高一函数练习题及答案2
人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)
2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。
高一函数考试题及答案
高一函数考试题及答案一、选择题(每题3分,共30分)1. 函数y=f(x)的定义域是所有实数,若f(2)=3,则f(-2)的值为()。
A. 3B. -3C. 1D. 02. 函数f(x)=2x+1的值域是()。
A. (-∞, +∞)B. [1, +∞)C. (-∞, 1]D. [0, +∞)3. 若函数f(x)=x^2-4x+3,求f(1)的值是()。
A. 0B. 1C. 2D. 34. 对于函数f(x)=\frac{1}{x},当x=2时,f(x)的值是()。
A. 0.5B. 1C. 2D. 45. 函数f(x)=\sqrt{x}的定义域是()。
A. (0, +∞)B. (-∞, 0)C. [0, +∞)D. (-∞, +∞)6. 函数f(x)=x^3-3x^2+2的单调递增区间是()。
A. (-∞, 1) ∪ (2, +∞)B. (-∞, 0) ∪ (3, +∞)C. (1, 2)D. (0, 3)7. 函数f(x)=\log_2(x)的值域是()。
A. (-∞, +∞)B. [0, +∞)C. (0, +∞)D. [1, +∞)8. 若函数f(x)=\sin(x),求f(\frac{π}{2})的值是()。
A. 0B. 1C. -1D. \frac{1}{2}9. 函数f(x)=x^2-6x+8的最小值是()。
A. -8B. 2C. 8D. 010. 函数f(x)=\frac{1}{x}在区间(0, +∞)上是()。
A. 单调递增B. 单调递减C. 先增后减D. 先减后增二、填空题(每题4分,共20分)1. 函数f(x)=x^2-2x+1的顶点坐标是()。
2. 若函数f(x)=x^3-3x^2+2x+1,求f'(x)的值是()。
3. 函数f(x)=\log_2(x)的定义域是()。
4. 函数f(x)=\sqrt{2x-1}的值域是()。
5. 若函数f(x)=\sin(x)+\cos(x),求f(0)的值是()。
(word完整版)高一数学函数经典习题及答案
函 数 练 习 题班级 姓名一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高一函数习题及答案
高一函数习题及答案高一函数习题及答案在高中数学中,函数是一个非常重要的概念。
学好函数对于学习高中数学以及将来的学习和工作都有着重要的意义。
在高一阶段,学生们开始接触到函数的概念和相关的习题。
下面我将为大家提供一些高一函数习题及其答案,希望能够帮助大家更好地理解和掌握函数的知识。
1. 习题一:已知函数f(x) = 2x + 3,求f(5)的值。
答案:将x = 5代入函数f(x)中,得到f(5) = 2 * 5 + 3 = 13。
2. 习题二:已知函数g(x) = x^2 - 4x + 5,求g(2)的值。
答案:将x = 2代入函数g(x)中,得到g(2) = 2^2 - 4 * 2 + 5 = 1。
3. 习题三:已知函数h(x) = 3x^2 + 2x - 1,求h(-1)的值。
答案:将x = -1代入函数h(x)中,得到h(-1) = 3 * (-1)^2 + 2 * (-1) - 1 = 0。
4. 习题四:已知函数f(x) = 2x + 3,求解方程f(x) = 7。
答案:将f(x) = 7代入函数f(x)中,得到2x + 3 = 7。
然后解方程得到x = 2。
5. 习题五:已知函数g(x) = x^2 - 4x + 5,求解方程g(x) = 0。
答案:将g(x) = 0代入函数g(x)中,得到x^2 - 4x + 5 = 0。
然后解方程得到x = 2或x = 3。
通过以上的习题,我们可以看到函数的概念在解决实际问题中起到了重要的作用。
函数可以将一个变量的值映射到另一个变量的值,通过对函数的运算和方程的求解,我们可以得到具体的结果。
除了以上的基本习题外,还有一些复杂一些的函数习题,需要运用更多的数学知识和技巧。
6. 习题六:已知函数f(x) = x^3 + 2x^2 - x + 1,求f'(x)。
答案:f'(x)表示函数f(x)的导数,对于多项式函数来说,求导的方法是将指数降低一次,并将系数乘以指数。
高中数学-经典函数试题及答案[2]
高中数学-经典函数试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学-经典函数试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学-经典函数试题及答案(word版可编辑修改)的全部内容。
(满分:150分 考试时间:120分钟)一、选择题:本大题共12小题。
每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( )A .0=xB .1-=xC .21=x D .21-=x2.已知1,10-<<<b a ,则函数b a y x +=的图象不经过 ( )A .第一象限B .第二象限C . 第三象限D . 第四象限3.函数62ln -+=x x y 的零点必定位于区间 ( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)4.给出四个命题:(1)当0=n 时,n x y =的图象是一条直线;(2)幂函数图象都经过(0,1)、(1,1)两点;(3)幂函数图象不可能出现在第四象限;(4)幂函数n x y =在第一象限为减函数,则n 0<.其中正确的命题个数是 ( )A .1B .2C .3D .45.函数x a y =在[0,1]上的最大值与最小值的和为3,则a 的值为 ( )A .21B .2C .4D .416.设)(x f 是奇函数,当0>x 时,,log )(2x x f =则当0<x 时,=)(x f ( )A .x 2log -B .)(log 2x -C .x 2logD .)(log 2x --7.若方程2(1+m )2x +4023=-+m mx 的两根同号,则m 的取值范围为 ( )A .12-<<-mB .12-<≤-m 或132≤<mC .1-<m 或32>m D .12-<<-m 或132<<m8.已知)(x f 是周期为2的奇函数,当10<<x 时,.lg )(x x f =设),23(),56(f b f a ==),25(f c =则 ( )A .c b a <<B . c a b <<C . a b c <<D . b a c <<9.已知01<<<<a y x ,则有 ( )A .0)(log <xy aB .1)(log 0<<xy aC .1<0)(log <xy aD .2)(log >xy a10.已知10<<a ,,0log log <<n m a a 则 ( )A .m n <<1B .n m <<1C .1<<n mD .1<<m n11.设,22lg )(x x x f -+=则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为 ( ) A .()4,0()0,4⋃- B .)4,1()1,4(⋃-- C .()2,1()1,2⋃-- D .()4,2()2,4⋃--12.已知⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a 是R 上的减函数,那么a 的取值范围是( ) A .(0,1) B .(0,)31 C .⎪⎭⎫⎢⎣⎡31,71 D .⎪⎭⎫⎢⎣⎡1,71 二、填空题:本大题共4小题,每小题4分,共16分。
完整版)高一数学函数经典习题及答案
完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
高一数学必修第一册2019(A版)_5.2.1_三角函数的概念_练习(2)(解析版)
5.2.1 三角函数的概念基础巩固1.若角α的终边经过点(1,-√3),则sin α=()A.-12B.-√32C.12D.√32【答案】B【解析】角α的终边经过点(1,-√3),则sin α=yr =-√32.2.sin(-1 380°)的值为()A.-12B.12C.-√32D.√32【答案】D【解析】sin(-1 380°)=sin(-360°×4+60°)=sin 60°=√32.3.若角α的终边上有一点P(0,3),则下列式子无意义的是()A.tan αB.sin αC.cos αD.都有意义【答案】A【解析】由三角函数的定义sin α=yr ,cos α=xr,tan α=yx,可知tan α无意义.4. 若θ是第二象限角,则()A.sinθ2>0 B.cosθ2<0C.tanθ2>0 D.以上均不对【答案】C【解析】因为θ是第二象限角,所以2kπ+π2<θ<2kπ+π,k∈Z,所以kπ+π4<θ2<kπ+π2,k∈Z,所以θ2是第一或第三象限角,所以tanθ2>0.5.已知α是第二象限角,P(x,√5)为其终边上一点,且cos α=√24x,则x的值为() A.√3 B.±√3 C.-√2 D.-√3【答案】D【解析】因为cos α=xr =√x2+5=√24x,所以x=0或2(x2+5)=16,所以x=0或x2=3,因为α是第二象限角,所以x<0,所以x=-√3.6.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于x轴对称,若sin α=15,则sinβ=________.【答案】-15 【解析】设角α的终边与单位圆相交于点P(x,y),则角β的终边与单位圆相交于点Q(x,-y),由题意知sin α=y=15,所以sin β=-y=-15. 7.计算:cos (-11π6)=________.【答案】√32 【解析】cos (-11π6)=cos (-2π+π6)=cos π6=√32. 8.判断下列各式的符号:(1)sin 340°·cos 265°.(2)sin 4·tan (-23π4).【答案】(1)sin 340°·cos 265°>0;(2)sin 4·tan (-23π4)<0.【解析】(1)因为340°是第四象限角,265°是第三象限角,所以sin 340°<0,cos 265°<0,所以sin 340°·cos 265°>0.(2)因为π<4<3π2,所以4是第三象限角,因为-23π4=-6π+π4,所以-23π4是第一象限角.所以sin 4<0,tan (-23π4)>0,所以sin 4·tan (-23π4)<0.能力提升9.sin 1·cos 2·tan 3的值是( ) A.正数B.负数C.0D.不存在【答案】A【解析】因为0<1<π2,π2<2<π,π2<3<π,所以sin 1>0,cos 2<0,tan 3<0,所以sin 1·cos 2·tan 3>0. 10.tan 405°-sin 450°+cos 750°=________.【答案】√32【解析】原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)=tan 45°-sin 90°+cos 30°=1-1+√32=√32.11.若角α的终边落在直线x+y=0上,则sinα|cosα|+|sinα|cosα=________.【答案】0【解析】当α在第二象限时,sinα|cosα|+|sinα|cosα=-sinαcosα+sinαcosα=0;当α在第四象限时,sinα|cosα|+|sinα|cosα=sinαcosα-sinαcosα=0.综上,sinα|cosα|+|sinα|cosα=0.12.求下列各式的值. (1)sin(-1 320°)cos 1 110°+cos(-1 020°)·sin 750°+tan 495°.(2)cos (-233π)+tan 174π.【答案】(1)0;(2)32.【解析】(1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin 120°cos 30°+cos 60°sin 30°+tan 135°=√32×√32+12×12-1=0.(2)原式=cos [π3+(-4)×2π]+tan (π4+2×2π)=cos π3+tan π4=12+1=32.素养达成13.若sin 2α>0,且cos α<0,判断α终边在第几象限.【答案】α为第三象限角.【解析】因为sin 2α>0,所以2kπ<2α<2kπ+π(k ∈Z),所以kπ<α<kπ+π2(k ∈Z).当k 为偶数时,α是第一象限角;当k 为奇数时,α为第三象限角.所以α是第一或第三象限角.又因为cos α<0,所以α为第三象限角.。
高一数学对数函数经典题及详细答案(2)(2021年整理)
(完整)高一数学对数函数经典题及详细答案(2)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高一数学对数函数经典题及详细答案(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高一数学对数函数经典题及详细答案(2)(word版可编辑修改)的全部内容。
高一数学对数函数经典练习题一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a -答案A 。
∵3a =2→∴a=log 32则: log 38-2log 36=log 323—2log 3(2*3) =3log 32—2[log 32+log 33] =3a-2(a+1) =a-22、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B.∵2log a (M —2N )=log a M+log a N,∴log a (M-2N)2=log a (MN ),∴(M-2N )2=MN ,∴M 2-4MN+4N 2=MN ,→m 2—5mn+4n 2=0(两边同除n 2)→(n m )2—5n m +4=0,设x=nm→x 2-5x+4=0→(x 2⎩⎨⎧==1x x 又∵2log (2)log log a a a M N M N -=+,看出M —2N 〉0 M>0 N>0∴n m =1即答案为:4 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a aa x m n x+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()12m n -答案D 。
高一数学指数函数和对数函数试题答案及解析
高一数学指数函数和对数函数试题答案及解析1.已知求的值.【答案】2【解析】解析:由可得x+x-1=7∴=……=18,故原式=2【考点】本题主要考查有理指数幂的运算。
点评:有理指数幂的运算,注意运用乘法公式,简化运算过程。
2.已知在上有,则是()A.在上是增加的B.在上是减少的C.在上是增加的D.在上是减少的【答案】C【解析】因为在上有,所以。
又在是减函数,所以是在上是增加的,故选C。
【考点】本题主要考查指数函数对数函数的性质,复合函数的单调性。
点评:注意讨论对数的底数取值情况。
3.函数的定义域是。
【答案】【解析】由解得,故答案为【考点】本题主要考查对数函数的性质。
点评:简单题,注意利用对数的底数大于0且不等于1。
4.已知函数,(1)求的定义域;(2)判断的奇偶性。
【答案】(1);(2)为非奇非偶函数.【解析】(1)∵,∴,又由得,∴的定义域为。
(2)∵的定义域不关于原点对称,∴为非奇非偶函数。
【考点】本题主要考查对数函数的图象和性质,复合函数,函数的奇偶性。
点评:判断函数的奇偶性,其必要条件是定义域关于原点对称。
5.在下列图象中,二次函数y=ax2+bx+c与函数y=()x的图象可能是()【答案】A【解析】首先由图可知,c=0.根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴-<0,可排除B与D选项C,a-b>0,a<0,∴>1,则指数函数单调递增,故C 不正确故选:A【考点】本题主要考查二次函数、指数函数的图象和性质。
点评:确定同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b 的正负情况是求解的关键。
6.函数在上的最大值与最小值的和为3,则.【答案】2;【解析】因为,指数函数是单调函数,所以函数在上的最大值与最小值在区间[0,1]端点处取到,=3,a=2.【考点】本题主要考查指数函数的图象和性质,指数不等式解法。
点评:指数函数是重要函数之一,其图象和性质要牢记。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.函数的定义域是()A.(-,-1)B.(1,+)C.(-1,1)∪(1,+)D.(-,+)【答案】C.【解析】出现在对数的真数位置,故>0,即,又出现在分式的分母上,故≠0,即,要使式子有意义,则这两者同时成立,即且,用区间表示即为(-1,1)∪(1,+).要使式子有意义,则,解得且,故选C.【考点】函数的定义域求法,对数函数的定义域2.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.3.函数,满足,则的值为()A.B. 8C. 7D. 2【答案】B【解析】因为,函数,所以,,10,又,故,8,选B。
【考点】函数的概念,函数的奇偶性。
点评:简单题,此类问题较为典型,基本方法是通过研究,发现解题最佳途径。
4.已知函数,,(1)若为奇函数,求的值;(2)若=1,试证在区间上是减函数;(3)若=1,试求在区间上的最小值.【答案】(1)(2)利用“定义法”证明。
在区间上是减函数(3) 若,由(2)知在区间上是减函数,在区间上,当时,有最小值,且最小值为2。
【解析】(1)当时,,若为奇函数,则即,所以(2)若,则=设为, =∵∴,∴>0所以,,因此在区间上是减函数(3) 若,由(2)知在区间上是减函数,下面证明在区间上是增函数.设 , =∵,∴∴所以,因此在区间上上是增函数因此,在区间上,当时,有最小值,且最小值为2【考点】函数的奇偶性、单调性及其应用点评:中档题,研究函数的奇偶性,要注意定义域关于原点对称。
【高一】北师大版高一数学必修1第二章函数练习题(含答案)
【高一】北师大版高一数学必修1第二章函数练习题(含答案)第二节对函数的进一步认识一、(每题5分,共20分)1.下列两个函数完全相同的是( )a、 Y=X2X和Y=XB Y=x2和Y=XC Y=(x)2和Y=XD Y=3x3和Y=x【解析】a中y=x2x的定义域为{xx≠0},而y=x的定义域为r;在C中,y=(x)2的域是[0,+∞), 而y=x的域是r,所以a和C是错误的;b中y=x2=x与y=x的对应关系不同,所以b错;在D中,y=3x3=x和y=x具有相同的域和对应关系,因此D是正确的【答案】d2.函数y=1x+1的定义字段为()a.[-1,+∞)b.[-1,0)c.(-1,+∞)d.(-1,0)【分析】要使函数公式有意义,必须满足x+1>0,∴x>-1,故定义域为(-1,+∞).[答:]C3.如图所示,可表示函数图象的是( )A.①B②③④C①③④d。
②【解析】因为在②图中,给定x的一个值,有两个y值与它对应,不满足函数的定义,而①、③、④均满足函数定义.[答:]C4.已知f(x)=x2+1,则f[f(-1)]的值等于( )a、 2b。
3c。
4d。
五【解析】f(-1)=2,∴f(f(-1))=f(2)=5.[答:]d二、题(每小题5分,共10分)5.以下几组数字用区间表示:(1){xx≥1}=.(2){x2<x≤4}=.(3){xx>-1且x≠2}=.[答](1)[1,+∞) (2) (2,4] (3) (- 1,2) ∪ (2, + ∞)6.函数y=-x2+2x+1的值域为.[分析]∵ y=-x2+2x+1=-(x-1)2+2≤ 2.∴函数的值域是(-∞,2].[答:]∞, 2)三、解答题(每小题10分,共20分)7.查找以下函数的域(1)f(x)=x+1x-1;(2) f(x)=11+1x。
【解析】(1)要使函数有意义,须x+1≥0x-1>0x≥-1x>1x>1∴f(x)的定义域为(1,+∞)(2)使函数有意义x≠01+1x≠0?x≠0且x≠-1F(x)的域是{XX∈ R和X≠ 0和X≠ - 1}8.已知函数f(x)=x2+x-1.(1)找到f(2);(2)找到f(1x+1);(3)如果f(x)=5,求x的值【解析】(1)f(2)=4+2-1=5.(2).(3)f(x)=5,即x2+x-1=5,也就是说,X2+X-6=0,解为X=2或X=-39.(10分)已知函数y=ax+1(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.[分析]已知函数y=ax+1(a<0且a为常数),∵ax+1≥0,a<0,‡x≤ - 1A,也就是说,函数的定义域是∵函数在区间(-∞,1]上有意义,∴,∴-1a≥1,a<0,——-1≤ a<0,即a的取值范围是[-1,0).。
高一数学函数试题和答案
(数学1必修)函数及其表示一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或23.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,54.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移12个单位6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13二、填空题1.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。
2.函数422--=x x y 的定义域 。
3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。
高一函数练习题及答案
高一函数练习题及答案高一函数练习题及答案函数是高中数学中的重要概念之一,也是数学学习的基础。
在高一的数学学习中,函数的概念和性质是必须要掌握的内容。
为了帮助同学们更好地理解和掌握函数,下面我将为大家提供一些高一函数练习题及答案,希望能对大家的学习有所帮助。
1. 已知函数f(x) = 2x + 3,求f(4)的值。
解答:将x = 4代入函数表达式中,得到f(4) = 2(4) + 3 = 8 + 3 = 11。
所以f(4)的值为11。
2. 已知函数g(x) = x^2 - 4x + 5,求g(-1)的值。
解答:将x = -1代入函数表达式中,得到g(-1) = (-1)^2 - 4(-1) + 5 = 1 + 4 +5 = 10。
所以g(-1)的值为10。
3. 已知函数h(x) = 3x^2 + 2x - 1,求h(2)的值。
解答:将x = 2代入函数表达式中,得到h(2) = 3(2)^2 + 2(2) - 1 = 12 + 4 - 1 = 15。
所以h(2)的值为15。
4. 已知函数k(x) = |x - 3|,求k(5)的值。
解答:将x = 5代入函数表达式中,得到k(5) = |5 - 3| = |2| = 2。
所以k(5)的值为2。
5. 已知函数m(x) = 2x^3 - x^2 + 3x - 2,求m(0)的值。
解答:将x = 0代入函数表达式中,得到m(0) = 2(0)^3 - (0)^2 + 3(0) - 2 = -2。
所以m(0)的值为-2。
通过以上的练习题,我们可以看到,函数的值可以通过将自变量代入函数表达式中来求得。
这是函数的基本性质之一。
除了求函数的值外,我们还可以通过函数的图像来了解函数的性质。
下面我们来看一个例子。
例题:已知函数y = x^2 - 4x + 3,求函数的图像。
解答:为了画出函数的图像,我们可以先找出函数的顶点和对称轴。
首先,我们可以通过求导数的方法来找出函数的顶点。
高一数学函数经典习题及答案
高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-((2x-1)+4-x^2)/(x+1)(x+3)-3/(x-1)^22、设函数f(x)的定义域为[-1,1],则函数f(x-2)的定义域为[-3,-1];函数f(2x-1)的定义域为[-1/2,1]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域是[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围为[-1/2,1/2]。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1)(5x^2+9x+4)-2/(x^2+ax+b) (x≥5)⑸y = x-3+1/x+2⑹y = x^2-x/(2x-1)+2⑺y = x-3+1/x+2⑻y = x^2-x/(2x-1)+2⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = (2x+1)/(x-1)的值域为[1,3],求a,b的值为(-1,5)。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x)和f(2x+1)的解析式为f(x) = x-3x,f(2x+1) = 2x-3x+2.2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,代入二次函数的通式y = ax^2+bx+c中,得到a = -1/2,b = 0,c = 1,所以f(x) = -(1/2)x^2+1.3、已知函数2f(x)+f(-x) = 3x+4,代入奇偶性的性质f(-x) = -f(x),得到f(x) = (3x+4)/4.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x(1+1/(x+1)),则f(x)在R上的解析式为f(x) = |x|(1+1/(|x|+1))。
高一数学函数习题(练习题以及答案
一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数的定义域为,则函数的定义域为_ _ _;函数的定义域为________;3、若函数(1)f x +的定义域为,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y =⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
2021年高一上学期期末重难点综合复习专题7:函数的应用(二)综合专练含解析
数 m 的取值范围是 ___________.
三、解答题
21. 已知函数 y = x2 + a - 3 x - 3a. (1)关于 x 的方程 y = 0 有一个正根和一个负根,求实数 a 的取值范围; (2)∀ x ∈ R,有 y > -41 恒成立,求实数 a 的取值范围; (3)解关于 x 的不等式 y < 0.
f(x) 的一对 “ 黄金点对 ”(注:点对 [A,B] 与 [B,A] 可看作同一对 “ 黄金点对 ”)已知函数
2x + 9,x < 0
f(x) = -x2 + 4x,0 ≤ x ≤ 4 ,则此函数的 “ 黄金点对 ” 有(
)
x2 - 12x + 32,x > 4
A. 0 对
B. 1 对
C. 2 对
故选:A
lgx ,0 < x ≤ 10
2. 函数 f(x) = -21 x + 6,x > 10 ,若 f(a)= f(b)= f(c)且 a,b,c 互不相等,则 abc 的取值范
围是(
)
A(. 1,10)
B(. 10,12)
C(. 5,6)
D(. 20,24)
【标准答案】B 【思路点拨】先画出分段函数的图象,根据图象确定字母 a、b、c 的取值范围,再利用函数解 析式证明 ab = 1,最后数形结合写出其取值范围即可 【精准解析】
15. 关于 x 方程 2ax2 - x - 1 = 0 在 0 < x < 1 内恰有一解,则 a 的取值范围 _______
16. 已知 f(x) = x -a 1 ,x ≤ 0 ,若关于 x 的方程 f[ f(x)] = 0 仅有一解,则 a 的取值范围是 ___ lgx,x > 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 x
C 1
C 2 C 4
C 3 1
y
一、选择题
1、下列幂函数是奇函数且为增函数的是 ( )
A 、1-=x y
B 、2
1
x y = C 、2
x
y
= D 、3
x
y
=
A 、a<b<c
B 、b<a<c
C 、c<a<b
D 、b<c<a 4、已知函数=-=+-=)(.)(.11lg )(a f b a f x
x x f 则若 ( )
A .b
B .-b
C .
b
1 D .-
b
1
6、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( )
A 、52a a ><或
B 、2335a a <<<<或
C 、25a <<
D 、34a <<
8、由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低31
,则现在
价格为8100元的计算机经 年后降为2400元. ( )
A .14
B .15
C .16
D .17 9、函数f(x)=)24(log 122x x -+-的定义域为( )
A 、[1,4]
B 、[)2,0
C 、 [)41-,
D 、[2,4] 10、图中的曲线是log a y x =的图象,已知a
,4
3,
3
10
,1
5
,则相应曲线1234
,,,C C C C 的a 依次为( ) A
.43,15,
310 B
.43
,3
10
,
15
C .15
,
310
,
43
,D .
43
,3
10
,
15
11、12log <a
(a>0且a ≠1),a 的取值范围为 ( )
A 、2>a
B 、2110<<<<a a 或
C 、210><<a a 或
D 、21<<a 12、已知)(x f 是偶函数,它在[)+∞,0上是减函数,若)
1()(lg f x f >,则x 的取值范围是
( )
A. )1,10
1(
B.),1()10
1,
0(+∞⋃ C.)10,10
1(
D.(0,1)∪(10,+∞)
二、填空题 13、=+3
4-
3
03
1-]2-[5
4
-0.064
)()(___________ ____;
14、已知函数⎩
⎨⎧≤>=0,30,log )(3x x x x f x
,则=-)]41
([f f 15、已知3643==y x ,则
=+
y
x
12
16、如果今后若干年内,我国国民经济生产总值都在平均每年增长9%的水平,则大约经 过 年国民生产总值比1995年翻两番。
17、函数2
12
log (2)y x =+的值域是_________.
18、已知函数22y x bx c =++在3,2⎛
⎫-∞-
⎪⎝
⎭上是减函数,在3,2⎛⎫
-+∞ ⎪⎝⎭
上是增函数,且两个零点12,x x 满足122x x -=,则二次函数的解析式 .
三、解答题 19、计算 log 24+lg
100
3+ln
e
+43lg 4-3lg 2+
21、某电器公司生产A 型电脑,2005年这种电脑每台平均生产成本为5000元,并以纯利润20%确定出厂价.从2006年开始,公司通过更新设备与加强管理使生产成本逐年降低。
到2009年,尽管A 型电脑出厂价是2005年的80%,但却实现了50%纯利润的高效益.
(1) 求2009年每台A 型电脑的生产成本;
(2) 以2005年的生产成本为基数,求从2005年至2009年生产成本平均每年降低的百分数(精确度
0.01以下数据可供参考:)449.26,236.25==
22、 设1
2
1()log 1
ax f x x -=-为奇函数,a 为常数.
(1)求a 的值;(2) 证明)(x f 在区间(1,+∞)内单调递增;
(3)若对于区间[3,4]上的每一个x 的值,不等式)(x f >1
()2x
m +恒成立,求实数m 的取值范围.
1-12 ABBBC BCBBA CC 13、
16
23 16
2316
114
10]2-[5
4
-0.064
3
4-
3
03
1-
=
+
-=
+)()(
14、=-
)]4
1([f f 4
1)3(4
1-
=-f
15、1
14log
3log
21236
36
=+=+
y
x
16、16 由a a x
4%)91(=+,可解得16≈x
17、(]1,-∞-
18、2
5622
+
+=x x y
19、(1)解:log 24+lg
100
3
+ln
e
+
4
3lg 3lg 2
+-=2
)
23(lg 2
123lg 2-++
-+
= |23lg |2
123lg 2-++
-+=
2
5
20、解:当a>1时,可化为0112>+>-x x ,解得:x>2
当0<a<1时,可化为1120+<-<x x ,解得:
22
1<<x
综上所述:当a>1时,解集}2|{>x x ;当0<a<1时,解集为{}22
1|
<<x x
21、解:(1)一方面可以根据2005年的出厂价求得2009年的出厂价;另一方面根据题意可将2009年的出厂价用2009年生产成本来表示,列方程求解。
设2009年的生产成本为x 元,依题意,得501(+x %)=5000(1+20%)80%,解得3200=x
(2)设2005——2009四年间成本平均每年降低的百分为y ,则依题意,得
3200)1(50004
=-y ,解得5
5211-
=y ,5
5212+
=y (舍去)
所以,11.05
5211≈-
=y =11%。
答略。
22、(1)∵ f(-x)=-f(x),∴1
1
1
2
2
2
111log log log 11
1ax ax x x
x ax
+--=-=----.
∴
111
1ax x x ax
+-=
---,即(1)(1)(1)(1)ax ax x x +-=-+-,∴a =-1.
(2)由(1)可知f (x)=1
2
1log 1
x x +-12
2log (1)1
x =+
-(x>1) 记u(x)=1+
2
x -1
, 由定义可证明u(x)在(1,+∞)上为减函数, ∴ f (x)=1
2
1log 1
x x +-在(1,+∞)上为增函数.
(3)设g(x)=1
2
1log 1
x x +--1
()2
x
.则g(x)在[3,4]上为增函数. ∴g(x)>m 对x ∈[3,4]恒成立,∴
m<g(3)=-9
8
.。