硅氮烷和无机聚硅氮烷ꎬ有机聚硅氮烷是侧链含有机基团的硅氮聚合物ꎬ无机聚硅氮烷是侧基全为氢的硅氮聚合物ꎬ又称为全氢聚硅氮烷(perhydropolysilazaneꎬPHPS)ꎬ其分子中仅含硅㊁氮㊁氢3种元素ꎮ相比有机聚硅氮烷ꎬPHPS结构较单一ꎬ市场价值大[1]ꎬ可用于陶瓷前驱体㊁隔热材料制备等ꎮ由于PHPS不含有机基团ꎬ可通过多种方式实现低温转化ꎬ与基底黏附好ꎬ其转化形成的涂层具有耐腐蚀㊁耐高低温㊁隔气㊁长期耐候性㊁透明和耐划刻等特点而被广泛用于涂层制备[2]ꎮ光电技术在现代科学中占有重要地位ꎬ光电领域涂层的制备依然是阻碍其发展的难题ꎬPHPS涂层技术作为光电技术重要分支ꎬ对于改善光电器件性能㊁解决光电领域卡脖子的关键技术问题具有重要的意义ꎮ1㊀PHPS结构及涂层形成机理1.1㊀PHPS结构PHPS是一种主链为Si N结构ꎬ侧基全为H的含硅聚合物ꎬ其链段中的基本结构单元为[ (SiH2 NH)n ]ꎬPHPS中的最简单结构是具第45卷第2期2023年6月㊀㊀㊀㊀㊀㊀南昌大学学报(工科版)JournalofNanchangUniversity(Engineering&Technology)Vol.45No.2Jun.2023㊀有图1的重复单元(a)的链状结构ꎬPHPS分子内也可同时具有链状结构与环状结构ꎬ例如分子内可以具有由图1通式(b)~(f)所表示的重复单元与下述通式图1(g)所表示的末端基团ꎮSi N HH H Si NH H SiN HSiNSiNH H HSiN HHH Si (a)(g)(f)(e)(d)(c)(b)图1㊀PHPS基本结构单元Fig.1㊀BasicstructuralunitofPHPS㊀㊀这样的PHPS分子内可以具有支链结构或环状结构ꎬ其部分结构可如图2(a)所表示ꎬ另外ꎬ如图2(b)所示ꎬPHPS也可具有多个Si N分子链进行交联而得到的结构[3]ꎮ具有不同结构㊁组成和分子量的PHPS所形成的涂层的性能也相应有所不同ꎮSiH 2SiH H NHN H 3SiH 2SiH 2Si H 2SiH 3Si SiHHN N HN HSi H 2Si Si Si H 2SiH NHNH HNHNN N NNN NHN (a)Si N NNNN N Si Si SiSiSi(b)图2㊀PHPS不同组成结构Fig.2㊀DifferentconstituentstructuresofPHPS1.2㊀PHPS涂层形成机理PHPS在氧气或水存在的条件下ꎬ在有/无催化剂的条件下ꎬ经高温或光照处理可得到氧化硅涂层ꎮ大量学者研究了不同条件下PHPS的成膜机理[4-6]ꎬ特别是王丹等[7]研究了高温处理条件下PHPS-氧化硅转化所发生的化学反应和相变过程(分别参见图3和图4)ꎮ图3展示了PHPS转化过程中的相演变过程ꎬ其中PHPS相如图3(a)所示ꎬPHPS相为连续相的海岛结构如图3(b)所示ꎬ双连续相结构如图3(c)所示ꎬ氧化硅为连续相的海岛结构如图3(d)所示ꎮ图4的化学反应涵盖了PHPS转化过程中常见的水解㊁缩合和氧化反应ꎮ研究结果表明ꎬ当转化温度低于180ħ时ꎬPHPS的转化以Si H和Si N的水解缩合反应为主ꎬ转化程度较低ꎬ形成的是氧化硅为分散相㊁PHPS为连续相的结构ꎬ此时样品的折光指数较高㊁模量和硬度较低ꎮ转化温度在180~300ħ时ꎬPHPS的转化以Si H和Si N的氧化反应为主ꎬ氧化硅相逐渐生长ꎬ形成双连续的相结构ꎬ且在温度高于200ħ时发生相反转现象ꎬ氧化硅相成为连续相ꎬ样品的力学性能显著增加ꎮ转化温度在300~600ħ时ꎬ氧化硅网络骨架基本形成ꎬ在高温的作用下进一步发生致密化ꎮ形成生长相反转(a)(d)(c)(b)图3㊀PHPS转化过程中的相演变示意图Fig.3㊀SchematicdiagramofphaseevolutionintheprocessofPHPStransformation2㊀PHPS涂层的分类与应用㊀㊀PHPS作为涂层的研究已有相关报道ꎬ张宗波等陆续报道了PHPS涂层材料研究进展[8]㊁PHPS用于塑料表面硬化涂层的研究进展[9]㊁PHPS制备氧化硅气体阻隔涂层的研究进展[10]等ꎮ但上述文章中均未涉及专利文献ꎬPHPS涂层具有很高的应用价值ꎬ作为重要研究主体的企业申请人ꎬ他们通常将PHPS涂层的研究成果提交专利申请而非撰写学术论文ꎬ且检索发现涉及PHPS涂层研究的专利数921 第2期㊀㊀㊀㊀㊀孟帅等:全氢聚硅氮烷涂层在光电领域的研究进展量远超期刊论文数量ꎮ本文同时选取PHPS涂层相关专利及论文作为研究对象ꎬ在国家知识产权局专利局智能检索系统的CNTXT㊁VEN㊁WebofScience数据库中使用分类号C08L83/16及关键词 全氢聚硅氮烷㊁PHPS㊁perhydropolysilazane 等作为检索入口进行检索ꎬ以2022年12月1日之前公开的文献作为统计分析的数据基础(专利从申请到公开有18个月的滞后期ꎬ故2021年至今的数据仅供参考)ꎮ—图4㊀PHPS转化过程中常见的水解与缩合反应Fig.4㊀CommonhydrolysisandcondensationreactionsduringPHPStransformation2.1㊀PHPS涂层作为介电层二氧化硅有着良好的热稳定性㊁抗湿性以及绝缘性ꎬ在层间绝缘以及沟槽填充方面成为不可或缺的介电材料ꎮPHPS液相法制备的二氧化硅介电层可克服热氧化法㊁CVD㊁PECVD等方法所存在的缺陷ꎬ因而得到广泛应用ꎮPHPS原料结构影响介电层的性能ꎮ文献[11]使用相对分子质量在800~2500和3000~8000的范围内具有极大值ꎬ且重均分子量和数均分子量Mw/Mn为6~12的PHPS制备涂布组合物ꎬ通过将该涂布组合物涂布到具有间隙的基板上ꎬ并在1000ħ以下加热形成埋设到间隙深部的硅质膜ꎮ除关注相对分子质量外ꎬ更多的研究工作关注PHPS中元素或基团含量对涂层性能的影响ꎮ文献[12-13]中使用不含N H㊁不含C且富含Si的PHPS组合物ꎬ该组合物包含单元:[ N(SiH3)x(SiH2 )y]ꎬ其中当x+y=2时ꎬx=0㊁1或2且y=0㊁1或2ꎻ并且当x+y=3时ꎬx=0㊁1或2且y=1㊁2或3ꎮ将该PHPS与不同催化剂配合制得氧化物膜ꎬ所得氧化物膜具有低收缩率ꎬ特别适用于半导体间隙的填充ꎮ文献[14]使用了特定的PHPSꎬ该PHPS的1HNMR光谱满足以下条件:从N3SiH1和N2SiH2导出的波峰称为波峰1ꎬ从NSiH3导出的波峰称为波峰2ꎬ[P1/(P1+P2)]比率大于或等于0.77ꎻ从波峰1与波峰2之间的最小点到4.78ppm的面积称为区域Bꎬ从4.78ppm到波峰1的最小点的面积称为区域Aꎬ区域A的面积(PA)相对于区域B的面积(PB)的比率(PA/PB)大于或等于1.5ꎬ使用该特定PHPS可制备层厚度均一性极佳的二氧化硅层ꎮ文献[15]中制备了重均分子量(MW)为8000至15000ꎬ氮含量占PHPS总重量的25%至约30%的PHPSꎬ由该PHPS制备的二氧化硅层具有极佳的抗蚀刻性ꎮ除了研究PHPS结构对涂层性能的影响ꎬ大量研究将不同的改性原料与PHPS配合使用ꎬ从而制备具有不同性能的涂层ꎮ文献[16]中使用数均分子量为100~50000的PHPSꎬ以及以铝与硅的摩尔031 南昌大学学报(工科版)2023年㊀比计含铝量不小于1.0ˑ10-8且不大于1.0ˑ10-4的铝化合物的涂料组合物ꎬ制备了具有较小平带位移(flatbandshift)的硅质膜ꎮ文献[17-18]中通过将PHPS溶液与含铝溶液㊁聚丙烯酸酯类溶液混合制备组合物ꎬ该组合物经过涂布㊁加热干燥后得到介电常数低于2.5并在环境气氛下基本上保持这种较低的介电常数而无须进行抗水处理的多孔硅石涂层ꎮ而文献[19]中将包含不小于5个C C键间隔的含2个氨基的特定胺化合物与PHPS共用ꎬ从而以更快速度并在更低的温度下形成致密的硅质薄膜ꎮ此外ꎬ大量的文献报道了制备方法如何影响涂层性能ꎮ文献[20]中通过涂布㊁干燥和紫外线照射PHPS原料得到氮氧化硅膜ꎬ该制备方法可克服氮氧化硅膜制备方法复杂㊁制备成本高的问题ꎮPark等[21]将N2O等离子体处理PHPS并经650ħ空气转化制备SiO2作为插层介电层(ILD)ꎬ研究显示PHPS对纵横比为23和宽为15nm的沟槽形状具有非常好的填充性能ꎬ同时对亚30nm硅电路具有非常好的平坦化性能ꎬN2O等离子后处理的ILD可有效减少SiO2的表面污染ꎮSuzurikawa等[22]使用PHPS制备了光寻址电位传感器(LAPS)的钝化膜ꎬ并研究了O2等离子体处理对膜性能的影响ꎬ其中膜厚可达600nmꎬ薄膜LAPS的寿命可能超2周ꎮMe ̄hta等[23]同时研究了处理方式和后处理对涂层性能的影响ꎬ其使用UV处理㊁蒸汽退火处理旋涂PHPS薄膜ꎬ研究发现在蒸汽退火之前旋涂PHPS薄膜的宽带紫外线辐射可提高长宽比(>7 1)间隙填充结构内最终SiO2的密度ꎮ与仅经过蒸汽退火的薄膜相比ꎬ蒸汽退火后湿法蚀刻速率在UV处理平坦薄膜中的提高达18%ꎬ在ȡ7 1的长宽比间隙填充结构中的提高达26%ꎬ其中紫外线的剂量对最终薄膜致密化起到了关键作用ꎮ2.2㊀PHPS涂层作为阻隔层阻隔层ꎬ特别是包括水蒸气在内的气体的阻隔层是电子及光学器件常用的表面涂层ꎮ文献[24]中采用PHPS制备了阻隔层ꎬ该阻隔层和黏着剂层共同构成了黏着片ꎮ阻隔层的表层部的膜密度为2.4~4.0g cm-3ꎬ相对于所述阻隔层的表层部中的氧㊁氮㊁硅的总量ꎬ氧原子㊁氮原子和硅原子的比例为60%~75%㊁0%~10%㊁25%~35%ꎬ这是较早采用PHPS制备阻隔层的专利报道ꎮ文献[25]也研究了PHPS结构对气体阻隔膜的影响ꎬ其使用了改性PHPS作原料ꎬ其中SiH3与SiH和SiH2的总和之比[(SiH3) (SiH+SiH2)]为1 (10~30)ꎬ该结构PHPS制备所得的气体阻隔膜在高温高湿条件下保存稳定性优异ꎮ除仅使用PHPS原料ꎬPHPS常与改性原料配合使用制备阻隔层ꎮ文献[26]使用PHPS与金属化合物如三仲丁氧基铝制备得到结构式为SiOxNyMz的含硅膜ꎬ其中0.001ɤY/(X+Y)ɤ0.25㊁3.30ɤ3y+2xɤ4.80(上述化学式中ꎬM表示元素周期表的第2~第14族元素中的至少一种(但不包括硅及碳)ꎬx为氧相对于硅的原子比ꎬy为氮相对于硅的原子比ꎬz为M相对于硅的原子比且为0.01~0.3ꎬX=x/(1+(az/4))ꎬY=y/(1+(az/4)ꎬ其中ꎬa为元素M的价数)ꎬ该气体阻隔膜在高温高湿条件下保存稳定性优异ꎮ文献[27]使用PHPS和以下添加剂中的一种:1)烃基取代的胍类ꎻ2)包含氧以及氮作为组成成分的冠醚胺类ꎻ3)具有氨基取代的多环结构的环烷基类ꎻ4)烃基取代的肟类从而使所制备的膜具有良好的气体阻隔性能ꎮ除添加剂外ꎬ溶液也会影响PHPS阻隔层的性能ꎬ文献[28]中通过限定PHPS具有下述式(1)[ SiH2 NH ]和(2)[ SiHR NH ]表示的结构单元ꎬ并限定结构单元(1)和(2)中Si R键的数目相对于Si H键与Si R键的总数的比为0.01以上0.05(其中R为选自碳原子1~6的脂肪族烃基㊁碳原子数为6~12的芳香族烃基㊁碳原子数为1~6的烷氧基的基团)ꎬ从而使其溶解于脂肪族烃类溶剂中ꎬ可使用该组合物制备水蒸气透过率低的类二氧化硅玻璃阻隔层ꎮ此外ꎬ还有大量文献研究制备方法对阻隔层的影响ꎬ例如文献[29]中使用加热和等离子体处理的方法ꎬ以PHPS作原料制备厚度为10~500nm㊁折射率为1.48~1.63的隔气膜ꎮ文献[30]在真空紫外照射条件下使用PHPS在高分子基材如聚碳酸酯㊁环烯烃聚合物㊁环烯烃共聚物和纤维素衍生物基材上制备生产率优异㊁具有非常优异的气体阻隔性且兼具相位差膜功能的气体阻隔性膜ꎬ该膜可用作挠性电子设备如OLED的气体阻隔膜ꎮ文献[31]中使用PHPS作为原料涂覆在基材上ꎬ照射最大峰波长为160~179nm的光ꎬ接着用最大峰波长比之前照射光的最大峰波长还长10~70nm的光进行照射ꎬ得到了具有良好阻气性能的硅质膜ꎮSasaki等[32]研究并讨论了真空紫外(VUV)诱导与Si N键数㊁PHPS薄膜组成和自由体积(存在于形成的Si N网络中)对PHPS致密化过程的影响ꎬ发现VUV辐照时通过形成Si N键引起快速的氢释放和薄膜致密化ꎬ薄膜组成与残余氢原子和Si N键的数量密131第2期㊀㊀㊀㊀㊀孟帅等:全氢聚硅氮烷涂层在光电领域的研究进展切相关ꎬ其研究结果可以作为开发具有较高密度和优异气体阻隔性能(与真空处理阻隔膜所表现出的性能相当)的溶液处理纳米SiN薄膜的指南ꎮSasaki等[33]进一步在室温下氮气气氛中通过真空紫外(VUV)辐照全氢聚硅氮烷(PHPS)溶液制备气体阻挡层ꎬ该层可具有4.8ˑ10-5g m-2 d-1(阻隔性能接近玻璃)的阻气性能ꎬ这使其成为迄今为止性能最好的水蒸气阻隔材料之一ꎮ具有该性能的阻隔层厚度仅为990nmꎬ在短的VUV照射时间(每个PHPS层2.4min)即可制备得到ꎮ许多文献专门研究了层叠膜工艺对于膜性能的影响ꎮ文献[34]中气体阻隔性膜的制造方法包含在基材上形成第1阻隔层的工序和在上述第1阻隔层上形成第2阻隔层的工序ꎬ形成第2阻隔层的工序包含:在氧气浓度为2.0ˑ10-4以下㊁水蒸气浓度为1.0ˑ10-4以下的环境中使PHPS与金属化合物反应而制备涂布液㊁在上述第1阻隔层上涂布上述涂布液和对上述涂膜照射真空紫外线而对聚硅氮烷进行改性ꎬ所得到的膜在高温高湿条件下的稳定性优异ꎮ文献[35]中提供了气体阻隔性膜ꎬ其结构是在基材上依次具有锚固涂层以及与上述锚固涂层接触且通过真空成膜法形成的气体阻隔层ꎬ上述锚固涂层是用真空紫外照射PHPS而得到的ꎬ并且将上述锚固涂层的厚度设为A(nm)㊁将上述锚固涂层整体的氮原子相对于硅原子的原子比(N/Si)设为B时ꎬAˑBɤ60ꎬ使用该气体阻隔性膜的涂层使得电子设备在高温高湿环境下的耐久性优异ꎮ文献[36]中使用PHPS制备了阻气性优异且无色透明性优异的阻气性层合体ꎬ其具有基材和阻气性单元ꎬ所述阻气性单元包含在所述基材一侧的阻隔层(1)和在所述阻隔层(1)的与基材一侧相反的面上的阻隔层(2)ꎬ所述阻气性单元的厚度为170nm~10μmꎬ折射率为1.40~1.50ꎬ所述阻隔层(2)的折射率为1.50~1.75ꎬ[阻隔层(1)的光学膜厚]/[阻隔层(2)的光学膜厚]为3.0以上ꎮ文献[37]中公开了透明导电层叠层用膜㊁其制造方法及透明导电膜ꎬ使用PHPS制备的阻隔层使得具有该透明阻隔层的透明树脂膜基材的JISK7129所规定的40ħˑ90%RH的水蒸气透过率为1.0ˑ10-3g m-2 d以下ꎬ相当于100μm该透明树脂层的JISK7129所规定40ħˑ90%RH的水蒸气透过率为20g m-2 d以下ꎮ2.3㊀PHPS涂层作为光学膜PHPS也经常被用于制备光学膜ꎬ例如可与改性原料一起形成组合物来制备光学膜ꎮ文献[38]中通过(A)PHPS和(B)从含硅氮烷的有机聚合物㊁含硅氧硅氮烷的有机聚合物㊁含脲硅氮烷的有机聚合物中选出的至少一种有机聚合物的组合物制备低折射率膜ꎮ文献[39]中将含PHPS的溶液与含氟聚合物的溶液进行混合㊁涂布ꎬ从而制备强度高㊁耐油酸滑动的二氧化硅光学膜层ꎮ而Yamano等[40]使用PHPS的二甲苯溶液作为前体制备了掺杂螺吡喃(SP)的二氧化硅涂层ꎬ掺杂SP的PHPS薄膜是透明的和浅黄色的ꎬ随着PHPS向二氧化硅转化的进行ꎬ颜色变为红色ꎬ并且500nm处的吸光度增加ꎮ曝光处理后ꎬ薄膜在空气中避光保存73h后ꎬ500nm处的吸光度进一步增加ꎬ薄膜由红色变为深红色ꎮ由此获得的掺杂SP的二氧化硅涂层显示出可逆的光致变色反应ꎬ当薄膜分别用可见光和紫外光照射时ꎬ500nm处的吸光度分别降低和增加ꎬ所制备的薄膜可用作光学膜ꎮ除使用有机或高分子改性原料外ꎬKhan等[41]在PHPS溶液中加入无机原料ZnS:Mn2+纳米粒子的胶体溶液ꎬ通过刮刀法制备了发光薄膜ꎮ除原料影响产物性能外ꎬ制备方法也会影响光学膜的性能ꎮNakagawa等[42]采用溶胶-凝胶法制备PHPS转化成的有机-无机杂化薄膜ꎬ然后将其涂覆在4层结构有机发光二极管(OLED)的活性层上ꎮ相比不采用溶胶凝胶法制备活性层的OLEDꎬ采用溶胶凝胶法制备的OLED具有明显的电致发光性能ꎬ该性能可归因于活性层的不溶解ꎮ除关注具体的制备方法外ꎬ更多的文献报道了工艺参数对PHPS的影响ꎮLee等[43]通过二丁基醚溶液在Si(100)上制备了PHPS旋涂层ꎬ在405nmUV照射的条件下ꎬ在水或双氧水溶液中制备得到了致密氧化硅交联层ꎬ该层中O/Si的化学计量比为1.5~1.7ꎬ折射率为1.45~1.47ꎮBaek等[44]在空气环境中和低温下使用强脉冲紫外光(IPL)通过各种曝光能量(4.2㊁8.4和12.6J cm-2)制备了PHPS衍生的SiOx层ꎬ然后测试了它们的化学性能㊁组成㊁转化率和折射率ꎬ所得的SiOx层表现出与热处理二氧化硅层(600ħ)相似的100%转化率和与无定形SiO2(1.45)相同的折射率ꎮ该IPL工艺可有效地将PHPS转化为具有良好硬度㊁弹性模量和透明度的柔性聚合物薄膜上的SiOx层ꎬ可大规模应用于卷对卷制造工艺及光学薄膜行业ꎮ2.4㊀PHPS涂层作为其他功能膜太阳能电池用涂层是近年来PHPS应用比较活跃的领域ꎬ其在太阳能电池器件中所发挥的作用各231 南昌大学学报(工科版)2023年㊀有不同ꎮ例如文献[45]中公开了使用PHPS制备太阳能电池的介电阻挡层ꎬ阻挡层位于由金属或玻璃构成的基材和铜-铟-硫化物(CIS)或铜-铟-镓-硒化物(CIGSe)型光伏层状结构之间ꎮ文献[46]中采用PHPS制备了薄膜太阳能电池的包封层ꎬ所制备的黄铜矿太阳能电池对于波长范围为300~900nm的光具有低于95%的平均相对反射率ꎬ对于波长范围为1100~1500nm的光具有大于200%的平均相对反射率ꎬ所得到的膜具有良好的抗老化性能ꎮ文献[47]中采用PHPS制备了太阳能电池用防眩膜ꎬ防眩膜具有适合防眩性的表面凹凸ꎬ并能有效去除附着在表面上的污染物质ꎮ而Kim等[48]通过真空紫外辐照将PHPS转化为二氧化硅的方法来封装柔性钙钛矿太阳能电池(PSC)ꎮ为了避免PHPS溶液和VUV(λ=172nm)的高能光照射导致PSC的降解ꎬ将CdSe/ZnS量子点作为阻挡层扩散在聚二甲基硅氧烷基质中ꎬ所得封装层水蒸气透过率为8.63ˑ10-3g m-2 d-1(37.8ħꎬ100%RHꎬ相对湿度)ꎬ将这种方法应用于柔性太阳能电池ꎬ其室温寿命延长了400多小时ꎮ进一步地ꎬKim等[49]也通过真空紫外辐照将PHPS转化为二氧化硅的方法来封装柔性钙钛矿太阳能电池(PSC)ꎬ所得的封装层呈PHPS/聚对苯二甲酸乙二醇酯(PET)/PHPS三明治结构ꎬ所得封装层水蒸气透过率为0.92ˑ10-3g m-2 d-1(37.8ħꎬ100%RHꎬ相对湿度)ꎬ可使得电池在环境温度下工作1000h后仍保持稳定ꎮ此外文献[50]中将PHPS溶解于二甲苯中而形成界面液ꎬ界面液的PHPS遇氨水后水解ꎬ将钙钛矿薄膜黏接在氧化钛致密层ꎬ从而推进了钙钛矿光伏产业的规模化生产ꎮ除了上述常用的介电层㊁阻隔层㊁光学层外ꎬPHPS还可用于制备其他功能层ꎮ例如文献[51]中使用PHPS在基材上制备化合物层ꎬ使化合物层中至少一部分的硅氮烷化合物转换为具有硅氧烷键的化合物ꎬ并且在化合物层上形成由银或以银为主要成分的合金构成的金属层ꎬ由此制备了透明的导电膜ꎮ文献[52]中使用包含溶剂㊁PHPS和波长转换剂的组合物制备相对于水溶液具有50%或更高的可见光透射率的波长转换薄膜ꎮ文献[53]中制备了用于电子元器件的导热绝缘板ꎬ具体来说是在金属基板上依次层叠第一氧化物层㊁第二氧化物层和由PHPS固化得到的二氧化硅的涂层ꎬ所得到的绝缘板具有良好的导热性能及绝缘性能ꎮ文献[54-56]中在交联剂存在下通过光照交联反应制备PHPS嵌段共聚物ꎬ该PHPS包含具有含5个以上硅的聚硅烷骨架的直链或环状的嵌段A和具有含20个以上硅的聚硅氮烷骨架的嵌段Bꎬ这种特殊结构的PHPS可用于制备厚度大㊁密度高和与基板亲和力强的牺牲膜ꎮ3 结论㊀㊀我国在光电领域的综合竞争力与发达国家仍存在较大的差距ꎬPHPS涂层优异的加工性能和产物性能使其在光电领域具有广阔的应用前景ꎮ在PHPS的制备方面ꎬ我国的综合实力较弱[57]ꎬ而对于PHPS涂层的应用ꎬAZ电子材料㊁三星株式会社㊁柯尼卡美能达株式会社㊁琳得科株式会社等发达国家的申请人在我国开展专利布局早ꎬ专利数量多ꎮ相比于国外在PHPS涂层方面的研究ꎬ国内的研究报道较少ꎬ针对PHPS在光电领域的应用研究更是鲜有报道ꎬ这无疑对我国光电行业的发展提出了挑战ꎮ我国应加强PHPS制备方法与应用方法的研究ꎬ突破PHPS制备与应用存在的难点并加强知识产权保护ꎬ打造有竞争力的PHPS涂层产业链ꎮ参考文献:[1]㊀张宗波ꎬ肖凤艳ꎬ罗永明ꎬ等.全氢聚硅氮烷的应用及产业化[J].精细与专用化学品ꎬ2013ꎬ21(7):25-28. [2]KOZUKAHꎬNAKAJIMAKꎬUCHIYAMAH.Superiorpropertiesofsilicafilmspreparedfromperhydropolysi ̄lazanesolutionsatroomtemperatureincomparisonwithconventionalalkoxide ̄derivedsilicafilms[J].ACSAp ̄pliedMaterials&Interfacesꎬ2013ꎬ5(17):8329-8336. [3]冈村聪也ꎬ神田崇ꎬ樱井一成ꎬ等.全氢聚硅氮烷㊁以及包含其的组合物㊁以及使用了其的二氧化硅质膜的形成方法:CN201480066142.6[P].2018-10-19. [4]LEEJYꎬTAKEICHITꎬSAITOR.Studyonsynthesisandthereactionmechanismofpolybenzoxazine/silicanano ̄compositesprovidedfromperhydropolysilazane[J].Poly ̄merꎬ2016ꎬ99:536-543.[5]LEEJYꎬSAITOR.Transparencyandwatervaporbarrierpropertiesofpolybenzoxazinesilicananocompositespro ̄videdwithperhydropolysilazane[J].JournalofAppliedPolymerScienceꎬ2016ꎬ133(47):44238. [6]SOKRIMNMꎬONISHINTꎬDAIKOYꎬetal.Hydropho ̄bicityofamorphoussilica ̄basedinorganicorganichybridmaterialsderivedfromperhydropolysilazanechemicallymodifiedwithalcohols[J].Microporous&MesoporousMaterialsꎬ2015ꎬ215:183-190.[7]王丹ꎬ郭香ꎬ李鹏飞ꎬ等.全氢聚硅氮烷-氧化硅的转化331第2期㊀㊀㊀㊀㊀孟帅等:全氢聚硅氮烷涂层在光电领域的研究进展过程研究[J].化学学报ꎬ2022ꎬ80(6):734-740. [8]张宗波ꎬ肖凤艳ꎬ罗永明ꎬ等.全氢聚硅氮烷(PHPS)涂层材料研究进展[J].涂料工业ꎬ2013ꎬ43(4):74-79. [9]梁倩影ꎬ赵莉ꎬ孙宁ꎬ等.全氢聚硅氮烷用于塑料表面硬化涂层的研究进展[J].表面技术ꎬ2018ꎬ47(5):91-97. [10]张宗波ꎬ王丹ꎬ徐彩虹.全氢聚硅氮烷转化法制备氧化硅气体阻隔涂层[J].涂料工业ꎬ2016ꎬ46(8):82-87. [11]AZ电子材料(日本)株式会社.含有聚硅氮烷的涂布组合物:JP20100001883[P].2013-03-27.[12]L AIRliquideꎬSocieteAnonymePourL EtudeEtL Ex ̄ploitationDesProcedesGeorgesClaude.Perhydropolysi ̄lazanecompositionsandmethodsforformingoxidefilmsusingsame:US2019018985[P].2019-08-29. [13]L AIRliquideꎬSocieteAnonymePourL EtudeEtL Ex ̄ploitationDesProcedesGeorgesClaude.Perhydropolysi ̄lazanecompositionsandmethodsforformingnitridefilmsusingsame:US2019019000[P].2019-08-29. [14]尹熙灿ꎬ金佑翰ꎬ高尚兰ꎬ等.用于形成二氧化硅层的组成物㊁二氧化硅层及电子装置:CN201510282712.1[P].2016-12-07.[15]三星SDI株式会社.用于形成二氧化硅层的组成物㊁二氧化硅层以及电子装置:CN202110406105.7[P].2021-10-22.[16]清水泰雄ꎬ一山昌章ꎬ名仓映乃.具有较小平带位移的硅质膜及其制备方法:CN200580026893.6[P].2007-07-18.[17]AOKITꎬSHIMIZUY.Low ̄permittivityporoussiliceousfilmꎬsemiconductordeviceshavingsuchfilmsꎬandcoatingcompositionforformingthefilm:US20010009735[P].2003-05-29.[18]AOKITꎬSHIMIZUY.Poroussiliceousfilmhavinglowpermittivityꎬsemiconductordevicesandcoatingcomposi ̄tion:US20030363007[P].2004-02-12.[19]AZElectronicMaterials(Japan)KK.Compositioncontai ̄ningpolysilazanecompoundꎬwhichcanprovidedensesili ̄ceousfilm:JP2008069406[P].2009-04-30.[20]AZ电子材料(日本)株式会社.形成氮氧化硅膜的方法和具有由此形成的氮氧化硅膜的衬底:JP2011064248[P].2012-12-27.[21]PARKKSꎬKOPSꎬKIMSD.EffectsofN2Oplasmatreatmentonperhydropolysilazanespin ̄on ̄dielectricsforinter ̄layer ̄dielectricapplications[J].ThinSolidFilmsꎬ2014ꎬ551:57-60.[22]SUZURIKAWAJꎬNAKAOMꎬTAKAHASHIH.Surfacepassivationofthethin ̄filmlapswithperhydropolysilazane ̄derivedsilicatreatedbyO2plasma[J].IEEJTransactionsonElectricalandElectronicEngineeringꎬ2011ꎬ6(4):392-393.[23]MEHTASꎬSHENGHꎬKRISHNANRꎬetal.UVassisteddensificationofperhydropolysilazane(PHPS)basedspin ̄onglassinhighaspectratiogapfillstructure[J].ECSTransactionsꎬ2018ꎬ85(13):717-728.[24]上村和惠ꎬ网野由美子ꎬ铃木悠太ꎬ等.粘着片以及电子设备:CN201180042769.4[P].2014-12-10.[25]伊东宏明.改性聚硅氮烷㊁含有该改性聚硅氮烷的涂布液及使用该涂布液而制造的气体阻隔性膜:CN201580006849.2[P].2016-09-14.[26]长谷川彰ꎬ黑田俊也ꎬ石飞昌光ꎬ等.气体阻隔性层叠膜:CN201080015879.7[P].2015-01-07.[27]森田敏郎.膜形成组合物:CN200780024402.3[P].2012-06-06.[28]信越化学工业株式会社.含聚硅氮烷的组合物:CN201910645020.7[P].2022-07-12.[29]永绳智史ꎬ铃木悠太.改性聚硅氮烷膜及隔气膜的制造方法:CN201280026469.1[P].2015-09-09.[30]本田诚.气体阻隔性膜㊁电子设备用基板和电子设备:CN201380021977.5[P].2017-02-22.[31]尾崎祐树ꎬ樱井贵昭ꎬ小林政一.硅质致密膜的形成方法:CN201380052701.3[P].2017-03-08.[32]SASAKITꎬSUNLNꎬKUROSAWAYꎬet.al.Nanometer ̄thicksinfilmsasgasbarriercoatingsdensifiedbyvacuumUVirradiation[J].ACSAppliedNanoMaterialsꎬ2021ꎬ4(10):10344-10353.[33]SASAKITꎬSUNLꎬKUROSAWAYꎬet.al.Solutionpro ̄cessedgasbarrierswithglass ̄likeultrahighbarrierper ̄formance[J].AdvancedMaterialsInterfacesꎬ2022ꎬ9(34):2201517.[34]铃木一生ꎬ河村朋纪.气体阻隔性膜的制造方法:CN201780040108.5[P].2020-10-16.[35]柯尼卡美能达株式会社.气体阻隔性膜和电子设备:JP2015068227[P].2016-01-21.[36]大桥健宽ꎬ岩屋涉ꎬ铃木悠太.阻气性层合体㊁电子器件用部件及电子器件:CN201680019724.8[P].2017-11-28.[37]森田亘ꎬ原务ꎬ西岛健太ꎬ等.透明导电层叠层用膜㊁其制造方法及透明导电膜:CN201680017089.X[P].2020-06-30.[38]AZ电子材料(日本)株式会社.用于形成低折射率膜的组合物㊁形成低折射率膜的方法以及通过该形成方法形成的低折射率膜和抗反射膜:JP2012054705[P].2012-09-07.[39]小堀重人.涂布液㊁改性二氧化硅膜及其制备方法:CN201410183259.4[P].2016-11-23.[40]YAMANOAꎬKOZUKAH.Preparationofsilicacoatingsheavilydopedwithspiropyranusingperhydropolysilazaneasthesilicasourceandtheirphotochromicproperties[J].431 南昌大学学报(工科版)2023年㊀JournalofPhysicalChemistryBꎬ2009ꎬ113(17):5769-5776.[41]KHANSꎬAHNHYꎬHANJSꎬetal.LuminescentsilicafilmspreparedusingperhydropolysilazaneandMn ̄dopedZnSnanophosphors[J].AppliedSurfaceScienceꎬ2020ꎬ511:145441.[42]NAKAGAWARꎬJITSUIYꎬEMOTOAꎬet.al.Fabricationofsilicaglassthinfilmscontainingorganicemissivemate ̄rialsandapplicationtomulti ̄layerorganiclight ̄emittingdiodes[J].MolecularCrystalsandLiquidCrystalsꎬ2016ꎬ641(1):111-118.[43]LEEJSꎬOHJHꎬMOONSWꎬet.al.Atechniqueforcon ̄vertingperhydropolysilazanetoSiOxatlowtemperature[J].ElectrochemicalandSolid ̄StateLettersꎬ2009ꎬ13(1):23-25.[44]BAEKJJꎬPARKSMꎬKIMYRꎬet.al.IntensepulsedUVlighttreatmenttodesignfunctionalopticalfilmsfromper ̄hydropolysilazane:analternativetoconventionalheattreatmentprocesses[J].JournalofMaterialsScienceꎬ2022ꎬ(1):254-273.[45]ClariantInternationalLtd.Solarcellswithabarrierlayerbasedonpolysilazane:EP2010001638[P].2010-09-23. [46]罗德Kꎬ斯图加诺维克Sꎬ斯克涅比斯Jꎬ等.具有基于聚硅氮烷的包封层的太阳能电池:CN201080018732.3[P].2014-10-29.[47]株式会社钟化.太阳能电池组件用防眩膜㊁带有防眩膜的太阳能电池组件及它们的制造方法:JP2014066790[P].2015-01-08.[48]KIMJꎬJANGJHꎬKIMJHꎬet.al.Inorganicencapsulationmethodusingsolution ̄processiblepolysilazaneforflexiblesolarcells[J].ACSAppliedEnergyMaterialsꎬ2020ꎬ3(9):9257-9263.[49]KIMDJꎬJEONGGꎬKIMJHꎬet.al.Designofaflexiblethin ̄filmencapsulantwithsandwichstructuresofperhy ̄dropolysilazanelayers[J].ACSAppliedMaterials&Inter ̄facesꎬ2022ꎬ14(30):34678-34685.[50]孙越ꎬ林纲正ꎬ陈刚.一种钙钛矿薄膜制备设备㊁方法及钙钛矿太阳能电池:CN202111451993.0[P].2022-03-25.[51]鬼头朗子ꎬ神崎寿夫ꎬ大下格.透明导电膜及其制造方法:CN201010003998.2[P].2013-11-06.[52]赵素惠ꎬ韩准秀ꎬ李昇勇ꎬ等.具有聚硅氮烷和波长转换剂的涂覆组成物和波长转换片:CN201510019229.4[P].2018-05-15.[53]汪洋ꎬ宋延林ꎬ张佑专.导热绝缘板及其制备方法和电子元器件:CN201710911638.4[P].2019-07-05. [54]NAKAMOTONꎬFUJIWARATꎬSATOA.Amorphoussili ̄conformingcompositioncomprisingblockcopolymerandmethodforproducingamorphoussiliconfilmusingsame:US201917298549[P].2022-01-20.[55]MerkPatentGmbh.Methodforproducingamorphoussili ̄consacrificefilmandamorphoussiliconformingcomposi ̄tion:EP2019082581[P].2020-06-04.[56]FUJIWARATꎬSATOA.Silicousfilmformingcompositioncomprisingblockcopolymerandmethodforproducingsi ̄liceousfilmusingsame:US201917416005[P].2022-08-02.[57]孟帅ꎬ逄贝莉.聚硅氮烷制备专利技术分析[J].江西师范大学学报(自然科学版)ꎬ2022ꎬ46(4):411-416.531第2期㊀㊀㊀㊀㊀孟帅等:全氢聚硅氮烷涂层在光电领域的研究进展。

高度集成的μLED 显示技术研究进展

高度集成的μLED 显示技术研究进展

第41卷㊀第10期2020年10月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 41No 10Oct.ꎬ2020㊀㊀收稿日期:2020 ̄07 ̄03ꎻ修订日期:2020 ̄08 ̄04㊀㊀基金项目:国家自然科学基金面上项目(11674016)ꎻ国家重点研发计划(2017YFB0403102)资助项目SupportedbyNationalNaturalScienceFoundationofChina(11674016)ꎻNationalKeyR&DProgramofChina(2017YFB0403102)文章编号:1000 ̄7032(2020)10 ̄1309 ̄09高度集成的μLED显示技术研究进展严子雯1ꎬ2ꎬ严㊀群1ꎬ2ꎬ李典伦1ꎬ2ꎬ张永爱1ꎬ2ꎬ周雄图1ꎬ2ꎬ叶㊀芸1ꎬ2ꎬ郭太良1ꎬ2ꎬ孙㊀捷1ꎬ2∗(1.福州大学物理与信息工程学院ꎬ福建福州㊀350108ꎻ2.中国福建光电信息科学与技术创新实验室ꎬ福建福州㊀350117)摘要:微型发光二极管(μLED)是当今国际最前沿的显示技术之一ꎬ它一般指单个尺寸小于50μm的LED阵列ꎮμLED相对于液晶显示(LCD)㊁有机发光二极管(OLED)显示等技术有其独特的优势:寿命长㊁响应时间短㊁亮度高ꎮ最重要的是ꎬ它可以实现高度集成显示ꎬ既包括像素密度远远高于常规显示技术的高PPI显示器件ꎬ也包括我们首次提出的集成了某些非显示元件的超大规模集成半导体信息显示器件(HISID)ꎮ在许多显示技术的指标上ꎬμLED的性能都很优异ꎮ但是ꎬ由于μLED将常规LED器件的尺寸大大缩小ꎬ且往往密度提高ꎬ因此产生了许多新的技术和物理上的挑战ꎬ例如巨量转移技术㊁全彩化显示等ꎬ所以μLED尚未实现真正意义上的产业化ꎮ本文对高度集成μLED显示技术的研究和发展情况进行了较系统的论述ꎬ首先对μLED的基本原理和结构进行了介绍ꎬ然后对其重点核心技术进行了分类研究和点评ꎬ最后对μLED显示技术的发展方向及其应用前景做出了分析ꎮ关㊀键㊀词:微型发光二极管(μLED)ꎻ驱动ꎻ巨量转移ꎻ全彩化ꎻ高度集成中图分类号:TN312.8㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.37188/CJL.20200191ResearchProgressofHighIntegrationDensityμLEDDisplayTechnologyYANZi ̄wen1ꎬ2ꎬYANQun1ꎬ2ꎬLIDian ̄lun1ꎬ2ꎬZHANGYong ̄ai1ꎬ2ꎬZHOUXiong ̄tu1ꎬ2ꎬYEYun1ꎬ2ꎬGUOTai ̄liang1ꎬ2ꎬSUNJie1ꎬ2∗(1.CollegeofPhysicsandInformationEngineeringꎬFuzhouUniversityꎬFuzhou350108ꎬChinaꎻ2.FujianScience&TechnologyInnovationLaboratoryforOptoelectronicInformationofChinaꎬFuzhou350117ꎬChina)∗CorrespondingAuthorꎬE ̄mail:jie.sun@fzu.edu.cnAbstract:Microlight ̄emittingdiode(μLED)isoneofthemostcutting ̄edgedisplaytechnologiesintheworld.ItgenerallyreferstotheLEDarraywithasinglemesasizelessthan50microns.Com ̄paredwithliquidcrystaldisplay(LCD)andorganiclightemittingdiode(OLED)displayꎬμLEDdisplaytechnologyhasitsuniqueadvantages:longlifetimeꎬshortresponsetimeꎬandhighbright ̄ness.Mostimportantlyꎬitenablestherealizationofhighlyintegrateddisplaysꎬwhichincludesbothhigh ̄PPIdisplayswithmuchhigherpixeldensitiesthanconventionaldisplaytechnologiesꎬandhigh ̄lyintegratedsemiconductorinformationdisplays(HISID)thathavebeenproposedfirstbyusandcontaincertainnon ̄displaycomponents.InmanyfiguresofmeritofdisplaytechnologyꎬμLEDsper ̄formexcellently.HoweverꎬasμLEDsgreatlyreducethesizeofconventionalLEDdevicesandtypi ̄callyhaveanincreaseddevicedensityꎬmanynewtechnicalandphysicalchallengeshavearisenꎬsuchasmasstransfertechnologyꎬfull ̄colordisplayꎬetc.ThereforeꎬμLEDshavenotyetachieved1310㊀发㊀㊀光㊀㊀学㊀㊀报第41卷anyrealindustrialization.InthispaperꎬthehighlyintegratedμLEDdisplaytechnologyresearchandprogressaredescribedsystematically.FirstofallꎬthebasicprincipleandstructureofμLEDsarein ̄troducedꎬfollowedbytheclassificationandreviewofthekeytechnologies.FinallyꎬthedevelopmenttrendsandapplicationprospectsoftheμLEDdisplaytechnologyareanalyzed.Keywords:microlight ̄emittingdiode(μLED)ꎻdriverꎻmasstransfertechnologyꎻcolorizationꎻhighintegrationdensity1㊀引㊀㊀言20世纪以来ꎬ随着信息时代的发展ꎬ显示技术逐渐进入人们的生活中ꎬ其应用领域覆盖从医疗㊁教育㊁娱乐到工业㊁军事㊁航空航天的方方面面ꎮ显示技术也从最初的阴极射线管(CRT)逐渐发展到如今的平板显示ꎮ液晶显示(LCD)和等离子显示(PDP)两种新的平板显示技术推出后ꎬ它们凭借节能㊁体积较小等优点ꎬ逐渐取代了占据显示市场数十年的CRTꎮ由于LCD不断降低成本和提高性能ꎬPDP在不久后失去了竞争力ꎬ但是LCD需要使用背光通过液晶矩阵发光产生图像ꎬ所以存在响应时间慢㊁转换效率低㊁均匀性差㊁色彩饱和度低等缺点ꎮ近年来ꎬ新型显示技术逐渐发展起来ꎬ例如有机发光二极管(OLED)显示㊁发光二极管(LED)显示等ꎮ与LCD相比ꎬOLED显示是自发光显示ꎬ无需背光㊁视角宽㊁对比度高㊁省电㊁响应速度快㊁每个像素都可以独立控制ꎮ而且ꎬOLED的组成为固态结构ꎬ没有液态物质ꎬ抗机械振动性能更好ꎮ然而ꎬOLED显示屏寿命相对较短ꎬ加上色彩纯度不够以及成本略高等因素ꎬOLED的市场占有率并未超过LCDꎮLED显示则较多用于大型户外显示屏ꎬ具有寿命长㊁功耗低㊁亮度高㊁色彩饱和度高等优点ꎮ目前ꎬLED显示技术中ꎬ像素日趋微型化ꎮ越来越多的科研人员开始了关于微型LED(μLED)的研究[1 ̄13]ꎬ并将其视为下一代显示技术ꎮ相比于LCD和OLEDꎬμLED具有很多优势ꎬ如效率高㊁耐候性好㊁寿命长㊁分辨率可以很高等ꎬ更重要的是ꎬ它可以实现所谓 高度集成显示 ꎮ本文中ꎬ这一概念有两重含义ꎮ其一ꎬ由于μLED单个像素面积极小ꎬ因此可实现超高分辨率显示ꎻ其二ꎬ也可适当降低像素密度ꎬ而在其间隙处集成微传感器等非显示元素ꎬ与用户互动ꎮ这些都是传统技术很难实现的ꎮ但目前μLED尚未产业化ꎬ主要是因为μLED将LED器件尺寸缩小ꎬ且往往密度很高ꎬ所以许多新的技术挑战随之产生ꎬ如巨量转移技术和全彩化显示等ꎮ一方面ꎬ由于难以将驱动电路直接制备在μLED衬底上ꎬ因此需要将μLED器件从其衬底上转移并键合到互补金属氧化物半导体(CMOS)或薄膜晶体管(TFT)驱动电路衬底上ꎮ然而ꎬ转移的μLED尺寸小㊁数量多㊁需要精确对位且良率至少大于99.9999%ꎬ所以这种巨量转移是μLED公认的一个关键性技术ꎮ另一方面ꎬ由于在GaN上制备的红光μLED的效率比较低ꎬ所以实现全彩化显示也是μLED的一个重要技术难点ꎮ本文主要介绍高度集成的μLED显示技术的研究现状ꎬ将结合我们的科研实践ꎬ分别从μLED显示技术的基本原理㊁结构与性能㊁驱动方式㊁重点技术等方面进行分析说明ꎬ最后介绍其最新市场应用ꎬ提出在显示领域有革命性意义的超大规模集成半导体信息显示器件(HISID)的理念ꎬ并加以评述ꎮ2㊀μLED基本原理、结构与性能LED[14]是一种将电能转化为光能的电致发光器件ꎬ其核心结构是由半导体材料形成的PN结ꎮ当对LED施加正向电压时ꎬ通过电极从N区和P区分别向空间电荷区注入电子和空穴ꎬ并在结区复合发光ꎮμLED技术就是将LED微缩化和矩阵化ꎬ其发光单元尺寸在50μm以下ꎬ且较高密度地集成在芯片上ꎮμLED可以通过巨量转移的方式批量地转移到驱动电路基板上ꎬ该基板可以为硬性或柔性㊁透明或不透明ꎮ然后ꎬ再利用物理气相沉积等方法在其上制备保护层和外接电极ꎬ并进行封装ꎮ制备μLED的材料一般是GaN基半导体ꎮμLED主要由以下几部分组成:衬底㊁缓冲层㊁N型半导体㊁MQWs(多量子阱)㊁P型半导体以及电极ꎬ有些还有P ̄AlGaN电子阻挡层ꎮ为进一步提高性能ꎬ还可加入光栅㊁光子晶体㊁分布式布拉格㊀第10期严子雯ꎬ等:高度集成的μLED显示技术研究进展1311㊀反射镜(DBR)等附加结构ꎮμLED芯片的结构主要分为正装结构㊁倒装结构㊁垂直结构等ꎮ如图1(a)所示ꎬ正装结构较为简单且易于加工ꎬ但是由于顶部需要制备电极因而使得出光面积减少ꎬ且散热性能较差ꎻ倒装结构如图1(b)所示ꎬ相比较于正装结构ꎬ光提取效率更高ꎬ器件的散热性能㊁可靠性和寿命也都得到了提高ꎮP 鄄G a N M Q W s N 鄄G a NU 鄄G a N蓝宝石电极凸点(a )(b )I T O P 鄄GaN MQWs电极U 鄄G a N 图1㊀(a)μLED正装结构ꎻ(b)μLED倒装结构ꎮFig.1㊀(a)Structureofface ̄uppackagedμLED.(b)Struc ̄tureofflip ̄chippackagedμLED.3㊀μLED显示的驱动μLED的驱动方式主要有两种模式:无源寻址驱动和有源寻址驱动ꎮ3.1㊀无源寻址驱动(PM)无源寻址驱动[15]是指在μLED阵列中使用金属连线分别将每列像素阳极相连ꎬ每行像素阴极相连ꎬ由外加行列控制器对行列电极进行动态Data current sourceScan driver图2㊀无源寻址驱动Fig.2㊀Passiveaddressingdriver扫描ꎮ图2是无源寻址驱动的典型电路结构ꎬ当第x行和第y列选通时ꎬ其交点(xꎬy)处像素被点亮ꎮ使用无源寻址驱动方式对屏幕高速地逐点扫描ꎬ就可以实现全屏画面显示ꎮ无源寻址驱动方式结构简单且易实现ꎬ在设计和制备方面具有成本优势ꎮ图3是典型的无源寻址驱动阵列的剖面和三维结构示意图ꎮP m et a l N metalA c t i v e r eg i o n Insulating layerITOP m e t a lI n s u l a t i n g l a y e r N 鄄G a NS a p ph i r e滋LEDN metal图3㊀无源寻址驱动阵列ꎮ(a)剖面图ꎻ(b)3D结构图ꎮFig.3㊀Passiveaddressingdriverarray.(a)Cross ̄sectionalstructure.(b)3Dviewofthepassiveaddressingdriver.3.2㊀有源寻址驱动(AM)典型的有源寻址驱动[16 ̄18]方式一般是指采用金属键合工艺将μLED芯片倒装在驱动基板上(如CMOS)ꎬ每个像素的阴极通过共用N型GaN连接ꎬ阳极则与CMOS驱动基板金属键合ꎮ使用这种方式ꎬ每个像素都有独立的驱动电路ꎬ可以方便地单独寻址控制ꎮ有源寻址驱动方式中ꎬ经常使用两个晶体管一个电容(2T1C)驱动电路ꎬ如图4所示ꎮ每个μLED的电流控制通过寻址晶体管T1㊁驱动晶体管T2和一个存储电容C实现ꎮ信号存储在电容中ꎬ使得像素器件处于保持状态ꎬ直至下一帧信号刷新ꎬ从而在整个周期产生所需的连续电流[12]ꎮ此处介绍2T1C结构是因为它是有源驱动的一种基本电路ꎬ简单且易实现ꎬ但其本质是电压控制电流源ꎬ而μLED是电流型器件ꎬ所以该电路较难控制显示灰度ꎮ更精细的设计ꎬ例如4T2C电路ꎬ是一种电流控制电流源的电流比例型1312㊀发㊀㊀光㊀㊀学㊀㊀报第41卷驱动电路ꎬ对实现μLED的灰阶更有利ꎬ此处不详述ꎮLEDT2V DDCT1V scanV data图4㊀2T1C有源寻址驱动电路图Fig.4㊀Schematicofa2T1CAMdrivingcircuit目前主要有整片转移和晶粒转移两种方式来组装有源寻址驱动μLEDꎮ整片转移方式是将外延片制成μLED阵列后ꎬ整体倒装在驱动基板上ꎬ但由于目前很难在同一基板上有选择地生长不同颜色的μLEDꎬ所以很难实现全彩化ꎮ晶粒转移方式是将μLED衬底切割成单晶粒ꎬ通过巨量转移方式转移到驱动基板上ꎮ但是当前巨量转移技术还不成熟ꎬ所以组装成本较高ꎮ3.3㊀两种驱动方式对比与无源寻址驱动方式相比ꎬ有源寻址驱动方式更适合应用在μLED器件中ꎬ它有着显著的优势ꎮ虽然无源寻址驱动方式结构简单且易实现ꎬ但是也存在许多不足:它采用共行共列的电极ꎬ会产生较大的寄生电阻和电容ꎬ导致功耗大ꎻ驱动电压较高时ꎬ驱动电流从选定像素通过ꎬ但其周围像素也会受到电流影响ꎬ产生像素串扰ꎬ影响显示质量ꎻ由于外部集成电路的驱动能力有限ꎬ每个像素的亮度受这一行或列中已经亮起像素的数量影响ꎬ当行或列亮起的像素个数不同时ꎬ施加到每个像素上的驱动电流不同ꎬ亮度产生差异ꎬ对于大面积的显示应用而言ꎬ会极大地影响屏幕亮度的均匀性及对比度ꎻ对于彩色μLED阵列ꎬ单个像素中包含3种不同的μLEDꎬ每种μLED需要的驱动电压不同ꎬ需要更复杂的驱动电路ꎬ使得驱动的难度增大ꎮ图3为无源寻址驱动阵列剖面图和3D结构图ꎮ因为需要深刻蚀到衬底以确保每个μLED之间都是电学隔离的ꎬ所以电极经过深隔离槽时有可能会出现断裂ꎬ器件可靠性降低ꎬ并且这种结构使得发光单元的间距增大ꎬ像素密度受到影响ꎮ所以无源寻址驱动方式不是非常适合于大尺寸和超高分辨率的显示ꎮ与此相反ꎬ对于有源寻址驱动方式ꎬ其驱动能力更强ꎬ驱动速度更快ꎬ所以更加适合大面积和高分辨率的μLED显示ꎻ有源寻址驱动方式无行列扫描损耗ꎬ功耗更小ꎬ效率更高ꎻ有源寻址驱动方式的亮度均匀性和对比度也较好ꎻ每个像素都有独立的驱动电路ꎬ被点亮像素不影响周围的像素ꎬ可以较好地解决串扰问题ꎮ4㊀μLED巨量转移技术μLED巨量转移技术主要是指将生长在外延衬底上的μLED阵列快速精准地转移到驱动电路基板上ꎬ并与驱动电路之间形成良好的电气连接和机械固定的技术ꎬ也是当前限制μLED产业化的一个瓶颈技术ꎬ能否大量㊁快速㊁准确地转移μLED芯片到目标基板上决定着μLED是否能够真正实现量产ꎮ巨量转移技术在μLED显示中之所以十分必要ꎬ主要是由于以下几点:由于GaNμLED表1㊀主要巨量转移技术Tab.1㊀Majormasstransfertechnologies方法主要机理具体细节流体自组装重力和毛细管力利用重力和毛细管力驱动悬浮在液体中的μLED到达指定位置ꎬ并与基板表面合金产生电气连接ꎮ范德华力利用弹性印章和μLED之间的范德华力作用ꎬ将μLED转移到目标基板上ꎮ印章抓取磁力通过电磁力控制μLED芯片的吸取和放置ꎮ静电力印章头被介电层分开ꎬ形成一对分别带有正电和负电的硅电极ꎬ通过控制电极正负来抓取和放置芯片ꎮ选择性释放激光剥离利用激光将μLED与原衬底之间的界面层分离ꎬ通过局部产生的机械力将μLED芯片推向目标衬底ꎮ滚轴转印滚轴式印章通过滚轮将TFT与μLED转移到目标衬底上ꎮ㊀第10期严子雯ꎬ等:高度集成的μLED显示技术研究进展1313㊀外延片与GaN晶体管外延片结构差异很大ꎬ在GaNμLED外延片上直接制备基于GaN晶体管的驱动电路需要二次外延生长ꎬ工艺复杂且可靠性较差ꎬ因此需要巨量转移μLED到另外的驱动衬底上ꎻ为了实现可穿戴设备ꎬ需要将μLED转移到柔性或可拉伸衬底上ꎻ有时需要通过巨量转移技术来有选择地转移部分μLEDꎬ以匹配不同分辨率显示设备的像素间距ꎻ巨量转移技术可以用于实现μLED全彩化显示ꎬ亦即通过巨量转移技术分别将红绿蓝(RGB)三色μLED晶粒转移到驱动电路基板上ꎬ以实现全彩化ꎻHISID器件中ꎬ也需要采用巨量转移技术加入非显示元件等ꎮ目前μLED巨量转移技术主要有流体自组装技术㊁印章抓取技术㊁选择性释放技术㊁滚轴转印技术等ꎮ4.1㊀流体自组装技术(FSA)流体自组装技术[19 ̄20]是通过重力和毛细管力驱动并捕获μLED至驱动电路基板的一种转移方式ꎮ自组装一般是在液体中进行ꎬμLED在液体中悬浮并在目标基板表面流动ꎬ到达被捕获的位置ꎬ与目标基板表面合金接触并与目标基板形成电气连接ꎮCho等[21]采用流体自组装方式ꎬ将圆形芯片㊁表面具有低熔点合金涂层的基板和组装溶液放入玻璃小瓶ꎬ加热并振荡ꎬ芯片在流动时被低熔点合金捕获并与基板形成电气连接ꎬ在1min内将19000多块直径为45μm的蓝色μLED组装在基板上ꎬ成功率达99.9%ꎮ4.2㊀印章抓取技术印章抓取技术是指通过范德华力㊁磁力或者静电力将μLED芯片黏附在转移用的印章上ꎬ然后放置在目标基板上[22]ꎮX ̄Celeprint[23]在2015年提出一种弹性印章技术ꎬ如图5所示ꎬ弹性印章一般由聚二甲基硅氧烷(PDMS)为载体ꎮ为了使μLED芯片更好地被印章抓取并脱离原基板ꎬ在制备μLED过程中加入一层牺牲层ꎬ去除牺牲层后ꎬμLED器件与原基板中间有一部分镂空ꎮ印章和器件之间通过范德华力结合ꎬ提起印章将使器件与原基板镂空处的连接断裂ꎬ并按原有阵列排布的格局转移到印章上ꎬ良率大于99.9%ꎮITRI提出将μLED中混入铁钴镍等材料ꎬ通过电磁力控制芯片抓取ꎮLuxVue[24]提出采用静电力抓取芯片ꎬ通过对印章施加正负电压来控制μLED的抓取和放置ꎮNative substrate with滋LED devicesElastomer stamp(PDMS)Devices are transferred onto stampDevices are printed onto target substrate图5㊀印章抓取技术示意图Fig.5㊀Illustrationofthestamp ̄basedpick&placetech ̄nique4.3㊀选择性释放技术选择性释放技术[25]是使用激光束将μLED从衬底上剥离ꎬ然后再转移到目标基板上ꎮ如图6所示ꎬ在激光照射下ꎬ原始衬底与μLED的界面处发生反应ꎬ分解界面层ꎬμLED脱离衬底ꎬ同时有局部的机械力将μLED推向目标基板ꎮ目前有报道使用大规模并行激光转移技术ꎬ实现了每小时1亿次以上的转移效率ꎮThin filmLaser sourceBeam shapingDonorsubstrateReceiversubstrate图6㊀选择性释放技术示意图Fig.6㊀Illustrationofthelaser ̄inducedforwardtransfer4.4㊀滚轴转印技术滚轴转印技术[26]是由韩国KIMM提出的一种μLED转移方式ꎬ可以用于转移厚度小于10μm㊁尺寸小于100μm的μLED芯片ꎮ这个方法可以用于柔性㊁可拉伸和轻量级的显示设备ꎬ转移速率高达每秒10000个ꎮ如图7所示ꎬ首先利用涂覆一次性转移膜的滚轮将TFT阵列拾取并放置在临时基板上ꎻ然后将μLED用同样的方法拾取放置在有TFT的临时基板上ꎬ与TFT焊接ꎻ最后ꎬ将μLED和TFT互联阵列滚动转移到目标衬底上ꎮ1314㊀发㊀㊀光㊀㊀学㊀㊀报第41卷图7㊀滚轴转印技术示意图Fig.7㊀Illustrationoftheroll ̄to ̄rolltransfer目前ꎬ与流体自组装技术㊁选择性释放技术㊁滚轴转印技术相比ꎬ有关印章抓取技术的研究更加广泛ꎮ我们认为ꎬ这种技术是更有可能使μLED实现产业化的巨量转移技术ꎮ流体自组装技术虽然转移方式简单㊁成本低㊁可以并行组装ꎬ但是这种方式组装成品率低ꎬ对芯片形状有要求ꎬ并且需要解决如何将芯片准确定位于结合点这个问题ꎻ滚轴转印技术虽然工艺步骤比之前减少ꎬ生产速度有所提高ꎬ但是技术难度较大ꎬ很难保证生产良率ꎮ相比之下ꎬ印章抓取技术则可以有效地实现大批量有选择性的转移ꎮ该方法可控性强㊁转移效率高㊁成品率高㊁印章易于加工且灵活性大ꎬ因此我们认为相比较于其他几种转移方式ꎬ印章抓取技术更有可能成为日后进行巨量转移的主要转移方法ꎮ下一阶段应主要追求进一步提高准确性和降低技术成本ꎮ5㊀μLED彩色化技术对于大多数显示器而言ꎬ其显示的图像都需要全色(红㊁绿㊁蓝三原色组成)ꎬ因此μLED显示的彩色化也是一个重要的研究方向ꎮ目前主流的彩色化方式有3种:三色RGB法㊁短波长μLED+发光介质法以及将图像色彩化的透镜合成法ꎮ5.1㊀三色RGB法三色RGB法是指分别在不同的衬底上外延并制作红色㊁绿色㊁蓝色的μLED芯片ꎬ然后将其切割ꎬ转移到目标基板上ꎮPeng等[27]利用垂直结构的红光μLED器件和正装结构的蓝㊁绿光μLED器件ꎬ通过板上芯片(COB)技术在石英衬底上制备了全彩μLED显示器ꎮ如图8所示ꎬ这种全彩技术中ꎬ每个像素中都包含RGB3个μLED器件ꎬ通过不同电流来控制亮度ꎬ使得三原色混合实现全彩化ꎮ但是ꎬ这种方式也存在一些问题待解决:RGB3种μLED所使用的材料不同ꎬ所以寿命㊁温度等方面的性能也不相同ꎻ需要复杂的驱动电路来维持工作ꎻ需要将3种不同的μLED转移到目标基板上ꎬ对巨量转移要求很高ꎮ例如ꎬ制造一个4k分辨率的显示器ꎬ需要将2500万个μLED精确地(误差在1μm以下)组装和连接在基板上ꎬ转移如此大量的3个不同的μLED是非常困难的ꎮ滋LED array图8㊀三色RGB法阵列Fig.8㊀RGBμLEDfull ̄colordisplayarray5.2㊀短波长μLED+发光介质法短波长μLED+发光介质法是指利用沉积在短波长μLED上的发光介质(目前常用荧光粉或者量子点)作为颜色转换层来实现全彩化显示ꎮ2020年ꎬKim等[28]使用光固化丙烯酸材料与纳米有机复合材料的混合物ꎬ通过光刻技术在蓝光μLED上沉积红色㊁绿色颜色转换层ꎮ该转换层在底部蓝光照射下光致发光ꎬ产生红光和绿光ꎬ与无转换层的蓝光混合形成白光ꎬ实现全彩显示ꎮ为避免像素间颜色串扰ꎬ还在μLED之间沉积了黑色胶ꎮLi等[29]在蓝宝石上制备蓝/绿双波长μLED器件ꎬ使用红色量子点作为颜色转换层实现了全彩显示ꎬ与其他报道的结果相比ꎬ提高了量子点的转换效率ꎮZhuang等[30]在紫光/蓝光μLED上制备纳米孔阵列并填充量子点ꎬ形成白光光源ꎮ这些有序的纳米孔阵列作为光子晶体ꎬ与无纳米孔阵列的平面结构相比ꎬ光的提取效率显著增强ꎮ本课题组先通过在蓝光μLED台面上用纳米压印和干法刻蚀的方法制备纳米孔阵列ꎬ再填入对高温有较强耐受性的红光量子点ꎬ成功地实现了将蓝光高效地转换成红光ꎬ如图9所示ꎮ短波长μLED+发光介质法可以回避目前很难将μLED芯片巨量转移到目标基板的问题ꎬ它㊀第10期严子雯ꎬ等:高度集成的μLED显示技术研究进展1315㊀5滋m1滋m(a )(b )图9㊀使用纳米孔结构的蓝光μLED的色彩转换ꎮ(a)填入量子点后纳米孔SEM图ꎻ(b)填入红色量子点后μLED发光图ꎮFig.9㊀ColorconversionofblueμLEDusingnanoholestruc ̄ture.(a)SEMimageofthenanoholeafterfillinginthequantumdots.(b)μLEDluminescencefigureaf ̄terfillingintheredquantumdots.也无需复杂的驱动电路ꎮ但这个方法需要将颜色转换层精确地放置在尺寸很小的像素上ꎬ并且由于颜色转换层会吸收部分能量ꎬ所以整体的亮度和色彩转换效率都较低ꎮ目前常用的荧光粉材料的颗粒尺寸大ꎬ对于小尺寸的像素容易造成沉积不均匀ꎬ量子点材料尺寸小ꎬ但是材料存在稳定性较差且寿命短等缺点ꎮ5.3㊀透镜合成法透镜合成法是指通过透镜将红光㊁绿光和蓝光进行合成ꎬ从而实现彩色化的方法ꎬ但是这种方法中像素仍为单色ꎬ它只是一种将图像彩色化的方式ꎮ2013年ꎬLiu等[31]使用三色棱镜和投影透镜来制备全彩微显示器ꎮ如图10所示ꎬ分别制备红色㊁绿色和蓝色的微显示器ꎬ使用三色棱镜将从3个单独控制的微显示器产生的图案组合成彩色的图像ꎬ再通过在三色棱镜前增加投影透镜ꎬ可以调整图像颜色并将图像投影到屏幕ꎮ投影出来的颜色可以通过改变3个单色微显示器的强度来调整ꎮ这种方法在技术上较易实现ꎬ但仅限于在投影技术方面的应用ꎮProjection lensTrichroic prismRed 滋LEDBlue 滋LEDGreen 滋LED图10㊀透镜合成法示意图Fig.10㊀Schematicdiagramoflenssynthesis6㊀μLED产业发展现状目前ꎬμLED的潜在市场主要是平板显示ꎮ随着消费者对于节能㊁亮度㊁分辨率等方面需求的提高ꎬ以及μLED技术不断地发展ꎬμLED市场将不断地增长ꎮ根据国际市场研究机构ResearchandMarkets的预测ꎬ全球潜在μLED显示市场2025年将达到205亿美元ꎮ手机㊁智能手表㊁电视㊁笔记本电脑㊁增强现实/虚拟现实(AR/VR)等设备的需求ꎬ是市场增长的主要原因ꎮ随着μLED显示的优势日益凸显ꎬ国内外大批企业都开始着手μLED显示的研发ꎮ2012年ꎬ索尼公司首先将μLED显示技术在消费电子领域试用ꎬ在国际消费电子展(InternationalConsumerElectron ̄icsShow)上展出了尺寸为55寸的 CrystalLEDDisplay 电视ꎬ其上像素约600万个ꎬ亮度约400cd/m2ꎮ2014年ꎬ苹果公司收购了拥有多项μLED显示技术专利的LuxVue公司ꎬ将μLED技术用于AppleWatch及AR/VR方面ꎮ2019年ꎬ三星推出75英寸μLED电视ꎬ芯片尺寸为之前的1/15ꎬPPI较之前增加了4倍左右ꎮ在国内ꎬ重庆惠科与MikroMe ̄sa于2017年初创立μLED面板实验室ꎮ2019年ꎬ京东方公司与美国Rohinni成立μLED合资公司ꎬ主要针对μLED显示器和MiniLED背光方面进行研发ꎮ7㊀μLED应用前景如前所述ꎬμLED的效率㊁速度㊁寿命㊁亮度及分辨率都很高ꎬ同时具备轻薄㊁省电和全天候使用的优势ꎬ使得它在显示方面的应用尤为突出ꎮ初期应用包括柔性㊁透明显示屏ꎬAR/VR的微显示㊁1316㊀发㊀㊀光㊀㊀学㊀㊀报第41卷中小尺寸车载/机载显示和大尺寸显示屏等ꎮ本实验室率先提出HISID的概念ꎬ得到了国际信息显示学会(SID)的认可ꎮ由于μLED器件尺寸在微米级ꎬ远小于正常显示像素(通常在几百微米或更大)ꎬ发光的μLED芯片面积往往只占像素全部面积的千分之一ꎬ所以有足够的空间来通过巨量转移技术集成微型集成电路(IC)和各类微米级传感器等非显示元件ꎬ并使之成为交互式富媒体信息显示终端ꎬ即HISIDꎮ其产品形态已经不是传统的显示屏ꎬ而很有可能有机地融入在室内和户外装潢之中ꎮ它将拥有许多非显示功能ꎬ甚至可以与用户进行一定程度的互动ꎬ实现浸入式 效果ꎬ特别是在游戏㊁影视领域潜力巨大ꎮ若能实现基于μLED的照明㊁空间三维显示㊁空间定位及信息通信高度集成的系统ꎬ并将μLED引入人工智能技术完成高度智能型高速信息交互空间网络ꎬ这将成为继互联网㊁移动通信之后的第三代信息高速网络ꎬ在民生和军事上具有重大战略性意义ꎬ同时也可以促成可交互的富媒体崭新产业ꎮ目前ꎬ本实验室联合外延㊁显示㊁封装龙头企业及科研院所ꎬ正在积极推进HISID研究ꎬ力争使我国在新一轮国际竞争中先发制人ꎮ8㊀结㊀㊀论本文介绍了μLED显示技术的研究和进展情况ꎬ对μLED的基本原理和结构㊁重点技术以及研究发展现状都做出了分析ꎮμLED相比OLED㊁LCD等显示技术有着显著的优势ꎬ但是目前还面临许多问题亟待解决ꎬ如巨量转移技术㊁全彩化方案㊁驱动电路的设计和实现以及后续的检测和修复技术都尚不成熟ꎬ这些问题直接影响μLED显示的量产和商业发展ꎮ这些问题多为工程技术问题而非本征性科学问题ꎬ产学两界现在正在对其进行广泛的研究ꎮ结合μLED在可穿戴㊁AR/VR等高端显示方面的巨大潜力ꎬ我们有理由期待未来的研究在这些领域中取得突破ꎬ实现μLED显示技术光明的前景ꎮ在μLED走向产业化的过程中ꎬ各国处在同一起跑线上ꎬ只要我们抓住机遇ꎬ就能掌握核心技术和自主知识产权ꎬ避免在未来显示中被 卡脖子 ꎮ参㊀考㊀文㊀献:[1]BIXPꎬXIETꎬFANBꎬetal..Aflexibleꎬmicro ̄lens ̄coupledLEDstimulatorforopticalneuromodulation[J].IEEETrans.Biomed.CircuitsSyst.ꎬ2016ꎬ10(5):972 ̄978.[2]SANDAꎬRAKKOLAINENI.Mixedrealitywithmultimodalhead ̄mountedpicoprojector[C].ProceedingsofVirtualRe ̄alityInternationalConference:LavalVirtualꎬLavalꎬFranceꎬ2013:1 ̄2.[3]LEEVWꎬTWUNꎬKYMISSISI.Micro ̄LEDtechnologiesandapplications[J].Inf.Disp.ꎬ2016ꎬ32(6):16 ̄23. [4]HENRYW.MicroLEDarraysfindapplicationsintheverysmall[J].PhotonicsSpectraꎬ2013ꎬ47(3):52 ̄55. [5]李继军ꎬ聂晓梦ꎬ李根生ꎬ等.平板显示技术比较及研究进展[J].中国光学ꎬ2018ꎬ11(5):695 ̄710.LIJJꎬNIEXMꎬLIGSꎬetal..Comparisonandresearchprogressofflatpaneldisplaytechnology[J].Chin.J.Opt.ꎬ2018ꎬ11(5):695 ̄710.(inChinese)[6]CHONGWCꎬCHOWKꎬLIUZJꎬetal..1700pixelsperinch(PPI)passive ̄matrixmicro ̄LEDdisplaypoweredbyASIC[C].Proceedingsof2014IEEECompoundSemiconductorIntegratedCircuitSymposiumꎬLaJollaꎬCAꎬUSAꎬ2014:1 ̄4. [7]WANGZꎬSHANXYꎬCUIXGꎬetal..CharacteristicsandtechniquesofGaN ̄basedmicro ̄LEDsforapplicationinnext ̄generationdisplay[J].J.Semicond.ꎬ2020ꎬ41(4):041606.[8]TEMPLIEF.GaN ̄basedemissivemicrodisplays:averypromisingtechnologyforcompactꎬultra ̄highbrightnessdisplaysys ̄tems[J].J.SIDꎬ2016ꎬ24(11):669 ̄675.[9]WONGMSꎬHWANGDꎬALHASSANAIꎬetal..HighefficiencyofⅢ ̄nitridemicro ̄light ̄emittingdiodesbysidewallpas ̄sivationusingatomiclayerdeposition[J].Opt.Expressꎬ2018ꎬ26(16):21324 ̄21331.[10]KIMHMꎬUMJGꎬLEESꎬetal..66 ̄4:highbrightnessactivematrixmicro ̄LEDswithLTPSTFTbackplane[J].SIDSymp.Dig.Tech.Pap.ꎬ2018ꎬ49(1):880 ̄883.[11]OLIVIERFꎬTIRANOSꎬDUPRÉLꎬetal..Influenceofsize ̄reductionontheperformancesofGaN ̄basedmicro ̄LEDsfordisplayapplication[J].J.Lumin.ꎬ2017ꎬ191:112 ̄116.[12]ZHANGKꎬPENGDꎬCHONGWCꎬetal..Investigationofphoton ̄generatedleakagecurrentforhigh ̄performanceactivematrixmicro ̄LEDdisplays[J].IEEETrans.ElectronDevicesꎬ2016ꎬ63(12):4832 ̄4838.㊀第10期严子雯ꎬ等:高度集成的μLED显示技术研究进展1317㊀[13]LIUZJꎬCHONGWCꎬWONGKMꎬetal..360PPIflip ̄chipmountedactivematrixaddressablelightemittingdiodeonsilicon(LEDoS)micro ̄displays[J].J.DisplayTechnol.ꎬ2013ꎬ9(8):678 ̄682.[14]MUKAIT.Recentprogressingroup ̄Ⅲnitridelight ̄emittingdiodes[J].IEEEJ.Sel.Top.QuantumElectron.ꎬ2002ꎬ8(2):264 ̄270.[15]MCGOVERNBꎬBERLINGUERPALMINIRꎬGROSSMANNꎬetal..Anewindividuallyaddressablemicro ̄LEDarrayforphotogeneticneuralstimulation[J].IEEETrans.Biomed.CircuitsSyst.ꎬ2010ꎬ4(6):469 ̄476.[16]UMJGꎬJEONGDYꎬJUNGYꎬetal..Active ̄matrixGaNμ ̄LEDdisplayusingoxidethin ̄filmtransistorbackplaneandflipchipLEDbonding[J].Adv.Electron.Mater.ꎬ2019ꎬ5(3):1800617 ̄1 ̄8.[17]CHENCJꎬCHENHCꎬLIAOJHꎬetal..Fabricationandcharacterizationofactive ̄matrix960ˑ540blueGaN ̄basedmi ̄cro ̄LEDdisplay[J].IEEEJ.QuantumElectron.ꎬ2019ꎬ55(2):3300106 ̄1 ̄6.[18]ZHANGXꎬLIPAꎬZOUXBꎬetal..ActivematrixmonolithicLEDmicro ̄displayusingGaN ̄on ̄Siepilayers[J].IEEEPhoton.Technol.Lett.ꎬ2019ꎬ31(11):865 ̄868.[19]VANDOMMELENRꎬFANZIOPꎬSASSOL.Surfaceself ̄assemblyofcolloidalcrystalsformicro ̄andnano ̄patterning[J].Adv.ColloidInterfaceSci.ꎬ2018ꎬ251:97 ̄114.[20]PARKSCꎬFANGJꎬBISWASSꎬetal..Approachingroll ̄to ̄rollfluidicself ̄assembly:relevantparametersꎬmachinedesignꎬandapplications[J].J.Microelectromech.Syst.ꎬ2015ꎬ24(6):1928 ̄1937.[21]CHOSꎬLEEDꎬKWONS.Fluidicself ̄assemblytransfertechnologyforMicro ̄LEDdisplay[C].ProceedingsofThe201920thInternationalConferenceonSolid ̄StateSensorsꎬActuatorsandMicrosystems&EurosensorsⅩⅩⅩⅢꎬBerlinꎬGermanyꎬ2019:402 ̄404.[22]CORBETTBꎬLOIRꎬZHOUWDꎬetal..Transferprinttechniquesforheterogeneousintegrationofphotoniccomponents[J].Prog.QuantumElectron.ꎬ2017ꎬ52:1 ̄17.[23]BOWERCAꎬMEITLMAꎬBONAFEDESꎬetal..Heterogeneousintegrationofmicroscalecompoundsemiconductorde ̄vicesbymicro ̄transfer ̄printing[C].ProceedingsofThe2015IEEE65thElectronicComponentsandTechnologyConfer ̄enceꎬSanDiegoꎬCAꎬUSAꎬ2015:963 ̄967.[24]BIBLAꎬHIGGINSONJAꎬHUHHꎬetal..Methodoftransferringandbondinganarrayofmicrodevices:USAꎬWO/2013/119671[P].2013 ̄08 ̄15.[25]DELAPORTEPꎬALLONCLEAP.Laser ̄inducedforwardtransfer:ahighresolutionadditivemanufacturingtechnology[J].Opt.LaserTechnol.ꎬ2016ꎬ78:33 ̄41.[26]SHARMABKꎬJANGBꎬLEEJEꎬetal..Load ̄controlledrolltransferofoxidetransistorsforstretchableelectronics[J].Adv.Funct.Mater.ꎬ2013ꎬ23(16):2024 ̄2032.[27]PENGDꎬZHANGKꎬCHAOVSDꎬetal..Full ̄colorpixelated ̄addressablelightemittingdiodeontransparentsubstrate(LEDoTS)micro ̄displaysbyCoB[J].J.DisplayTechnol.ꎬ2016ꎬ12(7):742 ̄746.[28]KIMWHꎬJANGYJꎬKIMJYꎬetal..High ̄performancecolor ̄convertedfull ̄colormicro ̄LEDarray[J].Appl.Sci.ꎬ2020ꎬ10(6):2112.[29]LIPAꎬZHANGXꎬLIYFꎬetal..Monolithicfull ̄colorLEDmicro ̄displayusingdualwavelengthLEDepilayers[C].ProceedingsofInternationalDisplayWorkshopsꎬSapporoꎬJapanꎬ2019:770 ̄773.[30]ZHUANGZꎬGUOXꎬLIUBꎬetal..HighcolorrenderingindexhybridⅢ ̄nitride/nanocrystalswhitelight ̄emittingdiodes[J].Adv.Funct.Mater.ꎬ2016ꎬ26(1):36 ̄43.[31]LIUZJꎬCHONGWCꎬWONGKMꎬetal..AnovelBLU ̄freefull ̄colorLEDprojectorusingLEDonsiliconmicro ̄displays[J].IEEEPhoton.Technol.Lett.ꎬ2013ꎬ25(23):2267 ̄2270.严子雯(1995-)ꎬ女ꎬ陕西西安人ꎬ硕士研究生ꎬ2017年于西安邮电大学获得学士学位ꎬ主要从事化学液相沉积法制备氧化物薄膜及应用㊁以及氮化镓μLED微显示的研究ꎮE ̄mail:729384816@qq.com孙捷(1977-)ꎬ男ꎬ内蒙古阿拉善人ꎬ博士ꎬ教授ꎬ博士研究生导师ꎬ2007年于中国科学院半导体研究所获得博士学位ꎬ主要从事氮化镓μLED集成信息显示㊁二维半导体材料生长及其在纳米电子学中应用的研究ꎮE ̄mail:jie.sun@fzu.edu.cn。

焙烧炉烟气余热回收及利用技术

焙烧炉烟气余热回收及利用技术

2023年 5月下 世界有色金属17冶金冶炼M etallurgical smelting焙烧炉烟气余热回收及利用技术罗振勇(贵阳铝镁设计研究院有限公司,贵州 贵阳 550081)摘 要:本文介绍了一种氧化铝厂气态悬浮焙烧炉烟气余热回收以及将回收的烟气余热用于氧化铝生产的节能新技术。

本技术采用喷淋冷却塔对高温焙烧炉烟气进行喷淋冷却,通过直接换热方式,烟气中的水蒸汽释放其潜热,大部分热量回收进入喷淋循环水中。

升温后的循环水再与经过真空闪蒸后的蒸发原液进行热交换,使真空闪蒸后的原液温度升高,温度升高后的蒸发原液再返回进行真空闪蒸,最终蒸发原液浓度得到提高,降低了蒸发工段低压蒸汽消耗,节约了氧化铝生产的综合能耗。

本文对焙烧炉烟气余热回收及利用技术进行了热平衡计算和运营成本估算,分别从技术和经济角度分析了本技术应用于氧化铝生产企业的可行性。

关键词:焙烧炉;烟气余热;水蒸汽潜热;回收及利用中图分类号:X706 文献标识码:A 文章编号:1002-5065(2023)10-0017-3The Recovery and Utilization of Waste Heat Technology for Calciner Flue GasLUO Zhen-yong(Guiyang Aluminium and Magnesium Design and Research Institute Co.,Ltd.,Guiyang 550081,China)Abstract: This paper introduces a new energy saving technology of gas suspension calciner in alumina plant, this technology can recycle the waste heat of flue gas and apply it to production of alumina. The water cooling tower was used to spray cooling the high temperature flue gas of calciner by direct heat exchange. The latent heat was discharged from water vapor in flue gas, and the heat was recycled into spray water. The warming recycled water transfer heat to spent liquor after vacuum flashing. The concentration of spent liquor was higher than before. And then the low pressure steam consumption was lower than before, the comprehensive energy consumption of alumina production was saved. The heat balance calculation and operating cost estimation for the technology were provided in this paper. The feasibility which the technology was applied to alumina industries was analyzed from technical and economic point of view.Keywords: Calciner; Waste Heat of Flue Gas; Latent Heat of Water Vapor; Recovery and Utilization收稿日期:2023-03作者简介:罗振勇,男,生于1982年,满族,辽宁开原人,硕士研究生,工程师,研究方向:氧化铝生产工艺设计及研究。

高水平社会主义市场经济体制的三重追问

高水平社会主义市场经济体制的三重追问

高水平社会主义市场经济体制的三重追问
李京京;李红亮
【期刊名称】《经济问题》
【年(卷),期】2024()1
【摘要】高水平社会主义市场经济体制发源于马克思主义经典作家的政治经济学
思想,厚植于中国经济体制改革40余年理论创新与实践创新的良性互动。

其“更高起点”高在全球治理格局调整和国内社会主要矛盾转化的“时空方位”、坚持党的领导的“阶级方位”、秉持人民至上价值理念的“价值方位”,“更高层次”高在
有效市场与有为政府相统一、公平竞争与共同富裕相统一、经济效益与绿色发展相统一、立足内需与扩大开放相统一、政府治理与多元治理相统一、法治规范与道德约束相统一的辩证智慧,“更高目标”高在“建成社会主义现代化强国”总体目标
和“产权有效激励、要素自由流动、价格反应灵活、竞争公平有序、企业优胜劣汰”具体目标的有机结合。

【总页数】8页(P25-32)
【作者】李京京;李红亮
【作者单位】南京理工大学马克思主义学院
【正文语种】中文
【中图分类】F123.9
【相关文献】
1.人的全面发展与现代化:全面建设小康社会的价值追问——基于社会主义市场经济体制下的思考
2.构建高水平社会主义市场经济体制——中国高水平市场经济暨万典武“市场球场论”高层研讨会成功举办
3.社会主义市场经济体制的演进与高水平社会主义市场经济体制构建
4.构建高水平社会主义市场经济体制的增长潜能测算——基于体制扭曲差值内生的核算和仿真
5.夯实构建高水平社会主义市场经济体制的理论根基——兼论社会主义市场经济理论的重要地位
因版权原因,仅展示原文概要,查看原文内容请购买。

北京电镀学会召开“北美地区电镀工业状况及NADOAP审查认证”交流会

北京电镀学会召开“北美地区电镀工业状况及NADOAP审查认证”交流会

本届活动周 的主题 是 “ 质量 、创新 、发展 ”。活 动期 间 ,众 多行业 专家和企业领导 出席 了会议并 发表 重要讲话。众所 周知 ,热处理 的质量对机械产 品的性
能 至 关 重 要 ,它直 接 关 系 到 产 品 的使 用 寿 命 和 安 全 性 能 ,这 也 就 是 “ 好 热 处 理 ,零 件 一 顶 几 ” 的诠 释 。 搞
由之 路 ”:北 京钢铁 研 究总 院 李 光赢研 究员演 讲 的 “ 汽车构件与零部件新材 料及其 热处理 新技术 的发展 与应用” :哈尔滨工业 大学甄 良教授演讲 的 “ 金属材 料在航空航天领域 的应用 及其热处理 ”以及大连重工 北 京 电 镀 学 会 召 开 ” 美 地 区 电 镀 工 北 集 团热处理厂郭冰峰高级 工程 师演讲的 “ 电关键零 风 业 状 况 及 N D P审 童 认 证 ” 交 虢 会 A OA 件 的热处理 ”等等精彩 内容都 很好地抓住 了 目前行业 2 1 年7 4日上 午 ,在北京 航空航 天大学新 主 发展的热点 ,对于各个行业 的进 步和中国热处理产业 O 0 月2 楼 ,北 京 电镀 学会 召 开 “ 美地 区 电镀 工 业状 况 及 由大变强都 起到 了很好 的桥梁作用。 北 N D AP A C 审查 认证”交流会 ,会议 由北京 电镀学会理 事长 、北 京航 空航 天大学材料学 院朱立群教授主持 , 第 四 届 国 际 骞 洋 与 重 防腐 涂 料 及 - 3装 有近4 位代表参与此次学术交流活动。 0 此 次交流 会主 要邀 请 了加 拿大A rs a eMea eo p c tl 技 术 会 在 厦 门 召 开 Fn hn c 0 事长 ( is igI i 董 i n 主管 电镀 与表面 处理 的生产 2 1年 6 8 0 0 月2 日,由中国涂料工业协 会主办 、海 和质量 ) 廖永 忠博士作学术报告 ,廖 博士简要介绍 了 洋 化工研 究院承办 的 “ 四届 国际海洋与重防腐涂料 第 北 美地 区的电镀 工业状况 ,主要介 绍 了N C P AD A 审查 及 涂装技术研讨会 ”在厦 f 顺利 召开。有来 自全 国海 - j 认证 的情 况 ,N C P AD A 为国家航 空和国防承包商认证 洋 与重 防腐 涂料行 业 的1 0 6 余名代表 与会 。中国涂料 程序 ,是现在 欧美地 区做航空 或国防项 目必需 的一 个 工 业协 会理事长孙莲英 、副理 事长江磐、副秘书长丁 审查 认 证 内容 。 智 、 中国涂 料专 家委 员会主任 刘登 良、S P — 副主 SC C 报告 内容 引起 了与会代表 的高度 关注 ,尤其是 国 席 胥元达 等领导和专 家出席 了本次会议。大会 由海洋 外 的航 空工业 应用 电镀 、表面 处理 技术的特殊性等 内 化工研 究院常务 副院长 阎永江主持。 容 引起 了大家的热烈讨论 ,通过 大家的讨 论和学 习 , 孙莲 英理 事长在大会致辞 中指 出 ,我国整个涂料 使得参加此次会议的代表受益匪浅。 工业 正朝着低碳环保 、节 能减排 、高性能方 向发展 , 海 洋防腐 涂料 的发展也 不例 外 ,此次会议 以 “ 蓝色海 洋 ”为主题 ,正是顺应 了涂料工 业发展的主旋 律。且 第 七 届 中 国 热 处 理 着 动 周, l Z秦 皇 岛 威 随着 我国造船业 的崛起 、造船 市场东移 ,兼之海洋大 功举 办 陆架石油 的开发 ,海洋与 重防腐 涂料的发展前景越来 2 1 年8 1 — 9 ,由全 国热 处理学 会主 办 , 00 月 7 1 日 越被看好 ,我 国海洋重 防腐涂料 的发展也恰逢其时。 全 国热 处理标准 化技术委员会 、全 国热处理学会技术 此 次 会议 主 题 演 讲 涉 及 到 海 洋 涂 料 “ 二 五 ”发 十

磁耦合Mn2 + -Mn2 +离子对发光行为研究进展

磁耦合Mn2 + -Mn2 +离子对发光行为研究进展

第43卷㊀第4期2022年4月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 43No 4Apr.ꎬ2022㊀㊀收稿日期:2022 ̄01 ̄05ꎻ修订日期:2022 ̄01 ̄28㊀㊀基金项目:国家自然科学基金(51772104)资助项目SupportedbyNationalNaturalScienceFoundationofChina(51772104)文章编号:1000 ̄7032(2022)04 ̄0482 ̄19磁耦合Mn2+ ̄Mn2+离子对发光行为研究进展朱兴路1ꎬ宋恩海1ꎬ邹炳锁2∗ꎬ叶㊀柿1∗(1.华南理工大学材料科学与工程学院ꎬ发光材料与器件国家重点实验室ꎬ广东省光纤激光材料与应用技术重点实验室ꎬ广东广州㊀510641ꎻ2.广西大学资源环境与材料学院ꎬ广西有色金属及特色材料加工重点实验室ꎬ广西南宁㊀530004)摘要:过渡金属Mn2+掺杂的半导体/绝缘体作为发光材料在照明㊁显示等领域具有重要应用ꎮMn2+离子具有5个未成对的d电子ꎬ掺杂在发光材料中通常具有高自旋态ꎬ其容易与近邻的Mn2+离子发生交换或超交换作用即磁相互作用ꎮ此类相互作用可在分子尺度下对电子自旋产生很强的束缚能力ꎬ使得磁耦合Mn2+ ̄Mn2+离子对的发光行为不同于孤立Mn2+离子的发光行为ꎬ如荧光寿命变短㊁异常的发射波长红移/蓝移㊁多峰发射以及异常的磁光现象等ꎮ但由于受到浓度猝灭㊁缺陷㊁声子耦合㊁能量传递㊁与半导体激子的sp ̄d交换作用等多因素的影响以及测试技术的限制ꎬ对Mn2+ ̄Mn2+离子间磁相互作用的确认及其对发光行为的影响仍存在较多争议ꎮ随着研究的不断深入和一些新的表征手段如光磁测量技术的引入ꎬ上述问题可以得到部分解决ꎮ本文首先简要介绍过渡金属离子磁相互作用类型及其理论基础ꎻ然后综述Mn2+ ̄Mn2+离子间磁相互作用对其吸收光谱㊁发射光谱㊁荧光寿命和磁光效应的影响ꎬ并着重比较探讨了能证明Mn2+ ̄Mn2+磁相互作用的存在及其作用类型的不同技术手段ꎻ最后进行总结并对此类材料在LED器件等领域的潜在应用进行了展望ꎮ关㊀键㊀词:Mn2+ꎻ磁相互作用ꎻ发光中图分类号:O482.31㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.37188/CJL.20220006ProgressofLuminescentBehaviorsofMn2+ ̄Mn2+PairwithMagneticCouplingInteractionZHUXing ̄lu1ꎬSONGEn ̄hai1ꎬZOUBing ̄suo2∗ꎬYEShi1∗(1.StateKeyLaboratoryofLuminescentMaterialsandDevicesandGuangdongProvincialKeyLaboratoryofFiberLaserMaterialsandAppliedTechniquesꎬSchoolofMaterialsScienceandEngineeringꎬSouthChinaUniversityofTechnologyꎬGuangzhou510641ꎬChinaꎻ2.GuangxiKeyLabofProcessingforNon ̄ferrousMetalsandFeaturedMaterialsꎬSchoolofResourcesꎬEnvironmentsandMaterialsꎬGuangxiUniversityꎬNanning530004ꎬChina)∗CorrespondingAuthorsꎬE ̄mail:zoubs@gxu.edu.cnꎻmsyes@scut.edu.cnAbstract:TransitionmetalionMn2+dopedsemiconductors/insulatorsasluminescentmaterialshavefoundsignificantapplicationsinthefieldsoflight ̄emittingdiodesanddisplays.Duetothefiveun ̄pairedelectronsofMn2+andnormallythehigh ̄spinstatewhenusedasdopantsinluminescentmate ̄rialsꎬtheexchangeorsuperexchangeinteractionꎬi.e.ꎬmagneticinteractionꎬshouldeasilytakeplacebetweenMn2+ionandthenearestneighborMn2+ion.TheinteractioncangenerateastrongbindingforceatthemolecularscaletothespinofelectronsꎬmakingtheluminescentbehaviorsofMn2+ ̄Mn2+pairdifferentfromthatofisolateMn2+ꎬliketheshorteneddecaylifetimeꎬabnormalredshift/blueshiftoftheemissionsꎬmulti ̄bandemissionsandunusualmagneto ̄opticbehavior.How ̄everꎬtheconfirmationandassignmentofmagneticinteractioninMn2+ ̄Mn2+pairanditseffecton㊀第4期朱兴路ꎬ等:磁耦合Mn2+ ̄Mn2+离子对发光行为研究进展483㊀luminescencebehaviorisstillcontroversialbecauseoftheinterferenceeffectsofconcentrationquenchingꎬdefectꎬphononcouplingꎬenergytransferꎬthesp ̄dexchangecouplingbetweenMn2+ionsandexcitonandthelimitationoftestinginstruments.Withthedeepeningofresearchandtheintro ̄ductionofsomenewtechniques(likethephotomagnetismmeasurement)ꎬtheaboveissuescanbepartlysolved.Thisreviewfirstlyintroducesthefundamentaltheoryandknowledgeofmagneticinteractionbe ̄tweentransitionmetalions.ThentheeffectsofmagneticinteractionofMn2+ ̄Mn2+pairontheabsorptionspectraꎬemissionspectraꎬdecaylifetimeꎬandmagneto ̄opticaleffectarereviewed.Thevirousmeasure ̄mentmethodswereemphaticallycomparedanddiscussedtoprovetheexistanceofmagneticinteractioninMn2+ ̄Mn2+andassignthetypeofinteration.FinallyꎬsummaryandsomeoutlooksaregivenꎬconcerningthepotentialapplicationsofsuchmaterialsinthefieldofLEDsdevices.Keywords:Mn2+ꎻmagneticcouplinginteractionꎻluminescence1㊀引㊀㊀言Mn2+离子具有5个未成对的d电子ꎬ在5个3d轨道中具有252种填充方式并产生16个光谱项:6S㊁4P㊁4D㊁4F㊁4G㊁2S㊁2P㊁2D(1)㊁2D(2)㊁2D(3)㊁2F(1)㊁2F(2)㊁2G(1)㊁2G(2)㊁2H㊁2I[1]ꎮ在晶体场作用下ꎬ这些光谱项发生能级劈裂ꎬ其行为可以用Tanabe ̄Sugano(TS)图来描述ꎮMn2+的发光归属于4T1ң6A1辐射跃迁ꎬ属于宇称和自旋双重禁阻跃迁ꎬ因此其荧光寿命通常在几毫秒~几十毫秒量级[2]ꎮMn2+的激发态能级较多且能隙较小ꎬ处于高激发态的d电子通常会弛豫到最低激发态能级ꎬ因此处于晶体单格位的Mn2+发光光谱通常是单峰ꎮ此外ꎬ由于Mn2+的3d电子裸露在最外层ꎬ其发光容易受到晶体场环境的影响ꎬ通过调节化学配位环境可实现绿光到红光的发射[2 ̄3]ꎮ这些独特的发光性质使Mn2+成为发光材料领域重要的激活剂离子ꎮ商用发光材料中含Mn2+的材料有白光卤粉Ca5(PO4)3ClʒSb3+ꎬMn2+㊁绿粉Zn2SiO4ʒMn2+㊁BaAl12O19ʒMn2+和BaMgAl10O17ʒEu2+ꎬMn2+等ꎮ在近紫外激发的荧光材料转换的白光LED器件中ꎬ以Mn2+离子为红光发射中心的Eu2+或Ce3+共激活的荧光材料是具有应用潜力的红光材料ꎬ如Ba3MgSi2O8ʒEu2+ꎬMn2+[4]㊁SrZn2(PO4)2ʒEu2+ꎬMn2+[5]㊁M3MgSiO8(M=CaꎬSrꎬBa)ʒEu2+ꎬMn2+[6]㊁Ba2Ca(B3O6)2ʒEu2+ꎬMn2+[7]㊁Ca5(PO4)3ClʒEu2+ꎬMn2+[8]等ꎮ但Mn2+的4T1ң6A1宇称 ̄自旋双重禁阻跃迁的特性导致其荧光寿命较长ꎬ使得材料在光子激发密度大的情况下容易达到光效饱和ꎬ进而影响器件性能的提升[8 ̄10]ꎮ在Mn2+掺杂体系中ꎬ研究发现ꎬ随着掺杂浓度的提高会出现一些不寻常的发光现象ꎬ例如单格位多峰发射㊁近红外发光㊁微秒量级的荧光寿命以及磁光效应减弱等[11 ̄16]ꎮ研究者把这些现象主要归因于Mn2+ ̄Mn2+之间的磁相互作用ꎮ铁磁(FM)材料和反铁磁(AFM)材料内部离子磁矩有序排列(其中前者平行排列ꎬ后者反向平行排列)的原因是材料内部存在附加磁场(又称分子场)ꎮ分子场来源于相邻原子或离子间发生的交换作用[17 ̄20]ꎮ在FM材料中分子场场强可以高达107Gsꎬ如此强的内磁场使材料内部磁矩自发平行排列ꎻAFM或亚铁磁材料(FIM)中的分子场主要来源于两过渡金属离子间通过所键连的中间阴离子产生的超交换作用ꎬ在这种相互作用下离子磁矩反向平行排列ꎮ尽管AFM和FIM材料中的分子场场强相比于FM材料大大减小ꎬ但仍然对材料的物理性质如发光有重要的影响[17ꎬ20]ꎮ目前ꎬ人们对Mn2+ ̄Mn2+离子之间的磁相互作用与其发光机理的认识仍然不足甚至存在相互矛盾的地方ꎬ特别是后者夹杂着材料基质声子耦合㊁浓度猝灭等因素的干扰ꎮ本文综述了Mn2+ ̄Mn2+离子对磁相互作用对其吸收光谱㊁发射光谱㊁荧光寿命以及磁光现象的影响及其研究进展ꎬ特别介绍引入光磁测量技术来推测在有/无光照条件下Mn2+自旋组态的变化来阐释磁相互作用下的发光行为ꎮ最后进行总结并展望ꎮ2㊀磁耦合离子对与发光相关理论简介Mn2+与最近邻Mn2+之间无论以FM还是484㊀发㊀㊀光㊀㊀学㊀㊀报第43卷AFM方式发生相互作用ꎬ当体系的热能(温度)升高到足以克服离子间的交换作用时ꎬ有序排列的磁矩被破坏ꎬ导致材料磁性变为顺磁性ꎮ图1(a)给出了发生AFM㊁FM有序转变的典型的磁化率 ̄温度曲线ꎮ尽管在磁有序温度以上体系表现出顺磁行为ꎬ即磁无序ꎬ但仍然会存在着AFM或FM相互作用ꎮ研究表明ꎬ在高于居里温度(TC)/奈尔温度(TN)时存在Mn2+ ̄Mn2+磁相互作用的体系ꎬ发光性质与没有磁相互作用的顺磁性材料不同ꎮ可用示意图对此进行说明ꎬ如图1(a)(ⅰ)所示ꎬ当Mn2+通过中间的配体离子与相邻Mn2+发生AFM相互作用时ꎬ在TN温度以下相邻Mn2+的磁矩反向平行有序排列ꎻ当温度超过TN时ꎬ相邻两Mn2+离子间仍然存在AFM相互作用(如绿色虚线框所示)ꎬ只是宏观上磁矩无序排列ꎮ同理ꎬFM体系的有序磁矩在TC以上时体现顺磁性ꎬ但两Mn2+离子间仍然存在FM相互作用(如绿色虚线框所示ꎬ如图1(a)(ⅲ))ꎮ而Mn2+以孤立形式存在时它们之间没有磁相互作用ꎬMn2+的磁矩排列杂乱无章ꎬ属于顺磁性(PMꎬ如图1(a)(ⅱ))ꎮ图1㊀(a)Mn2+ ̄Mn2+离子间发生AFM相互作用(ⅰ)㊁无长程磁相互作用(ⅱ)㊁FM相互作用(ⅲ)时在TN/TC温度前后Mn2+磁矩的排列示意图ꎻMn2+ ̄X ̄Mn2+超交换作用(X为配体离子)构型示意图:(b)180ʎꎬ(c)90ʎꎻ(d)Mn2+ ̄Mn2+离子对电子能级的∣6A16A1>和∣6A14T1>ꎮFig.1㊀(a)SchematicdiagramsofmagneticmomentarrangementofMn2+ionswithantiferromagnetic(AFM)interaction(ⅰ)ꎬwithoutmagneticinteraction(ⅱ)ꎬwithferromagnetic(FM)interaction(ⅲ).Schematicdepictionof180ʎtype(b)and90ʎtype(c)superexchangeinteractionbetweenMn2+ ̄X- ̄Mn2+.(d)ThesplittingofenergylevelsofMn2+ ̄Mn2+pairin6A16A1>and∣6A14T1>state.掺杂在固体中的两个Mn离子处于最近邻阳离子格位时(相距约0.5nm)ꎬ根据所形成的Mn2+ ̄Mn2+离子对的耦合几何构型ꎬ典型的超交换相互作用结构有两种[17]:180ʎ和90ʎ(如图1(b)~(c))ꎮ研究表明ꎬ过渡金属离子间的超交换作用强度与构型有关ꎬ当联接构型为180ʎ时ꎬ离子间电子云重叠程度最大ꎬ超交换作用强度较强ꎻ反之ꎬ90ʎ超交换作用弱[21]ꎮ此外ꎬ超交换作用强度随离子间距离的增加而减小ꎬ当两个相邻的过渡金属离子间距大于0.5nm时ꎬ超交换作用强度急剧下降ꎮVink等[22]曾提出Mn2+ ̄Mn2+通过超交换作用可形成新发光中心ꎬ两个Mn2+离子分别以A和B表示ꎬ它们之间的自旋相互作用通过海森堡哈密顿量HAB进行描述[23]:HAB=-2J(SASB)ꎬ(1)其中SA和SB分别表示过渡金属离子A和B的自旋量子数ꎬJ表示交换耦合参数ꎬ该离子对的能级能量E(S)取决于HAB并通过下式表示:E(S)=-J[S(S+1)-SA(SA+1)-SB(SB+1)]ꎬ(2)其中S为离子对总自旋量子数ꎮ离子间磁相互作用的类型可以通过J来进行判断ꎮ当J>0时ꎬ离子间发生FM相互作用ꎻ当J<0时ꎬ离子间发生AFM相互作用ꎮ在单个Mn2+离子中ꎬ基态能级为6A1(S=5/2)ꎬ最低激发态能级为4T1(S=3/2)ꎬ电子在它们之间的跃迁为自旋禁阻跃迁(ΔS=1)ꎮ当Mn2+与邻近的Mn2+通过交换作用形成Mn2+ ̄Mn2+离子对时ꎬ其基态SA=SB=5/2ꎬ从而S有5个分量ꎬ即5ꎬ4ꎬ3ꎬ2ꎬ1ꎬ0ꎮ当离子对吸收一个光子后ꎬ其中一个离子处于4T1能级ꎬ另一个离子处㊀第4期朱兴路ꎬ等:磁耦合Mn2+ ̄Mn2+离子对发光行为研究进展485㊀于6A1ꎬ则S分量有4ꎬ3ꎬ2ꎬ1ꎮ由此可以得到Mn2+ ̄Mn2+离子对从∣6A14T1>到∣6A16A1>跃迁的各个可能的能级(如图1(d)所示)ꎮ从图1(d)可知ꎬ有些跃迁是ΔS=0的自旋允许跃迁ꎮ因此ꎬMn2+ ̄Mn2+离子对的磁相互作用可以改变电子的自旋组态ꎬ打破孤立Mn2+的d ̄d跃迁自旋禁阻选律ꎬ进而影响Mn2+ ̄Mn2+离子对的发光寿命ꎮ3㊀Mn2+ ̄Mn2+离子对发光行为及其研究进展3.1㊀吸收光谱在一些Mn2+高掺杂浓度的体系中ꎬ其吸收光谱在低温下出现精细结构ꎬ如McClure[24]在研究Mn2+掺杂的ZnS吸收光谱时发现470nm和510nm两个吸收峰在4.2K下出现劈裂(如图2所示)ꎮ他认为该吸收峰的劈裂可能与Mn2+ ̄Mn2+相互作用有关ꎮ为证明这一点ꎬMcClure通过这些峰劈裂能量计算Mn2+ ̄Mn2+离子对能级的交换耦合常数ꎬ结果表明J=-9cm-1ꎮ该数值与β ̄MnS变温磁化率拟合的耦合常数J=-8.7cm-1相近ꎬ说明在该ZnS体系中Mn2+倾向于聚集且Mn2+ ̄Mn2+间有AFM相互作用ꎮ根据这些吸收峰劈裂的拟合结果ꎬMcClure进一步提出这些精细结构是Mn2+ ̄Mn2+离子对能级在四面体场下发生劈裂所导致的ꎮ此外ꎬMcClure还发现离子对的磁相互作用可以极大地影响Mn2+吸收光谱的强度ꎮ由于孤立的Mn2+在光激励下的电子跃迁是双重禁阻跃迁(自旋和宇称)ꎬ其吸收光谱强度通常比较弱ꎬ但在一些高Mn2+掺杂浓度的体系中可以观测到强的(4Egꎬ4A1g)吸收峰ꎬ比低浓度Mn2+掺杂体系的吸收光谱强度大一个数量级左右[24]ꎮ该现象可归因于Mn2+与相邻Mn2+发生磁相互作用ꎬ其导致Mn2+禁阻跃迁的自旋选律部分解禁[24 ̄25]ꎮFerguson等[26 ̄27]通过监测KMnF3和不同Mn2+掺杂浓度的KZnF3变温吸收光谱ꎬ研究Mn2+离子由孤立到聚集形成离子对的吸收光谱变化ꎮ尽管高Mn2+掺杂浓度的KZnF3与低浓度掺杂的样品有相似的吸收光谱形状ꎬ但前者在(4Egꎬ4A1g)能级及其附近能级对应的吸收峰强度要远大于后者的强度ꎮ作者认为这种异于孤立Mn2+吸收光谱的行为是由Mn2+间聚集形成Mn2+ ̄Mn2+离子对并发生磁相互作用部分打破了Mn2+自旋禁阻跃迁的限制导致的ꎮ此外ꎬ作者还研究发现KMnF3对应吸收峰的振子强度高达9.5ˑ10-7ꎬ强于单个Mn2+的吸收峰振子强度(<1.7ˑ10-8)ꎮ图2㊀ZnSʒ5%MnS(cubic)在4.2K和77K下的吸收光谱[24]Fig.2㊀TheabsorptionspectraofZnSʒ5%MnS(cubic)at4.2Kand77K[24]3.2㊀发射光谱Mn2+ ̄Mn2+磁相互作用会导致原孤立的Mn2+发射峰位移动ꎮ通常ꎬ随着温度升高材料的晶格会膨胀ꎬ导致晶体场场强减弱ꎮ根据TS图ꎬ六配位的Mn2+从4T1到6A1的跃迁能量随晶体场强度减小而增加ꎬMn2+的发射峰向高能量方向移动(蓝移)[28 ̄31]ꎮ因此ꎬ随温度升高发射峰发生红移的现象就可能与Mn2+ ̄Mn2+间的相互作用有关ꎬ很早之前就有相关报道[22]ꎮ最近的研究如Orive等[32]在Mn2(HPO3)F2体系中ꎬ发现在10~150K温度范围内Mn2+的发射峰随温度升高而红移(如图3(a)所示)ꎬ这与前述的晶体场理论不符ꎮZhang等[33]在研究CaZnOSʒMn2+体系时用Mn2+ ̄Mn2+离子对的相互作用来解释随着Mn2+浓度增加其发射峰红移的现象ꎮ如图3(b)所示ꎬ当Mn2+掺杂浓度由0.005提高到0.1时ꎬ其发射峰出现了~8nm的红移ꎬ由橙黄光变为红光ꎮ作者认为在高掺杂浓度下Mn2+ ̄Mn2+离子对的浓度增加且晶胞体积变大ꎬMn2+ ̄Mn2+间相互作用减小4T1与6A1能级间的能隙ꎬ表现为光谱红移ꎮ但由于Mn2+的吸收峰与发射峰存在部分重叠ꎬ其自吸收也可导致发光峰随浓度增大而红移ꎮ此外ꎬ如果Mn2+离子掺杂造成晶格收缩也可能导致光谱红移ꎮ因此ꎬ研究磁耦合Mn2+ ̄Mn2+离子486㊀发㊀㊀光㊀㊀学㊀㊀报第43卷对发光的变化或者规律需要排除自吸收㊁掺杂引起晶格膨胀/收缩对光谱移动的影响ꎮMn2+的多峰发射也是研究焦点ꎮ1967年ꎬGumlich等[34]在研究ZnSʒMn2+体系时ꎬ发现室温下只有一个位于~590nm的发射峰ꎻ当温度降到140K以下时ꎬ出现了两个分别位于635nm和745nm的发光峰ꎮ作者认为这种Mn2+的多峰发射是由Mn2+ ̄Mn2+离子间的磁相互作用导致ꎮGoede等[35]也发现室温下ZnSʒMn体系中Mn2+的浓度达到32%时会在原黄光发射峰附近出现一个能量更低的红光发射峰ꎬ且这两个发射峰具有相似的激发光谱ꎮ研究者们还在其他Mn2+掺杂体系中观测到Mn2+的多峰发射ꎬ如Mn2+掺杂的CdS纳米晶[36]㊁ZnS纳米颗粒[37]㊁ZnSe量子点[38]㊁CdS纳米线[39 ̄40]和ZnSe纳米带[41]㊁KZnF3[42]㊁KMgF3[11]㊁CaO[43]㊁AMnX3(A=NH4ꎬRbꎬKꎻX=FꎬCl)[44]等以及BaMnF4[45]和RbMnCl4[46]ꎬ并认为这些发射峰是由Mn2+ ̄Mn2+磁相互作用导致的ꎬ即磁耦合的Mn2+2+离子对可以形成一个新的发光中心ꎮ但这些峰的归属指认则有争议ꎮ例如在Mn2+掺杂的ZnSe纳米带中观测到461ꎬ534ꎬ585ꎬ646nm的发射峰(如图3(c)所示)[47]ꎬHou等认为其中461nm的发射峰来源于ZnSe激子复合ꎬ585nm发射峰是孤立Mn2+的发光ꎬ而534nm和646nm发射峰则与Mn2+ ̄Mn2+磁相互作用有关ꎮ为了进一步地指认ꎬ作者用密度泛函理论计算(DFT)分别计算了以AFM和FM耦合的Mn2+ ̄Mn2+离子对的d轨道能带间的能级差ΔE(d ̄d)ꎬ结果表明AFM耦合的ΔE(d ̄d)=2.71eV(571nm)ꎬFM耦合的ΔE(d ̄d)=1.73eV(717nm)ꎮ作者认为ꎬ当两个Mn2+离子以FM耦合时ꎬ两个Mn2+离子的电子自旋平行分别占据成键轨道和反键轨道(能级)ꎬ导致电子从最低激发态跃迁到基态(图3(d)最左边示意图的红色箭头)的能量减少ꎻ而以AFM耦合时ꎬ电子自旋反平行占据在反键轨道(能级)上ꎬ造成最低激发态到基态(图3(d)最右边示意图的绿色箭头)的能量间隙增大ꎻ这是以AFM/FM耦图3㊀(a)Mn2(HPO3)F2在514nm激发下的变温发射光谱[32]ꎻ(b)CaZn1-xOSʒxMn2+(x=0.005~0.1)的发射光谱[33]ꎻ(c)ZnSeʒMn2+在405nm激发下的室温发射光谱ꎻ(d)顺磁性单Mn2+离子㊁Mn2+ ̄Mn2+离子对分别以铁磁和反铁磁耦合时的发光跃迁示意图[47]ꎮFig.3㊀(a)Temperature ̄dependentemissionsofMn2(HPO3)F2undertheexcitationof514nm[32].(b)Theconcentration ̄de ̄pendentemissionspectraofCaZn1-xOSʒxMn2+(x=0.005-0.1)[33].(c)EmissionspectraofZnSeʒMn2+withtheex ̄citationwavelengthof405nm.(d)Schematicrepresentationofthetransitionsforparamagnetic(PM)Mn2+andMn2+ ̄Mn2+pairwithmagnetic(FMorAFM)couplinginteraction[47].㊀第4期朱兴路ꎬ等:磁耦合Mn2+ ̄Mn2+离子对发光行为研究进展487㊀合的Mn2+离子对发光峰相对于孤立Mn2+发射发生蓝移和红移的原因ꎬ即534nm和646nm发光峰分别归属于AFM和FM耦合的Mn2+ ̄Mn2+离子对ꎮ此外ꎬKamran等[48]在Mn2+掺杂CdS体系也建立了相应的掺杂模型ꎬ即用n=1ꎬ2ꎬ3ꎬ4ꎬ5个Mn2+替代超胞CdS中不同位点的Cd2+并赋予Mn2+不同的自旋磁矩ꎬ计算其d能级间的能量间隙ꎮ计算结果显示ꎬ当单个Mn2+离子掺入到CdS中时ꎬΔE(d ̄d)=2.1766eVꎬ与低浓度Mn2+掺杂样品的发光能量相近ꎮ当相邻的Mn2+离子掺杂个数大于1并以FM耦合时ꎬ体系的ΔE(d ̄d)<2.1766eVꎻ而当Mn2+离子间以AFM的方式发生耦合时ꎬ体系的ΔE(d ̄d)>2.1766eVꎮ作者以此对发光光谱位置进行了指认ꎮSong等也发现在氟化物钙钛矿KMg1-xF3ʒxMn2+(x=0.01~1)体系中[11](Mg2+只有一种格位ꎬ即Mn2+也只有一种格位)ꎬ随着掺杂离子Mn2+浓度的增加ꎬ除了常见的红光发射峰(~600nm)外还出现了新的近红外发光峰(~760nmꎬ光谱形状及发光衰减如图4(a)~(d)ꎬ也说明随图4㊀(a)KMg1-xF3ʒxMn2+(x=0.01~1)体系在396nm激发光下的室温发射光谱ꎻ(b)KMg1-xF3ʒxMn2+(x=0.01~1)体系的激发光谱ꎻ(c)VIS发射峰的荧光寿命ꎻ(d)NIR发射峰的荧光寿命ꎻ(e)两个AFM/FM耦合的Mn2+离子替代2ˑ2ˑ4KMgF3超胞中Mg2+离子的六种可能模型的形成能(E)ꎻ(f)KMg1-xF3ʒxMn2+(x=0.01~1)体系的EXAFS谱[11]ꎮFig.4㊀Concentration ̄dependentemissionspectra(λexc=396nm)(a)andexcitationspertra(b)ofKMg1-xF3ʒxMn2+(x=0.01-1).Decaycurvesofvisiblelight(VIS)emission(c)andnear ̄infraredlight(NIR)emission(d)ofKMg1-xF3ʒxMn2+(x=0.01-1).(e)Theenergyofformation(E)forsixpossiblemodelswitha2ˑ2ˑ4supercellofKMgF3ʒMn2+ꎬinwhichtwoMg2+ionsaresubstitutedbytwoAFM ̄orFM ̄coupledMn2+ions.(f)TheEXAFSspectraofKMg1-xF3ʒxMn2+(x=0.01-1)[11].488㊀发㊀㊀光㊀㊀学㊀㊀报第43卷着Mn2+浓度的增加ꎬ除了浓度猝灭效应外还可以形成新的发光中心ꎮ由于Mn2+最外层d电子与其他离子之间存在一定的离域相互作用ꎬ有可能形成一种磁极化子或自旋极化子ꎬ因此Mn2+离子掺杂浓度超过某个临界值时具有相互聚集和耦合的趋势ꎮ进一步地ꎬ通过对具有不同Mn2+ ̄Mn2+距离的超胞模型进行第一性原理计算ꎬ结果表明具有反铁磁耦合的Mn2+ ̄F- ̄Mn2+距离最短的模型在结构优化后形成能最低(图4(e))ꎬ即最稳定(长程序的情况下)ꎮ对掺杂不同Mn2+浓度的样品进行Mn2+的扩展边X射线吸收精细结构(EXAFS)表征ꎬ也发现Mn2+ ̄F- ̄Mn2+(Mn2+ ̄Mn2+离子对)的聚集现象ꎬ且出现聚集时Mn2+的浓度与出现近红外发光峰时的浓度相近ꎬ如图4(f)ꎻ此外ꎬ从具有不同Mn2+ ̄F- ̄Mn2+连接构型(即键角)的变温光谱还可以进一步推断反铁磁耦合的Mn2+ ̄Mn2+离子对是这个~760nm近红外发光峰的发光中心ꎬ如图5[11]ꎮ具体地ꎬ以具有完美钙钛矿结构的KMnF3(øMn2+ ̄F- ̄Mn2+为180ʎ)㊁MnF6八面体间共顶点连接但有畸变的NaMnF3(øMn2+ ̄F- ̄Mn2+为141ʎ~147ʎ)和同时具有MnF6八面体共面连接和共顶点连接的CsMnF3(øMn2+ ̄F- ̄Mn2+分别为88ʎ和177ʎ)为对象ꎬ研究它们在10~300K下的变温荧光光谱(如图5(a)~(c)所示)ꎮ发现KMnF3在10K下具有656nm和780nm两个发射峰ꎬ其中前者归属于Mn2+的4T1到6A1跃迁发射ꎬ后者则归属于Mn2+ ̄Mn2+离子对由∣6A14T1>到∣6A16A1>的发光ꎮ与KMnF3类似ꎬNaMnF3在10K下也同时具有600nm和772nm发射峰ꎬ可见发射峰强度随温度升高迅速衰减ꎻ近红外发射峰强度随温度升高而增强并在150K达到最大ꎬ随后下降ꎮCsMnF3在10K下仅有一个600nm发射峰ꎬ温度升高至50Kꎬ另一个位于795nm发射峰出现ꎬ可见发射峰随温度升高而红移ꎮ如前所述ꎬMn2+离子间的相互作用与Mn2+离子和配体的轨道重叠程度有关[49]ꎮ当Mn2+ ̄F- ̄Mn2+的键角越接近180ʎꎬMn2+ ̄Mn2+间轨道重叠程度最大ꎬ其耦合作用最强ꎻ当该键角发生较大畸变时ꎬ如在NaMnF3中Mn2+ ̄Mn2+间的耦合作用减图5㊀KMnF3(a)㊁NaMnF3(b)和CsMnF3(c)的变温发射光谱ꎻ(d)AB(1-x-y)F3ʒYb3+y/Mn2+x(x=0.20ꎻy=0.005ꎻA=KꎬRbꎬCsꎻB=MgꎬZnꎬCd)的室温上转换发光光谱[11]ꎮFig.5㊀Temperature ̄dependentemissionsofKMnF3(a)ꎬNaMnF3(b)andCsMnF3(c).(d)Room ̄temperatureupconversionemissionspectraofAB(1-x-y)F3ʒYb3+y/Mn2+x(x=0.20ꎻy=0.005ꎻA=KꎬRbꎬCsꎻB=MgꎬZnꎬCd)[11].㊀第4期朱兴路ꎬ等:磁耦合Mn2+ ̄Mn2+离子对发光行为研究进展489㊀弱ꎮ上述三种材料的可见和近红外发光的变温行为是Mn2+ ̄Mn2+间磁耦合作用㊁温度猝灭和d电子离域效应共同作用的结果ꎮ另外ꎬ在Mn2+掺杂的具有立方钙钛矿结构的KBF3(B=MgꎬZnꎬCd)和ACdF3(A=KꎬRbꎬCs)体系中ꎬMn2+除了有可见(VIS)发射峰外ꎬ在700~900nm范围还有一个近红外(NIR)发射峰(如图5(d)所示)ꎮ根据B位离子的大小ꎬ推测Mn2+ ̄F-和Mn2+ ̄Mn2+间距离在箭头方向的化合物中不断增加ꎬVIS发射峰蓝移ꎬ这与单Mn2+离子的TS图相符ꎬ即晶体场强度减小ꎬ发射峰蓝移[28 ̄29]ꎮ而NIR发射峰的红移则可能是因为距离增大而Mn2+ ̄Mn2+间磁相互作用急剧减小导致的ꎮ3.3㊀荧光寿命研究者们早已注意到了Mn2+ ̄Mn2+间磁相互作用可缩短Mn2+荧光寿命ꎮ如在Mn2+掺杂的MgS㊁SrS和CaS材料中[50 ̄52]ꎬ当Mn2+掺杂浓度大于某个值时其荧光寿命衰减曲线由微秒级快衰减和毫秒级慢衰减两部分组成ꎬ前者归因于Mn2+ ̄Mn2+离子对的形成ꎮ1994年ꎬBarthou等[53]发现在Mn2+掺杂的Zn2SiO4中ꎬ随着掺杂浓度的升高ꎬ室温寿命由15ms衰减到1.75msꎬ荧光寿命曲线由单指数衰减行为变为双指数衰减行为ꎮ作者也认为是Mn2+聚集形成Mn2+ ̄Mn2+离子对导致的ꎮ但由于浓度猝灭的干扰ꎬ这一结论存疑ꎮVink等[22]利用海森堡 ̄哈密顿量公式推导了AFM相互作用的Mn2+ ̄Mn2+离子对最低激发态∣6A14T1>和基态∣6A16A1>的能级分布ꎬ提出当电子由∣6A14T1>跃迁到∣6A16A1>组态能级上时ꎬ某些裂分的能级跃迁ΔS=0ꎬ即自旋允许ꎮ孤立Mn2+的由4T1到6A1的电子能级跃迁是双重禁阻的ꎬ其荧光寿命长达毫秒级ꎮ当Mn2+与相邻Mn2+发生AFM相互作用时ꎬ部分自旋禁阻跃迁变为自旋允许跃迁ꎬ导致荧光寿命缩短ꎮ但由于多数研究对象为Mn2+掺杂的体系ꎬ随着掺杂浓度增加其存在浓度猝灭等因素的干扰ꎬ使得该理论缺少直接有效的实验证据ꎮ为了排除浓度猝灭㊁声子等因素的干扰ꎬZhu等以纯锰基质材料CsMnCl3(CMC)和它的水合物CsMnCl3 2H2O(CMC H2O)为研究对象ꎬ利用光磁测量技术来表征材料在有/无光照条件下自旋组态的变化ꎬ以期获得Mn2+ ̄Mn2+磁耦合相互作用与其荧光寿命关系的更有效证据[14]ꎮ如图6(a)所示ꎬCMC和CMC H2O的发射峰分别位于646nm和622nmꎬ两者在室温下的荧光衰减曲线均为单指数衰减(如图6(b))ꎮ具有较强声子能量的CMC H2O的荧光寿命为275μsꎬ而具有较低声子能量的CMC荧光寿命明显比CMC H2O短ꎬ约为159μsꎮ当温度为10K时ꎬCMC(τ=553μs)的荧光寿命稍长于CMC H2O(τ=424μs)ꎬ但也远小于孤立Mn2+的毫秒级荧光寿命ꎮ随着温度升高ꎬCMC荧光寿命衰减速率比CMC H2O快ꎬ且在250K以后CMC的荧光寿命短于CMC H2O[54]ꎮ通过与CMC H2O对比ꎬ在排除了声子能量和浓度猝灭的因素后ꎬ可以肯定CMC荧光寿命的缩短与Mn2+ ̄Mn2+磁相互作用有关ꎮ电子顺磁共振(EPR)㊁磁化曲线测试和DFT计算结果表明CMC具有强的AFM相互作用ꎬ其Weiss温度θ=-193.14Kꎬ远强于CMC H2O(θ=-41.63K)ꎮ光磁测量结果显示CMC H2O在光激发条件下的变温摩尔磁化率(χm)小于无光照条件下的变温χm(图6(c))ꎬ但相差不大ꎻ而Mn2+ ̄Mn2+具有强反铁磁相互作用的CMC在光激发条件下的χm明显强于无光照的情况ꎬ特别是在TN温度以下(如图6(d)所示)ꎮ该现象可以通过图6(e)来解释ꎬ当光子将Mn2+电子由基态能级激发到激发态能级时ꎬMn2+的电子自旋总数发生变化ꎬ根据磁化率χ表达式[18]:χ=Ng2μ2B3kTS(S+1)ꎬ(3)其中ꎬN为阿伏伽德罗常数ꎬμB为波尔磁子ꎬk为玻尔兹曼常数ꎬg为朗德因子ꎬS为电子自旋总数ꎮ由公式(3)可知S与χ成正相关ꎮ对于孤立的Mn2+离子来说ꎬ电子处于基态能级时ꎬS为5/2ꎬ电子跃迁到最低激发态能级时ꎬS变为3/2ꎻ而对于具有理想的AFM相互作用的Mn2+ ̄Mn2+体系来说ꎬ电子处于∣6A16A1>基态时ꎬS为0ꎻ电子跃迁到∣4T16A1>激发态能级时ꎬS变为1ꎮ据此可以推断ꎬ对于孤立的Mn2+离子ꎬ电子跃迁前后S变小ꎬ导致光激发下其χm变小ꎻ而对于具有AFM磁相互作用的Mn2+ ̄Mn2+体系ꎬ电子跃迁前后S会变大ꎮ但实际情况会更复杂ꎬ因为在连续光照条件下处于光激发态(这里为了区别磁基态和磁激发态)的Mn2+相对于光基态的Mn2+少得多ꎬ且它们的浓度处于动态平衡中ꎮ此外ꎬMn2+490㊀发㊀㊀光㊀㊀学㊀㊀报第43卷图6㊀CMC和CMC H2O室温下的激发和发射光谱(a)以及荧光寿命(b)ꎻCMC H2O(c)和CMC(d)在无光照(暗态)和436nm光照射下的变温摩尔磁化率ꎻ(e)理想状态下孤立Mn2+和反铁磁相互作用的Mn2+ ̄Mn2+处于基态和激发态的自旋状态[14]ꎮFig.6㊀Room ̄temperatureexcitation/emissionspectra(a)anddecaycurves(b)ofCMCandCMC H2O.Temperature ̄depend ̄entmagnetizationcurvesmeasuredwithout(dark)orwith436nmilluminationforCMC H2O(c)andCMC(d).(e)SchematicdiagramofspinstateofisolateMn2+andMn2+ ̄Mn2+pairwithAFMinteractionatexcitedstateandgroundstate[14].处于光激发态的寿命也会影响光磁响应性质ꎮ对于CMC体系ꎬ在光照条件下部分Mn2+ ̄Mn2+磁相互作用被破坏ꎬ此时存在b(孤立Mn2+光基态)㊁c(Mn2+ ̄Mn2+光激发态)和d(Mn2+ ̄Mn2+光基态)三种状态ꎬ整体的S仍然会大于无光照条件下的Sꎬ从而导致436nm光照下CMC的χm大于无光条件下的χmꎮ通过光磁测量技术可揭示Mn2+ ̄Mn2+的AFM相互作用对其自旋组态的影响ꎬ进而影响其发光寿命ꎮ此外ꎬ如果一个体系存在AFM和FM作用相互竞争的现象ꎬ会使Mn2+的发光衰减行为与前述不同ꎮ如在CsMnF3(CMF)体系中[55]ꎬ室温下可以观测到两个明显分离的发光峰ꎬ一个位于600nm(VIS)ꎬ一个位于795nm(NIR)(图7(a))ꎮ这两个发射峰都具有相似的激发光谱ꎬ但荧光衰减却截然不同ꎮVIS荧光寿命仅47μsꎬNIR荧光寿㊀第4期朱兴路ꎬ等:磁耦合Mn2+ ̄Mn2+离子对发光行为研究进展491㊀图7㊀在395nm激发下CMF的发射光谱(a)和荧光衰减曲线(b)ꎻ(c)在1000Oe外场强度下CMF的变温摩尔磁化率曲线ꎻ(d)CMF中的磁相互作用:J1表示共顶点MnF6八面体间的(Mn1 ̄Mn2)180ʎ超交换作用ꎬJ2DE表示共面MnF6八面体间的(Mn2 ̄Mn2)直接交换作用ꎬJ2SE表示共面MnF6八面体间的(Mn2 ̄Mn2)的90ʎ超交换作用ꎻCMF处于光照和无光照条件下的TN温度以下的变温摩尔磁化率曲线(ZFC表示零场冷)(e)及TN温度以上的变温摩尔磁化率曲线(f)[55]ꎮFig.7㊀Emissionspectrum(a)anddecaycurves(b)ofCMFwiththeexcitationwavelengthof395nm.(c)Temperature ̄depend ̄entmagnetizationunderamagneticfieldof1000OeforCMF.(d)MagneticinteractionintheCsMnF:J1betweencor ̄ner ̄sharedoctahedra(Mn1 ̄Mn2)givenby180ʎSEinteractionandJ2betweenface ̄sharedoctahedra(Mn2 ̄Mn2)givenbydirectmetal ̄metalinteraction(J2DE)and90ʎSEinteraction(J2SE).Temperature ̄dependentzero ̄fieldcooling(ZFC)magnetizationwithout(dark)orwith436nmilluminationbelowTN(e)andaboveTN(f)forCMF[55].命长达1.45ms(如图7(b)所示)ꎮ这与其他一些存在Mn2+ ̄Mn2+磁相互作用诱导多峰发射的体系不同ꎬ通常在Mn2+掺杂的KZnF3和KMgF3中VIS和NIR发射峰室温荧光寿命均比较短ꎬ仅为几十微秒ꎬ在具有AFM相互作用的CMC中也仅159μs[11ꎬ14ꎬ42]ꎮ低温下ꎬCMC中具有AFM相互作用的Mn2+ ̄Mn2+发光寿命约几百微秒ꎬ而CMF中VIS和NIR荧光寿命均比较长ꎬ分别为15.22ms和9.80msꎮ监测VIS和NIR两个发射峰在10~300K温度范围内的变化趋势ꎬ发现前者的强度和荧光寿命随温度升高而急剧衰减ꎬ且峰位明显红移ꎻ而后者的强度和荧光寿命随温度变化的趋势则相对缓和ꎬ峰位几乎没有移动ꎮ结合材料晶体结构进行分析ꎬCMF的MnF6八面体之间有两种不同的桥连方式ꎬ其中Mn1与Mn2八面体以共顶点线型连接(øMn2+ ̄F- ̄Mn2+为177.41ʎ)ꎬMn2与Mn2八面体以共面的形式连接(øMn2+ ̄F- ̄Mn2+为88.14ʎ)ꎬ不同的桥连方式可能导致复杂的磁相互作用ꎬVIS和NIR发光的不同变温行为则可能是不同磁相互作用相互竞争的结果ꎮ利用磁性和光磁测量可揭示该相互竞争过程ꎮ磁性测量结果表明CMF的θ=-98.64Kꎬ在53K以下为AFM有序ꎬ场冷(FC)和零场冷(ZFC)曲线并不重合(如图7(c)所示)ꎬ说明体系还存在铁磁或亚铁磁序ꎻ在53~100K范围内ꎬ则表现出亚铁磁的行为ꎮ结合CMF的磁结构对此进行解释(如图7(d)所示)ꎬMnF6八面体共顶点连接的Mn1 ̄Mn2具有强的AFM相互作用(J1<0)ꎻMnF6八面体共面连接的Mn2 ̄Mn2间FM超交换相互作用(键角约90ʎꎬJ2SE)和弱的AFM直接交换作用(J2DE)ꎬJ2SE与J2DE共同决定Mn2 ̄Mn2间磁相互作用(J2)ꎮ由于3d轨道半径较小导致其t2g轨道重叠程度小ꎬ使得J2DE通常都小于J1ꎮ由于轨道有效重叠程度的差异ꎬ在数值上J2也小于J1ꎮ在100~300K温度区间内ꎬ热能大于J1ꎬ体系内Mn2+磁矩呈无序排列ꎻ当温度下降到100K以下时ꎬ热能小于J1ꎬ三层共顶点的MnF6八面体形成呈亚铁磁有序排列ꎻ当温度下降到50K以下时ꎬ热能小于J2ꎬ共面MnF6八面体间出现FM有序ꎻ但由于J1远强于J2ꎬ体系整体磁矩呈AFM排列ꎮ对材料进行光磁测量ꎬ结果显示在2~53K温度范围内(图7(e))ꎬ436nm光照条件下的χm大于暗态下的χmꎬ体现AFM相互作用的特征ꎬ即Mn2+ ̄Mn2+激发态自旋量子数大于其基态ꎻ在53~100K范围内则相反ꎬ即436nm光照条件下的χm小于暗态下的χm(图7(f))ꎬ即Mn2+ ̄Mn2+激发态自旋量子数小于其基态ꎮ此外ꎬ通过对比具有AFM相互作用的CMC(图6(d))ꎬ可以发现CMF在TN以下光激发态与暗态的χm曲线差异小一些ꎮ这些都说明由于CMF中存在着复杂的磁相互作用的竞争ꎬ使得低温条件下VIS和NIR的荧光寿命显著大于具有相似结构的CMCꎮ3.4㊀磁光现象除了Mn2+ ̄Mn2+离子间有磁相互作用以外ꎬ在半导体中掺杂Mn2+离子可以与半导体的激子发生sp ̄d磁交换作用ꎬ这种相互作用加剧Mn2+掺杂半导体能带结构的塞曼分裂ꎬ导致其分裂能比非掺杂半导体大两个数量级左右[56 ̄58]ꎮ通常可用磁圆偏振发光光谱仪(MCPL)和磁圆偏振度(DCP(有时也用CP表示))对这种塞曼分裂进行表征ꎮDCP可以通过公式(4)进行描述:P=ΔII=(Iδ+-Iδ-)(Iδ++Iδ-)ꎬ(4)其中Iδ+和Iδ ̄分别为δ+和δ-偏振光的发光强度[59 ̄61]ꎮ当掺入Mn2+离子时ꎬ材料的塞曼分裂从由半导体固有的本征性质主导转变为由Mn2+ ̄激子的sp ̄d磁交换作用主导ꎮMn2+掺杂半导体的塞曼分裂随外磁场的增强逐渐饱和ꎬ相应的变磁场DCP曲线与用布里渊磁化曲线拟合的结果一致[56 ̄57ꎬ62]ꎮ由于Mn2+与激子存在sp ̄d磁交换作用ꎬMn2+ ̄Mn2+磁相互作用对Mn2+掺杂半导体材料磁光现象的影响不易区分ꎬ鲜有文献报道相关的研究ꎮ尽管如此ꎬ在一些Mn2+掺杂体系中ꎬ当Mn2+浓度增加时其磁光行为出现一些异常ꎬ说明体系可能存在Mn2+ ̄Mn2+磁相互作用ꎮ例如ꎬ2011年Viswanatha等[15]发现在Mn2+ʒZnSe/CdSe中将掺杂浓度从0.8Mn/core提高到9.6Mn/coreꎬDCP值由40%下降至5%(如图8(a)所示)ꎬ作者认为这可能是由于体系内Mn2+ ̄Mn2+离子对的形成并增多导致的ꎮ2014年Bradshaw等[16]也探讨了Mn2+ ̄Mn2+磁相互作用对Mn2+掺杂ZnSe半导体磁光现象的影响ꎮ作者依据Mn2+ ̄Mn2+离子对的荧光寿命明显小于孤立Mn2+的特征ꎬ利用时间分辨的磁圆偏振发光光谱研究磁光现象并进一步探讨Mn2+ ̄Mn2+离子对处于激发态的磁性质ꎮ在外磁场B=6T㊁温度为1.7K时ꎬ材料在590nm处出现δ+和δ-的偏振发光(如图8(b)所示)ꎮ作者还测试了Mn2+掺杂浓度为0.52%㊁1.5%和3.5%的Zn1-xMnxSe样品的时间分辨磁圆偏振光谱ꎮ为分辨样品中Mn2+ ̄Mn2+离子对的圆偏振信号ꎬ引入PTI和PTD:PTI=ΔII()tң¥ꎬ(5)PTD=ΔII()tң0-PTIꎬ(6)其中PTI表示时间t趋向无穷时的DCP值ꎬPTD表示从光发射第0秒与时间趋向无穷的DCP的差值ꎮ通常Mn2+ ̄Mn2+离子对的发光衰减寿命比孤立Mn2+的荧光寿命小一个数量级以上[22ꎬ42ꎬ63]ꎬPTD可以表示Mn2+ ̄Mn2+离子对的DCP值ꎻ而当时间t趋向于无穷时ꎬMn2+ ̄Mn2+离子对的跃迁发射和激发能快速达到一个平衡状态ꎬ体系的偏振发光主要由具有长荧光寿命的孤立Mn2+的。

六配位Ni2+荧光材料制备及近红外发光性能

六配位Ni2+荧光材料制备及近红外发光性能

六配位Ni2+荧光材料制备及近红外发光性能随着近红外光在生物医学、光电子学和光化学等领域的广泛应用,近红外荧光材料的研究备受关注。

六配位Ni2+荧光材料作为一类具有潜在应用前景的近红外发光材料,其制备和性能研究尤为重要。

六配位Ni2+荧光材料的制备方法多种多样,常用的有溶剂热法、水热法和溶剂热氧化法等。

其中,溶剂热法是较为常见的制备方法。

该方法通过在有机溶剂中加热反应体系,使得Ni2+离子和配体发生配位反应,形成六配位Ni2+荧光材料。

此外,水热法利用高温、高压的水热条件下,使得Ni2+离子与配体在水溶液中发生反应,也可有效制备六配位Ni2+荧光材料。

溶剂热氧化法则是通过将Ni2+离子和氧化剂在溶剂中进行反应,形成氧化态的Ni2+离子,并与配体形成六配位结构。

六配位Ni2+荧光材料具有良好的近红外发光性能,其发光峰位通常在700-900 nm之间。

这使得其在生物医学领域中具有潜在的应用价值,如近红外生物成像、荧光探针和光动力疗法等。

此外,六配位Ni2+荧光材料的发光寿命较长,可达到数十毫秒,使其在光电子学领域中广泛应用于光记录、光存储和光通信等方面。

近年来,研究人员还对六配位Ni2+荧光材料的发光机理进行了深入研究。

实验证明,六配位Ni2+荧光材料的近红外发光主要来自于配体的激发和Ni2+离子的能级跃迁。

通过调控配体的结构和化学性质,可以有效调节六配位Ni2+荧光材料的发光性能。

总之,六配位Ni2+荧光材料作为一类具有潜在应用前景的近红外发光材料,其制备和性能研究对于推动近红外光在各个领域的应用具有重要意义。

未来的研究应该进一步探索六配位Ni2+荧光材料的制备方法和发光机理,以提高其发光性能和拓展其应用领域。

不平衡电网下双dq坐标变换的M3C微分平坦控制策略

不平衡电网下双dq坐标变换的M3C微分平坦控制策略

第28卷㊀第1期2024年1月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.28No.1Jan.2024㊀㊀㊀㊀㊀㊀不平衡电网下双dq 坐标变换的M3C 微分平坦控制策略程启明,㊀杜婷伟,㊀赖宇生(上海电力大学自动化工程学院,上海200090)摘㊀要:针对目前模块化多电平矩阵变换器(M3C )研究中常用的双αβ坐标变换解耦不彻底㊁传统PID 控制方法效果差㊁不平衡工况研究少等问题,在分析拓扑结构和数学模型的基础上,采用双dq 坐标变换对电气量进行解耦,建立了M3C 的输入输出侧数学模型,分别对电压㊁电流进行正负序分离,并结合微分平坦理论,推导了输入侧㊁输出侧的微分平坦控制(DFC ),最后模拟了两种不平衡工况下的运行情况㊂仿真结果表明,与线性PID 控制相比,非线性的微分平坦控制提高了内环电流的跟踪速度和精度,更适用于非线性的M3C 系统㊂在电网平衡或电网出现不对称故障时,微分平坦控制下M3C 系统的动态稳定性与快速性更好,电能质量更高,电流谐波含量最多可以降低1.42%,能够更有效地抑制负序电流㊂关键词:海上风力发电;模块化多电平矩阵变换器;不平衡电网;双dq 坐标变换;微分平坦控制;PID 控制DOI :10.15938/j.emc.2024.01.005中图分类号:TM762文献标志码:A文章编号:1007-449X(2024)01-0049-12㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-12-09基金项目:国家自然科学基金(62303301);上海市电站自动化技术重点实验室资助项目(13DZ2273800)作者简介:程启明(1965 ),男,博士,教授,研究方向为电力系统自动化㊁发电过程控制㊁先进控制及应用;杜婷伟(2000 ),女,硕士研究生,研究方向为新能源发电控制㊁海上风力发电控制;赖宇生(1996 ),男,硕士研究生,研究方向为新能源发电控制㊁电力电子控制㊂通信作者:杜婷伟Differential flatness control strategy of modular multilevel matrix converter based on double dq coordinate transformation underunbalanced grid conditionsCHENG Qiming,㊀DU Tingwei,㊀LAI Yusheng(College of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China)Abstract :Aiming at the problems of incomplete decoupling of double αβcoordinate transformation com-monly used in modular multilevel matrix converter (M3C)research,on the basis of the analysis of topol-ogical structure and mathematical model,poor effect of traditional PID control method,and little research on unbalanced working conditions,etc.,double dq coordinate transformation was adopted to decouple the electrical quantity.The mathematical model of M3C s input and output side was established,the voltage and current were separated in positive and negative order,and the differential flatness control (DFC)of the input side and the output side was derived by combining the differential flatness theory.Finally,the operation under two unbalanced conditions was pared with linear PID control,the simula-tion results show that nonlinear differential flat control improves the tracking speed and accuracy of innerloop current,and is more suitable for nonlinear M3C system.When the power grid balance or asymmetricfault occurs,M3C system under differential flat control has better dynamic stability and rapidity,higher power quality,and can suppress negative sequence current more effectively.The current THD can be re-duced by up to1.42%.Keywords:offshore wind power;modular multilevel matrix converter;unbalanced grid;double dq coor-dinate transformation;differential flatness control;PID control0㊀引㊀言随着气候变暖㊁环境恶化等导致能源危机,新型清洁能源已成为了国家经济发展的方向之一[1-2]㊂其中海上风电由于具备稳定性强㊁可再生㊁受环境影响小等优势,极具开发前景㊂但如何将海上发电厂并入主电网正成为国内外海上风电领域的研究重点[3-4]㊂与常规的50Hz的高压交流输电[5]和高压直流输电[6]相比,50/3Hz的低频交流输电,又称分频传输系统,具有显著优势:可以提高交流海缆输电能力,只需一个AC/AC换流站,且设备投资成本少[7-9]㊂在现有的AC/AC变换设备中,模块化多电平矩阵变换器(modular multilevel matrix converter, M3C)[10]由Erickson R.和AI-Naseem O.于2001年提出,作为直接AC/AC变换器具有高电压㊁大容量的优点㊂M3C拓扑由9条桥臂构成,以3ˑ3矩阵形式排布,每条桥臂的电压㊁电流分量均包含两种不同频率的交流分量,存在强耦合现象,控制难度大㊂目前国内外学者已经对M3C的控制策略开展了一些研究,最为普遍应用的是基于双αβ0坐标变换的解耦控制方法㊂文献[11]的αβ0变换方法仅能将M3C的输入电流和输出电流解耦㊂文献[12-14]提出双αβ0变换,能将桥臂电流中的输入电流㊁输出电流和环流完全解耦,同时增加了两个对角维度的平衡控制,控制桥臂能量均衡分布㊂文献[15]将预测控制用于M3C中,然而M3C包含大量的状态变量,导致参数复杂㊁计算量庞大不具有实用性㊂文献[16-17]研究了双αβ0变换的非线性无源控制和微分平坦控制,系统跟踪速度有很大提升㊂尽管双αβ0变换被广泛采纳,但是这种控制方案也存在缺点,其被控量都是交流量,物理概念易混淆,且功率分量计算复杂㊂文献[18]提出了双dq坐标变换的方法,采用直流量作为内环被控量,但其采用的PID控制不仅调参复杂,而且是线性控制方法,作用在非线性的M3C上并不能使系统迅速稳定㊂到目前为止,采用双dq解耦方法的研究较少,并且其中未有文献考虑在发生不平衡故障时的非线性控制方案㊂非线性的微分平坦控制(differential flatness control,DFC)对系统稳定性的提升,超调量的降低等方面颇具优势,在电力电子领域和清洁能源领域已成为了研究热点[19-20]㊂与线性PID控制相比, DFC控制能使M3C系统稳定运行,避免因内外部扰动而发生动态特性变差的现象,提高内环电流的跟踪速度和精度㊂本文首次提出在不平衡电网下将微分平坦控制策略应用到基于双dq坐标变换的M3C控制中㊂首先给出M3C的拓扑结构与工作原理,建立M3C在双dq坐标变换下的数学模型,然后在输入侧与输出侧出现不对称故障时,将电压电流正负序分离,进一步运用微分平坦理论,设计输入侧㊁输出侧的DFC控制器㊂最后,在MATLAB/Simulink平台上建立两种不平衡工况,分别模拟DFC控制和传统PID控制,通过仿真验证在电网电压不平衡条件下,采用DFC控制能使系统稳定运行,且效果优于传统PID 控制㊂1㊀M3C的电路结构及数学模型M3C变换器的主电结构如图1所示㊂M3C以H全桥子模块(用SM表示,由T1~T44个IGBT和1个电容组成)为基本单元,等效电阻R㊁电感L以及n个子模块级联构成1个换流桥臂,共有9个桥臂,可分为3个子换流器㊂M3C的输入侧是低频三相交流电源,输出侧是工频三相交流电源㊂图1中:输入侧交流电压为u su㊁u sv㊁u sw,电流为i u㊁i v㊁i w;输出侧交流电压为u1a㊁u1b㊁u1c,电流为i a㊁i b㊁i c;桥臂电流为i xy,桥臂总电容电压为u c xy(x=u㊁v㊁w,y=a㊁b㊁c),u NO为共模电压㊂可以将每个桥臂的子模块视为受控电压源,得到图2所示的简化结构图㊂05电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图1㊀M3C 拓扑结构Fig.1㊀Topology ofM3C图2㊀M3C 的简化结构图Fig.2㊀Simplified structure diagram of M3C分析图2所示的输入侧㊁输出侧的电压㊁电流关系,由Kirchhoff 定律建立回路电压方程可得:u su =Ri uy +L d iuy d t +u uy +u 1y +u NO ;u sv =Ri vy +L d i vyd t +u vy +u 1y +u NO ;u sw =Ri wy +L d i wyd t+u wy +u 1y +u NO ㊂üþýïïïïïï(1)i a +i b +i c =0;i u +i v +i w =0㊂}(2)对式(1)进行αβ0坐标变换,可将两种频率分量解耦,得到3个子换流器的电压电流关系为:u s αu s βéëêêùûúú=R +L d d t ()i αa i βa éëêêùûúú+u αa u βa éëêêùûúú;u s αu s βéëêêùûúú=R +L d d t ()i αb i βb éëêêùûúú+u αb u βb éëêêùûúú;u s αu s βéëêêùûúú=R +L d d t ()i αc i βc éëêêùûúú+u αc u βc éëêêùûúú㊂üþýïïïïïïïï(3)u so u so u so éëêêêùûúúú=R +L d d t ()i oa i ob i oc éëêêêùûúúú+u oa u ob u oc éëêêêùûúúú+3u 1a u 1b u 1c éëêêêùûúúú+3u NO u NO u NO éëêêêùûúúú㊂(4)当输入输出系统三相对称时,可忽略零序分量,对式(4)进行第2次αβ0坐标变换可得0[]=R +Ld d t()i o αi b βéëêêùûúú+u o αu o βéëêêùûúú+3u 1αu 1βéëêêùûúú㊂(5)式(3)与式(5)为M3C 在αβ坐标系下的数学模型㊂其中:式(3)为输入侧电压㊁电流αβ分量,其频率仅与输入侧频率相同;式(5)为输出侧电压㊁电流αβ分量,其频率仅与输出侧频率相同㊂由此实现了桥臂电压电流的解耦㊂对式(3)㊁式(5)分别采用各自频率的dq 坐标变换,可得M3C 在双dq 坐标系下的数学模型为:u da u qa éëêêùûúú=u sd u sq éëêêùûúú-R +L d d t ()i da i qa éëêêùûúú-ωs L -i qa i da éëêêùûúú;u db u qb éëêêùûúú=u sd u sq éëêêùûúú-R +L d d t ()i db i qb éëêêùûúú-ωs L -i qb i db éëêêùûúú;u dc u qc éëêêùûúú=u sd u sq éëêêùûúú-R +L d d t ()i dc i qc éëêêùûúú-ωs L -i qc i dc éëêêùûúú;u od u oq éëêêùûúú=-3u 1d u 1q éëêêùûúú-R +L d d t ()i od i oq éëêêùûúú-ω1L -i oq i od éëêêùûúú㊂üþýïïïïïïïïïïïï(6)式中:ωs 表示输入侧频率;ω1表示输出侧频率㊂由M3C 换流器稳态工作时的对称性可知i da i qa éëêêùûúú=i db i qb éëêêùûúú=i dc i qc éëêêùûúú=13i sd i sq éëêêùûúú㊂(7)式中i sd ㊁i sq 分别为输入侧电流的d㊁q 分量㊂由坐标变换原理可得,桥臂电流在dq 坐标下的输出侧频率分量满足下式:i 1d i 1q éëêêùûúú=3i od i oq éëêêùûúú㊂(8)式中i 1d ㊁i 1q 分别为输出侧电流的d㊁q 分量㊂对输出侧电压d㊁q 分量进行逆坐标变换,可得桥臂电压的输出侧频率分量如下:u oau ob u oc éëêêêùûúúú=T αβ/abc T dq /αβ-1u od u oqéëêêùûúú㊂(9)式中T dq /αβ㊁T dq /αβ-1为输出侧的逆坐标变换矩阵㊂15第1期程启明等:不平衡电网下双dq 坐标变换的M3C 微分平坦控制策略将桥臂电压中的输入㊁输出频率分量叠加,可将桥臂电压表示如下:u ua u va u wa éëêêêùûúúú=T αβ/abc T dq /αβ-s u da u qa éëêêùûúú+u oa u oa u oa éëêêêùûúúú;u ub u vb u wb éëêêêùûúúú=T αβ/abc T dq /αβ-s u db u qb éëêêùûúú+u ob u ob u ob éëêêêùûúúú;u uc u vc u wc éëêêêùûúúú=T αβ/abc T dq /αβ-s u dc u qc éëêêùûúú+u oc u oc u oc éëêêêùûúúú㊂üþýïïïïïïïïïïïïïï(10)式中T dq /αβ-s 为输入侧的逆坐标变换矩阵㊂2㊀不平衡电网下微分平坦控制策略在不平衡工况下,M3C 系统中会出现负序分量,导致过电流和非特征谐波的产生,影响控制效果,甚至烧毁元器件,对系统的安全稳定运行造成威胁,所以本文旨在研究基于M3C 系统在不对称故障条件下的控制策略㊂图3为不平衡电网下M3C 的总体控制结构图,其控制策略包括输入侧控制㊁输出侧控制㊁正负序分离㊁功率控制㊁桥臂分层直流稳压控制以及载波移相调制㊂图3㊀M3C 的整体控制结构图Fig.3㊀General control structure diagram of M3C1)正负序分离:运用双dq 坐标变换对输入侧和输出侧的电压㊁电流进行解耦,然后分别计算出正㊁负序电压电流分量;2)功率控制:根据不平衡工况下M3C 的运行要求,引入功率控制来求解期望电流值;3)输入/输出侧控制:基于微分平坦理论,推导出输入侧㊁输出侧的DFC 控制器;4)子模块独立均压控制:用于平衡桥臂的子模块电容电压,此控制有利于保证系统的安全稳定运行㊂2.1㊀正负序分离当三相系统不对称时,系统中将会出现负序分量,导致系统出现过电流,会严重威胁整个系统的安全稳定运行[21]㊂因此,需要分离电气量中的正㊁负序分量,分别提取电压㊁电流的正序分量和负序分量,再设计相应的正㊁负序的控制策略㊂由于篇幅限制,本文仅以输入侧为例,系统的电压㊁电流可表示为f uvw=f u f v f w éëêêêùûúúú=f +cos βf +(cos β-2π/3)f +(cos β+2π/3)éëêêêùûúúú+f-cos γf -(cos γ+2π/3)f-(cos γ-2π/3)éëêêêùûúúú+f 0f 0f 0éëêêêùûúúú㊂(11)式中:β=ω+t +α+,ω+=ωs ;γ=ω-t +α-,ω-=-ωs ;α+㊁α-分别为正㊁负序分量的初相角;f uvw 表示输入侧系统的电压或电流;f +㊁f -分别为正㊁负序分量的幅值;f 0为零序分量㊂本文系统为三相三线制,无零序回路,所以可以忽略零序分量㊂三相坐标系向两相旋转坐标系转换的正负序矩阵分别为:T +=23cos ωt cos(ωt -2π/3)cos(ωt +2π/3)-sin ωt -sin(ωt -2π/3)-sin(ωt +2π/3)[];T -=23cos ωt cos(ωt +2π/3)cos(ωt -2π/3)sin ωtsin(ωt +2π/3)sin(ωt -2π/3)[]㊂üþýïïïï(12)对式(11)进行正负序dq 变换可得:f ᶄ+d f ᶄ+q éëêêùûúú=f +cos α+f +sin α+éëêêùûúú+f -cos(2ω+t +α-)-f -sin(2ω+t +α-)éëêêùûúú;f ᶄ-d f ᶄ-qéëêêùûúú=f -cos α-f -sin α-éëêêùûúú+f +cos(2ω-t +α+)-f +sin(2ω-t +α+)éëêêùûúú㊂üþýïïïïïï(13)将式(13)延迟π/2,可得25电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀f ᶄ+d f ᶄ+q f ᶄ-d f ᶄ-qéëêêêêêùûúúúúúe -jπ2=-f +sin α+-f -sin(2ω+t +α-)f +cos α+-f -cos(2ω+t +α-)-f -sin α--f +sin(2ω-t +α+)f -cos α--f +cos(2ω-t +α+)éëêêêêêùûúúúúú㊂(14)联立式(13)和式(14)可将正负序分离如下:f +d f +q f -d f -q éëêêêêêùûúúúúú=12f ᶄ+d +f ᶄ+q exp(-jπ/2)f ᶄ+q-f ᶄ+d exp(-jπ/2)f ᶄ-d +f ᶄ-q exp(-jπ/2)f ᶄ-q-f ᶄ-dexp(-jπ/2)éëêêêêêùûúúúúú㊂(15)2.2㊀功率控制根据瞬时无功功率理论,可将瞬时有功功率和无功功率表示为:P =P 0+P s2sin(2ωt )+P c2cos(2ωt );Q =Q 0+Q s2sin(2ωt )+Q c2cos(2ωt )㊂}(16)式中:P 0是有功功率的直流分量;Q 0是无功功率的直流分量;P s2为有功功率的正弦2倍频分量;P c2为有功功率的余弦2倍频分量;Q s2为无功功率的正弦2倍频分量;Q c2为无功功率的余弦2倍频分量㊂将式(16)整理后,其矩阵形式如下:P 0P s2P c2Q 0Q s2Q c2éëêêêêêêêêùûúúúúúúúú=u +sd u +squ -sdu -sq u -sq -u -sd -u +sq u +sd u -sd u -sq u +sd u +sq u +sq -u +sd u -sq -u -sd -u -sd-u -sq u +sd u +squ -sq-u -sdu +sq -u +sdéëêêêêêêêêêùûúúúúúúúúúi +sdi +sq i -sd i -sq éëêêêêêùûúúúúú㊂(17)根据常见不平衡工况的负面影响,可将系统控制目标设为:1)平衡电网电流;2)消除有功功率纹波;3)消除无功功率纹波㊂对应的电流期望值分别如下:i +sdref =u +sdP 0+u +sqQ 0u +2sd+u +2sq ,i -sdref =0;i +sqref=u +sq P 0-u +sd Q 0u +2sd +u +2sq,i -sqref =0㊂üþýïïïï(18)i +sdref i +sqref i -sdref i -sqref éëêêêêêùûúúúúú=u +sd u +squ -sd u -sq u +sq -u +sdu -sq-u -sd -u -sd -u-squ+sdu +sq u -sq-u -sdu +sq-u +sdéëêêêêêùûúúúúú-1P 0Q 0Q s2Q c2éëêêêêêùûúúúúú;(19)i +sdref i +sqref i -sdref i -sqref éëêêêêêùûúúúúú=u +sdu +sq u -sd u -sq u +sq -u +sd u -sq-u -sd u -sq -u -sd -u +sq u +sd u -sdu -squ +sdu +sqéëêêêêêùûúúúúú-1P 0Q 0P s2P c2éëêêêêêùûúúúúú㊂(20)2.3㊀输入/输出侧平坦控制微分平坦控制多用于连续时间的非线性控制系统中,能快速㊁准确地跟踪参考值,主要由前馈期望量和误差反馈补偿量组成,其理论框图如图4所示㊂首先分析微分平坦理论的基本原理㊂图4㊀微分平坦控制策略框图Fig.4㊀Block diagram of DFC control strategy设非线性系统为:x ㊃=f (x ,u ),x ɪR n ,u ɪR m ;y =g (x ),y ɪR n ㊂}(21)式中u ㊁y ㊁x 分别为系统的输入变量㊁输出变量和状态变量㊂微分平坦理论的判断条件为:x =x (y ,y ㊃, ,y (λ1));u =u (y ,y ㊃, ,y(λ2))㊂}(22)式中λ1㊁λ2均为正整数,它们分别为状态变量㊁输入变量的微分阶数㊂微分平坦控制策略框图如图4所示:u ref,c 为前馈控制量;u ref,b 为误差反馈补偿值;u ref 为参考输入量;y 为输出实际值;y ref 为其期望值;Δy 为两者误值;Δy ref 为Δy 的期望值㊂由于3个子换流器的结构相同,控制器也相同,本文仅以a 相的子换流器为例具体分析㊂另外,正㊁负序分量的控制类似,在此仅推导正序分量的控制过程㊂根据式(6),可以推出输入侧正序的平坦控制器的前馈控制量为u +da_ref,c u +qa_ref,c éëêêùûúú=u +sd u +sq éëêêùûúú-R +L d d t ()i +da_ref i +qa_ref éëêêùûúú-ωs L -i +qa_ref i +da_ref éëêêùûúú㊂(23)35第1期程启明等:不平衡电网下双dq 坐标变换的M3C 微分平坦控制策略式中u +da_ref,c ㊁u +qa_ref,c 分别为输入电流参考值i +da_ref ㊁i +qa_ref 生成的前馈控制量㊂将系统状态变量误差表示为:Δi +da =i +da -i +da_ref ;Δi+qa=i+qa-i+qa_ref㊂}(24)将式(24)代入式(6),可得误差模型如下:Δu +da Δu +qa éëêêùûúú=-R +L d d t()Δi +da Δi +qa éëêêùûúú-ωs L -Δi +qa Δi +da éëêêùûúú㊂(25)由式(25)可得相应误差反馈补偿值为Δu +da_ref,b Δu +qa_ref,b éëêêùûúú=-k DFp +k DFi s ()Δi +da_ref -Δi +da Δi +qa_ref -Δi +qa éëêêùûúú-ωs L -Δi +qa Δi +da éëêêùûúú㊂(26)式中:k DFp ㊁k DFi 为PI 参数;u +da_ref,b ㊁u +qa_ref,b 分别为Δi +da㊁Δi +qa与参考值生成的误差反馈补偿值㊂令Δi +da_ref =0,Δi +qa_ref =0,可得Δu +da_ref Δu +qa_ref éëêêùûúú=Δu +da_ref,b Δu +qa_ref,b éëêêùûúú+Δu +da_ref,c Δu +qa_ref,c éëêêùûúú㊂(27)联立式(6)和式(27)可得(R +Ls )Δi +da_refΔi +qa_ref éëêêùûúú-k DFp +k DFis ()i +da-i +da_refi +qa -i +qa_ref éëêêùûúú=(R +Ls )i +dai +qa éëêêùûúú㊂(28)由式(28)可得d㊁q 轴电流的闭环传递函数如下:H d (s )H q (s )éëêêùûúú=i+dai+da_refi+qai +qa_ref[]T=11[]㊂(29)因此,上述设计的M3C 平坦控制器能实现电气量的解耦,响应速度快,跟踪效果好㊂类似地,可以推导出输入侧b 相子换流器㊁c 相子换流器以及输出侧的正序前馈控制量㊁误差反馈补偿量和平坦控制器分别为:u +db_ref,c u +qb_ref,c éëêêùûúú=u +sd u +sq éëêêùûúú-R +L d d t ()i +db_ref i +qb_ref éëêêùûúú-ωs L -i +qb_ref i +db_ref éëêêùûúú;(30)Δu +db_ref,b Δu +qb_ref,b éëêêùûúú=-k DFp +k DFis ()Δi +db_ref -Δi +db Δi +qb_ref -Δi +qb éëêêùûúú-ωs L -Δi +qb Δi +db éëêêùûúú;(31)Δu +db_ref Δu +qb_ref éëêêùûúú=Δu +db_ref,b Δu +qb_ref,b éëêêùûúú+Δu +db_ref,c Δu +qb_ref,c éëêêùûúú;(32)u +dc_ref,c u +qc_ref,c éëêêùûúú=u +sd u +sq éëêêùûúú-R +L d d t ()i +dc_ref i +qc_ref éëêêùûúú-ωs L -i +qc_ref i +dc_ref éëêêùûúú;(33)Δu +dc_ref,b Δu +qc_ref,b éëêêùûúú=-k DFp +k DFis ()Δi +dc_ref -Δi +dc Δi +qc_ref -Δi +qc éëêêùûúú-ωs L -Δi +qc Δi +dc éëêêùûúú;(34)Δu +dc_ref Δu +qc_ref éëêêùûúú=Δu +dc_ref,b Δu +qc_ref,b éëêêùûúú+Δu +dc_ref,c Δu +qc_ref,c éëêêùûúú;(35)u +od_ref,c u +oq_ref,c éëêêùûúú=-3u +1d u +1q éëêêùûúú-R +L d d t ()i +od_ref i +oq_ref éëêêùûúú-ω1L -i +oq_ref i +od_ref éëêêùûúú;(36)Δu +od_ref,b Δu +oq_ref,b éëêêùûúú=-k DFp +k DFi s ()Δi +od_ref -Δi +od Δi +oq_ref -Δi +oq éëêêùûúú-ωs L -Δi +oq Δi +od éëêêùûúú;(37)Δu +od_ref Δu +oq_ref éëêêùûúú=Δu +od_ref,b Δu +oq_ref,b éëêêùûúú+Δu +od_ref,c Δu +oq_ref,c éëêêùûúú㊂(38)M3C 输入侧㊁输出侧正序平坦控制的详细框图如图5所示㊂2.4㊀子模块独立均压控制本文采用子模块独立均压控制使各子模块的电容电压达到稳定㊁均衡,其具体原理为:通过每个桥臂上的电流㊁对应桥臂的直流电压㊁单个子模块的电容电压,结合输入侧㊁输出侧的平坦控制信号,得出最终的桥臂控制信号,再送入载波移相调制,以此保证子模块电容电压的稳定㊂控制框图见图6㊂以桥臂u a 为例,其总电容电压u Cua ,子模块平均电容电压为u -Cua ,调制信号为u ∗ua ,第j 个子模块的45电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀电容电压为u Cua j㊂图5㊀M3C 系统的微分平坦控制框图Fig.5㊀DFC control block diagram of M3Csystem图6㊀子模块独立均压控制Fig.6㊀Independent and average voltage control ofsub-module3㊀仿真实验分析本文在MATLAB /Simulink 仿真平台上对图1所示M3C 系统进行了模拟㊂由此设计了两种不平衡故障工况,分别仿真了微分平坦控制与传统的PID 控制,并对比仿真效果㊂系统仿真参数如表1所示㊂表1㊀系统仿真实验参数Table 1㊀Parameters of system simulation experiment㊀㊀参数数值输入侧电压幅值/kV 10输出侧电压幅值/kV 10输入侧频率/Hz 50/3输出侧频率/Hz 50桥臂子模块数/个7子模块电容/mF 10子模块电容电压/V 3000桥臂电感/mH203.1㊀工况1实验分析在工况1下,由控制目标1(平衡电网电流)变为控制目标2(消除有功功率纹波)再变回控制目标1㊂具体如下:1)0~0.1s 内,电网电压无故障,系统正常运行,此时输入侧㊁输出侧均选择控制目标1,且P 0=12MW,Q 0=0;2)0.1~0.2s 内,输出侧电压a 相跌落20%,构造输出侧三相电压不对称工况,此时输出侧选择控制目标2,且P 0=6MW,Q 0=0,输入侧无变化;3)0.2~0.3s 内,输入侧电压u 相跌落20%,构造输入侧㊁输出侧三相电压均不对称的工况,输入侧输出侧均选择控制目标2;4)0.3~0.4s 内,设定输入侧㊁输出侧电压恢复原值,交流系统对称,回到无故障正常运行工况㊂图7和图8为工况1下PID 控制策略与微分平坦控制策略的仿真波形,包括输入侧电压u su /u sv /u sw ㊁输入侧电流i su /i sv /i sw ㊁输出侧电压u 1a /u 1b /u 1c ㊁输出侧电流i 1a /i 1b /i 1c ㊁输入侧有功无功功率P s /Q s ㊁输出侧有功无功功率P 1/Q 1㊂表2分别列出了工况1下PID 控制策略与微分平坦控制策略的输入侧电流㊁输出侧电流的性能指标,并从稳定时间与总谐波畸变率(total harmonic distortion,THD)两个方面来进行对比分析㊂由于篇幅有限,本文截取了0.1~55第1期程启明等:不平衡电网下双dq 坐标变换的M3C 微分平坦控制策略0.2s 内输出侧电流的THD 值制成图9,其余THD 值将直接表示在表2中㊂图7㊀工况1下PID 控制的仿真结果Fig.7㊀Simulation results of PID control under workingcondition 1分析图7㊁图8㊁图9和表2可知,在电网出现不对称故障时,传统PID 控制策略与本文所提的微分平坦控制策略均能达到控制要求,保证系统稳定运行,且微分平坦控制策略下各电气量的性能指标均优于传统PID 控制㊂图8㊀工况1下微分平坦控制(DFC )的仿真结果Fig.8㊀Simulation results of DFC control under workingcondition 165电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图9㊀工况1下输出侧电流谐波分析(0.1~0.2s) Fig.9㊀Output current spectrums of M3C on working condition1(0.1~0.2s)表2㊀工况1下输入侧㊁输出侧电流性能指标分析Table2㊀Analysis of current performance index of input side and output side under working condition1两侧电流性能指标分析时间段/ms0~100100~200200~300300~400输入侧稳定时间/ms(PID)59100238339输入侧稳定时间/ms(DFC)34100225320输入侧THD/%(PID) 1.970.240.52 1.29输入侧THD/%(DFC)0.620.140.290.15输出侧稳定时间/ms(PID)21118200330输出侧稳定时间/ms(DFC)14107190313输出侧THD/%(PID) 1.710.870.480.99输出侧THD/%(DFC)0.290.220.240.11 1)0~0.1s内,系统处于无故障正常运行状态,在控制目标1下,两种控制方法下的输入侧㊁输出侧电流都具有较好的三相对称性,系统在微分平坦控制下的稳定速度较PID控制稍快,电能质量较高;2)0.1~0.2s内,输出侧出现不对称故障,a相电压跌落20%,输出侧控制目标为消除有功功率纹波,两种控制方法下的输出侧电流,在不对称故障与功率改变后都能达到新的稳定值㊂PID控制下系统的输出侧电流i abc与输出侧功率P1/Q1在0.118s后稳定,输出侧电流THD值为0.87%;微分平坦控制下系统的输出侧电流i abc与输出侧功率P1/Q1在0.107s后稳定,输出侧电流THD值为0.22%,对比可知微分平坦控制下输出侧电流能够更快达到稳定,系统的谐波污染更低;3)0.2~0.3s内,输入侧和输出侧均出现不对称故障,控制目标均为消除有功功率纹波,PID控制和微分平坦控制下系统的输入侧电流i uvw的THD值分别为0.52%和0.29%,说明微分平坦控制下系统的电能质量高;4)0.3~0.4s内,输入侧㊁输出侧均恢复无故障正常运行状态,由表2可知,微分平坦控制下系统的能更快达到稳态,谐波含量更低,电能质量更高,能够更有效地抑制负序电流㊂3.2㊀工况2实验分析在工况2下,由控制目标1变为控制目标3再变回控制目标1㊂工况2具体如下:1)0~0.1s内,电网电压无故障,系统正常运行,此时输入侧㊁输出侧均选择控制目标1,且P0= 12MW,Q0=0㊂2)0.1~0.2s内,输入侧电压u相跌落20%,构造输入侧三相电压不对称工况,此时输出侧选择控制目标3,且P0=6MW,Q0=0,输出侧无变化;3)0.2~0.3s内,输出侧电压a相跌落20%,构造输入侧㊁输出侧三相电压均不对称的工况,输入侧输出侧均选择控制目标3;4)0.3~0.4s内,设定输入侧㊁输出侧电压恢复原值,交流系统对称,回到无故障正常运行工况㊂图10和图11为工况2下PID控制策略与微分平坦控制策略的仿真波形,包括输入侧电压u su/u sv/ u sw㊁输入侧电流i su/i sv/i sw㊁输出侧电压u1a/u1b/u1c㊁输出侧电流i1a/i1b/i1c㊁输入侧有功无功功率P s/Q s㊁输出侧有功无功功率P1/Q1㊂由于篇幅有限,本文截取了0.1~0.2s内输出侧电流的THD值制成图12,其余THD值将直接表示在表中㊂表3分别列出了工况2下两种控制策略的输入侧电流㊁输出侧电流的性能指标,便于进一步对比分析㊂75第1期程启明等:不平衡电网下双dq坐标变换的M3C微分平坦控制策略图10㊀工况2下PID控制的仿真结果Fig.10㊀Simulation results of PID control under working condition2分析图10㊁图11㊁图12和表3可知,在工况2下,微分平坦控制策略的控制效果优于传统PID控制㊂具体分析如下:1)0~0.1s内,系统为无故障正常运行状态;2)0.1~0.2s内,输入侧出现不对称故障,u相电压跌落20%,输入侧控制目标为消除无功功率纹波,两种控制方法下的输入侧㊁输出侧电流,在不对称故障与功率改变后都能迅速稳定;图11㊀工况2下微分平坦控制(DFC)的仿真结果Fig.11㊀Simulation results of DFC control under working condition285电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图12㊀工况2下输出侧电流谐波分析(0.2~0.3s) Fig.12㊀Output current spectrums of M3C on working condition2(0.2~0.3s)表3㊀工况2下输入侧㊁输出侧电流性能指标分析Table3㊀Analysis of current performance index of input side and output side under working condition2两侧电流性能指标分析时间段/ms0~100100~200200~300300~400输入侧稳定时间/ms(PID)65134200327输入侧稳定时间/ms(DFC)29126200311输入侧THD/%(PID) 1.970.940.48 1.28输入侧THD/%(DFC)0.620.490.290.16输出侧稳定时间/ms(PID)24100214325输出侧稳定时间/ms(DFC)151********输出侧THD/%(PID)0.970.670.89 1.04输出侧THD/%(DFC)0.370.120.270.953)0.2~0.3s内,输入侧和输出侧均出现不对称故障,控制目标均为消除无功功率纹波,PID控制下系统的输出侧电流i abc与输出侧功率P1/Q1在0.214s后稳定,输出侧电流THD值为0.89%;微分平坦控制下系统的输出侧电流i abc与输出侧功率P1/Q1在0.207s后稳定,输出侧电流THD值为0.27%,对比可知微分平坦控制下动态稳定性与快速性更好,谐波污染更低;4)0.3~0.4s内,输入侧㊁输出侧均恢复无故障正常运行状态,由表3可知,微分平坦控制下系统的稳定速度㊁动态性能㊁控制效果均优于传统PID 控制㊂通过对比上述两种运行工况的仿真结果,不难得知无论是在正常运行工况下,或是系统出现单侧㊁双侧不对称故障的工况下,微分平坦控制的效果均优于PID控制㊂4㊀结㊀论本文对电网不平衡下的M3C微分平坦控制进行了深入研究㊂首先,根据双dq坐标变换建立了M3C的输入输出侧解耦模型,提取电压电流的正负序分量,基于微分平坦理论,设计出了输入侧㊁输出侧的微分平坦控制器,最后在MATLAB/Simulink平台上设计了两种不平衡工况,分别模拟了微分平坦控制和传统PID控制的运行效果,验证了本文所提控制策略的先进性㊂且通过理论分析和仿真对比可以得到以下结论:1)双dq坐标变换中所有的受控量均为直流量,控制结构较双αβ更简单,实现容易,同时也具备优良的稳态和动态性能㊂2)与传统的线性PID控制相比,非线性的平坦控制更适用于非线性的M3C系统㊂在平衡电网或电网出现不对称故障时,微分平坦控制下的控制效果均优于PID控制,其动态稳定性与快速性更好,谐波污染更低㊂参考文献:[1]㊀YOU Shutang,ZHAO Jiecheng,YAO Wenxuan,et al.FNET/grideye for future high renewable power grids-applications overview[C]//2018IEEE PES Transmission&Distribution Conferenceand Exhibition-Latin America(T&D-LA),September18-21, 2018,Lima,Peru.2018:1-5.[2]㊀WU Jiahui,WANG Haiyun,WANG Weiqing,et al.Performanceevaluation for sustainability of wind energy project using improved multi-criteria decision-making method[J].Journal of Modern Power Systems and Clean Energy,2019,7(5):1166. [3]㊀KAWAMUR W,CHEN Kuanliang,HAGIWARA M,et al.Alow-speed,high-torque motor drive using a modular multi-level cascade converter based on triple-star bridge cells(MMCC-TSBC)[J].IEEE Transactions on Industry Applications,2015,51(5): 3966.[4]㊀HOSSAIN M I,ABIDO M A.Positive-negative sequence cur-rentcontroller for LVRT improvement of wind farms integrated MMC-HVDC network[J].IEEE Access,2020,8:193314. [5]㊀杨硕,郭春义,王庆,等.分层接入特高压直流输电系统协调95第1期程启明等:不平衡电网下双dq坐标变换的M3C微分平坦控制策略控制策略研究[J].中国电机工程学报,2019,39(15):4357YANG Shuo,GUO Chunyi,WANG Qing,et al.Coordinated con-trol approach for UHVDC system under hierarchical connection mode[J].Proceedings of the CSEE,2019,39(15):4357.[6]㊀邓银秋,汪震,韩俊飞,等.适用于海上风电接入的多端柔直网内不平衡功率优化分配控制策略[J].中国电机工程学报, 2020,40(8):2406.DENG Yinqiu,WANG Zhen,HAN Junfei,et al.A novel chopper topology for grid side fault ride through in VSC-HVDC based off-shore wind power connection[J].Proceedings of the CSEE, 2020,40(8):2406.[7]㊀LUO Jiajie,ZHANG Xiaoping,XUE Ying,et al.Harmonic anal-ysis of modular multilevel matrix converter for fractional frequency transmission system[J].IEEE Transactions on Power Delivery, 2020,35(3):1209.[8]㊀Al-TAMEEMI M,MIURA Y,LIU J,et al.A novel controlscheme for multi-terminal low-frequency AC electrical energy transmission systems using modular multilevel matrix converters and virtual synchronous generator concept[J].Energies,2020, 13(3):748.[9]㊀MENG Yongqing,SHANG Shuonan,ZHANG Haitao,et al.IDA-PB control with integral action of Y-connected modular multilevel converter for fractional frequency transmission application[J].IET Generation Transmission&Distribution,2018,12(14):3386.[10]㊀ERICKSON R W,Al-NASEEM O A.A new family of matrixconverters[C]//27th Annual Conference of the IEEE IndustrialElectronics Society,November29-December2,2001,Denver,USA.2001:1515-1520.[11]㊀OATES C.A methodology for developing Chainlink converters[C]//13th European Conference on Power Electronics and Ap-plications,September8-10,2009,Barcelona,Spain.2009:1-10.[12]㊀KAMMERER F,KOLB J,BRAUN M.Fully decoupled currentcontrol and energy balancing of the modular multilevel matrixconverter[C]//15th International Power Electronics and MotionControl Conference(EPE/PEMC),September4-6,2012,Novi Sad,Serbia.2012:LS2a.3-1-LS2a.3-8. [13]㊀KAWAMUR W,AKAGI H.Control of the modular multilevelcascade converter based on triple-star bridge-cells(M2CC-TS-BC)for motor drives[C]//IEEE Energy Conversion Congressand Exposition(ECCE),September15-20,2012,Raleigh,USA.2012:3506-3513.[14]㊀KAWAMUR W,HAGIWARA M,AKAGI H.Control and exper-iment of a modular multilevel cascade converter based on triple-star cells[J].IEEE Transactions on Industry Applications,2014,50(5):3537.[15]㊀NADEMI H,NORUM L E,SOGHOMONIAN Z,et al.Low fre-quency operation of modular multilevel matrix converter using op-timization-oriented predictive control scheme[C]//2016IEEE17th Workshop on Control and Modeling for Power Electronics(COMPEL),June27-30,2016,Trondheim,Norway.2016:1-6.[16]㊀程启明,马信乔,江畅,等.模块化多电平矩阵换流器输入侧的无源控制策略[J].电力系统自动化,2021,45(11):137.CHENG Qiming,MA Xinqiao,JIANG Chang,et al.Passivity-based control strategy for input side of modular multi-level matrixconverter[J].Automation of Electric Power Systems,2021,45(11):137.[17]㊀程启明,谢怡群,马信乔,等.模块化多电平矩阵变换器的平坦控制策略[J].电力自动化设备,2022,42(1):187.CHENG Qiming,XIE Yiqun,MA Xinqiao,et al.Flat controlstrategy for modular multilevel matrix converter[J].Power Auto-mation Equipment,2022,42(1):187.[18]㊀孟永庆,王健,李磊,等.基于双dq坐标变换的M3C变换器的数学模型及控制策略研究[J].中国电机工程学报,2016,36(17):4703.MENG Yongqing,WANG Jian,LI Lei,et al.Research on mod-eling and control strategy of modular multilevel matrix converterbased on double dq coordinate transformation[J].Proceedings ofthe CSEE,2016,36(17):4703.[19]㊀宋平岗,周鹏辉,肖丹,等.MMC-RPC的功率同步平坦控制策略[J].电力自动化设备,2019,39(11):146.SONG Pinggang,ZHOU Penghui,XIAO Dan,et al.Power syn-chronization flatness control strategy of MMC-RPC[J].PowerAutomation Equipment,2019,39(11):146. [20]㊀SHAHIN A,MOUSSA H,FORRISI I,et al.Reliability im-provement approach based on flatness control of parallel-connect-ed inverters[J].IEEE Transactions on Power Electronics,2017,32(1):682.[21]㊀张翀.模块化多电平矩阵换流器在AC/AC系统应用中的关键技术研究[D].杭州:浙江大学,2020.(编辑:刘琳琳)06电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀。

海洋生物地球化学的产生与发展

海洋生物地球化学的产生与发展

海洋生物地球化学的产生与发展研究员、博导 宋金明(中国科学院海洋研究所, 青岛266071)摘 要:对全球环境问题如全球气候变化、全球生态环境变化等的关注导致了海洋生物地球化学的飞速发展,使海洋生物地球化学成为了全球变化研究的核心,本文阐述了海洋生物地球化学的产生与发展及我们实验室近年来这方面研究的主要结果。

关键词:海洋地球生物化学 发展当今的人类面临着全球气候变暖和全球生态环境遭到严重破坏等一系列重大环境问题,海洋占据地球表面积的70 8%,占地球总水量的96 5%,海洋在全球环境中占据的地位是首屈一指的[1-3]。

海洋可以减缓全球气温升高的幅度,海洋环境的健康与修复在全球生态环境变异中起决定性的作用。

因此,要解决全球环境问题就必须面对海洋这个在全球环境变化中起决定作用的庞然大物,要深入研究海洋的作用,深层次的海洋学过程是科学家们必须要研究的,作为海洋学过程核心的海洋生物地球化学过程就成为了近年来海洋学乃至全球变化研究的中心,所以有必要对生物地球化学的产生与发展有一深刻地了解,本文对此进行了阐述,并简要叙述了我们近年来在海洋生物地球化学过程研究方面取得的主要结果。

海洋生物地球化学(biogeochemistry),我们从这个词很容易看出这是一个复合词,是一个多学科交叉的综合产物。

下面,我们首先从生物地球化学的产生谈起。

一、生物地球化学的产生一般认为,生物地球化学这个词最早正式提出是在1939年,前苏联著名的地球化学家维尔纳斯基(W.I.Vernadsky)院士首次创立并发表了系列论文,尔后在1943年,由哈钦森(G.E.Hutchi nson)引入到英文中,这方面的早期研究主要涉及生物体对微量元素的富集,研究生物体与环境中的元素比。

这是生物地球化学作为独立研究领域发展的第一个阶段。

实际上,有关生物地球化学的研究远不止始于二十世纪的三十年代,应该说很早以前,许多科学就注意到了生物过程在元素地球化学循环中的作用,在这里值得一提的是英国牛津的地质学家多布尼(C.G.B.Daubeny,1796-1867),在170年前,他先做化学教授,而后又做了植物学教授,对火山喷发、大气CO2水平对石炭纪植物的影响以及臭氧产生的机制进行过卓有成效的研究[4],这是典型的生物地球化学综合研究,看来,个人多学科的知识是生物地球化学产生的基础之一是不容质疑的。

现代矿山生态环境恢复治理存在的问题及对策

现代矿山生态环境恢复治理存在的问题及对策

2023年 5月上 世界有色金属217现代矿山生态环境恢复治理存在的问题及对策罗 强(中国建筑材料工业地质勘查中心宁夏总队,宁夏 银川 750021)摘 要:经济不断发展,对各类资源的不断开发,逐渐对人类赖以生存的环境造成了威胁。

现如今,世界环保领域希望各国都应积极响应和落实好环境保护理念。

尤其像矿产资源这种开发范围广的行业,更需要及时有效地解决其所带来的生态环境破坏问题,鉴于此,此文将针对现代矿山生态环境恢复治理所面临的问题及对此采取的对策进行详细的研究分析。

关键词:矿山生态环境;恢复治理;存在问题;解决对策中图分类号:X171.4 文献标识码:A 文章编号:1002-5065(2023)09-0217-3Problems and Countermeasures of Ecological Environment Restoration in Modern MinesLUO Qiang(Ningxia Headquarters of China Construction Materials Industry Geological Survey Center,Yinchuan 750021,China)Abstract: The continuous development of economy and the continuous development of various resources have also gradually posed various threats to the environment on which human beings depend. Now, the world environmental protection field hopes that all countries should actively respond to and implement the concept of environmental protection. In particular, the industry with a wide range of development, such as mineral resources, needs to solve the problem of ecological environment damage brought about by it in a timely and effective manner. In view of this, this paper will conduct a detailed study and analysis of the problems faced by the restoration and management of modern mine ecological environment and the countermeasures taken.Keywords: mine ecological environment; Restore governance; Existing problems; Solutions收稿日期:2023-03作者简介:罗强,男,生于1991年,汉族,陕西汉中人,本科,助理工程师,研究方向:金属非金属矿采矿,地灾设计,矿山恢复治理类。

Ni2+掺杂透明微晶玻璃超宽带光谱特性研究

Ni2+掺杂透明微晶玻璃超宽带光谱特性研究
介质 材 料 。 关键 词 :Ni 杂 ;透 明微 晶 玻 璃 ;超 宽 带 光 纤放 大器 掺
中图 法分 类 号 : T 7 Q11
文 献 标 识码 :A
文 章 编 号 : 10 -8x 2 o )25 90 02 15 (o 8s —0 -4
1 引 言
2 世 纪 8 年 代 研 制 成 功 的 掺 铒 光 纤 放 大 器 0 0 ( DF ,摒弃 了传 统 的光 电光数 据传 输模 式 ,直接 E A)
境 比较 敏感 ,因 而在适 当 的基 质 中能够产 生超 宽带 的
荧光发 射 ) ,如 掺 T i 的蓝 宝 石 ( i 2 ) T : 03 ,掺 c A1 r 的镁橄 榄石 …等 。过渡 金 属离 子掺 杂 晶体 虽然量 子 效
中加热4 n 0 mi,将融熔 液倒 入预热 的铁 模 中,成型 后
4 a03 Mg 质 量分数 ,%) 品制备所 需原料 均为 L 2 . O( 1 ,样
分析 纯 。 离 子 以Ni 式外掺 引入 , 杂浓度 为01 Ni O形 掺 .% ( 质量 分数 ,下 同 )。称取 混合 料2 ,充 分混合 , 0g 搅 拌均 匀 ,放入氧 化铝坩 埚 中,在 10 6 0℃的高温 电炉
为 3 0 m,荧 光寿 命 和 受 激 发 射 截 面 的乘 积 为 68  ̄ 0 c 分析 认 为 ,N 2掺杂 L AS 晶玻 璃 的超 宽 带 荧 光来 源 2 n .7 1 m ‰ i + G 微 于 高场 态 纳 米 晶 中 N 的 。2 F — 。 2 。) 究 认 为 ,N 掺 杂 L A i T( ) A ( 。研 。 F i G S微 晶玻 璃 可 用 作 超 宽 带光 纤 放 大 器 潜 在 的增 益
逐 的 目标 。

新时代中国特色体育学学术体系的现实诉求、内涵意蕴与构建理路

新时代中国特色体育学学术体系的现实诉求、内涵意蕴与构建理路

新时代中国特色体育学学术体系的现实诉求、内涵意蕴与构建理路作者:郭迎清罗亮孙晋海来源:《山东体育学院学报》2024年第02期收稿日期:2023-04-11基金項目:国家社会科学基金重大项目(编号:19VXK10);齐鲁工业大学人才科研项目(编号:2023RCKY277);北京大学电子竞技专项课题(编号:HE202201A02)。

作者简介:郭迎清(1991-),女,山东聊城人,博士,研究方向为体育管理学。

作者单位:1.国家体育总局体育科学研究所,北京 100061;2.山东大学体育学院,山东济南 250061。

摘要:新时代构建中国特色体育学学术体系是时代的召唤,是党和国家的要求。

该研究通过文献资料和逻辑分析等方法,梳理了新时代构建中国特色体育学学术体系的现实诉求、内涵意蕴及构建理路。

研究表明,构建中国特色体育学学术体系是坚持和发展中国特色社会主义的必然要求,是世界多极化、经济全球化、社会信息化和文化多样性发展的迫切要求,是进入新时代对体育学提出的更高要求,是体育学学术体系以及体育学科自身发展的需要。

研究明确剖析了中国特色体育学学术体系建构的内涵意蕴:促进健康中国战略落地实施、为体育强国建设蓄力赋能、助力全球体育共同体建设的政策内涵;反思回答中国体育发展问题、实现体育学基础理论思想创新、拓展体育学理论研究创新空间的思想内涵;推进体育文化相知相通、增强体育文化国际解释力、提升体育文化战略地位的文明内涵;增强体育社会认知、规范体育社会行为、提升体育社会地位的时代内涵。

基于此,该研究提出应从组织体系、方法体系、制度体系、交流体系以及理论体系等方面构建新时代中国特色体育学学术体系。

关键词:体育学;学术体系;新时代;中国特色中图分类号:G80-051文献标识码:A文章编号:1006-2076(2024)02-0010-09The Realistic Demands, Connotation and Construction Path of the Academic System of Sports Science with Chinese Characteristics in the New EraGUO YingqingLUO LiangSUN Jinhai21.China Institute of Sport Science, Beijing 100061, China;2. School of P.E., Shandong University, Jinan 250061, Shandong, ChinaAbstract:To construct the academic system of sports science with Chinese characteristics in the new era is the call of the times and the requirement of the Party and the state. Through the methods of literature and logical analysis, this study summarizes the realistic demands, connotation and construction path of the academic system of sports science with Chinese characteristics in the new era. The research shows that the construction of sports academic system with Chinese characteristics is an inevitable requirement for upholding and developing socialism with Chinese characteristics, an urgent requirement for the development of world multi-polarization, economic globalization,social information and cultural diversity, a higher requirement for sports science in the new era,and a need for the development of the academic system of sports science and the sports discipline. The research analyzes the connotation of the construction of the academic system of sports science with Chinese characteristics: the policy connotation is topromote the implementation of the strategy of healthy China, build capacity for the construction of sports power, andhelp the construction of a global sports community; The ideological connotation is to reflect and answer the problemsof Chinese sports development, realize the innovation of the basic theory of sports science, and expand the innovation space of theory research of sports science; The civilization connotation is to promote mutual understanding of sports culture, enhance the international interpretation of sports culture,and enhance the strategic position of sports culture; The time connotation is to enhance the social cognition of sports, standardize the social behavior of sports and enhance the social status of sports. Based on this, the study proposes that the academic system of sports science with Chinese characteristics in the new era should be constructed from the aspects of organization system, method system, institutional system, communication system and theory system.Key words:sports science; academic system; new era; Chinese characteristics构建具有主体性和原创性理论观点的学科体系、学术体系和话语体系,才能不断推进哲学社会科学体系的建设与创新[1]。

涌现效应下的生成式人工智能数据污染及其治理路径

涌现效应下的生成式人工智能数据污染及其治理路径

涌现效应下的生成式人工智能数据污染及其治理路径目录一、内容概览 (2)1.1 背景介绍 (2)1.2 研究意义 (3)二、涌现效应与生成式人工智能 (4)2.1 涌现效应的定义与特点 (6)2.2 生成式人工智能的发展历程 (7)2.3 生成式人工智能与涌现效应的关系 (8)三、数据污染现象及其影响 (10)3.1 数据污染的定义与分类 (10)3.2 数据污染对生成式人工智能的影响 (11)3.3 数据污染问题的严峻性 (12)四、生成式人工智能数据污染的治理路径 (13)4.1 加强数据监管与治理机制建设 (15)4.2 提升算法设计与安全防护能力 (15)4.3 推动数据共享与开放 (16)4.4 加强人才培养与技术研发 (18)五、案例分析 (18)5.1 国内外典型案例介绍 (20)5.2 案例分析与经验借鉴 (21)六、结论与展望 (22)6.1 研究成果总结 (23)6.2 对未来研究的展望 (24)一、内容概览随着科技的飞速发展,人工智能(AI)已逐渐渗透到我们生活的方方面面。

生成式AI作为AI领域的一大分支,通过学习大量数据来生成全新的、具有价值的内容,如文章、图像、音频等。

在这一过程中,数据污染问题也日益凸显。

数据质量问题:包括数据缺失、重复、不准确等,这些问题会直接影响AI模型的训练效果。

数据偏见问题:由于数据来源的多样性,不同数据源可能包含不同的偏见和刻板印象,这些偏见会在AI生成的内容中得到体现,导致不公平、不客观的结果。

数据隐私问题:在收集和使用用户数据的过程中,可能存在隐私泄露的风险,给用户带来潜在的损失。

1.1 背景介绍随着人工智能技术的快速发展,生成式人工智能(Generative AI)在各个领域取得了显著的成果。

这些技术在带来便利的同时,也带来了一定的风险,如数据污染问题。

数据污染是指在数据处理过程中,由于各种原因导致数据中出现异常值、噪声或错误信息,从而影响模型的准确性和可靠性。

公开学术报告--罗金亮

公开学术报告--罗金亮

♦ 我国农用抗生素的研究起步较晚,始于20
世纪50年代初,成功研制了放线酮和灭瘟 素、春雷霉素、庆丰霉素、井冈霉素、多 抗霉素、公主岭霉素、多效霉素、农抗120、 中生菌素、武夷菌素等农用抗生素。
♦ 目前,国内外农用抗生素研究开发的重点主
要集中在 : 1、筛选新的活性化合物 2、重点对某些化合物进行结构改造 3、以先导化合物间接开发新农药 4、通过基因工程手段,有目的的得 到产生新抗生素的工程菌。 5、改进分离纯化方法 ,简化工艺流 程,来提高分离效率 。
后来发现了放线菌酮抗霉素a以及一些多烯类农用抗生素之后又相继开发了杀稻瘟菌素s春雷霉素多抗霉素等一系列高效低毒抗真菌农用抗生素新品种我国农用抗生素的研究起步较晚始于20世纪50年代初成功研制了放线酮和灭瘟素春雷霉素庆丰霉素井冈霉素多抗霉素公主岭霉素多效霉素农抗120中生菌素武夷菌素等农用抗生素
贵州大学硕士研究生公开学术报告
来自Ustilago esculenta抗真菌活 性物质的研究
报告人:罗金亮 专业:微生物与生化药学08
研究背景

真菌是最重要的植物病原类群,据统计, 由真菌引起的植物病害已达3万多种,约占 植物病害总数的70-80%。 ♦ 化学农药带来的一系列问题: ① 残留药物积累,不易分解 ② 抗药性上升 ③ 杀菌选择性差

减压浓缩
有机溶剂洗涤 离心、过滤、烘干 粗品
离子交换柱层析
紫外 红外 结
梯度洗脱、减压浓 缩、冷冻干燥
高效液相色谱检测 质谱 分析
♦ 农用抗生素是生物农药的重要类群之一,被认
为是植物病害防治最有希望的途径,其具有 如下优点 : ① 分解快,残留少,亲和性好 ② 作用浓度低,杀菌效果突出 ③ 高度的杀菌选择性 ④ 原料来源广,污染少

中国西部农村地区的能源贫困与可再生能源资源利用

中国西部农村地区的能源贫困与可再生能源资源利用

中国西部农村地区的能源贫困与可再生能源资源利用
罗国亮;刘涛
【期刊名称】《华北电力大学学报(社会科学版)》
【年(卷),期】2013(000)006
【摘要】中国西部面临的两个最为迫切的问题是农村贫困和环境恶化,中国西部农村还有大约100万未接入电力的农户;多数农户的炊事仍然以传统生物质能源为主.西部地区具有丰富的可再生能源资源,充分利用和发挥这一优势还有助于西部农村能源贫困的缓解、缩小地区用能差距.实践表明,中国政府在西部农村地区实施的可再生能源项目取得了显著的效果,但发展西部农村可再生能源还存在现实的阻碍;所以,需要政府在财政、税收、信贷、融资等方面给予强大的支持、发挥民间投资的积极性、拓宽融资渠道、建立完善的农村能源服务体系.
【总页数】7页(P6-12)
【作者】罗国亮;刘涛
【作者单位】华北电力大学经济与管理学院,北京 102206;华北电力大学经济与管理学院,北京 102206
【正文语种】中文
【中图分类】F062.9
【相关文献】
1.可再生能源与农村能源贫困 [J], 朱成章
2.利用可再生能源的供暖空调系统在农村地区应用前景 [J], 马明珠;
3.关于安阳农村地区可再生能源发展及利用的分析 [J], 齐英
4.运用多水平模型分析中国西部贫困农村地区2岁以下儿童计划免疫影响因素 [J], 沈洁;安琳
5.促进中国西部农村可再生能源综合发展应用省级管理人员培训班在北京举行 [J],因版权原因,仅展示原文概要,查看原文内容请购买。

纳米技术与能带工程对Si基高效发光的促进

纳米技术与能带工程对Si基高效发光的促进

纳米技术与能带工程对Si基高效发光的促进王启明【期刊名称】《物理学进展》【年(卷),期】2002(22)4【摘要】自 1 991年CanhamL .T发现多孔Si的强发光特性之后 ,Si基发光的系列性探索已走过了 1 0年的路程。

人们从中认清了一些重要的科学问题 ,发展和掌握了许多新的技术 ,也取得了许多有价值的重要进展。

可以说过去的 1 0年是处於四方探索的百花齐放阶段。

现在无论从应用目标的需求和开拓研究的思路与途径 ,都更加明确、集中 ,一个有实用价值的Si基发光器件的研究高潮即将来临。

本文着重评述介绍了四个方面的研究进展 ,即局域态nc_Si的发光 ,基於能带工程的Si基发光 ,纳米结构Si化物的发光和Ge/Si量子点的发光研究 ,指出了各自存在的问题 ,提出了若干新的研究思路。

本文还把Si基发光的研究与微电子发展需求紧密结合 ,由此提出了下一阶段开展Si基发光研究应予遵循的几项原则。

【总页数】12页(P359-370)【关键词】纳米技术;Si基发光;能带工程;纳米结构;光电子集成;微电子芯片【作者】王启明【作者单位】中国科学院半导体研究所集成光电子国家重点联合实验室【正文语种】中文【中图分类】TN4;O472.3【相关文献】1.Si基高效率发光材料与器件的探索 [J], 王启明2.硅基超晶格Si1-xSnx/Si的能带结构 [J], 吕铁羽;陈捷;黄美纯3.能谷间相互作用对量子阱G30.3Si0.7/Si/Ge0.3Si0.7的电子能带结构的影响[J], 徐至中4.Si基热氧化Si_(1-x-y)Ge_xC_y薄膜的室温光致发光特性 [J], 程雪梅;郑有炓;刘夏冰;臧岚;朱顺明;韩平;罗志云;江若琏5.复合量子阱Ge_(0.3)Si_(0.7)/(Ge_(0.3)Si_(0.7))_m-(Si)_m/Ge_(0.3)Si_(0.7)的电子能带结构 [J], 徐至中因版权原因,仅展示原文概要,查看原文内容请购买。

中国的未来取决于人才和创新

中国的未来取决于人才和创新

中国的未来取决于人才和创新
郎加明
【期刊名称】《中国人才》
【年(卷),期】1999(000)007
【摘要】历史进步的本质在于创新;激越、壮丽的人生的价值体现在创新。

无论是一个国家、民族或社会,离开了创新,就不可能振兴、进步和繁荣,国家决胜在创新。

中国在21世纪知识经济时代的美好未来,只能取决于人才和创新。

其中,关键是能否改革和创新激励人才积极性的体制、机制和分配问题。

【总页数】1页(P25-25)
【作者】郎加明
【作者单位】中国航空油料华北公司;总经理;金三极思维法的创立者
【正文语种】中文
【中图分类】C964
【相关文献】
1.智汇中国创领未来人才与产业创新高峰论坛发布"中关村智酷•智汇中国"行动计划 [J], 中国校企协同产学研创新联盟
2.西门子助力新一代创新工程人才培养,成就中国制造业未来 [J], ;
3.创意提升价值创新促进发展——美国大杏仁学生创新大赛助力中国未来食品科技人才走向成功 [J],
4.未来中国农业科技创新人才队伍建设探讨 [J], 陆美芳;王一方;季雪婧
5.欧特克Alias软件激发年轻设计潜能推动汽车行业创新发展欧特克助力未来汽车设计人才在2015年CDN中国汽车设计大赛上大放异彩 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

加强科技成果推广 促进科技与经济结合

加强科技成果推广  促进科技与经济结合

加强科技成果推广促进科技与经济结合
关仁
【期刊名称】《凉山科技》
【年(卷),期】1991(000)004
【总页数】2页(P1-2)
【作者】关仁
【作者单位】凉山州科委
【正文语种】中文
【中图分类】F124.3
【相关文献】
1.加强农业科技成果推广促进农村经济快速发展 [J], 贾福敏
2.现代信息技术与传统方式相结合促进国防科技成果推广转化工作:国防科技成果推广转化网站运行一周年 [J], 无
3.加强科技成果推广工作促进勘施工业科技进步 [J], 左汝强
4.搭建军民结合平台促进国民经济发展——访国防科技工业科技成果推广转化研究中心张志明副主任 [J], 谢涛; 赫明鲲
5.搭进军民结合平台促进国民经济发展-访国防科技工业科技成果推广转化研究中心张志明副主任 [J], 谢涛; 赫明鲲
因版权原因,仅展示原文概要,查看原文内容请购买。

助力广州建设科创中心 带动珠三角经济

助力广州建设科创中心 带动珠三角经济

助力广州建设科创中心带动珠三角经济
王明亮
【期刊名称】《财讯》
【年(卷),期】2016(000)003
【摘要】“广州应建设好科创新中心,带动珠三角辐射全国.”上海社会科学院世界经济研究所副所长权衡说.25日上午,由广州市社科联、南方日报社和暨南大学联合举办广州新观察第八期圆桌会在暨南大学举行,围绕“供给侧结构性改革与经济提质增效”主题,知名专家学者、创新型企业家畅所欲言,展开了一场头脑风暴.与会人士一致认为,要推进供给侧结构性改革,创新驱动是关键,“重点应该放在提高劳动生产率、技术进步率和资源配置效率上”.另外,广州可大力发展健康、养老、环保、智能交通等新兴产业,从供给侧发力助推产业转型升级.
【总页数】5页(P32-36)
【作者】王明亮
【作者单位】广州市经贸委
【正文语种】中文
【中图分类】F-24
【相关文献】
1.助力广州建设科创中心带动珠三角经济 [J], 王明亮
2.助力广州建设科创中心带动珠三角经济 [J], 王明亮
3.专访张江高科党委书记、董事长刘樱:助力上海科创中心建设,培育更多科创板独
角兽、瞪羚企业 [J], 宋杰
4.汲取全球的经验与智慧助力科创中心建设诺奖科学家首次走进上海化工区 [J], 陈鸿应
5.探索无尽的科学前沿与创新新范式助力上海科创中心建设
——2021竞争情报上海论坛盛大召开 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ustilago esculenta分离与:蔬菜(茭白) 分离与: 分离与 蔬菜(茭白)
♦ 一、抑菌活性物质存在于发酵液中 ♦ 二、对热、紫外光、部分有机溶剂、胃蛋
白酶和胰蛋白酶稳定,抗菌谱广,不易产 生抗性,可促进作物生长等特点 。 ♦ 三、作用靶位初步推断为作用于真菌的细 胞壁
发 菌 种 复 壮 养 子 培 培 养 理 处 取 种 发 酵 预 萃 液 溶 剂 酵 机

减压浓缩
有机溶剂洗涤 离心、过滤、烘干 粗品
离子交换柱层析
紫外 红外 结 构 鉴 定 核磁 共振
大孔吸附树脂
梯度洗脱、减压浓 缩、冷冻干燥
高效液相色谱检测 质谱 分析
♦ 我国农用抗生素的研究起步较晚,始于20
世纪50年代初,成功研制了放线酮和灭瘟 素、春雷霉素、庆丰霉素、井冈霉素、多 抗霉素、公主岭霉素、多效霉素、农抗120、 中生菌素、武夷菌素等农用抗生素。
♦ 目前,国内外农用抗生素研究开发的重点主
要集中在 : 1、筛选新的活性化合物 2、重点对某些化合物进行结构改造 3、以先导化合物间接开发新农药 4、通过基因工程手段,有目的的得 到产生新抗生素的工程菌。 5、改进分离纯化方法 ,简化工艺流 程,来提高分离效率 。
贵大学硕士研究生公开学术报告
来自Ustilago esculenta抗真菌活 性物质的研究
报告人:罗金亮 专业:微生物与生化药学08
研究背景

真菌是最重要的植物病原类群,据统计, 由真菌引起的植物病害已达3万多种,约占 植物病害总数的70-80%。 ♦ 化学农药带来的一系列问题: ① 残留药物积累,不易分解 ② 抗药性上升 ③ 杀菌选择性差
♦ 农用抗生素是生物农药的重要类群之一,被认
为是植物病害防治最有希望的途径,其具有 如下优点 : ① 分解快,残留少,亲和性好 ② 作用浓度低,杀菌效果突出 ③ 高度的杀菌选择性 ④ 原料来源广,污染少
国内外研究现状

开发和应用始于英、美、日等国将医用抗 生素用于植物病害防治上的尝试。后来发 现了放线菌酮、抗霉素A以及一些多烯类农 用抗生素 ,之后又相继开发了杀稻瘟菌素S、春雷霉素、多抗霉素等一系列高效低毒 抗真菌农用抗生素新品种 。
相关文档
最新文档