第十三章 函数列与函数项级数习题
函数列与函数项级数
法
2021/6/21
n=2y3=x.^6;y4=x.^100;
plot(x,y1,x,y2,x,y3,'b',x,y4,'r','linewidth',2)
2021/6/21
19
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1 2.
0 ,
2021/6/21
7
所以该函数列是不一致收敛的。 例 函数列 {xn}在[0,1]上不一致收敛,但在 [0, ] , 1 上一致收敛。 先看看该函数列的图象
clf,x=0:1/100:1; y1=x.^4;y2=x.^10;y3=x.^50; plot(x,y1,x,y2,x,y3,'linewidth',2)
对定义在区间 I 上的函数列{ fn (x) }, x E ,设 x0 E ,若数列 { fn (x0 ) } 收 敛,则称函数列{ fn (x) }在点 x0 收敛, x0 称为函数列{ fn (x) }收敛点;若数列 { fn (x0 ) }发散,则称函数列{ fn (x) }在点 x0 发散。
clf,x=0:1/100:1; y1=8*x./(1+64*x.^2); y2=20*x./(1+400*x.^2); y3=50*x./(1+2500*x.^2); plot(x,y1,x,y2,x,y3,'linewidth',2) hold on plot([-0.1,1],[0,0],'b',[0,0],[-0.1,0.6],'b') axis([-0.1,1.2,-0.1,0.6]) legend('y1,n=8','y2,n=20','y3,n=50')
(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解
目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。
13.2一致收敛函数列与函数项级数级数的性质
因为函数列 { fn } 在 [a , b]上一致收敛于 f ,所以
对任给的ε> 0 , 存在 N > 0 , 当 n > N 时,对一切
x ∈ [a , b],
都有
| fn ( x ) - f ( x ) | < ε
b
于是当 n > N 时有
| f n ( x ) dx f ( x ) dx |
由柯西准则知数列 { an } 收敛.
设
lim a n A ,
n
x x0
下面证明: lim f ( x ) A . 因为{ fn } 一致收敛于 f ,数列 { an } 收敛于 A , 因此对任给的ε > 0 , 存在 N > 0 , 当 n > N 时, 对任何 x ∈(a , x0 )∪(x0 , b) 有 | fn(x) – f (x) | <ε/3 和 | an – A | <ε/3 同时成立.特别取 n = N +1,有 | fN+1(x) – f (x) | <ε/3 和 | aN+1 – A | <ε/3
n
( iii ) lim f n ( a ) 不存在,
n
则{ f n ( x )} 在 ( a , b )内不一致收敛
定理 13.9(连续性) 设函数列 { fn } 在区间 I 上一致收敛于 f ,且 fn ( n = 1, 2, . . . ) 在 I 上连续, 则 f在 I 上也连续.
证 要证:对任何 x0 ∈I , lim f ( x ) f ( x 0 ) .
x x0
由定理 13.8, lim lim lim f ( x ) x x lim f n ( x ) lim x x f n ( x ) n n
函数列与函数项级数一致收敛性解析
第十三章函数列与函数项级数§1 一致收敛性(一) 教学目的:掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(二) 教学内容:函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法.基本要求:1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法.2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。
3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判别及应用。
(三) 教学建议:(1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法.————————————————————一函数列及其一致收敛性对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。
使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。
若函数列})({x f n 在数集E D ⊂上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值)()(lim x f x f n n =∞→与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。
函数项级数和函数列一致收敛
函数项级数和函数列一致收敛函数项级数和函数列是数学中非常重要的概念。
在许多数学领域,我们经常会遇到这两个概念,并且它们在解决许多问题时发挥着重要的作用。
本文将介绍函数项级数和函数列的概念,并探讨它们之间的联系和应用。
首先,我们来看看函数项级数的概念。
一个函数项级数是指一系列函数的无穷和。
具体而言,给定一个函数项级数$\sum_{n=1}^{\infty}f_n(x)$,其中$f_n(x)$是一个函数序列。
我们可以将级数记为$S(x)=\sum_{n=1}^{\infty}f_n(x)$。
函数项级数的收敛性是指$S(x)$是否存在有限的极限。
当级数对于所有的$x$都收敛时,我们说该函数项级数是一致收敛的。
与之相对应的是函数列。
函数列是一系列函数的序列。
对于给定的$x$,函数列的极限是指当$n$趋向于无穷大时,函数序列中的每个函数在$x$处的极限都存在,并且这些极限构成了一个函数。
具体而言,给定一个函数列$(f_n(x))$,其极限为$f(x)$,可以表示为$\lim_{n\to\infty}f_n(x)=f(x)$。
函数项级数和函数列之间存在着紧密的联系。
实际上,函数项级数可以看作是函数列的一种特殊情况。
考虑一个函数项级数$\sum_{n=1}^{\infty}f_n(x)$,我们可以构造一个函数列$(S_n(x))$,其中$S_n(x)$表示级数的部分和,即$S_n(x)=\sum_{k=1}^{n}f_k(x)$。
函数列$(S_n(x))$就是函数项级数$\sum_{n=1}^{\infty}f_n(x)$的部分和函数列。
一个重要的问题是函数项级数和函数列的收敛性之间的关系。
当级数对于所有的$x$都收敛时,我们说该函数项级数是一致收敛的。
类似地,当函数列对于所有的$x$都收敛时,我们也说该函数列是一致收敛的。
可以证明,函数项级数的一致收敛性等价于其部分和函数列的一致收敛性。
也就是说,如果函数项级数收敛于函数$S(x)$,那么它的部分和函数列也收敛于$S(x)$。
《数学分析(3)》知识点整理
《数学分析(3)》复习资料第十三章 函数列与函数项级数(5%)1.(1)函数列收敛域为(),1,2,nn f x x n == (1,1]-,极限函数为0,1,()1, 1.x f x x ⎧<⎪=⎨=⎪⎩.(2)函数列sin (),1,2,n nxf x n n == 收敛域为(,)-∞+∞,极限函数为()0f x =. 2.(1)函数列在(02(),1,2,nx n f x nxe n -== ,)+∞上不.一致收敛. (2)函数列()1,2,n f x n == 在(1,1)-上一致收敛. (3)函数列22(),1,2,1n xf x n n x ==+ 在(,上一致收敛.)-∞+∞(4)函数列(),1,2,n xf x n n== 在[0上不.一致收敛. ,)+∞(5)函数列()sin,1,2,n xf x n n== 在上不.一致收敛. (,-∞+∞)3.(1)函数项级数nn x∞=∑在(1上不.一致收敛. ,1)-(2)函数项级数2sin nx n ∑,2cos nxn ∑在上一致收敛.(,-∞+∞)(3)函数项级数(1)!nx n -∑在上一致收敛. [,]r r -(4)函数项级数122(1)(1)n nx x --+∑在(,上一致收敛. )-∞+∞(5)函数项级数n n x ∑在11r x r r ∙>⎧⎪>⎨=⎪⎩上一致收敛上不一致收敛.(6)函数项级数2nx n ∑在上一致收敛.[0,1](7)函数项级数12(1)n x n --+∑在上一致收敛.(,-∞+∞)(8)函数项级数221(1)n x x -+∑在(,上不.一致收敛. )-∞+∞第十四章 幂级数(10%)1.对于幂级数,若0n n n a x ∞=∑lim n ρ=(1limn n na a ρ+→∞=) 则(i )当0ρ=时,收敛半径R =+∞,收敛域为(,)-∞+∞;(ii )当ρ=+∞时,收敛半径,仅在0R =0x =处收敛; (iii )当0ρ<=+∞时,收敛半径1R ρ=,收敛域为(,)R R -,还要进一步讨论区间端点x R =±处的敛散性.2.幂级数展开式: (1)()2(0)(0)(0)()(0)1!2!!n nf f f f x f x x x n '''=+++++(2)011nn x x ∞==-∑,01(1)1n n n x x ∞==-+∑ (1x )<. (3)2(1)(1)(1))12!!m n m m m m m n x mx x x n ---++=+++++ (11)x -<<111],.1110101m m m ≤--⎧⎪-<<-⎨⎪>-⎩时,收敛域为(,)时,收敛域为(,]时,收敛域为[,(1(4)1110(1)(1)ln(1)(11)1n n n n n n x x x x n n -∞∞+==--+==-<≤+∑∑,1ln(1)nn x x n∞=--=∑ (11)x -≤<. (5)210(1)sin (21)!n n n x x n ∞+=-=+∑,20(1)cos (sin )(2)!n nn x x n ∞=-'==∑ ()x -∞<<+∞.(6)10(1)arctan (11)21n n n x x n ∞+=-=-≤+∑≤(7)0)!nxn x n ∞==-∞<<+∞∑e x3.幂级数的和函数(1)1)(0,1,2,k 1knn kx x x x ∞==<-)∑ = . (2)()(1)1)1knnn kx x x x ∞=--=<+)∑ . (0,1,2,k = (3)1ln(1)nn x x n∞==--∑ .(11)x -≤<(4)121111()1(1)n nn n n n x nxx x x x ∞∞∞-===''⎛⎫⎛⎫'==== ⎪ ⎪--⎝⎭⎝⎭∑∑∑ (1x )<. (5)223)21111(1)()1(1)(1n n n n n n x n n x x x x x x ∞∞∞-==='''''⎛⎫⎛⎫⎛⎫''-===== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭∑∑∑ (1x <). 第十五章 傅里叶级数(10%)()f x 是以2π为周期且在[,]ππ-上可积的函数: 1.01()(cos sin )2n n n a f x a nx b nx ∞==++∑,01()a f x πππ-=⎰dx ,1()cos n a f x nx πππ-=⎰dx ,1()sin nbf x nx πππ-=⎰dx 1,2,n ,= .2.01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,01()ll a f x l -=⎰dx , 1()cos l n l n x a f x dx πl l -=⎰,1()sin l n l n xb f x dx πl l-=⎰,1,2,n = .3.(1)偶函数的傅里叶级数:01()cos2n n a n x f x a l π∞==+∑,012()cos ()cos l l n l n x n xa f x dx f x dx πl l l l π-==⎰⎰,. 1,2,n = 01()cos 2n n a f x a nx ∞==+∑,012()cos ()cos n a f x nxdx f x nxd πππππ-==⎰⎰x ,1,2,n = .(2)奇函数的傅里叶级数:1()sinn n n x f x b lπ∞==∑,012()sin ()sin l l n l n x n xf x dx f x dx l l l l πb π-==⎰⎰1,2,,n = .1()sin n n f x b ∞==∑nx ,012()sin ()sin n b ,f x nxdx f x nxdx πππππ-==⎰⎰1,2,n = .第十六章 多元函数的极限与连续(5%)1.若累次极限00lim lim (,)x x y y f x y →→,00lim lim (,)y y x x f x y →→和重极限00(,)(,)lim (,)x y x y f x y →都存在,则三者相等.2.若累次极限00lim lim (,)x x y y f x y →→与00lim lim (,)y y x x f x y →→存在但不相等,则重极限00(,)(,)lim (,)x y x y f x y →必不存在.3.2222(,)(0,0)lim 0x y x y x y →=+,2222(,)(0,0)1lim x y x y x y →++=+∞+,22(,)lim 2x y →=,22(,)(0,0)1lim ()sin 0x y x y x y →+=+,2222(,)(0,0)sin()lim 1x y x y x y →+=+. 第十七章 多元函数微分学(20%)1.全微分:z zdz dx dy x y ∂∂=+∂∂. 2.zzz x y x yx x y yt t∂∂s t s sts∂∂∂∂∂∂∂∂∂∂z z x z y s y t∂∂∂∂∂=+s x s y z z x z t x t y ∂∂∂∂∂∂∂∂∂∂=+∂∂∂∂∂. 3.若函数f 在点可微,则0P f 在点沿任一方向的方向导数都存在,且0P 000(,,)l x y z 0000()()cos ()cos ()cos l x y z f P f P f P f P αβγ=++,其中cos α,cos β,cos γ为方向l x 的方向余弦,000(,,)y z即cos α=cos β=,cos γ=4.若(,,)f x y z 在点存在对所有自变量的偏导数,则称向量0000(,,)P x y z 000((),(),())x y z f P f P f P 为函数f 在点的梯度,记作0P 000(),()ad )z ((),x y gr f P f =P f P f .向量grad f 的长度(或模)为gra d f =.5.设,(,z f x y xy =+)f 有二阶连续偏导数,则有1211z 212()z f yf z x x y y y ∂⎛⎫∂ ⎪''∂+∂∂⎝⎭==∂∂∂∂2f f y f yf x∂'''=⋅+⋅=+∂',11122212221112221(1)()f f x f y f f x f f x y f xyf ''''''''''''''''=⋅+⋅++⋅+⋅=++++.6.设,令00()()0x y f P f P ==0()xx f P A =,0()xy f P B =,0()yy f P C =,则(i )当,时,20AC B ->0A >f 在点取得极小值; 0P (ii )当,20AC B ->0A <时,f 在点取得极大值; 0P (iii )当时,20AC B -<f 在点不能取得极值; 0P (iv )当时,不能肯定20AC B -=f 在点是否取得极值.0P 第十八章 隐函数定理及其应用(10%)1.隐函数,则有(,)0F x y =x yF dydx F =-. 2.隐函数,则有(,,)0F x y z =x z F zx F ∂=-∂,y zF z y F ∂=-∂(,,,)0(,,,)0F x y u v G x y u v . =⎧⎨3.隐函数方程组:=⎩,有x yu v xyuv F F F F F F F F x y u v G G G G GG G G x yuv ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫ ⎪⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭, 则uv uv uv F F J G G =,xv xv xv F F J G G =,uxux u x F F J G G =,y v yv y v F F J G G =,uyuy uyF F JG G =, xv uv J u x J ∂=-∂ ,ux uv J vx J ∂=-∂,yv uv J u y J ∂=-∂,uy uvJ v y J ∂=-∂. 4.平面曲线在点的切线..方程为(,)0F x y =000(,)P x y 000000(,)()(,)()0x y F x y x x F x y y y -+-=, 法线..方程为000000(,)()(,)()0y x F x y x x F x y y y -+-=. 5.空间曲线:在点处的L (,,)0(,,)0F x y z G x y z =⎧⎨=⎩0000(,,)P x y z切线..方程为00z x yz x y z x y z x y 0x x y y z z F F F F F F G G G G G G ---==⎛⎫⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭⎝⎫⎪⎭00000()()()0x y z F x x F y y F z z , 法线..方程为. 00()()()yz xy zx yz xy zx F F F F F F x x y y z z G G G G G G ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6.曲面在点处的切平面...方程为(,,)0F x y z =0000(,,)P x y z -+-+-=, 法线..方程为00x y 0zx x y y z z F F F ---==. 7.条件极值例题:求函数在约束条件22u x y z =++222z x y =+与4x y z ++=下的最大值和最小值.解:令,22222(,,,,)()(4)L x y z x y z z x y x y z λμλμ=+++--+++-则由,得稳定点22220222040x yz L x x L y y L z L z x y L x y z λμλμλμλμ=-+=⎧⎪=-+=⎪⎪=++=⎨⎪=--=⎪=++-=⎪⎩00112x y z =⎧⎪=⎨⎪=⎩及228x y z =-⎧⎪=-⎨⎪=⎩,故当1x y ==,时函数在约束条件下取得最小值, 2z =22u x y z =++28z =26当,时函数在约束条件下取得最大值.2x y ==-22u x y z =++72第十九章 含参量积分(5%)1.,;10()s xs x e +∞--Γ=⎰dx 0s >(1)(s s )s Γ+=Γ;1(2Γ=;1()2n Γ+=,1()2n Γ-=. 2.1110(,)(1)p q p q x x ---⎰)dx (0,0p q >>B =;(,)(,)p q q p B =B ;1(,)(,1)1q p q p q p q -B =B -+- ;(0,1p q >>)1(,)(1,)1p p q p q -p q B =B -+-) ;(1,0p q >>(1)(1)(,)(1,1)(1)(2)p q p q p q p q p q --B =B --+-+- .(1,1p q >>)3.()()(,)()p q p q p q ΓΓB =Γ+ .(0,0p q >>)第二十章 曲线积分(5%)1.设有光滑曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,函数(,)f x y 为定义在L 上的连续函数,则(,)((),(Lf x y ds f t t βαϕψ=⎰⎰;当曲线由方程L ()y x ψ=,[,]x a b ∈表示时,(,)(,(bLaf x y ds f x x ψ=⎰⎰.2.设平面曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,其中()t ϕ,在[,]αβ上具有一阶连续导函数,且((),())A ϕαψα,((),())B ϕβψβ. 又设与为上的连续函数,则沿L 从A 到(,)P x y (,)Q x y L B 的第二型曲线积分(,)(,)[((),())()((),())()]LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ''+=+⎰⎰.第二十一章 重积分(20%)1.若(,)f x y 在平面点集}{12(,)()(),D x y y x y y x a x b =≤≤≤≤(x 型区域)上连续,其中1()y x ,2()y x 在[,上连续,则]a b 21()()(,)(,)b y x ay x Df x y d dx f x y dy σ=⎰⎰⎰⎰,即二重积分可化为先对y ,后对x 的累次积分.若}{12(,)()(),D x y x y x x y c y d =≤≤≤≤,其中1()x y ,2()x y 在]上连续,则二重积分可化为先对[,c d x ,后对y 的累次积分21()()(,)(,dx y cx y D)f x y d dy f x y σ=⎰⎰⎰⎰dx .在二重积分中,每次积分的上、下限一定要遵循“上限大,下限小”的原则,且一般来说,第一次(先)积分的上、下限一般为第二次(后)积分的积分变量的函数或常数,而第二次(后)积分的上、下限均为常数. 2.格林公式:若函数,在闭区域上连续,且有一阶偏导数,则有(,)P x y (,)Q x y D ()L DQ Pd Pdx Qdy x yσ∂∂-=+∂∂⎰⎰⎰ (或L Dx y d Pdx Q +dy P Qσ∂∂∂∂=⎰⎰⎰ D ),这里为区域的边界曲线,并取正方向. L 3.设是单连通闭区域.若函数,在内连续,且具有一阶连续偏导数,则以下四个条件等价:D (,)P x y (,)Q x y D (i )沿内任一按段光滑封闭曲线,有D L 0LPdx Qdy +=⎰;(ii )对中任一按段光滑曲线,曲线积分与路线无关,只与的起点及终点有关;D L LPdx Qdy +⎰L (iii )是内某一函数的全微分,即在内有Pdx Qdy +D (,)u x y D du Pdx Qdy =+;(iv )在内处处成立D P Qy x∂∂=∂∂. (,)4.设f x y 在极坐标变换cos ,:sin ,x r T y r θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域与D r θ平面上区域∆对应,则成立(,D)(cos ,sin )f x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.通常积分区域为圆形、扇形、环形或为其一部分,或积分区域的边界线用极坐标方程表示较简单,且被积函数为22()f x y +,(y f x ,(xf y,()f x y +等形式时常选用在极坐标系下计算二重积分.5(1)柱面坐标变换cos ,0,:sin ,02,.x r r T y rz z z θ,θθπ=≤⎧⎪=≤⎨⎪=-∞<<⎩<+∞≤+∞(,,)V 三重积分的柱面坐标换元公式为f x y z dxdydz ⎰⎰⎰(cos ,sin ,)V f r r z rdrd dz θθθ'=⎰⎰⎰,这里V '为V 在柱面坐标变换下的原象.(2)球坐标变换T y sin cos ,0,:sin sin ,0,cos ,02.x r r r z r ϕθϕθϕπϕθπ=≤<+∞⎧⎪=≤≤⎨⎪=≤≤⎩三重积分的球坐标换元公式(,,)Vf x y z dxdydz ⎰⎰⎰2(sin cos ,sin sin ,cos )sin V f r r r r drd d ϕθϕθϕϕϕ'=⎰⎰⎰θ,这里V '为V 在球坐标变换下的原象.DS ∆=.6.曲面面积计算公式:第二十二章 曲面积分(10%)1.设有光滑曲面),(,:(,S z z x y =)x y D ∈,(,,)f x y z 为上的连续函数,则S (,,)(,,(,SDf x y z dS f x y z x y =⎰⎰⎰⎰. 2.设R 是定义在光滑曲面:(,S z z x y )=,(,)xy x y D ∈上的连续函数,以的上侧为正侧(这时的法线方向与轴正向成锐角),则有S S z (,,),))(,,(xySD R x y z dxdy x y dxdy =⎰⎰R x y z ⎰⎰.3.高斯公式:设空间区域V 由分片光滑的双侧封闭曲面围成.若函数,,S P Q R 在V 上连续,且有一阶连续偏导数,则(VSP Q Rdxdydz Pdydz Qdzdx Rdxdy x y z ∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ ,其中取外侧. S 4.斯托克斯公式:设光滑曲面的边界是按段光滑的连续曲线.若函数,Q ,S L P R 在(连同)上连续,且有一阶连续偏导数,则S L ()(()L P =⎰ S P R Q P dydz dzdx dxdy d Q z x x y ∂∂∂∂-+-∂∂∂∂⎰⎰R Q y z ∂∂∂∂x dy +Rd +z (或-+Sdz dzdx dxdydy x y z P Q R∂∂∂∂∂∂⎰⎰ LPdx Qdy Rdz =++⎰ ),其中的侧与的方向按右手法则确定. S L。
数学分析13.2一致收敛函数列与函数项级数的性质
第十三章 函数列与函数项级数 2 一致收敛函数列与函数项级数的性质定理13.8:设函数列{f n }在(x,x 0)∪(x 0,b)上一致收敛于f(x),且对每个n ,x n lim →f n (x)=a n ,则∞→n lim a n 和0x n lim →f(x)均存在且相等.证:∀ε>0,∵{f n }一致收敛于f(x),∴∃N>0,当n>N 和任意自然数p , 对一切x ∈(x,x 0)∪(x 0,b)有,|f n (x)-f n+p (x)|< ε,∴|a n -a n+p |=0x n lim →|f n (x)-f n+p (x)|≤ε,∴{a n }是收敛数列. 设∞→n lim a n =A ,则∀ε>0,∃N>0,当n>N 时,对一切x ∈(x,x 0)∪(x 0,b)同时有, |f n (x)-f(x)|<3ε和|a n -A|<3ε. 特别取n=N+1,有|f N+1(x)-f(x)|<3ε和|a N+1-A|<3ε. 又0xn lim →f N+1(x)=a N+1,∴∃δ>0, 当0<|x-x 0|<δ时,|f N+1(x)-a N+1|<3ε,从而当x 满足0<|x-x 0|<δ时,有 |f(x)-A|≤|f N+1(x)-f(x)|+|f N+1(x)-a N+1|+|a N+1-A|<3ε+3ε+3ε=ε, 即0xn lim →f(x)=A ,得证!注:定理13.8指出:∞→→n x n lim lim 0f n (x)=0xn n lim lim →∞→f n (x).定理13.9:(连续性)若函数列{f n }在区间I 上一致收敛,且每一项都连续,则其极限函数f 在I 上也连续.证:设x 0为I 上任一点,∵0xn lim →f n (x)=f n (x 0),由定理13.8知, 0x n lim →f(x)存在,且0x n lim →f(x)=∞→n lim f n (x 0)=f(x 0),∴f(x)在I 上连续.注:定理13.9指出:各项为连续函数的函数列在区间I 上其极限函数不连续,则此函数列在区间I 上不一致收敛. 如: 函数列{x n }各项在(-1,1]上都连续,但其极限函数f(x)=⎩⎨⎧=< 1x 11|x |0,,在x=1时不连续,所以{x n }在(-1,1]上不一致收敛.推论:若连续函数列{f n }在区间I 上内闭一致收敛于f ,则f 在I 上连续.定理13.10:(可积性)若函数列{f n }在[a,b]上一致收敛,且每一项都连续,则⎰∞→b an lim f n (x)dx=⎰∞→ban n (x )f lim dx.证:设f 是{f n }在[a,b]上的极限函数. 由定理13.9,f 在[a,b]上连续, ∴f n (n=1,2,…)与f 在[a,b]上都可积. ∵在[a,b]上f n (x)⇉f(x) (n →∞), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b]都有|f n (x)-f(x)|<ε. 根据定积分的性质,当n>N 时,有⎰⎰-baban f(x)dx (x)dx f =f(x))dx (x)(f ban -⎰≤dx f(x )(x )f ban ⎰-≤ε(b-a).∴⎰∞→ban n(x )f lim dx=⎰ba f(x )dx =⎰∞→ba n lim f n (x)dx. 得证!例1:举例说明当{f n (x)}收敛于f(x)时,一致收敛性是极限运算与积分运算交换的充分条件,但不是必要条件.解:如f n (x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<≤<≤ 1x n 10,n 1x n 21x ,2na -a 2n21x 0 ,x 2na n n n , n=1,2,…. 其图像如图:{f n (x)}是[0,1]上的连续函数列,且∀x ∈[0,1],∞→n lim f n (x)=0=f(x). 又Dx sup ∈|f n (x)-f(x)|=a n ,∴{f n (x)}在[0,1]上一致收敛于0的充要条件是:∞→n lim a n =0.∵⎰10n (x )f dx=2na n,∴⎰10n (x )f dx →⎰10f(x )dx=0的充要条件是:2n a lim n n∞→=0. 当a n ≡1时,{f n (x)}在[0,1]上不一致收敛于f(x),但定理13.10仍成立. 而当a n =n 时,{f n (x)}不一致收敛于f(x), 且⎰10n (x )f dx ≡21不一致收敛于⎰10f(x )dx=0.定理13.11:(可微性)设{f n }为定义在[a,b]上的函数列,若x 0∈[a,b]为{f n }的收敛点,{f n }的每一项在[a,b]上有连续的导数,且{f ’n }在[a,b]上一致收敛,则())x (f lim dx d n n ∞→=⎪⎭⎫⎝⎛∞→)x (f dx d limn n . 证:设)x (f lim 0n n ∞→=A ,f ’n ⇉g (n →∞), x ∈[a,b],则对任一x ∈[a,b],总有f n (x)=f n (x 0)+⎰'x x n 0(t)f dt. 两边对n →∞取极限得:)x (f lim n n ∞→=A+⎰xx 0g(t)dt ,又)x (f lim n n ∞→=f(x),∴f(x)=A+⎰xx 0g(t)dt. 两边微分得证!推论:设函数列{f n }定义在区间I 上的,若x 0∈I 为{f n }的收敛点,且{f ’n }在I 上内闭一致收敛,则f 在I 上可导,且f ’(x)=())x (f lim n n '∞→.例2:举例一致收敛性是极限运算与求导运算交换的充分条件,但不是必要条件. 解:如函数列f n (x)=2n 1 ln(1+n 2x 2)及f ’n (x)=22x n 1nx+, n=1,2,… 在[0,1]上都收敛于0,即∞→n lim f n (x)=∞→n lim f ’n (x)=0,∴在[0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.又由][0,1x ∞n max lim ∈+→|f ’n (x)-f ’(x)|=nx 2nx lim∞n +→=21, 知 导函数列{f ’n (x)}在[0,1]上不一致收敛. 但对任意δ>0,有,1][δx sup ∈|f ’n (x)-f ’(x)|=22,1] [δx x n 1nx sup+∈≤22δn 1n+→0 (n →∞), ∴{f ’n }在(0,1]上内闭一致收敛. ∴在(0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.定理13.12:(连续性)若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则其和函数在[a,b]上也连续. 即有:∑⎪⎭⎫ ⎝⎛→(x)u lim nx n 0=()∑→(x)u lim n x n 0. 证:设x 0为[a,b]上任意一点,∑(x)u n 在区间[a,b]上一致收敛于S(x). 则∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b],有|S(x)-S n (x)|<3ε, |S n (x 0)-S(x 0)|<3ε, 又u n (x)在[a,b] 上连续(n=1,2,……), ∴对取定的n>N ,S n (x)在[a,b]上连续,∴对上述的ε,∃δ>0, 当x ∈[a,b],且|x-x 0|<δ时,|S n (x)-S n (x 0)|<3ε ,∴当x ∈[a,b]时,|S(x)-S(x 0)|=|S(x)-S n (x)+S n (x)-S n (x 0)+S n (x 0)-S(x 0)| ≤|S(x)-S n (x)|+|S n (x)-S n (x 0)|+|S n (x 0)-S(x 0)|<ε. 即S(x)在x 0连续, 从而在[a,b]上连续. 得证!定理13.13:(逐项求积) 若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则∑⎰ba n (x )u dx =⎰∑ba n (x )u dx.定理13.14:(逐项求导) 若函数项级数∑(x)u n 在每一项都有连续的导函数,x 0∈[a,b]为∑(x)u n 的收敛点,且∑'(x)u n 在[a,b]上一致收敛,则∑⎪⎭⎫ ⎝⎛(x )u dx d n =()∑(x)u dxdn . 证:设∑'(x)u n 在[a,b]上一致收敛于S *(x),∵u ’n (x)在[a,b]上连续, 由定理13.12知,S *(x)在[a,b]上连续. 又由定理13.13知,∀x ∈[a,b], 有⎰xa *(t)S dt=⎰∑'ba n (t)u dt=∑⎰'xa n (t)u dt =∑(x)u n -∑(a)u n =S(x)-S(a). 等式两端对x 求导得:S ’(x)=S *(x)=∑'(x)u n ,得证!例3:设u n (x)=3n1ln(1+n 2x 2), n=1,2,…. 证明:函数项级数∑(x)u n 在[0,1]上一致收敛,并讨论其和函数在[0,1]上的连续性、可积性与可微性. 证:对每个n ,易见u n (x)在[0,1]上递增,且当t ≥1时,有ln(1+t 2)<t , ∴u n (x)≤u n (1)=3n 1ln(1+n 2)<3n 1·n=2n1, n=1,2,… 又∑2n1收敛,∴∑(x)u n 在[0,1]上一致收敛. 由每一个u n (x)在[0,1]上连续,知其和函数在[0,1]上的连续且可积.又u ’n (x)=)x n 1(n x2n 2232+=)x n 1(n 2x 22+≤)x n 1(n 2nx 222+≤2n 1, n=1,2,…知 ∑'(x)u n在[0,1]上一致收敛. ∴其和函数在[0,1]上可微.例4:证明:函数ζ(x)=∑∞=1n x n 1在(1,+∞)上有连续的各阶导函数. 证:记u n (x)=x n 1, u n (k)(x)=(ln n 1)k x n 1=(-1)k x knn ln , k=1,2,…. 对任意x ∈[a,b]⊂(1,+∞),有|u n (k)(x)|=xkn nln≤a k nnln , k=1,2,….由∞→n lim 1)/2-(a k n n ln =0知,当n 充分大时,有1)/2-(a k n nln <1,从而 xk n n ln =1)/2-(a k 1)/2(a n n ln n 1⋅+<1)/2(a n 1+, 又∑+1)/2(a n 1收敛, ∴∑∞=1n (k )n (x )u 在[a,b]上一致收敛,从而∑∞=1n (k )n (x)u 在(1,+∞)上内闭一致收敛. ∴ζ(x)在(1,+∞)上有连续的各阶导函数,且ζ (k)(x)=(-1)k xkn nln, k=1,2,….习题1、讨论下列函数列在所定义的区间上:a. {f n }与{f ’n }的一致收敛性;b. {f n }是否有定理13.9~11的条件与结论.(1)f n (x)=nx n2x ++, x ∈[0,b];(2)f n (x)=x-n x n , x ∈[0,1];(3)f n (x)=nx 2-nx e, x ∈[0,1].解:(1)记∞n lim +→f n (x)=nx n2x lim∞n +++→=1=f(x); b][0,x sup ∈|f n (x)-f(x)|=nx xsupb][0,x +∈→0 (n →∞),∴{f n }在[0,b]上一致收敛性;记∞n lim +→f ’n (x)=2∞n n)(x nlim++→=g(x); b][0,x sup ∈|f ’n (x)-g(x)|=2b][0,x n)(x nsup+∈→0 (n →∞),∴{f ’n }在[0,b]上一致收敛性. 又∵f n (x)=nx n2x ++和f ’n (x)=2n)(x n +, n=1,2,… 在[0,b]上都连续, ∴{f n }有定理13.9~11的条件与结论.(2)记∞n lim +→f n (x)=⎪⎪⎭⎫ ⎝⎛+→n x -x lim n ∞n =x=f(x); [0,1]x sup ∈|f n (x)-f(x)|=n x sup n[0,1]x ∈→0 (n →∞),∴{f n }在[0,1]上一致收敛性;记g(x)=∞n lim +→f ’n (x)=∞n lim +→(1-x n-1)=⎩⎨⎧<≤=1x 01,1 x 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续, ∴{f ’n }在[0,1]上不一致收敛性.又f n (x)=x-nx n, n=1,2,… 在[0,1]上都连续,∴{f n }有定理13.9~10的条件与结论,但不具有13.11的条件. 又f ’(x)=x ’=1≠∞n lim +→f ’n (x),∴{f n }也不具有13.11的条件.(3)记∞n lim +→f n (x)=2-nx ∞n nx e lim +→=0=f(x); [0,1]x sup ∈|f n (x)-f(x)|=2-nx [0,1]x nxe sup ∈=n ·2)1/2n n(e n21-=1/2e 2n →∞ (n →∞),∴{f n }在[0,1]上不一致收敛性;记g(x)=∞n lim +→f ’n (x)=2-nx ∞n ne lim +→(1-2nx 2)=⎩⎨⎧=∞+≤<0x ,1x 0 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续,∴{f ’n }在[0,1]上不一致收敛性. 从而{f n }不具有定理13.9~11的条件. ∵f(x)=0在[0,1]上连续,∴{f n }有定理13.9的结论.∵⎰+→10nx -∞n 2nx e lim dx=⎰+→10nx -∞n 2e 21lim d(nx 2)=⎪⎭⎫ ⎝⎛-+→n ∞n e 2121lim =21≠⎰+→10n ∞n )x (f lim dx=0. 又{f ’n (x)}在x=0不收敛;∴{f n }不具有定理13.10~11的结论.2、证明:若函数列{f n }在[a,b]上满足定理13.11的条件,则{f n }在[a,b]上一致收敛.证:设f ’n (x)⇉g(x) (n →∞), x ∈[a,b],则∀ε>0,∃N 1>0,当n>N 1时, 对一切t ∈[a,b],有|f ’n (t)-g(t)|<)a b (2ε-; 又f n (x)点x 0收敛,∴对上述的ε>0,∃N 2>0,当n>N 2时,有|f n (x 0)-f(x 0)|<2ε. ∵对任意x,x 0∈[a,b]有f n (x)=f n (x 0)+⎰'xx n 0(t)f dt ,∴f(x)=∞→n lim f n (x)=f(x 0)+⎰xx 0g(t)dt. 取N=max{N 1,N 2},则当n>N 时,有∴|f n (x)-f(x)|=|f n (x 0)-f(x 0)+[]⎰'xx ng(t)-(t)f dt | ≤|f n (x 0)-f(x 0)|+|⎰'xx ng(t)-(t)f dt |<ε. 得证.3、设S(x)=∑∞=1n 21-n nx , x ∈[-1,1],计算积分⎰x 0S(t)dt .解:∵21-n n x ≤2n 1, x ∈[-1,1],由M 判别法知∑∞=1n 21-n n x 在[-1,1]上一致收敛.又21-n n x (n=1,2,…)在[-1,1]上连续,∴⎰x 0S(t)dt =∑⎰∞=1n x 021-n dt n t =∑∞=1n 3nnx .4、S(x)=∑∞=1n nn cosnx , x ∈R ,计算积分⎰x0S(t)dt .解:∵nn cosnx ≤nn 1, x ∈R ,由M 判别法知∑∞=1n nn cosnx 在R 上一致收敛.又nn cosnx (n=1,2,…)在R 上连续,∴⎰x0S(t)dt =∑⎰∞=1n xdt nn cosnt =∑∞=1n 2nnsinnx .5、S(x)=∑∞=1n nx -ne , x>0,计算积分⎰ln3ln2S(t)dt .解:由(ne -nx )’=-n 2e -nx <0,知ne -nx 单调减,∴对任何x ∈[ln2,ln3],有 ne -nx ≤ne-nln2=n 2n . 又由n n 2n =2n n→21<1 (n →∞),知∑n 2n收敛.∴∑∞=1n nx -ne 在[ln2,ln3]上一致收敛. 又ne -nx (n=1,2,…)在[ln2,ln3]上连续,∴⎰ln3ln2S(t)dt =∑⎰∞=1n ln3ln2nt-dt ne =∑∞=⎪⎭⎫⎝⎛-1n n n3121=21.6、证明:函数f(x)=∑3n nxsin 在R 上连续,且有连续的导函数. 证:∵3n nx sin ≤3n 1, x ∈R ,由M 判别法知∑3nnxsin 在R 上一致收敛. 又3nnxsin (n=1,2,…)在R 上连续,∴f(x)在R 上连续. ∵|(3n nx sin )’|=|2n cosnx |≤2n 1,由M 判别法知∑2n cosnx在R 上一致收敛.又2ncosnx(n=1,2,…)在R 上连续,∴f(x)在R 上有连续的导函数.7、证明:定义在[0,2π]上的函数项级数∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫⎝⎛∞=2π0n n dt cosnx r =2π. 证: ∵|r n cosnx|≤r n (0<r<1), x ∈[0,2π],又∑ r n (0<r<1)收敛, 由M 判别法知∑∞=0n n cosnx r 在[0,2π]上一致收敛.又r ncosnx 在[0,2π]上连续,∴∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫ ⎝⎛∞=2π0n n dx cosnx r =∑⎰∞=0n 2π0ncosnx dx r . 又⎰2π0dx =2π,⎰2π0cosnx dx =0(n=1,2…)∴⎰∑⎪⎭⎫⎝⎛∞=2π00n n dt cosnx r =2π.8、讨论下列函数列在所定义区间上的一致收敛性及极限函数的连续性、可微性和可积性:(1)f n (x)=x 2-nx e ,n=1,2,…, x ∈[-L,L]; (2)f n (x)=1nx nx+, n=1,2,…, I. x ∈[0,+∞);II. x ∈[a,+∞) (a>0). 解:(1)∵∞n lim +→f n (x)=0=f(x), x ∈[-L,L],且L][-L,x sup ∈|f n (x)-f(x)|=L][-L,x sup ∈| x 2-nx e |≤2ne1→0 (n →∞),∴{f n (x)}在[-L,L]上一致收敛于0,且其极限函数f(x)=0在[-L,L]上连续可积可微. 又f n (x)=x 2-nx e ,n=1,2,…在[-L,L]上连续,∴()⎰+→LL -n ∞n dx (x )f lim =⎪⎭⎫ ⎝⎛⎰+→LL -n ∞n (x)dx f lim . ∵f ’n (x)=2-nx e(1-2nx 2), 且(x)f lim n ∞n '+→=⎩⎨⎧=≠≤≤ 0x 10x L x L -0,,且, ∴[(x)f lim n ∞n +→]’≠(x)f lim n ∞n '+→.(2)∵f(x)=∞n lim +→f n (x)=1=⎩⎨⎧+∞<≤<=x a 010x 0,,,且)[a,x sup +∞∈|f n (x)-f(x)|=1nx 1-sup)[a,x ++∞∈=1na 1+→0 (n →∞), ∴{f n (x)}在[a,+∞) (a>0)上一致收敛于1,在[0,+∞)上内闭一致收敛. ∴其极限函数不在[0,+∞)上连续可积可微;但在[a,+∞) (a>0)上其极限函数f(x)=1连续可微,但不可积.9、证明:函数S(x)=∑xn 1在(1,+∞)上连续,且有连续的各阶导数. 证:∀x ∈(1,+∞),取1<p<x ,则0<x n 1≤p n1,由M 判别法,知 ∑x n 1在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. 又x n 1在(1,+∞)上连续,∴S(x)在(1,+∞)上连续. 又)k (x n 1⎪⎭⎫ ⎝⎛=x k kn n ln )1(-, k=1,2,…在(1,+∞)上连续. ∀x ∈(1,+∞),取1<p<x ,使x k kn n ln )1(-≤p k n n ln . 固定k ,取q>p>1, 由p k n n ln /q n 1=q -p k n n ln →0 (n →∞),及∑q n1收敛,知∑p k n n ln 收敛, ∴∑-x k kn n ln )1(在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. ∴S (k)(x)=∑⎪⎭⎫ ⎝⎛)k (x n 1=∑-x k kn n ln )1( 在(1,+∞)上连续. 得证!10、设f 在(-∞,+∞)上有任何阶导数,记F n =f (n), 且在任何有限区间内F n ⇉φ (n →∞),试证:φ(x)=ce x (c 为常数). 证:由条件可知φ’(x)=[∞n lim +→f (n)(x)]’=∞n lim +→[f (n)(x)]’ =∞n lim +→f (n+1)(x)=φ(x). 即有φ(x )(x )φ'=1,两边取积分得:⎰'φ(x )(x )φdx =⎰dx +C ,即⎰φ(x )1d φ(x) =x+c 1, ∴ln φ(x)=x+c 1,即φ(x)=1c x e +=1c e e x =ce x (其中c=1c e 为常数).。
第13章 无穷级数重点内容与练习
都收敛
(B)
un 与
un2 都发散
n 1
n 1
n 1
n 1
(C) un 收敛,而
u
2 n
发散(D)
un 发散,而
un2
n 1
n 1
n 1
n 1
收敛
6. 级数 sin( n2 1) ( ).答案: B n1
(A)发散
(B)条件收敛
(C)绝对收敛 (D)敛散性无法判定
7.
级数
n1
sin n n2
( ).
(A) a ,b (B) a 2 ,b 2 2 +
2
2
2
2
(C) a ,b
22
答案: D .
(D) a 2 ,b
2
2
x2 1, 0 x ,
25.设
f
(x)
x2
1,
则 f (x) 以周期为 2 的傅
x 0.
里叶级数在点 x 处收敛于
.
答案: 2 .
1 n
(
).答案: C
(A)条件收敛 (B)绝对收敛
(C)发散
(D)无法确定
8. 设正项数列{an }单调减少,且级数 (1)n an 发散, n1
试讨论
(1)n (1 an1 ) 的敛散性.
n1
an
解:依题知
lim
n
an
存在,设
lim
n
an
a
则
a
0
,且
an a, n 1, 2,
而 (1)n (1 an1 ) an an1 an an1
ln
2
2
x
.当
《数学分析》第十三章 函数列与函数项级数
110第十三章 函数列与函数项级数 ( 1 2 时 )§1 一致收敛性( 6 时 )一 函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念:收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念. 逐点收敛(或称为“点态收敛”)的“N -ε”定义.例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x ,用“N -ε”定义验证其收敛域为] 1 , 1 (-,且∞→n l i m )(x f n = ∞→n lim n x =⎩⎨⎧=<.1 , 1 , 1 || , 0 x x例2 )(x f n =nnx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0.例3 考查以下函数列的收敛域与极限函数: ) (∞→n .⑴ )(x f n =xxx x nn n n --+-. )(x f n →,sgn x R ∈x .⑵ )(x f n =121+n x . )(x f n →,sgn x R ∈x .⑶ 设 ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令)(x f n =⎩⎨⎧≠∈=.,,, ] 1 , 0 [ , 0,,,, , 12121n n r r r x x r r r x 且 )(x f n →)(x D , ∈x ] 1 , 0 [.⑷ )(x f n =2222xnxen -. )(x f n →0, R ∈x .⑸ )(x f n =⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<≤-<≤--+ . 121 , 0 ,2121 ,42,210 ,4111x x x x x n n n n n n n有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意⎰≡11)(dx x f n .)111二. 函数列的一致收敛性:问题: 若在数集D 上)(x f n →)(x f ,) (∞→n .试问:通项)(x f n 的解析性质是否必遗传给极限函数)(x f ?答案是否定的.上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传.例3⑷⑸说明虽然可积性得到遗传, 但→n lim()⎰⎰∞→≠11)(lim)(dx x f dx x f n n n .用函数列的极限表示函数是函数表达的一种重要手段.特别是表达非初等函数的一种手段. 对这种函数, ∞→n lim )(x f n 就是其表达式.于是,由通项函数的解析性质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极 限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果.定义1 ( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy 准则) 函数列}{n f 在数集D 上一致收敛⇔N , 0∃>∀ε,N n m >∀ , D x ∈∀⇒ε<-)()(x f x f n m .( 介绍另一种形式ε<-+n p n f f .) 证)⇒(利用式.f f f f f f n m n m -+-≤-))⇐易见逐点收敛.设∞→n lim)(x f n =)(x f ,……,有 2|)()(|ε<-x f x f n m .令∞→m ,⇒εε<≤-2|)()(|x f x f n 对∈∀x D成立,即)(x f n −→−−→−)(x f ,) (∞→n ,∈x D .Th2 在D 上nf −→−−→−f ,) (∞→n ⇔0|)()(|sup lim =-∞→x f x f n Dn .推论 设在数集D 上)(x f n →)(x f ,) (∞→n .若存在数列}{n x ⊂D ,使0 |)()(|→/-n n n x f x f , 则函数列)}({x f n 在数集D 上非一致收敛.应用推论判断函数列)}({x f n 在数集D 上非一致收敛时,常选n x 为函数=)(x F n )(x f n ―)(x f 在数集D 上的最值点.112验证函数一致收敛性: 例4 )(x f n nnx sin =. 证明函数列)}({x f n 在R 内一致收敛.例5 )(x f n 2222xnxe n -=. 证明在R 内 )(x f n →0, 但不一致收敛.证 显然有)(x f n →0, |)()(|x f x f n -= )(x f n 在点n x =n21处取得极大值022121→/=⎪⎭⎫ ⎝⎛-nen f n ,) (∞→n . 由系2 , )}({x f n 不一致收敛.例6 221)(xn x x S n +=. 证明在) , (∞+∞-内)(x S n −→−−→−0, ) (∞→n .证 易见 ∞→n lim .0)()(==x S x S n 而nnx x n n xn x x S x S n 21)(1||2211|||)()(|222≤+⋅=+=- 在) , (∞+∞-内成立.由系1 , ⇒ ……例7 对定义在区间] 1 , 0 [上的函数列⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<=≤<-≤≤=. 11 , 0), , 2 , 1 ( , 121 ,22,210 , 2)(22x n n n x n x n n n x x n x f n证明: ∞→n lim )(x f n =0, 但在] 1 , 0 [上不一致收敛. [1]P 30 E3,图13—3.证10≤<x 时,只要1->x n ,就有)(x f n =0.因此,在] 1 , 0 (上有)(x f =∞→n l i m )(x f n =0. 0)0(=n f ⇒)0(f =∞→n lim)0(n f =0.于是, 在] 1 , 0 [上有)(x f =∞→n lim )(x f n =0.但由于021|)()(|max ]1,0[→/=⎪⎭⎫ ⎝⎛=-∈n n f x f x f n n x ,) (∞→n ,因此, 该函数列在] 1 , 0 [上不一致收敛.113例8 )(x f n =12sin2+n x . 考查函数列)}({x f n 在下列区间上的一致收敛性:⑴ )0( , ] , [>-l l l ; ⑵ ) , 0 [∞+.Ex [1]P 35 1⑴—⑸,2.三. 函数项级数及其一致收敛性:1. 函数项级数及其和函数:∑)(x u n , 前n 项部分和函数列)}({x S n ,收敛点,收敛域, 和函数, 余项.例9 定义在) , (∞+∞-内的函数项级数(称为几何级数)+++++=∑∞=nn nx x x x201的部分和函数列为 ) 1 ( 11)(≠--=x xxx S nn , 收敛域为) 1 , 1 (-.2. 一致收敛性: 定义一致收敛性.Th3 (Cauchy 准则)级数∑)(x u n 在区间D 上一致收敛⇔N ,0∃>∀ε,,N n >∀N ∈∀p ,∈∀x D ⇒ ε<-+)()(x S x S n p n 或ε |)()()(|21<++++++x u x u x u p n n n .推论 级数∑)(x u n 在区间D 上一致收敛⇒ n u )(x −→−−→−0, ) (∞→n .Th4 级数∑)(x u n 在区间D 上一致收敛于)(x S ⇔∞→n lim =∈|)(|sup x R n x D∞→n lim 0|)()(|sup =-∈x S x S n x D.例10 几何级数∑∞=0n n x 在区间] , [a a -)10(<<a 上一致收敛;但在) 1 , 1(-内非一致收敛.证 在区间] , [a a -上,有011sup|)()(|sup ],[],[→-=--=---aaaxx S x S nna a n a a ) (∞→n ⇒∑一致收敛;114而在区间) 1 , 1(-内, 取∈+=1n n x n ) 1 , 1(-, 有∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+≥-=----1)1,1()1,1(1111 1sup |)()(|sup n nnn n n n nn n n x x x S x S ,) (∞→n ⇒∑非一致收敛.(亦可由通项n n x x u =)(在区间) 1 , 1(-内非一致收敛于零⇒∑非一致收敛.)几何级数∑∞=0n n x 虽然在区间) 1 , 1(-内非一致收敛,但在包含于) 1 , 1(-内的任何闭区间上却一致收敛. 我们称这种情况为“闭一致收敛”.因此,我们说几何级数∑∞=0n n x 在区间) 1 , 1(-内闭一致收敛 .Ex [1]P 35 4,5, 6.四. 函数项级数一致收敛判别法:1.M-判别法:Th5 ( Weierstrass 判别法)设级数∑)(x u n 定义在区间D 上,∑nM是收敛的正项级数.当n 充分大时,对∈∀x D 有||)(x u n n M ≤,则∑在D 上一致收敛.证 , |)(| )( 1111∑∑∑∑==+=++=+=≤≤pi pi in pi in i n pi i n MMx u x u 然后用Cauchy 准则.亦称此判别法为优级数判别法. 称满足该定理条件的正项级数∑nM是级数∑)(x un的一个优级数. 于是Th 4 可以叙述为:若级数∑)(x u n 在区间D 上存在优级数,则级数∑)(x u n 在区间D 上一致收敛.应用时,常可试取|})({|sup x u Mn Dx n∈=.但应注意,级数∑)(x u n 在区间D 上不存在优级数⇒/级数∑)(x u n 在区间D 上非一致收敛.115注意区分用这种控制方法判别函数列和函数项级数一致收敛性的区别所在.例11 判断函数项级数 ∑∞=in nnx 2sin 和 ∑∞=in nnx 2cos 在R 内的一致收敛性.例12 设) , 2 , 1 ( )( =n x u n 是区间] , [b a 上的单调函数. 试证明:若级数∑)(a u n 与∑)(b un都绝对收敛, 则级数∑)(x u n 在区间] , [b a 上绝对并一致收敛 .简证 , 留为作业. |)(||)(| |)(|b u a u x u n n n +≤.…… 2. Abel 判别法:Th 5 设ⅰ> 级数∑)(x u n 在区间I 上收敛; ⅱ> 对每个∈x I ,数列)}({x v n 单调; ⅲ> 函数列)}({x v n 在I 上一致有界, 即0 >∃M ,使对I ∈∀x 和n ∀,有M x v n |)(|≤. 则级数∑)()(x v x u n n 在区间I 上一致收敛 . ( [1]P 33 )3. Dirichlet 判别法:Th 6 设ⅰ> 级数∑)(x u n 的部分和函数列∑==nk kn x ux U 1)()(在区间I 上一致有界;ⅱ> 对于每一个∈x I ,数列)}({x v n 单调; ⅲ> 在区间I 上函数列)}({x v n 一致收敛于零.则级数∑)()(x v x u n n 在区间I 上一致收敛. 例13 判断函数项级数∑++-1)() 1(n nn nn x 在区间] 1 , 0 [上的一致收敛性.解 记nn nn n x x v nx u ⎪⎭⎫ ⎝⎛+=-=1)( , ) 1()(. 则有ⅰ> 级数∑)(x u n 收敛; ⅱ> 对每个∈x ] 1 , 0 [, )(x v n ↗;ⅲ>e n x x v nn ≤⎪⎭⎫ ⎝⎛+=1|)(| 对∀∈x ] 1 , 0 [和n ∀成立.由Abel 判别法, ∑在区间] 1 , 0 [上一致收敛. 例14 设数列}{n a 单调收敛于零.试证明: 级数∑nx ancos 在区间] 2 , [απα-)0(πα<<上一致收敛.116证 由本教案Ch12§3例4,在] 2 , [απα-上有212sin2121|2sin|21212sin2) 21sin(|cos |1+≤+≤-+=∑=αx x xn kx nk .可见级数∑nx cos 的部分和函数列在区间] 2 , [απα-上一致有界.取nx x u n cos )(=,n n a x v =)(就有级数∑)(x u n 的部分和函数列在区间] 2 , [απα-上一致有界, 而函数列)}({x v n 对每一个∈x ] 2 , [απα-单调且一致收敛于零.由Dirichlet 判别法,级数∑nx a n cos 在区间] 2 , [απα-上一致收敛.其实,在数列}{n a 单调收敛于零的条件下,级数∑nx ancos 在不包含) , 2 , 1 , 0 ( 2 ±±=k k π的任何区间上都一致收敛.Ex [1]P 35 3.§2 一致收敛函数列和函数项级数的性质( 4 时 )一. 一致收敛函数列极限函数的解析性质:1.连续性:Th 1 设在D 上n f −→−−→−)(x f ,且对∀n ,函数)(x f n 在D 上连续⇒)(x f 在D 上连续.证 (要证: 对∈∀0x D ,)(x f 在点0x 连续.即证:对0>∀ε,0>∃δ, 当|δ<-|0x x 时⇒ε<-|)()(|0x f x f .)|)()(||)()(||)()(| |)()(|0000x f x f x f x f x f x f x f x f n n n n -+-+-≤-.117估计上式右端三项.由一致收敛, 第一、三两项可以任意小;而由函数)(x f n 在点0x 连续, 第二项|)()(|0x f x f n n -也可以任意小 . ……推论 设在D 上)(x f n →)(x f .若)(x f 在D 上间断,则函数列{)(x f n }在D 上一致收敛和所有)(x f n 在D 上连续不能同时成立.注: Th1表明: 对于各项都连续且一致收敛的函数列{)(x f n },有)(lim lim )(lim lim 00x f x f n x x n n n x x →∞→∞→→=.即极限次序可换 . 2. 可积性:Th 2 若在区间] , [b a 上函数列{)(x f n }一致收敛,且每个)(x f n 在] , [b a 上连续.则有()⎰⎰∞→∞→=baban n n n dx x f dx x f )(lim)(lim.证 设在] , [b a 上n f −→−−→−)(x f , 由Th1,函数)(x f 在区间] , [b a 上连续,因此可积.我们要证 ⎰⎰=∞→baban n dx x f dx x f )()(lim. 注意到⎰⎰⎰-≤-ban baban f f f f || , 可见只要ab x f x f n -<-ε|)()(|在] , [b a 上成立.注:Th2的条件可减弱为:用条件“)(x f n 在] , [b a 上(R )可积”代替条件“)(x f n 在] , [b a 上连续”.证明可参阅 江泽坚著《数学分析》上册P 350. 3. 可微性:Th 3 设函数列{)(x f n }定义在区间] , [b a 上,在某个点∈0x ] , [b a 收敛.对n ∀,118)(x f n 在] , [b a 上连续可导,且由导函数构成的函数列{)(x f n '}在] , [b a 上一致收敛,则函数列{)(x f n }在区间] , [b a 上收敛,且有())(lim)(lim x f dxd x f dxdn n n n ∞→∞→=.证 设)(0x f n →A ,) (∞→n . )(x f n '−→−−→−)(x g , ) (∞→n .对∈∀x ] , [b a , 注意到函数)(x g 连续和 )(x f n =)(0x f n +⎰'xx n dt t f 0)(, 就有∞→n lim )(x f n =∞→n lim )(0x f n + ∞→n lim⎰'xx n dt t f 0)( ( 对第二项交换极限与积分次序)= A + ()d t t f xx n n ⎰'∞→0)(lim = A +⎰==xx dt t g 0)(令)(x f .(估计 |)(0x f n +⎰'x x n dt t f 0)( ― A ― ⎰≤xx dt t g 0|)(≤|)(0x f n ―A | + |()⎰-'xx n dtt g t f 0|)()(, 可证得)(x f n −→−−→−)(x f .))(x f '=='⎪⎭⎫ ⎝⎛+⎰xx dt t g A 0)()(x g =∞→n lim =')(x f n ∞→n lim )(x f dx d n .即()=∞→)(limx f dxdn n ∞→n lim)(x f dxd n . 亦即求导运算与极限运算次序可换.例1 [1]P 38 E1(说明定理的条件是充分的, 但不必要.)例2 [1]P 50 E2(说明定理的条件是充分的, 但不必要.)Ex [1] P 41 1,2, 3.119二. 一致收敛函数项级数和函数的解析性质:把上述Th1—3表为函数项级数的语言,即得关系于和函数解析性质的相应结果.参阅[1]P 40 Th13.12—13.14. 例3 [1]P 40—41 E3例4 证明函数)(x f =∑∞=-1n nxne在区间) , 0 (∞+内连续.证 (先证∑∞=-1n nxne在区间) , 0 (∞+内闭一致收敛.)对+∞<<<∀b a 0,有nanxnene--≤≤0,∈x ] , [b a ;又∑+∞<-nane⇒∑∞=-1n nxne在] , [b a 一致收敛.( 次证对∈∀0x ) , 0 (∞+,)(x f 在点0x 连续 ) 对∈∀0x ) , 0 (∞+, 由上段讨论,∑∞=-1n nxne在区间] 2 , 2[00x x 上一致收敛;又函数nxne-连续⇒)(x f 在区间]2 , 2[00x x 上连续⇒ )(x f 在点0x 连续. 由点0x 的任意性,)(x f 在区间) , 0 (∞+内连续.例5 =)(x S ∑∞=-11n n nn x, ∈x ] 1 , 1 [-. 计算积分 ⎰xdt t S 0)(.Ex [1]P 52—53 3—8,9⑴,10 .。
数学分析13.1一致收敛性
第十三章 函数列与函数项级数1 一致收敛性一、函数列及其一致收敛性概念:设f 1,f 2,…,f n ,…是一列定义在同一数集E 上的函数,称为定义在E 上的函数列,也可以简单地写作{f n }或f n , n=1,2,…. 设x 0∈E ,以x 0代入函数列可得数列:f 1(x 0),f 2(x 0),…,f n (x 0),…. 若该数列收敛,则称对应的函数列在点x 0收敛,x 0称为该函数列的收敛点. 若数列发散,则称函数列在点x 0发散. 若函数列在数集D ⊂E 上每一点都收敛,则称该函数列在数集D 上收敛. 这时D 上每一点x 都有数列{f n (x)}的一个极限值与之相对应,由这个对应法则所确定的D 上的函数,称为原函数的极限函数. 若把此极限函数记作f ,则有∞n lim +→f n (x)=f(x), x ∈D ,或f n (x)→f(x) (n →∞), x ∈D.使函数列{f n }收敛的全体收敛点集合,称为函数列{f n }的收敛域.函数列极限的ε-N 定义:对每一个固定的x ∈D ,任给正数ε, 恒存在正数N(ε,x),使得当n>N 时,总有|f n (x)-f(x)|< ε.例1:设f n (x)=x n , n=1,2,…为定义在R 上的函数列,证明它的收敛域是(-1,1]且有极限函数f(x)=⎩⎨⎧=<1x 11|x |0,,.证:任给正数ε<1, 当|x|<1时,∵|f n (x)-f(x)|=|x|n , ∴只要取N(ε,x)=|x |ln ln ε,当n>N 时,就有|f n (x)-f(x)|< ε.当x=0或x=1时,对任何正整数n ,都有|f n (x)-f(x)|=0< ε. ∴f n (x)在(-1,1]上收敛,且有极限函数f(x) =⎩⎨⎧=<1x 11|x |0,,.又当|x|>1时,有|x|n →∞ (n →∞),当x=-1时,对应的数列为: -1,1,-1,1…发散. ∴函数列{x n }在(-1,1]外都是发散的. 得证!例2:证明:函数列f n (x)=nsinnx, n=1,2,…的收敛域是R ,极限函数f(x)=0. 证:∵对任意实数x ,都有n sinnx ≤n 1,∴任给ε>0,只要n>N=ε1, 就有0nsinnx-< ε,得证!定义1:设函数列{f n }与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n>N 时,对一切x ∈D ,都有 |f n (x)-f(x)|< ε,则称函数列{f n }在D 上一致收敛于f ,记作 f n (x)⇉f(x) (n →∞), x ∈D.注:反之,若存在某正数ε0,对任何正数N ,都有D 上某一点x ’与正整数n ’>N ,使|f n (x ’)-f(x ’)|≥ε0,则函数列{f n }在D 上不一致收敛于f. 如:例1中的函数列{x n }在(0,1)上收敛于f(x)=0,但不一致收敛.∵令ε0=21,对任何正数N ,取正整数n>N+1及x ’=21n 11⎪⎭⎫ ⎝⎛-∈(0,1),则有|x ’2 -0|=1-n 1≥21. ∴函数列{x n }在(0,1)上不一致收敛于f(x)=0.函数列一致收敛于f 的几何意义:对任何正数ε,存在正整数N ,对于一切序号大于N 的曲线y=f n (x),都落在以曲线y=f(x)+ ε与y=f(x)- ε为边(即以y=f(x)为“中心线”,宽度为2ε)的带形区域内(如图1).(图1)(图2)函数列{x n }在(0,1)内不一致收敛,即对于某个事先给定的正数ε<1, 无论N 多么大,总有曲线y=x n (n>N)不能全部落在以y=ε与y=-ε为边的带形区域内(如图2). 若函数列{x n }只限于在区间(0,b) (b<1)内讨论,则只要n>lnbln ε(其中0<ε<1),曲线y=x n 就全部落在y=ε与y=-ε为边的带形区域内,所以{x n }在区间(0,b)内一致收敛.定理13.1:(函数列一致收敛的柯西准则)函数列{f n }在数集D 上一致收敛的充要条件是:对任给ε>0,总存在正数N ,使得当n,m>N 时, 对一切x ∈D ,都有|f n (x)-f m (x)|< ε.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正数N , 使得当n,m>N 时,对一切x ∈D ,都有|f n (x)-f(x)|<2ε及|f m (x)-f(x)|<2ε. ∴|f n (x)- f m (x)|≤|f n (x)-f(x)|+ |f m (x)-f(x)|<2ε+2ε= ε. [充分性]若|f n (x)-f m (x)|< ε, 则由数列收敛的柯西准则知, {f n }在D 上任一点都收敛,记其极限函数f(x),则有∞m lim +→|f n (x)-f m (x)|=|f n (x)-f(x)|<ε,由定义1知f n (x)⇉f(x) (n →∞), x ∈D.定理13.2:函数列{f n }在区间D 上一致收敛于f 的充要条件是:Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正整数N ,当n>N 时,有|f n (x)-f(x)|<ε, x ∈D.由上确界定义,有Dx sup ∈|f n (x)-f(x)|≤ε. ∴Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0. [充分性]若Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0,则∀ε>0,∃正整数N , 使得当n>N 时,有Dx sup ∈|f n (x)-f(x)|<ε. 又对一切x ∈D ,总有|f n (x)-f(x)|≤Dx sup ∈|f n (x)-f(x)|<ε,∴{f n }在D 上一致收敛于f.推论:函数列{f n }在D 上不一致收敛于f 的充要条件是: 存在{x n }⊂D ,使得{f n (x n )-f(x n )}不收敛于0.例3:设f n (x)=nx 2-nx e , x ∈D=R +,n=1,2,….判别{f n (x)}在D 上的一致收敛性.解法一:对任意x ∈R +, ∞n lim +→nx 2-nx e=0=f(x). 又当f ’n (x)=222ex 2n -n =0时, x=2n1,且f ”(2n1)=-2e 2n2n <0, ∴在R +上,每个nx 2-nx e 只有一个极大值点x n =2n1,而Dx ∞n sup lim ∈+→|f n (x)-f(x)|=∞n lim +→f n (x n )=2enlim∞n +→=+ ∞≠0, ∴{f n (x)}在D 上不一致收敛于f.解法二:取x n =n1∈R +,则∞n lim +→f n (x n )=n 1-∞n e lim +→=1≠0, ∴{f n }在D 上不一致收敛于f.定义1:设函数列{f n }与f 定义在区间I 上,若对任意闭区间[a,b]⊂I, {f n }在[a,b]上一致收敛于f ,则称{f n }在I 上内闭一致收敛于f.注:若I 为有界闭区间,则{f n }在I 上内闭一致收敛于f 与{f n }在I 上一致收敛于f 是一致的.例1中函数列{x n }在[0,1)上不一致收敛于0,但对任意δ>0,]δ,0[x sup ∈|x n |≤δn→0 (n →∞),∴{f n }在[0,1)上内闭一致收敛于0.例3中函数列{f n }在R +上不一致收敛于0,但对任意[a,b]⊂R +,]b ,a [x sup ∈|nx 2-nx e |≤nb 2-na e →0 (n →∞),∴{f n }在R +上内闭一致收敛于0.二、函数项级数及其一致收敛性概念:设{u n (x)}是定义在数集E 上的一个函数列,表达式: u 1(x)+ u 2(x)+…+u n (x)+…, x ∈E称为定义在E 上的函数项级数,简记为∑∞=1n n (x )u 或∑(x)u n .称S n (x)=∑=n1k k (x )u , x ∈E, n=1,2,…为函数项级数∑(x)u n 的部分和函数.若x 0∈E, 数项级数u 1(x 0)+ u 2(x 0)+…+u n (x 0)+…收敛,即部分和 S n (x 0)=∑=n1k 0k )(x u 当n →∞时极限存在,则称级数∑(x)u n 在点x 0收敛,x 0称为级数∑(x)u n 的收敛点.若级数∑)(x u 0n 发散,则称级数∑(x)u n 在点x 0发散.若∑(x)u n 在E 的某个子集D 上每点都收敛,则称∑(x)u n 在D 上收敛. 若D 为级数∑(x)u n 全部收敛点的集合,则称D 为∑(x)u n 的收敛域. 级数∑(x)u n 在D 上每一点x 0与其所对应的数项级数∑)(x u 0n 的和S(x 0)构成一个定义在D 上的函数,称为级数∑(x)u n 的和函数,并写作: S(x)=u 1(x)+ u 2(x)+…+u n (x)+…, x ∈D 即∞n lim +→S n (x)=S(x), x ∈D ,于是函数项级数的收敛性等价于它的部分和函数列{S n (x)}的收敛性.例4:判别函数项级数(几何级数)1+x+x 2+…+x n +…在R 上的收敛性.解:几何级数的部分和函数为S n (x)=x-1x -1n .当|x|<1时,S(x)=∞n lim +→S n (x)=x-11; 当|x|≥1时,S(x)=∞n lim +→S n (x)=+∞.∴几何级数在(-1,1)内收敛于和函数S(x)=x-11;当|x|≥1时,发散.定义3:设{S n (x)}函数项级数∑(x)u n 的部分和函数列. 若{S n (x)}在数集D 上一致收敛于S(x),则称∑(x)u n 在D 上一致收敛于S(x). 若∑(x)u n 在任意闭区间[a,b]⊂I 上一致收敛,则称∑(x)u n 在I 上内闭一致收敛.定理13.3:(一致收敛的柯西准则)函数项级数∑(x)u n 在数集D 上一致收敛的充要条件是:对任给ε>0,总存在某正整数N ,使得当n>N 时, 对一切x ∈D 和一切正整数p ,都有|S n+p (x)-S n (x)|< ε或∑++=pn 1n k k(x)u< ε.推论:函数项级数∑(x)u n 在数集D 上一致收敛的必要条件是函数列{u n (x)}在D 上一致收敛于0.注:设函数项级数∑(x)u n 在数集D 上的和函数为S(x), 称 R n (x)=S(x)-S n (x)为函数项级数∑(x)u n 的余项.定理13.4:函数项级数∑(x)u n 在数集D 上一致收敛于S(x)的充要条件是:Dx ∞n sup lim∈+→|R n (x)|=Dx ∞n sup lim ∈+→|S(x)-S n (x)|=0.注:几何级数∑n x 在(-1,1)上不一致收敛,因为)(-1,1x sup ∈|S(x)-S n (x)|=1-x x sup n )(-1,1x ∈≥1n n -11n n n+⎪⎭⎫⎝⎛+=n 1-n 1n n ⎪⎭⎫ ⎝⎛+ →∞ (n →∞). 又对任意a(0<a<1),]a -a,[x sup ∈|S(x)-S n (x)|=1-x x sup n]a -a,[x ∈=a -1a n →0 (n →∞).∴几何级数∑n x 在(-1,1)上内闭一致收敛.三、函数项级数的一致收敛性判别法定理13.5:(魏尔斯特拉斯判别法或M 判别法或优级数判别法) 设函数项级数∑(x)u n 定义在数集D 上,∑n M 为收敛的正项级数, 若对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…, 则函数项级数∑(x)u n 在D 上一致收敛.证:∵∑n M 为收敛的正项级数,根据数项级数的柯西准则, ∀ε>0,∃正整数N ,使得当n>N 及任何正整数p ,有∑++=pn 1n k kM=∑++=pn 1n k kM< ε,又对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…,∴∑++=pn 1n k k(x)u≤∑++=pn 1n k k(x )u≤∑++=pn 1n k kM< ε,由函数项级数一致收敛的柯西准则知,级数∑(x)u n 在D 上一致收敛.例5:证明函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛. 证:∵对一切x ∈R ,有2n nx sin ≤2n 1,∑2n cosnx ≤2n1. 又级数∑2n 1收敛,∴函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛.注:当级数∑(x)u n 与级数∑n M 在 [a,b]上,都有|u n (x)|≤M n , n=1,2,…时,称级数∑n M 在[a,b]优于∑(x)u n ,或称∑n M 为∑(x)u n 的优级数.定理13.6:(阿贝尔判别法)设 (1)∑(x)u n 在区间I 上一致收敛; (2)对每一个x ∈I ,{v n (x)}是单调的;(3){v n (x)}在I 上一致有界,即对一切x ∈I 和正整数n ,存在正数M ,使得|v n (x)|≤M ,则级数∑(x)(x)v u n n 在I 上一致收敛. 证:由条件(1),∀ε>0,∃某正整数N ,使得 当n>N 及任何正整数p ,对一切x ∈I ,有∑++=pn 1n k k(x)u< ε.又由条件(2),(3),根据阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤[|v n+1(x)|+2|v n+p (x)|]ε≤3M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.定理13.7:(狄利克雷判别法)设(1)∑(x)u n 的部分和函数列S n (x)=∑=n1k k (x )u , (n=1,2,…)在I 上一致有界;(2)对于每一个x ∈I ,{v n (x)}是单调的; (3)在I 上v n (x)⇉0 (n →∞), 则级数∑(x)(x)v u n n 在I 上一致收敛.证:由条件(1),存在正数M ,对一切x ∈I ,有|S n (x)|≤M , ∴当n,p 为任何正整数时,∑++=pn 1n k k(x)u=|S n+p (x)-S n (x)|<2M.对任何一个x ∈I ,由条件(2)及阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤2M[|v n+1(x)|+2|v n+p (x)|]又由条件(3),∀ε>0,∃正数N ,使得当n>N 时,对一切x ∈I , 有|v n (x)|<ε. ∴∑++=pn 1n k k k(x)(x)v u<6M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.例6:证明:函数项级数∑++-1n nn n )n x ()1(在[0,1]上一致收敛. 证:记u n (x)=n )1(n -, v n (x)=nn x 1⎪⎭⎫⎝⎛+,则∑(x)u n 在[0,1]上一致收敛;又{v n (x)}单调增,且1≤v n (x)≤e, x ∈[0,1],即{ v n (x)}在[0,1]上一致有界.根据阿贝尔判别法知数∑++-1n n n )n x ()1(在[0,1]上一致收敛.例7:证明:若数列{a n }单调且收敛于0,则级数∑cosnx a n 在[α,2π-α] (0<α<π)上一致收敛.证:∵∑=n1k coskx = 21-2x 2sin x 21n sin ⎪⎭⎫ ⎝⎛+≤2x sin21+21≤2α2sin 1+21, x ∈[α,2π-α],∴级数∑cosnx 的部分和函数列在[α,2π-α]上一致有界. 令u n (x)=cosnx, v n (x)=a n ,∵数列{a n }单调且收敛于0, 根据狄利克雷判别法知,级数∑cosnx a n 在[α,2π-α]上一致收敛.注:只要{a n }单调且收敛于0,那么级数∑cosnx a n 在不包含2k π (k 为整数)的任何闭区间上都一致收敛.习题1、讨论下列函数列在所示区间D 上是否一致收敛或内闭一致收敛,并说明理由: (1)f n (x)=22n1x +, n=1,2,…,D=(-1,1); (2)f n (x)=22xn 1x+, n=1,2,…,D=R ;(3)f n (x)=⎪⎩⎪⎨⎧≤<++≤≤++-1x 1n 101n 1x 01x )1n (,,, n=1,2,…; (4)f n (x)=n x, n=1,2,…,D=[0,+∞);(5)f n (x)=nxsin , n=1,2,…,D=R.解:(1)∞n lim +→f n (x)=22∞n n 1x lim ++→ =|x|=f(x), x ∈D=(-1,1);又 D x sup ∈|f n (x)-f(x)|=|x |n 1x sup 22D x -+∈=|x |n1x n 1sup 222D x ++∈≤n 1→0(n →∞).∴22n 1x +⇉|x| (n →∞),x ∈(-1,1). (2)∞n lim +→f n (x)=22∞n x n 1xlim++→ =0=f(x), x ∈D=R ;又Dx sup ∈|f n (x)-f(x)|=22D x xn 1x sup+∈≤nx 2x =n 21→0(n →∞). ∴22x n 1x+⇉0 (n →∞),x ∈R.(3)当x=0时,∞n lim +→f n (x)=1;当0<x ≤1时,只要n>x1-1,就有f n (x)=0, ∴f n (x)在[0,1]上的极限函数为f(x)= ⎩⎨⎧≤<=1x 000x 1,,.又]1,0[x ∞n sup lim ∈+→|f n (x)-f(x)|=1≠0. ∴f n (x)在[0,1]上不一致收敛. (4)∞n lim +→f n (x)=nxlim ∞n +→=0=f(x), x ∈D=[0,+∞);又 )∞[0,+x ∞n sup lim ∈+→|f n (x)-f(x)|=nxsuplim )∞[0,+x ∞n ∈+→=+∞, ∴f n (x)在[0,+∞)上不一致收敛. 在任意[0,a]上,a][0,x ∞n sup lim∈+→|f n (x)-f(x)|=nalim ∞n +→=0, ∴f n (x)在[0,+∞)上内闭一致收敛.(5)∞n lim +→f n (x)=nx sin lim ∞n +→=0=f(x), x ∈D=R ;又 Rx ∞n sup lim ∈+→|f n (x)-f(x)|=nxsinsup lim Rx ∞n ∈+→=1, ∴f n (x)在R 上不一致收敛. 在任意[-a,a]上,a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|=nx sin sup lim a][-a,x ∞n ∈+→≤n a lim ∞n +→=0, ∴f n (x)在R 上内闭一致收敛.2、证明:设f n (x)→f(x), x ∈D , a n →0(n →∞) (a n >0). 若对每一个正整数n 有|f n (x)-f(x)|≤a n , x ∈D ,则{f n }在D 上一致收敛于f. 证:∵|f n (x)-f(x)|≤a n , x ∈D ,且a n →0(n →∞),∴a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|= 0,∴f n (x)⇉f(x) (n →∞),x ∈D.3、判别下列函数项级数在所示区间上的一致收敛性:(1)∑1)!-(n x n , x ∈[-r,r];(2)∑+n221-n )x (1x (-1), x ∈R ;(3)∑n x n , |x|>r>1; (4)∑2n n x , x ∈[0,1];(5)∑+n x (-1)21-n , x ∈R ;(6)∑+1-n 22)x (1x , x ∈R. 解:(1)∀x ∈[-r,r], 有1)!-(n x n≤1)!-(n r n ,记u n =1)!-(n r n ,则n 1n u u +=n r →0(n →∞),∴∑1)!-(n r n 收敛,∴∑1)!-(n x n在[-r,r]上一致收敛.(2)记u n (x)=(-1)n-1, v n (x)=n22)x (1x +,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0≤n22)x (1x +≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n221-n )x (1x (-1)在R 上一致收敛. (3)∀|x|>r>1, 有n x n <n r n ,记u n =nrn,则n 1n u u +=rn 1n +→r 1<1 (n →∞), ∴∑n r n 收敛,∴∑n xn在|x|>r>1上一致收敛. (4)∀x ∈[0,1], 有2nnx ≤2n 1, 又∑2n 1收敛,∴∑2n n x 在[0,1]上一致收敛.(5)方法一:记u n (x)=(-1)n-1, v n (x)=nx 12+,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0<nx 12+≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n x (-1)21-n 在R 上一致收敛.方法二:|∑++=+pn 1n k 21-k kx (-1)|≤1n x 12+++p n x 12++≤n 2.∀ε>0,只要取N=⎥⎦⎤⎢⎣⎡ε2,则当n>N 及任意自然数p ,就有|∑++=+pn 1n k 21-k kx (-1)|<ε,由柯西准则知,∑+n x (-1)21-n 在R 上一致收敛.方法三:由莱布尼兹判别法知,对R 上的任意一点x ,∑+nx (-1)21-n 收敛.又)x (R sup lim n R x ∞n ∈+→=1n 1lim ∞n ++→=0,∴∑+nx (-1)21-n 在R 上一致收敛.(6)当x ≠0时,该函数项级数的部分和函数S n (x)=x 2+22x 1x ++…+1-n 22)x (1x +=1+x 2-1-n 2)x (11+→1+x 2=S(x) (n →∞), ∴Rx sup ∈|R n (x)|=1-n 2Rx )x (11sup+∈=1→/0 (n →∞), ∴∑+1-n 22)x (1x 在R 上不一致收敛.4、设函数项级数∑)x (u n 在D 上一致收敛于S(x),函数g(x)在D 上有界. 证明:级数∑)x (g(x)u n 在D 上一致收敛于g(x)S(x).证:可设|g(x)|≤M ,x ∈D. ∵∑)x (u n 在D 上一致收敛于S(x), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈D ,都有|∑=n1k k (x )u -S(x)|<Mε. ∴|∑=n 1k k (x )g(x )u - g(x)S(x)|=|g(x)|·|∑=n1k k (x )u -S(x)|< ε. 得证!5、若区间I 上,对任何正整数n ,|u n (x)|≤v n (x),证明: 当∑)x (v n 在I 上一致收敛时,级数∑)x (u n 在I 上也一致收敛. 证:∵|u n (x)|≤v n (x),∴∑=+p1k k n |(x )u |≤∑=+p1k k n (x )v .又∑)x (v n 在I 上一致收敛,∴∀ε>0,∃N>0,当n>N 时, 对一切x ∈I 和一切自然数p ,都有|∑=+p1k k n (x )v |<ε.∴|∑=+p 1k k n (x )u |≤∑=+p 1k k n |(x )u |≤∑=+p 1k k n (x )v ≤|∑=+p1k k n (x )v |<ε,得证!6、设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑)a (u n 与∑)b (u n 都绝对收敛,则∑)x (u n 在[a,b]绝对且一致收敛. 证:∵u n (x)(n=1,2,…)在[a,b]上单调,∴|u n (x)|≤|u n (a)|+|u n (b)|, 又∑|)a (u |n 与∑|)b (u |n 都收敛,∴正项级数|))b (u ||)a (u (|n n +∑收敛; 根据优级数判别法知,∑)x (u n 在[a,b]绝对且一致收敛.7、证明:{f n } 区间I 上内闭一致收敛于f 的充要条件是:对任意x 0∈I ,存在x 0的邻域U(x 0),使{f n }在U(x 0)∩I 上一致收敛于f. 证: [必要性]设{f n } 区间I 上内闭一致收敛于f ,对任意x 0∈I ,任意邻域U(x 0)∩I ⊂I ,根据内闭一致收敛的定义, {f n }在U(x 0)∩I 上一致收敛于f.[充分性]设任意x 0∈I ,存在x 0的一个邻域U(x 0), 使得{f n }在U(x 0)∩I 上一致收敛于f ,即 对一切x ∈I ,{f n }一致收敛于f ,∴{f n }在I 上一致收敛,从而内闭一致收敛.8、在[0,1]上定义函数列u n (x)=⎪⎩⎪⎨⎧≠=n 1x 0n 1x n1,,,证明: 级数∑)x (u n 在[0,1]上一致收敛,但它不存在优级数.证:∵|∑=+p1k k n (x )u |=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=⋯+=+==+⋯++++=++⋯+⋯+=+⋯++++=+⋯+++其它点p n 1x 2n 1x 1n 1x 00000p n 1p n 102n 102n 101n 1001n 1,,,,,∴当0≤x<1时,恒有|∑=+p1k k n (x )u |<n1,于是∀ε>0,取N=[ε1],则当n>N 时,对一切x ∈[0,1]和一切自然数p ,都有|∑=+p1k k n (x )u |<ε,∴级数∑)x (u n 在[0,1]上一致收敛.若∑)x (u n 在[0,1]上存在优级数∑n M ,取x=n1,则M n ≥|u n (x)|=|u n (n 1)|=n 1>0. 由∑n M 收敛知∑n1收敛,不合理! ∴∑)x (u n 不存在优级数.9、讨论下列函数列或函数项级数在所示区间D 上的一致连续性: (1)∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1];(2)∑nn3x sin 2, D=R +; (3)∑++)nx 1](1)x -(n [1x 222, D=R +;(4)∑nx n , D=[-1,0]; (5)∑++1n 2x (-1)12n n, D=(-1,1);(6)∑∞=1n n sinnx, D=(0,2π).解:(1)∵∑++=++pn 1n k 2222]1)-(k )[x k (x 2k -1=2222n x 1p)(n x 1+-++<22n x 1+≤2n 1; ∴∀ε>0,取N=[ε1]+1,当n>N 时,对一切x ∈[-1,1]和一切自然数p ,都有∑++=++pn 1n k 2222]1)-(k )[x k (x 2k-1<ε,∴原级数在[-1,1]上一致收敛. (2)对任意自然数n ,取x n =n 32π⋅∈R +,有|n n 3x sin 2|=2n →/ 0 (n →∞), ∵原级数在R +上不一致收敛. (3)S n (x)=∑=⎥⎦⎤⎢⎣⎡+-+n1k 22kx 111)x-(k 11=1-2nx 11+→1(n →∞),+∈R x sup |S n (x)-1|=≥2n 1n 11⎪⎭⎫ ⎝⎛+=21(n=1,2,…);∵原级数在R +上不一致收敛.(4)记u n (x)=(-1)n, v n (x)=n(-x)n,则对任意的x ∈[-1,0],有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在[-1,0]上有界;又{v n (x)}单调减,且由0<n(-x)n≤n1→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在[-1,0]上一致收敛.(5)记u n (x)=(-1)n, v n (x)=1n 2x 12n ++,则对任意的x ∈(-1,1),有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在(-1,1)上有界;又{v n (x)}单调减,且由0<1n 2x 12n ++≤1n 21+→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在(-1,1)上一致收敛. (6)取ε0=21sin 31,对任意自然数N ,存在n=N ,p=N+1,x 0=1)2(N 1+∈(0,2π),使∑++=pn 1n k 0k )(x u =∑++=+1N 21N k 1)2(N k sin k1>∑++=1N 21N k 2k 1sin >21sin 21>ε0.∴原级数在(0,2π)上不一致收敛.10、证明:级数∑∞=-0n n n )x 1(x (-1)在[0,1]上绝对收敛并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛. 证:易见|R n |≤(1-x)x n+1. 又由((1-x)x n+1)’=(n+1)(1-x)x n -x n+1=(n+1)x n -(n+2)x n+1=(n+2)x n (2n 1n ++-x),知 当x=2n 1n ++时,|R n |≤(1-2n 1n ++)1n 2n 1n +⎪⎭⎫ ⎝⎛++=1n 2n 1n 2n 1+⎪⎭⎫ ⎝⎛+++<2n 1+, ∴[0,1]x ∞n sup lim ∈+→|R n |≤2n 1lim ∞n ++→=0. ∴原级数在[0,1]上一致收敛. 对级数∑∞=-0n nn)x 1(x (-1)各项绝对值组成的级数∑∞=-0n n )x 1(x ,∵)x 1(x lim n ∞n -+→=0, x ∈[0,1],∴原级数在[0,1]上绝对收敛.又∞n lim +→S n (x)=∞n lim +→(1-x)∑=nk k x =∞n lim +→(1-x n )=⎩⎨⎧=<≤1x 01x 01,,,可见[0,1]x ∞n sup lim ∈+→|R n |=1→/ 0 (n →∞),得证.11、设f 为定义在区间(a,b)内的任一函数,记f n (x)=n[nf(x)], n=1,2,…, 证明:函数列{f n }在(a,b)内一致收敛于f. 证:由|R n |=|n [nf(x)]-f(x)|=n nf(x )-[nf(x )]≤n11→0 (n →∞),得证!12、设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数. 证明:级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上不仅收敛,而且一致收敛. 证:根据莱布尼茨判别法,该级数在[a,b]上收敛. 记v n (x)=(-1)n-1,则对任意的x ∈[a,b],有|∑=n1k k (x )v |≤1, (n=1,2,…),即{v n (x)}的部分和函数列在[a,b]上有界;又u n (x)在[a,b]上单调,且u n (a),u n (b)都收敛于零,∴0<u n (x)<u n (a)+u n (b)→0(n →∞),∴u n (x)⇉0 (n →∞), 由狄利克雷判别法知该级数在[a,b]上一致收敛.13、证明:若{f n (x)}在区间I 上一致收敛于0,则存在子列{in f },使得∑=n1k n if在I 上一致收敛.证:∵{f n (x)}在区间I 上一致收敛于0,∴对任意自然数i ,总存在自然数n i ,使得∀x ∈I ,有|i n f |<2i 1,又级数∑=n1k 2i1收敛,由魏尔斯特拉斯判别法知,∑=n1k n if 在I 上一致收敛.。
(NEW)华东师范大学数学系《数学分析》(第4版)(下册)配套题库【名校考研真题+课后习题章节题库模拟试题
有界,由Dirichlet判别法,知 二、解答题
收敛.
1.设 ,求级数
的和.[苏州大学2004研]
解:设
, 的收敛区间为
,
,
令
,则
;
令
,则
则
从而
2.
.[武汉大学2004研]
解:原式 3.判断下列级数是绝对收敛、条件收敛还是发散:
(1)
;
(2)
.[北京科技大学2011研]
解:(1)因为
且
收敛,
所以由级数的比较判别法知,级数
上逐
点收敛,即由Osgood定理,得
上一致收敛.
(Osgood定理)设函数列 在有限闭区间 上连续, 在 上等 度连续,如果
则
(1)
上连续;
(2)
上一致收敛于 [哈尔滨工业大学2009研]
证明:(1)由 在 上等度连续,得
对
,当
成立;
时,不等式
令 取极限得,
由此得
上连续;
,对所有
(2)由 时,有
,
;对于任意的
目 录
第一部分 名校考研真题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续 第17章 多元函数微分学 第18章 隐函数定理及其应用 第19章 含参量积分
第20章 曲线积分 第21章 重积分 第22章 曲面积分 第23章 向量函数微分学 第二部分 课后习题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续
闭区间的性质可知,存在
即 这里
,由比值判别法知
绝对收敛.
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-函数列与函数项级数(圣才出品)
是单调递减的.
又对任意
故
由狄利克雷判别法知
致收敛.
(3)因为|x|>r≥1,所以
在
上一
当 r>1 时,因级数
收敛,所以 在| x |>r>1 上一致收敛.
3 / 23
圣才电子书
当 r=1 时,
十万种考研考证电子书、题库视频学习平台
所以级数
上不一致收敛.
(4)因
时.
,而
上不一致收敛. 考虑区间[0,M]时,
所以 在[0,M]上一致收敛且
上内闭一致收敛.
(5)任意给定的
(i)
,考虑区间[-1,1]时,
由(ii)知 在[0,+∞)
(ii)D=(-∞,+∞)时.
故 但由(i)知 在
所以
在(-∞,+∞)上不一致收敛.
上内闭一致收敛.
2.证明:设
2 / 23
若对每一个正整数 n 有
证明:必要性
总存在 的一个邻域 和 I 的一个内闭区间[a,b],使得
所以
而 在[a,b]上一致收敛于 f,因此 在
上一致收敛于 f.
充分性
由已知
使得 在
上一致收敛于
f.从而
当
时
有
显然,当
取遍[a,b]上所有点时,
覆盖[a,b].由有限覆盖定理,存在有限个区间覆盖[a,b].不妨设
取
,则当 n>N 时,
证明:不妨设存在 M≥0,对任意
有|g(x)|<M.因
在 D 上一致收敛于
S(x),故对任意
存在 N>0,当 n>N 时,对任意
,均有
从而,对任意
4 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台
数学分析课本(华师大三版)-习题及答案第十三章
第十三章 函数列与函数项级数一、证明题1.讨论下列函数列或函数项级数在所示区间D 上是否一致收敛,并说明理由:(1) f n (x)=22n 1x +,n=1,2,…,D=(-1,1); (2) f n (x)=22xn 1x +,n=1,2,…D=(-∞,+∞); (3) f n (x)=⎪⎪⎩⎪⎪⎨⎧≤<++≤≤++-1x 1n 1 0,1n 1x 0 1,1)x (n (n=1,2……); (4) f n (x)=nx , n=1,2,…, (i) D=[0,+∞]; (ii) D=[0,1000]; (5) f n (x)=sin n x , n=1,2,…, (i) D=[-L,L]; (ii) D=[-∞,+∞]; (6) ∑+--nx 1)(21n , D=[-∞,+∞]; (7) ∑-+1n 22)x (1x , (i) D=[-∞,+∞]; (ii) D=⎥⎦⎤⎢⎣⎡10,101. 2. 证明:设f(x)→f(x),x ∈D; a n →0(n →∞),(a n >0),若对每一个自然数n.有|f n (x)-f(x)|≤a n , x ∈D,则{f n }在D 上一致收敛于f.3. 设{f n }为定义在[a,b]上的函数列,且对每一个n,f n 在点a 右连续,但{f n (a n )}是发散的,证明在任何开区间(a,a+δ)这里(a+δ<b)内{f n }都不一致收敛.4. 设函数项级数∑n u (x)在D 上一致收敛于S(x),函数g(x)在D 上有界,证明级数∑(x)g(x)u n 在D 上一致收敛于g(x)S(x). 5. 若在区间I 上,对任何自然数n, |u n (x)|≤V n (x), 证明当∑n v (x)在I 上一致收敛时,级数∑n u (x)在I 也一致收敛.6. 设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑n u (a)与∑n u (b)都绝对收敛,则级数∑n u (x)在[a,b]上绝对并一致收敛.7. 在[0,1]上定义函数列1,2n n 1x 0,n 1 x ,n 1(x)u n =⎪⎪⎩⎪⎪⎨⎧≠==证明: 级数∑n u (x)在[0,1]上一致收敛,但它不存在优级数.8. 证明:级数∑∞=0n n n x )-(1x (-1)在[0,1]上绝对并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛.9. 设f 为定义在区间(a,b)内的任一函数,记f n (x)=n [nf(x)],n=1,2,……,证明函数列{f n }在(a,b)内一致收敛于f.10. 设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数.则级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上一致收敛.11. 证明: 若函数列{f n }在[a,b]上满足定理13.10的条件,则{f n }在[a,b]上一致收敛.12. 证明: 函数f(x)=∑3n sinnx 在(-∞,+∞)上连续,且有连续的导函数.13. 证明: 定义在[0,2π]上的函数项级数∑∞=0n n cosnx r (0<r<1)满足定理13.12条件,且 ∑⎰∞==0n n2πcosnx dx r 02π 14. 讨论下列函数列在所定义区间上的一致收敛性及其极限函数的连续性,可积性和可微性.(1) f n (x)=2nx x e -(n=1,2,…)x ∈[-L,L];(2) f n (x)=nx1nx +,n=1,2,…, (i) x ∈[)+∞,0, (ii) x ∈[)+∞a, (a>0); 15. 证明函数ξ(x)=∑x n 1在(1,+∞)内连续,且有连续的各阶导数.16. 证明:若函数列{f n }在x 0的某δ邻域U(x 0,δ)内一致收敛于f,且)1,2,(n a (x)f lim n n x x 0 ==→,则n n a lim ∞→与f(x)lim 0x x →存在且相等,即∞→n lim (x)f lim n x x 0→=(x)f lim lim n n x x 0∞→→ 17. 设f 在(-∞,+∞)上有任何阶导数,记F n =f (n),且在任何有限区间内,F n →ϕ(n →∞),试证 ϕ(x)=ce x (c 为常数).二、计算题1. 判别下列函数项级数在所示区间上的一致收敛性. (1) ∑-∈-r]r,[x ,1)!(n x n; (2) ∑+∞-∞∈+],[x ,)x (1x (-1)n 221-n ; (3) ∑>≥0r |x |,x n n ;(4) ∑∈[0,1]x ,nx 2n.2. 讨论下列函数列或函数英级数在所示区间D 上的敛散性: (1) (0,1]D ,1,2,n ,nx11(x)f n ==+=(2) ∑=][0,2D ,n sinnx π; (3) ∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1]; (4) ∑n n 3xsin 2, D=(0,+∞) (5) ∑+-+)nx ](11)x (n [1x 222, D=(0,+∞) (6) ∑nx n, D=[-1,0]; (7) ∑+-+12n x 1)(12n n D=[-1,1] 3. 设S(x)=∑-21n nx ,x ∈[-1,1],计算积分S(t)dt 0x ⎰. 4. 设S(x)=∑⋅n n cosnx ,x ∈(-∞,+∞),计算积分S(t)dt 0x ⎰.5. 设S(x)=∑-nx ne (x>0),计算积分S(t)dt ln2ln3⎰ 三、考研复习题1. 试问K 为何值时,下列函数列{f n }一致收敛:(1) f n (x)=xn k e -nx ,0≤x<+∞; (2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<⎪⎭⎫ ⎝⎛-≤≤=1x n 2 0,,n 2x n 1 ,n x n2n 1x 0 ,xn (x)f k k n 2. 证明:(1)若f n (x)→f(x)(n →∞)(x ∈I),且f 在I 上有界,则{f n }至多除有限项外,在I 上是一致有界的;(2) 若f n (x)⇒f(x) (n →∞)(x ∈I),且对每一个自然数n,f n 在I 上有界,则{f n }在I 上一致有界.3. 设f 为⎥⎦⎤⎢⎣⎡1,21上的连续函数,证明: (1) {x n f(x)}在⎥⎦⎤⎢⎣⎡1,21上收敛; (2) {x n f(x)}在⎥⎦⎤⎢⎣⎡1,21上一致收敛的充要条件是f 在⎥⎦⎤⎢⎣⎡1,21上有界且f(1)=04. 若把定理13.9中一致收敛函数列{f n }的每一项在[a,b]上连续改为在[a,b]上可积,试证{f n }在[a,b]上的极限函数在[a,b]上也可积.5. 证明: 由二重极限∞→m lim (∞→n lim cos 2n (m!πx)) 所确定的极限函数是狄利克雷函数.6. 设级数∑n a 收敛,证明∞→n lim ∑x n n a =∑n a . 7. 设可微函数列{f n }在[a,b]上收敛,{f 'n }在[a,b]上一致有界,证明:{f n }在[a,b]上一致收敛.。
数学分析13函数列与函数项级数总练习题
第十三章 函数列与函数项级数总练习题1、试问k 为何值时,下列函数列{f n }一致收敛;(1)f n (x)=xn k e -nx , 0≤x<+∞;(2)f n (x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<⎪⎭⎫ ⎝⎛≤≤1x n 20n 2x n 1n x -n 2n1x 0 xn kk,,,. 解:(1)当x=0时,f n (x)=xn k e -nx =0,∴使{f n }在[0, +∞)上一致收敛, 必有f(x) =∞n lim +→f n (x)=0. 又f ’n (x)=n k e -nx (1-xn),f n (x)在x=n1处有最大值,∴), [0x sup +∞∈|f n (x)-f(x)|=), [0x sup +∞∈|xn k e -nx |=n k-1e -1,仅当k<1时,n k-1e -1→0 (n →∞). ∴当k<1时,{f n }在[0, +∞)上一致收敛. (2)使函数列{f n }在[0, 1]一致收敛,必有f(x) =∞n lim +→f n (x)=0.又f n (x)在x=n1处有最大值,∴,1][0x sup ∈|f n (x)-f(x)|=,1][0x sup ∈|xn k |=n k-1,仅当k<1时,n k-1→0 (n →∞). ∴当k<1时, {f n }在[0,1]上一致收敛.2、证明:(1)若f n (x)⇉f (x) (n →∞), x ∈I ,且f 在I 上有界,则{f n }至多除有限项外在I 上是一致有界的;(2)若f n (x)⇉f (x) (n →∞), x ∈I ,且对每个正整数n ,f n 在I 上有界,则{f n }在I 上一致有界.证:(1)∵f 在I 上有界,∴可设|f(x)|≤M ;∵f n (x)⇉f (x) (n →∞), x ∈I , ∴∀ε>0, ∃正整数N ,当n>N 时,对一切x ∈I ,都有|f n (x)-f(x)|< ε, 又ε>|f n (x)-f(x)|≥|f n (x)|-|f(x)|≥|f n (x)|-M, ∴|f n (x)|<M+ε. 即|f n (x)|≤M. ∴{f n }至多除N 项外在I 上是一致有界的.(2)∵f n (x)→f (x) (n →∞), x ∈I ,∴对∀ε>0, ∃正整数N ,当n>N+1>N 时, 对一切x ∈I ,都有|f n (x)-f N+1(x)|<ε, ∴当n>N+1时,∀x ∈I ,有 |f n (x)|<|f N+1(x)|+ε. 又对每个正整数n ,f n 在I 上有界,可设|f n (x)|≤M n (n=1,2,…,N+1,x ∈I). 记M=max{M 1,M 2,…,M N+1},则 对一切的自然数n ,都有|f n (x)|<M+ε,即|f n (x)|≤M (x ∈I). 得证!3、设f 为[21,1]上的连续函数,证明:(1){x n f(x)}在[21,1]上收敛;(2){x n f(x)}在[21,1]上一致收敛的充要条件是f(1)=0.证:(1)∞→n lim x n f(x)=⎪⎩⎪⎨⎧=<≤1x f(x),1x 21 0, ,得证! (2)[必要性]若{x n f(x)}在[21,1]上一致收敛,则∞→n lim x n f(x)=0,又当x=1时,∞→n lim x n f(x)=f(x)=0,∴f(1)=0.[充分性]若f(1)=0. 则∞→n lim x n f(x)=0=g(x).又f 在[21,1]上连续,∴f 在[21,1]上有界,可设|f(x)|≤M,x ∈[21,1). ∴当x=1时,x n f(x)=0;当x ∈[21,1)时,|x n f(x)|≤Mx n →0 (n →∞). ∴,1]21[x sup ∈|f n (x)-g(x)|=,1]21[x sup ∈|x n f(x)|→0 (n →∞),∴{x n f(x)}在[21,1]上一致收敛.4、证明:若函数列{f n }在[a,b]上一致收敛,且每一项在[a,b]上都可积,则{f n }在[a,b]上的极限函数在[a,b]上也可积.证:对[a,b]任作一分割T ,f(x)在△i 上的振幅为ωi =ix ,x sup ∆∈''''|f(x ’)-f(x)”|.∵f n (x)⇉f (x) (n →∞), x ∈[a,b],∴∀ε>0, ∃N ,使得 |f N (x ’)-f(x ’)|<)a b (3ε-, |f N (x ”)-f(x ”)|<)a b (3ε- (x ’,x ”∈[a,b]). 又f N (x)在[a,b]上可积,∴对上述的ε>0, ∃δ>0,只要T <δ,就有∑=∆'n1i ii x ω<3ε, 其中ω’i =i x ,x sup ∆∈''''|f N (x ’)-f N (x)”|. 于是,当x ’,x ”∈△i 时, |f(x ’)-f(x)”|≤|f N (x ’)-f(x ’)|+|f N (x ”)-f(x ”)|+|f N (x ’)-f N (x)”|<)a b (32ε-+ω’i . 从而∑=∆n1i i i x ω≤∑=∆⎥⎦⎤⎢⎣⎡'+-n1i ii x ω)a b (32ε=∑∑==∆'+∆-n1i i i n 1i i x ωx )a b (32ε<32ε+3ε=ε, ∴f (x)在[a,b]上也可积.5、设级数∑n a 收敛,证明:∑+→x n0x n a lim =∑n a . 证:∵x n 1≤1 (x ∈[0,+ ∞)),且x x n 1)1(n 1≤+,∴{xn 1}单调一致有界; 又∑n a 收敛,从而∑n a 在[0,+ ∞)上一致收敛,由阿贝尔判别法知,∑xn n a 在[0,+ ∞)上一致收敛. 又xnn a (n=1,2,…)在[0,+ ∞)上连续, 由连续性知:∑+→x n 0x n a lim =∑+→x n0x n a lim =∑n a .6、设可微函数列{f n }在[a,b]上收敛,{f ’n }在[a,b]上一致有界,证明: {f n }在[a,b]上一致收敛.证:设|f ’n (x)|≤M, (n=1,2,…,x ∈[a,b]). ∀ε>0, 在[a,b]上取m-1个点: x 1,x 2,…,x m-1满足a=x 0<x 1<…<x m-1<x m =b ,使它们把[a,b]分割成m(有限)个小区间△i =[x i-1,x i ]且△x i =x i -x i-1<M4ε(i=1,2,…,m). ∵{f n }在[a,b]上收敛,∴对△i 上全意一点i x , ∃N i >0,当n>N i 时, 对任意自然数p ,有|f n (i x )-f n+p (i x )|<2ε. 对函数f n (x)-f n+p (x)应用微分中值定理:∀x △i , 有 |[f n (x)-f n+p (x)]-[f n (i x )-f n+p (i x )]|=|f ’n (ξ)-f ’n+p (ξ)||x-i x |<2M ·M 4ε=2ε.于是 |f n (x)-f n+p (x)|≤|[f n (x)-f n+p (x)]-[f n (i x )-f n+p (i x )]|+|f n (i x )-f n+p (i x )|<2ε+2ε=ε. 取N=max{N 1,…N m },当n>N 时,对一切x ∈[a,b],都有 |f n (x)-f n+p (x)|<ε,∴{f n }在[a,b]上一致收敛.7、设连续函数列{f n }在[a,b]上一致收敛于f ,而g 在R 上连续. 证明:{g(f n (x))}在[a,b]上一致收敛于g(f(x)).证:∵函数列{f n }在[a,b]上一致收敛于f ,且函数列{f n }在[a,b]上连续, 根据连续性,知f 在[a,b]上连续,从而{f n }在[a,b]上一致有界,记 |f n (x)|≤M ,则|f(x)|≤M ,又g 在R 上连续. ∴g 在[-M,M]上一致连续. ∀ε>0, ∃δ>0, 对一切的x ∈[a,b], 有f n (x),f(x)∈[-M,M],又由|f n (x)-f(x)|< δ, ∴对一切的n, 有|g(f n (x))-g(f(x))|<ε. 得证!。
第十三章 函数列与函数项级数
存在某个正整数 0对任何正数N ,都有
D上某一点x'与自然数n' N , 使得
fn' (x') f (x') 0
定理13.1: 函数列{ fn}在数集D上一致收敛的充要条件
是:对任给正数,总存在正数N , 使得当n, m N时,对一切x D,都有 fn (x) fm (x)
第十三章 函数列与函数项级数
∮1 一致收敛性
㈠ 函数列及其一致收敛性
函数列: f1, f2.., fn ,..(1) 是一列定义在同一数集E上的函数,则称之为 定义在E上的函数列。
设x0 E,以x0代入(1)可得函数列: f1( x0 ), f2 ( x0 ),..fn ( x0 ),..(2)
fn (0) f (0) 0 , fn (1) f (1) 0 ,
即证得{ fn}在(1,1]上收敛,且有如题所示 的极限函数。
例2: 定义在(,)上的函数列fn (x) sin nx / n, n 1,2,...由. 于对任何实数x,都有sin nx / n
1/ n,故对任给的 0,只要n N 1/ , 就有sin nx / n 0 .
证明:必要性
设fn (x) f (x)(n ), x D,即对给任何 0
存在正数N,使得当n N时,对一切x D都
有 fn (x) f (x) / 2,于是当n, m N时,就可
得 fn (x) fm (x) fn (x) f (x) f (x) fm (x)
fn(x) f (x) f (x) fm(x) / 2 / 2
..
xn
..的部分和函数为Sn
(x)
1 xn 1 x
函数项级数的一致收敛
第十三章 函数列与函数项级数§ 1 一致收敛性一.函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念:收敛点,收敛域( 注意定义域与收敛域的区别 ),极限函数等概念.逐点收敛 ( 或称为“点态收敛” )的“N −ε”定义. 例1 对定义在) , (∞+∞−内的等比函数列)(x f n =n x , 用“N −ε”定义验证其收敛域为] 1 , 1 (−, 且∞→n lim )(x f n = ∞→n lim n x =⎩⎨⎧=<.1 , 1 ,1 || , 0 x x 例2 )(x f n=n nxsin . 用“N −ε”定义验证在) , (∞+∞−内∞→n lim )(x f n =0. 例3 考查以下函数列的收敛域与极限函数: ) (∞→n .⑴ )(x f n=x x xx n n n n −−+−. )(x f n →,sgn x R ∈x .⑵)(x f n =121+n x.)(x f n →,sgn x R ∈x .⑶ 设L L ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令)(x f n =⎩⎨⎧≠∈=.,,, ] 1 , 0 [ , 0,,,, , 12121n n r r r x x r r r x L L 且)(x f n →)(x D , ∈x ] 1 , 0 [.⑷)(x f n =2222x n xe n −. )(x f n →0, R ∈x . ⑸ )(x f n =⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<≤−<≤−−+ . 121 , 0,2121 ,42,210 ,4111x x x x x n n n nn nn有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意∫≡101)(dx x f n .)二. 函数列的一致收敛性:问题: 若在数集D 上)(x f n →)(x f , ) (∞→n . 试问: 通项)(x f n 的解析性质是否必遗传给极限函数)(x f ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但∞→n lim()∫∫∞→≠110)(lim )(dxx f dx x f n n n . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一种手段. 对这种函数, ∞→n lim )(x f n 就是其表达式.于是,由通项函数的解析性质研究极限 函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓 “整体收敛”的结果.定义 ( 一致收敛 )一致收敛的几何意义.Th1 (一致收敛的Cauchy 准则 ) 函数列}{n f 在数集D 上一致收敛,⇔N , 0∃>∀ε, , , N n m >∀⇒ ε<−n m f f .( 介绍另一种形式ε<−+n p n f f .)证 )⇒ ( 利用式.f f f f f f n m n m −+−≤−))⇐ 易见逐点收敛. 设∞→n lim)(x f n =)(x f ,……,有2 |)()(|ε<−x f x f n m .令∞→m , ⇒εε<≤−2|)()(|x f x f n 对∈∀x D 成立, 即)(x f n⎯→⎯⎯→⎯)(x f ,) (∞→n ,∈x D .系1 在D 上nf ⎯→⎯⎯→⎯f , ) (∞→n ,⇔ 0|)()(|sup lim =−∞→x f x f n Dn . 系2 设在数集D 上)(x f n →)(x f , ) (∞→n . 若存在数列}{n x ⊂D , 使0 |)()(|→/−n n n x f x f , 则函数列)}({x f n 在数集D 上非一致收敛 .应用系2 判断函数列)}({x f n 在数集D 上非一致收敛时, 常选 n x 为函数=)(x F n )(x f n ―)(x f 在数集D 上的最值点.验证函数一致收敛性:例4 )(x f nn nxsin =. 证明函数列)}({x f n 在R 内一致收敛.例5)(x f n 2222x n xe n −=. 证明在R 内 )(x f n →0, 但不一致收敛. 证 显然有)(x f n →0, |)()(|x f x f n −= )(x f n 在点n x =n 21处取得极大值22121→/=⎟⎠⎞⎜⎝⎛−ne n f n ,) (∞→n . 由系2 , )}({x f n不一致收敛. 例6221)(x n xx S n +=. 证明在) , (∞+∞−内)(x S n ⎯→⎯⎯→⎯0, ) (∞→n .证 易见 ∞→n lim.0)()(==x S x S n 而n nx x n n x n x x S x S n 21)(1||2211|||)()(|222≤+⋅=+=− 在) , (∞+∞−内成立.由系1 , ⇒ ……例7 对定义在区间] 1 , 0 [上的函数列⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<=≤<−≤≤=. 11 , 0),, 2 , 1 ( , 121 ,22,210 , 2)(22x n n n x n x n n n x x n x f n L证明: ∞→n lim )(x f n =0, 但在] 1 , 0 [上不一致收敛. [1]P 38—39 E3, 参图.证 10≤<x 时, 只要1−>x n , 就有)(x f n=0. 因此, 在] 1 , 0 (上有)(x f =∞→n lim )(x f n =0. 0)0(=n f , ⇒ )0(f =∞→n lim )0(n f =0.于是, 在] 1 , 0 [上有 )(x f =∞→n lim )(x f n =0. 但由于021|)()(|max ]1,0[→/=⎟⎠⎞⎜⎝⎛=−∈n n f x f x f n n x ,) (∞→n ,因此 , 该函数列在] 1 , 0 [上不一致收敛.例8)(x f n =12sin2+n x. 考查函数列)}({x f n 在下列区间上的一致收敛性:⑴ )0( , ] , [>−l l l ; ⑵ ) , 0 [∞+.Ex [1]P 44—46 1⑴—⑸,2,9⑴; P 53—54 1⑴,2,3⑴.三. 函数项级数及其一致收敛性:1. 函数项级数及其和函数:,∑)(x un, 前n 项部分和函数列)}({x S n ,收敛点,收敛域, 和函数, 余项.例9 定义在) , (∞+∞−内的函数项级数( 称为几何级数 )LL +++++=∑∞=n n nx x x x201的部分和函数列为 )1 ( 11)(≠−−=x x x x S nn , 收敛域为) 1 , 1 (−.2. 一致收敛性: 定义一致收敛性.Th2 ( Cauchy 准则 ) 级数∑)(x un在区间D 上一致收敛, ⇔ N ,0∃>∀ε,, , N ∈∀>∀p N n ⇒ ε |)()()(|21<++++++x u x u x u p n n n L 对∈∀x D 成立.系 级数∑)(x u n 在区间D 上一致收敛, ⇒ nu )(x ⎯→⎯⎯→⎯0, ) (∞→n .Th3 级数∑)(x u n在区间D 上一致收敛, ⇔∞→n lim =∈|)(|sup x R n x D∞→n lim 0|)()(|sup =−∈x S x S n x D.例10 证明级数∑∞=−+−121) 1(n n n x在R 内一致收敛 .证 令n u )(x =n x n +−−21) 1(, 则∞→n 时≤++−+−++=+++++++ |) 1(11||)()()(|21221pn x n x x u x u x u p p n n n L L11112→+≤++≤n n x 对∈∀x R 成立. ……例11 几何级数∑∞=0n nx在区间] , [a a −)10(<<a 上一致收敛;但在) 1 , 1(−内非一致收敛.证 在区间] , [a a −上 , 有11sup |)()(|sup ],[],[→−=−−=−−−a a a x x S x S n na a n a a , ) (∞→n . ⇒∑一致收敛 ;而在区间) 1 , 1(−内 , 取∈+=1n nx n ) 1 , 1(−, 有∞→⎟⎠⎞⎜⎝⎛+=+−⎟⎠⎞⎜⎝⎛+≥−=−−−−1)1,1()1,1(1111 1sup |)()(|sup n nn n n n n nn n n x x x S x S , ) (∞→n . ⇒∑非一致收敛.( 亦可由通项nn x x u =)(在区间) 1 , 1(−内非一致收敛于零,⇒ ∑非一致收敛.)几何级数∑∞=0n nx虽然在区间) 1 , 1(−内非一致收敛 , 但在包含于) 1 , 1(−内的任何闭区间上却一致收敛 . 我们称这种情况为“闭一致收敛”. 因此 , 我们说几何级数∑∞=0n nx在区间) 1 , 1(−内闭一致收敛 .Ex [1]P 44—45 1 ⑹⑺, 4,6.四. 函数项级数一致收敛判别法:1.M - 判别法:Th 4 ( Weierstrass 判别法 ) 设级数∑)(x un定义在区间D 上,∑nM是收敛的正项级数.若当n 充分大时, 对∈∀x D 有||)(x u n n M ≤, 则∑在D 上一致收敛 .证,|)(| )( 1111∑∑∑∑==+=++=+=≤≤pi pi i n pi i n i n pi i n M M x u x u 然后用Cauchy 准则.亦称此判别法为优级数判别法. 称满足该定理条件的正项级数∑nM是级数∑)(x un的一个优级数. 于是Th 4 可以叙述为: 若级数∑)(x un在区间D 上存在优级数 , 则级数∑)(x u n在区间D 上一致收敛 . 应用时, 常可试取|})({|sup x u M n Dx n∈=.但应注意, 级数∑)(x u n在区间D 上不存在优级数 , ⇒/ 级数∑)(x u n在区间D 上非一致收敛. 参阅[1]P 45 8.注意区分用这种控制方法判别函数列和函数项级数一致收敛性的区别所在.例12 判断函数项级数∑∞=i n n nx 2sin 和 ∑∞=i n n nx 2cos 在R 内的一致收敛性 . 例13 设) , 2 , 1 ( )(L =n x u n 是区间] , [b a 上的单调函数. 试证明 : 若级数∑)(a un与∑)(b un都绝对收敛, 则级数∑)(x un在区间] , [b a 上绝对并一致收敛 .简证 , 留为作业. |)(||)(| |)(|b u a u x u n n n +≤.……2. Abel 判别法:Th 5 设 ⅰ> 级数∑)(x un在区间I 上收敛; ⅱ> 对每个∈x I , 数列)}({x v n单调 ; ⅲ> 函数列)}({x v n 在I 上一致有界, 即0 >∃M , 使对I ∈∀x 和n ∀, 有M x v n |)(|≤. 则级数∑)()(x v x u n n 在区间I 上一致收敛 . ( [1]P 43 )3。
函数序列与函数项级数习题课(一)
(1) 当 1 1, 1 x 1, 1 x
即 x 0或x 2时, 原级数绝对收敛,所以收敛;
(2) 当 1 1, 1 x 1, 1 x
即 2 x 0时, 原级数发散.
(3) 当| 1 x | 1, x 0或x 2,
当 x 0时, 级数 (1)n收敛; n1 n
x
),
n1
⒊ un ( x)至少在一点x0处收敛,
n1
则 un ( x)在[a,b]上一致收敛,其和S'( x) C[a,b],
n1
且S'( x) g( x), 即有:
'
un
(
x)
un' (x)
n1
n1
逐项可导
典型例题
例1:求
n1
n x n nn x
收敛域
n xn
解:lim nn x
n
1
lim
n
1
x n
n
ex
nx
x 1
n x
n
收敛
n n1
n x
x 1,
n x n 发散
nnx
n1
例 判断 xn 1 x x2
1.
n0
和发散点集。
xn 的收敛点集
解:当 x 1时, 级数收敛; x 1时,级数发散.
收敛点集: (1,1);发散点集: (, 1] [1, ).
fn ( x), n 1,2, ...在I上连续,且{ fn( x)}在I上一致收敛 于f ( x),则f ( x)在I上连续.
定理4.2(函数项级数的和函数的连续性) 设级数
un ( x)在I上一致收敛于S( x), 且若un ( x) CI , 则
数学分析之十三章函数列与函数项级数
连续 .即证: 对 0 , 0 , 当 | x x0 | 时, | f (x) f (x0 ) | . )
| f (x) f (x0) || f (x) fn(x) | | fn(x) fn(x0) | | fn(x0) f (x0) |
估计上式右端三项. 由一致收敛 , 第一、三两项
说明: 虽然函数序列 sn ( x) xn 在( 0, 1 )内处处 收敛于 s( x) 0 , 但 sn ( x)在( 0, 1 )内各点处收
敛于零的“快慢”程度是不一致的.
从下图可以看出:
y y sn ( x) x n (1,1)
n1
n2
n n410
n 30
o
1x
注意:对于任意正数r 1,这级数在[0,r] 上 一致收敛.
lim
n
sn
(
x)
s(
x)
lim
n
rn
(
x)
0
(x在收敛域上)
注意 函数项级数在某点x的收敛问题,实质上 是数项级数的收敛问题.
例 1 求级数 (1)n ( 1 )n的收敛域. n1 n 1 x 解 由达朗贝尔判别法
un1( x) n 1 1 (n )
un ( x) n 1 1 x 1 x
註 定理表明: 对于各项都连续且一致收敛
的函数列{ f n (x) }, 有
lim lim
xx0 n
fn (x)
lim lim
n xx0
fn (x)
即极限次序可换 .
3. 可积性定理
若在区间 [ a ,b ] 上函数列{ fn (x) }一致收
敛 , 且每个 f n (x) 在[ a , b ] 上连续. 则有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 函数列与函数项级数
一、基本概念与基本理论
1.函数列的收敛
2. 函数列一致收敛的定义及判别方法
3. 函数项级数的收敛
4 函数项级数一致收敛的定义及判别法 5.一致收敛函数列与函数项级数的性质
二、练习题
1.判断题
(1) 若函数列{}()n f x 在I 上内闭一致收敛,则函数列{}()n f x 在I 上一致收敛( ) (2) 函数项级数一致收敛必绝对收敛( ) (3) 函数项级数绝对收敛必一致收敛( )
(4)若函数列()(),(),n f x f x n x D →→∞∈,()()n n f x f x a -≤,且数列{}n a 收敛,则{}()n f x 在D 上一致收敛于()f x ( ). (5)函数项级数
1
()n n u x ∞
=∑在D 上一致收敛的充要条件是D x x u
n
∈⇒,0)(( ).
(6)若()(),(),n f x f x n x D →→∞∈,且存在数列D x n ∈}{,使)()(n n n x f x f -不趋近0,则函数列{}()n f x 在D 上非一致收敛( ).
(7)若函数项级数一致收敛,则必存在优级数( )
(8)阿贝尔判别法是判断函数项级数一致收敛的充分非必要条件( ) (9)若)()(1
x a
x f n n
∑∞
==
在[,]a b 上一致收敛,且()n a x 可导(n =1,2…),那么()f x 在[,]a b
上可导,且∑∞
='=
'1
)()(n n x a x f ( )
(10) {})(x f n 定义在],[b a 上,0x ],[b a ∈为{})(x f n 的收敛点,{})(x f n 的每一项在],[b a 上有连续的导数,且{})(x f n 在],[b a 上一致收敛,则
)(lim ))(lim (x f dx d
x f dx d n n n n ∞→∞
→=( )
(11){})(x f n 为定义在],[b a 上的函数列,0x ],[b a ∈为{})(x f n 的收敛点,
{})(x f n '在],[b a 上连续,且{})(x f n '在],[b a 上一致收敛,则{})(x f n 也一致收敛( )
(12) 每项都连续的函数列{})(x f n 在区间I 上内闭一致收敛于)(x f ,则)(x f 在I 上连续( ) (13)一致收敛是极限运算与积分运算能够交换顺序的充要条件( )
2.设函数列()n
n f x x =,1,2,
n =,
(1)求该函数列的极限函数和收敛域
(2)证明()n
n f x x =在[,](01)a a a -<<上一致收敛,在(1,1]-上不一致收敛,在(1,1)-呢? 3.判断函数列()(1)[0,1]n
n f x x x x =-∈,,1,2,
n =是否一致收敛
4. 设函数()f x 是[0,1]上的连续函数,()()n
n g x f x x =,1,2,
n =,证明函数列()n g x 在
[0,1]上一致收敛的充要条件是(1)0f =.
5. 函数()x ϕ是[,]a b 上的连续函数,()0b ϕ=,函数列{}()n f x 满足:(1) {}()n f x 在[,)a b
内闭一致收敛;(2)
{}()n f x 在[,]a b 上一致有界。
证明函数列()()()n n g x f x x ϕ=
在
[,]a b 上一致收敛.
6.证明函数列sin
x n ⎧
⎫
⎨⎬⎩⎭
在任何区间[,]R R -上一致收敛,在(,)-∞+∞不一致收敛,但它的导函数列在(,)-∞+∞一致收敛.
7.设1()f x 在[,]a b 上Riemann 可积,),2,1()()(1 ==⎰
+n dx x f x f b
a
n n ,证明函数列)}({x f n
在[,]a b 上一致收敛于0 8.判断函数列2
21)(x n x
x f n +=
在),(∞-∞=D 上是否一致收敛.
9.设[,]x a b ∀∈,数列{()}n u x 单调递减收敛于0;1n ∀≥,()n u x 是[,]a b 上单调函数。
求证:
1
(1)()n
n
n u x ∞
=-∑在[,]a b 一致收敛。
10.判断下列函数项级数在所示区间D 上的一致收敛性
(1) ∑∞=1)!
1-(n n
n x ],[r r D -= (2)
∑∞
=12
n n
n
x ]1,0[=D (3) ∑∞
=+-12)1(n n n x =D (,)-∞+∞ (4)∑∞
=+1
2
51n x n nx
),(+∞-∞=D (5) 12
21(1)(1)
n n
n x x -∞
=-+∑ ),(+∞-∞=D (6) 21
(1)n
n x
x ∞
=-∑,=D [0,1]
(7) ∑∞
=⎪⎪⎭
⎫
⎝⎛+12ln 1ln n n n x ]1,0[=D (8)2211(1)n n x x +∞
-=+∑ ),(+∞-∞=D
(9)∑∞=++-1
1
)()1(n n n
n n n x ]1,0[=D (10) ∑∞
=++1
2)(n n
n
n n x x ],[r r D -=
(11)∑∞=+-1
2
2)()1(n n n n x ],[b a D = (12) ∑∞
=+++1
)1)((1
n n x n x ),0(+∞=D (13) 221
11n
n n x x
+∞
+=+∑ =D [0,)+∞ 和=D [0,](01)a a << 11.求证:
0(1)
(1)n
n n x x +∞
=--∑在[0,1]上绝对收敛且一致收敛,但并不绝对一致收敛.
12. 证明:22
1
(1)n
n x n
n +∞
=+-∑在任何有限区间[,]a b 上一致收敛,而在任何一点都不绝对收敛. 13. 证明函数项级数
∑
∞
=+-12
3
)
()1(2
n x n n
n e 在区间],[b a 上一致收敛但不绝对收敛
14.证明1
()nx
n f x ne
+∞
-==
∑在(0,)+∞收敛,但非一致收敛,而和函数在(0,)+∞内无穷次可微.
15.设1
1
()x n f x n +∞
==
∑,求证:()f x 在(1,)+∞上存在任意阶导数. 16. 证明函数3
1
sin ()n nx
f x n ∞
==
∑在(,)-∞+∞上连续,且有连续的导函数. 17.设22
31()ln(1),1,2,
n u x n x n n
=+=,证明函数项级数
1
()n n u x ∞
=∑在区间[0,1]上一致收
敛,并讨论其和函数在[0,1]上的连续性、可积性与可微性.
18.
设函数1()n S x ∞
==
()S x 在(,)-∞+∞上连续,并计算积分 0
()d x S t t ⎰. 19.设0()f x 在[,]a b 连续,1()()d x
n n a
f x f t t -=
⎰
(1n ≥),证明1
()n n f x +∞
=∑在[,]a b 上一致收敛
20.求证000
sin sin d (01)1x
x n
n t t t t dt x t ππ∞
==≤<-⎛⎜
⎠∑⎰ 21.证明:11n
n x n ∞
=⎛
⎫+ ⎪⎝
⎭∑在(1,1)-收敛,但不一致收敛,和函数()S x 在(1,1)-连续。