新课标A版数学文·安徽练案

合集下载

人教A版高中数学必修第二册强化练习题-8.6.1直线与直线垂直(含答案)

人教A版高中数学必修第二册强化练习题-8.6.1直线与直线垂直(含答案)

人教A版高中数学必修第二册8.6 空间直线、平面的垂直8.6.1 直线与直线垂直基础过关练题组一 求异面直线所成的角1.(2024安徽六安期中)如图,已知正四棱锥P-ABCD的所有棱长均为2,E为棱PA的中点,ABCD-A1B1C1D1中,E,F与直线AD1所成角的大小为在正方体ABCD-A(1)求异面直线CD1与BC1所成的角;(2)求证:MN∥平面ABCD.题组二 空间两条直线所成角的应用5.(多选题)(2024山东德州夏津第一中学月考)已知E,F 分别是三棱锥P-ABC 的棱PA,BC 的中点,且PC=6,AB=8.若异面直线PC 与AB 所成角的大小为60°,则线段EF 的长可能为( )A.7B.13C.5D.376.在长方体ABCD-A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,异面直线AB 与A 1C 所能力提升练在正四面体S-ABC 中3.4.(2024贵州凯里第一中学模拟)平面α过直三棱柱ABC-A 1B 1C 1的顶点B 1,平面α∥平面ABC 1,平面α∩平面BB 1C 1C=l,且AA 1=AB=BC,AB ⊥BC,则A 1B 与l 所成角的正弦值为( )A.32 B.22 C.12 D.335.已知正三棱柱ABC-A 1B 1C 1的侧面积为12,当其外接球的表面积取最小值时,异面直线AC 1与B 1C 所成角的余弦值为 .题组二 异面直线所成角的应用6.(2024上海青浦高级中学期末)在棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为底面ABCD 内(包括边界)的动点,满足直线D 1P 与CC 1所成角的大小为π6,则线段DP 扫过的面积为( )A.π12B.π6C.π3D.π27.(2024广东阳江期末)在四面体A-BCD 中,AB=CD=1,BC=2,且AB ⊥BC,CD ⊥BC,异面直线AB 与CD 所成的角为π3,则该四面体外接球的表面积为 .8.(2022河南濮阳第一高级中学月考)在四棱柱ABCD-A 1B 1C 1D 1中,侧面都是矩形,底面ABCD 是菱形且AB=BC=23,∠ABC=120°,若异面直线A 1B 和AD 1所成的角为90°,求AA 1的长度.答案与分层梯度式解析8.6 空间直线、平面的垂直8.6.1 直线与直线垂直基础过关练1.B2.C3.A 5.BD 6.DPC,EO=1PC=1,在所以BB1∥平面AEF,平面DBB1,所以BB1又与直线AD1所成的角为连接B N,CN,因为点M为A1B1的中点,A1B1=AB,所以MB1=AN,又MB1∥AN,所以四边形ANB1M为平行四边形,所以AM∥B1N,所以异面直线AM与B1C所成的角为∠CB1N(或其补角),设∠CB1N=θ,在正△ABC中,由AB=4,可得CN=23,在直角△BNB1中,BB1=3,BN=2,所以B1N=22+32=13,在直角△BCB1中,BC=4,BB1=3,所以B1C=42+32=5,在△B 1CN 中,由余弦定理的推论可得cos θ=B 1C 2+B 1N 2-C N 22B 1C·B 1N=52+(13)2-(23)22×5×13=135.故选A.4.解析 (1)连接A 1B,A 1C 1,因为A 1D 1=BC 且A 1D 1∥BC,所以四边形A 1D 1CB 为平行四边形,所以CD 1∥A 1B,则∠A 1BC 1或其补角为异面直线CD 1与BC 1所成的角,易知A 1C 1=A 1B=BC 1,所以△A 1C 1B 为等边三角形,所以∠A 1BC 1=60°,所以异面直线CD 1与BC 1所成的角为60°.(2)证明:连接C 1D,BD,则N 为C 1D 的中点,又M 为BC 1的中点,所以MN ∥BD,又MN ⊄平面ABCD,BD ⊂平面ABCD,所以MN ∥平面ABCD.5.BD 如图,取AC 的中点H,连接EH,FH,因为E,F 分别为PA,BC 的中点,PC=6,AB=8,所以AB ∥HF,HE ∥PC,HF=4,HE=3,所以异面直线PC 与AB 所成的角即为∠EHF(或其补角),所以∠EHF=60°或∠EHF=120°.当∠EHF=60°时,根据余弦定理的推论得cos ∠EHF=HE 2+H F 2-E F 22HE ·HF =9+16−EF 224=12,解得EF=13;当∠EHF=120°时,根据余弦定理的推论得cos ∠EHF=HE 2+H F 2-E F 22HE ·HF =9+16−EF 224=-12,解得EF=37.故选BD.易错警示 通过立体图形无法直接判断∠EHF是锐角还是钝角,因此∠EHF可能是异面直线所成的角,也可能是其补角,所以需要进行分类讨论.6.D ∵AB∥DC,∴∠A1CD(或其补角)即为异面直线AB与A1C所成的角,由图可知∠A1CD为.锐角,∴∠A1CD=π3设DD1=x,连接A1D,则A1C=12+12+x2=2+x2,A1D=x2+1.在∴∴7.垂直于上底面于点D,则ADD∥O2A,1∴或其补角,当在当在Rt△ABD中,AB=BD2+A D2=2.综上,AB=2或AB=2.能力提升练1.A2.A3.C4.A 6.A1.A 取SM的中点E,连接EN,AE,如图,∵N是SB的中点,∴EN∥MB,EN=12MB,∴∠ANE或其补角即为异面直线BM与AN所成的角.设正四面体的棱长为4,∵M是SC的中点,N是SB的中点,△SAB和△SBC均为正三角形,∴BM⊥SC,AN⊥SB,且BM=AN=23,∴EN=3,在△ASE中,由余弦定理得AE2=SA2+SE2-2SA·SE·cos∠ASE=16+1-2×4×1×12=13,在△ANE中,由余弦定理的推论得cos∠ANE=AN2+N E2-A E22AN·NE =12+3−132×23×3=16,∴异面直线BM与AN所成角的余弦值为16.故选A.2.A 如图,过点A作AN∥OM,交圆O于点N,连接ON,PN,则∠PAN或其补角即为异面直线OM与AP所成的角,设AO=ON=1,易知∠OAN=∠ONA=∠AOM=30°,则AN=3,因为轴截面PAB为等腰直角三角形,所以PN=PA=2,在△APN中,由余弦定理的推论得cos∠PAN=PA2+A N2-P N22PA·AN =2+3−226=64,所以异面直线OM与AP所成角的余弦值为64.故选A.3.C 如图,连接AD1,AP,易得AD1∥BC1,所以∠AD1P(或其补角)即为异面直线D1P与BC1所成的角.设正方体的棱长为1,DP=x,x∈[0,1],在△AD 1P 中,AD 1=2,AP=D 1P=1+x 2,故cos ∠AD 1P=(2)2+(1+x 2)2-(1+x 2)222·1+x 2=221+x 2,∵x ∈[0,1],∴cos ∠AD 1P=221+x2∈又∠AD 1P 是△AD 1P 的内角,∴∠AD 1P 故选C.B 1则ABC 1,所以B 1C 2∥平面⊂由小题速解 因为平面α∥平面ABC 1,平面α∩平面BB 1C 1C=l,平面ABC 1∩平面BB 1C 1C=BC 1,所以l ∥BC 1,则A 1B 与l 所成的角为∠A 1BC 1(或其补角),下同解析.5.答案 514解析 设正三棱柱的底面边长为a,高为h,外接球的半径为R,由题意知3ah=12,即ah=4,易得△ABC 外接圆的半径r=a2sin π3=a3,则R 2=r 2+ℎ24=a 23+ℎ24≥aℎ3=43,当且仅当a=32h 时取等号,此时外接球的表面积最小.将三棱柱补成一个四棱柱,如图,连接DB 1,DC,则AC 1∥DB 1,∴∠DB 1C(或其补角)为异面直线AC 1与B 1C 所成的角,易得B 1C=DB 1=a 2+ℎ2,DC=3a,∴cos ∠DB 1C=2(a 2+ℎ2)-3a 22(a 2+ℎ2)=514.解题技法 补形平移是常用的一种作平行线的方法,一般是补一个相同形状的几何体,构成一个特殊的几何体,方便作平行线,如此题将三棱柱补成一个四棱柱.6.A 因为DD 1∥CC 1,所以直线D 1P 与CC 1所成的角即为DD 1与D 1P 所成的角,易知DD 1⊥PD,所以DD 1与D 1P 所成的角为∠DD 1P,即∠DD 1P=π6,故tan ∠DD 1P=DPDD 1=33,即DP=33,所以点P 的轨迹是以D 为圆心,33为半径的圆的四分之一,故线段DP 扫过的面积为14π×=π12.故选A.7.答案 16π3或8π解析 由题意,可以将四面体A-BCD 补成一个直三棱柱,如图所示.∵CD∥BE,∴直线AB与CD所成的角为∠ABE或其补角,∵异面直线AB与CD所成的角为π3,∴∠ABE=π3或∠ABE=2π3.设△ABE外接圆的半径为r,当∠ABE=π3时,AE=BE=AB=1,则2r=1sinπ3,解得r=33;当∠ABE=2π3时,AE=3,则则8.BC且A1D1=BC,所以A1B∥CD1,所成的角为∠AD1C,故∠AD1均为矩形,设在故。

高一数学新教材A版 一元二次函数、方程和不等式(综合测试卷)经典练习题

高一数学新教材A版 一元二次函数、方程和不等式(综合测试卷)经典练习题

《一元二次函数、方程和不等式》综合测试卷一、单选题1.(2020·安徽蚌埠·高三其他(文))设集合{2,2,4,6}A =-,{}2120B x x x =+-<,则A B =( )A .(2,2)-B .{2,0,2}-C .{2,4}D .{2,2}-2.(2020·全国高一课时练习)若12,x x 是一元二次方程22630x x -+=的两个根,则12x x -的值为( )A .3B C .3D 3.(2020·陕西西安·高三二模(理))已知a ,b 为非零实数,且0a b <<,则下列命题成立的是( ) A .22a b < B .2211ab a b <C .22a b ab <D .b a a b<4.(2020·全国高一课时练习)已知52x ,则()24524x x f x x -+=-有( )A .最大值54B .最小值54C .最大值1D .最小值15.(2019·宁波市第四中学高二期中)已知a R ∈,则“0a >”是“12a a+≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.(2020·全国高一课时练习)若方程()2250x m x m ++++=只有正根,则m 的取值范围是( ) A .4m ≤-或4m ≥ B .54m -<≤- C .54m -≤≤-D .52m -<<-7.(2020·荆州市北门中学高一期末)若110a b<<,则下列不等式:①a b ab +<;②||||a b >;③a b <;④2b aa b+>中,正确的不等式是( ) A .①④B .②③C .①②D .③④8.(2020·浙江高一课时练习)“关于x 的不等式2x 2ax a 0-+>的解集为R”的一个必要不充分条件是 ( ) A .0a 1<<B .10a 3<<C .0a 1≤≤D . a 0<或1a 3>9.(2020·全国高一课时练习)将一根铁丝切割成三段,做一个面积为22m ,形状为直角三角形的框架,在下列4种长度的铁丝中,选用最合理共用且浪费最少的是( ) A .6.5mB .6.8mC .7mD .7.2m10.(2020·浙江高一单元测试)已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A .8 B .6C .4D .2二、多选题11.(2020·南京市秦淮中学高二期末)已知命题1:11p x >-,则命题成立的一个必要不充分条件是( )A .12x <<B .12x -<<C .21x -<<D .22x -<<12.(2019·山东莒县·高二期中)已知a ∈Z ,关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则a 的值可以是( ). A .6B .7C .8D .913.(2020·湖南高新技术产业园区·衡阳市一中高二期末)(多选)若0a b >>,则下列不等式中一定不成立的是( ) A .11b b a a +>+ B .11a b a b+>+ C .11a b b a+>+ D .22a b aa b b+>+14.(2020·浙江高一单元测试)已知,a b R +∈且1a b +=,那么下列不等式中,恒成立的有( ).A .14abB .1174ab ab +C 2bD .11222a b+ 三、填空题15.(2020·荆州市北门中学高一期末)不等式221x x -≥-的解集是________. 16.(2020·全国高一课时练习)设0,2πα⎛⎫∈ ⎪⎝⎭,0,2⎡⎤∈⎢⎥⎣⎦πβ,那么23βα-的取值范围是________. 17.(2020·全国高一课时练习)设a >0,b >0,给出下列不等式: ①a 2+1>a ;②114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭;③(a +b )11a b ⎛⎫+⎪⎝⎭≥4;④a 2+9>6a . 其中恒成立的是________.(填序号) 四、双空题18.(2020·浙江瓯海·温州中学高三一模)《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足.问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少.问人数、猪价各多少?”.设,x y 分别为人数、猪价,则x =___,y =___. 19.(2020·山东高三其他)已知正实数,a b 满足10ab b -+=,则14b a+的最小值是__________,此时b =_________.20.(2020·曲靖市第二中学(文))已知x >0,y >0,且x +2y =xy ,若x +2y >m 2+2m 恒成立,则xy 的最小值为_____,实数m 的取值范围为_____.21.(2020·山东威海·高三一模)为满足人民群众便利消费、安全消费、放心消费的需求,某社区农贸市场管理部门规划建造总面积为22400m 的新型生鲜销售市场.市场内设蔬菜水果类和肉食水产类店面共80间.每间蔬菜水果类店面的建造面积为228m ,月租费为x 万元;每间肉食水产店面的建造面积为220m ,月租费为0.8万元.全部店面的建造面积不低于总面积的80%,又不能超过总面积的85%.①两类店面间数的建造方案为_________种.②市场建成后所有店面全部租出,为保证任何一种建设方案平均每间店面月租费不低于每间蔬菜水果类店面月租费的90%,则x 的最大值为_________万元. 五、解答题22.(2020·全国高一课时练习)(1)已知0x >,求4y x x=+的最小值.并求此时x 的值; (2)设302x <<,求函数4(32)y x x =-的最大值; (3)已知2x >,求42x x +-的最小值;(4)已知0x >,0y >,且191x y+=,求x y +的最小值; 23.(2020·全国高一课时练习)已知x ,y 都是正数.求证:()12y xx y+≥; ()2()()()2233338.x y x y x y x y +++≥24.(2020·全国高一课时练习)日常生活中,在一杯含有a 克糖的b 克糖水中,再加入m 克糖,则这杯糖水变甜了.请根据这一事实提炼出一道不等式,并加以证明.25.(2020·全国高一课时练习)如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系).26.(2020·浙江高一课时练习)已知关于x 的不等式2260(0)kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或2}x >-,求k 的值.(2)若不等式的解集是1xx k ⎧⎫≠-⎨⎬⎩⎭∣,求k 的值. (3)若不等式的解集是R ,求k 的取值范围. (4)若不等式的解集是∅,求k 的取值范围.27.(2020·宁夏兴庆·银川一中高一期末)解关于x 的不等式()222ax x ax a R -≥-∈.《一元二次函数、方程和不等式》综合测试卷一、单选题1.(2020·安徽蚌埠·高三其他(文))设集合{2,2,4,6}A =-,{}2120B x x x =+-<,则A B =( )A .(2,2)-B .{2,0,2}-C .{2,4}D .{2,2}-【答案】D 【解析】{}2120{|43}B x x x x x =+-<=-<<,∴{2,2}A B =-.故选:D .2.(2020·全国高一课时练习)若12,x x 是一元二次方程22630x x -+=的两个根,则12x x -的值为( )A B C .3D 【答案】B 【解析】3624120∆=-=>,故方程必有两根,又根据二次方程根与系数的关系,可得1212332x x x x +==,,所以12x x -=== 故选:B .3.(2020·陕西西安·高三二模(理))已知a ,b 为非零实数,且0a b <<,则下列命题成立的是( ) A .22a b < B .2211ab a b <C .22a b ab <D .b a a b<【答案】B 【解析】对于选项A,令1a =-,1b =时,221a b ==,故A 不正确; 对于选项C,220a b ab >>,故C 不正确;对于选项D,令1a =-,1b =时,1b aa b =-=,故D 不正确; 对于选项B,220a b ab >>,则22110ab a b<<故选:B4.(2020·全国高一课时练习)已知52x ,则()24524x x f x x -+=-有( )A .最大值54B .最小值54C .最大值1D .最小值1【答案】D 【解析】2245(2)1111()(2)2(1242(2)222x x x f x x x x x x -+-+⎡⎤===-+⨯=⎢⎥---⎣⎦当且仅当122x x -=-即3x =时取等号,故选:D .5.(2019·宁波市第四中学高二期中)已知a R ∈,则“0a >”是“12a a+≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】当0a >时,112a a a a +=+≥=,当且仅当1a a =,即1a =时取等号,当12a a +≥时,可得12a a +≥或12a a+≤-,得0a >或0a <,所以“0a >”是“12a a+≥”的充分不必要条件, 故选:A6.(2020·全国高一课时练习)若方程()2250x m x m ++++=只有正根,则m 的取值范围是( )A .4m ≤-或4m ≥B .54m -<≤-C .54m -≤≤-D .52m -<<-【答案】B 【解析】方程()2250x m x m ++++=只有正根,则1()当()()22450m m ∆=+-+=,即4m =±时,当4m =-时,方程为()210x -=时,1x =,符合题意; 当4m =时,方程为()230x +=时,3x =-不符合题意. 故4m =-成立;2()当()()22450m m ∆=+-+>,解得4m <-或4m >,则()()()224502050m m m m ⎧∆=+-+>⎪-+>⎨⎪+>⎩,解得54m -<<-. 综上得54m -<≤-. 故选B.7.(2020·荆州市北门中学高一期末)若110a b<<,则下列不等式:①a b ab +<;②||||a b >;③a b <;④2b aa b+>中,正确的不等式是( ) A .①④ B .②③C .①②D .③④【答案】A 【解析】 由于110a b<<,所以0b a <<,由此可知: ①0a b ab +<<,所以①正确. ②b a >,所以②错误. ③错误.④由于0b a <<,所以1b a >,有基本不等式得2b a a b +>=,所以④正确. 综上所述,正确不等式的序号是①④. 故选:A8.(2020·浙江高一课时练习)“关于x 的不等式2x 2ax a 0-+>的解集为R”的一个必要不充分条件是 ( ) A .0a 1<< B .10a 3<<C .0a 1≤≤D . a 0<或1a 3>【答案】C 【解析】因为关于x 的不等式220x ax a -+>的解集为R , 所以函数2()2f x x ax a =-+的图象始终落在x 轴的上方,即2440a a ∆=-<,解得01a <<,因为要找其必要不充分条件,从而得到(0,1)是对应集合的真子集, 对比可得C 选项满足条件, 故选C.9.(2020·全国高一课时练习)将一根铁丝切割成三段,做一个面积为22m ,形状为直角三角形的框架,在下列4种长度的铁丝中,选用最合理共用且浪费最少的是( ) A .6.5m B .6.8mC .7mD .7.2m【答案】C 【解析】设直角三角形的框架的两条直角边为x ,y (x >0,y >0) 则xy =4,此时三角形框架的周长C 为:x +y x +y∵x +y ≥24∴C =x +y ≈6.83 故用7米的铁丝最合适. 故选C .10.(2020·浙江高一单元测试)已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A .8 B .6C .4D .2【答案】C 【解析】()11a ax yx y a x y y x⎛⎫++=+++⎪⎝⎭. 若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意;若0xy >,则0yx>,0x y >.①当0a <时,1ax ya y x+++无最小值,不合乎题意; ②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y ⎛⎫++ ⎪⎝⎭≥不恒成立;③当0a >时,())211111a ax y x y a a a x y y x⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当=y 时,等号成立.所以,)219≥,解得4a ≥,因此,实数a 的最小值为4.故选:C. 二、多选题11.(2020·南京市秦淮中学高二期末)已知命题1:11p x >-,则命题成立的一个必要不充分条件是( ) A .12x << B .12x -<<C .21x -<<D .22x -<<【答案】BD 【解析】 由1210(1)(2)01211x x x x x x ->⇔<⇔--<⇔<<--, 选项A 为命题12x <<的充要条件, 选项B 为12x <<的必要不充分条件, 选项C 为12x <<的既不充分也不必要条件, 选项D 为12x <<的必要不充分条件, 故选:BD.12.(2019·山东莒县·高二期中)已知a ∈Z ,关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则a 的值可以是( ). A .6 B .7 C .8 D .9【答案】ABC 【解析】设26y x x a =-+,其图像为开口向上,对称轴是3x =的抛物线,如图所示.若关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,因为对称轴为3x =,则2226201610a a ⎧-⨯+≤⎨-⨯+>⎩ 解得58a <≤,.又a ∈Z ,故a 可以为6,7,8. 故选:ABC13.(2020·湖南高新技术产业园区·衡阳市一中高二期末)(多选)若0a b >>,则下列不等式中一定不成立的是( ) A .11b b a a +>+ B .11a b a b+>+ C .11a b b a+>+ D .22a b aa b b+>+【答案】AD 【解析】 0a b >>,则()()()()1110111b a a b b b b a a a a a a a +-++--==<+++,11b b a a +∴>+一定不成立;()1111a b a b a b ab ⎛⎫+--=-- ⎪⎝⎭,当1ab >时,110a b a b +-->,故11a b a b +>+可能成立;()11110a b a b b a ab ⎛⎫+--=-+> ⎪⎝⎭,故11a b b a +>+恒成立;()222022a b a b a a b b b a b +--=<++,故22a b a a b b +>+一定不成立. 故选AD.14.(2020·浙江高一单元测试)已知,a b R +∈且1a b +=,那么下列不等式中,恒成立的有( ).A .14abB .1174ab ab +C 2bD .11222a b+ 【答案】ABC【解析】,,1a b R a b +∈+=,2124a b ab +⎛⎫∴= ⎪⎝⎭(当且仅当12a b ==时取得等号).所以选项A 正确 由选项A 有14ab ≤,设1y x x =+,则1y x x =+在104⎛⎤ ⎥⎝⎦,上单调递减. 所以1117444ab ab +≥+=,所以选项B 正确 2(2a b a b ab a b a b +=+++++=(当且仅当12a b ==时取得等号),2b .所以选项C 正确. 113332222222a b a b b a b a b a b a ba +++=+=+++=+222ab =时等号成立),所以选项D 不正确.故A ,B ,C 正确故选:ABC三、填空题 15.(2020·荆州市北门中学高一期末)不等式221x x -≥-的解集是________. 【答案】[0,1)【解析】原不等式可化为2201x x --≥-即01x x ≤-,所以()1010x x x ⎧-≤⎨-≠⎩, 故01x ≤<,所以原不等式的解集为[0,1).故答案为:[0,1). 16.(2020·全国高一课时练习)设0,2πα⎛⎫∈ ⎪⎝⎭,0,2⎡⎤∈⎢⎥⎣⎦πβ,那么23βα-的取值范围是________. 【答案】,6ππ⎛⎫-⎪⎝⎭【解析】 因为0,2πα⎛⎫∈ ⎪⎝⎭,0,2⎡⎤∈⎢⎥⎣⎦πβ,所以()20,απ∈,,036βπ⎡⎤-∈-⎢⎥⎣⎦, ∴2,36βπαπ⎛⎫-∈- ⎪⎝⎭. 故答案为:,6ππ⎛⎫-⎪⎝⎭. 17.(2020·全国高一课时练习)设a >0,b >0,给出下列不等式:①a 2+1>a ;②114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭; ③(a +b )11a b ⎛⎫+ ⎪⎝⎭≥4;④a 2+9>6a . 其中恒成立的是________.(填序号)【答案】①②③【解析】解析由于a 2+1-a =213024a ⎛⎫-+> ⎪⎝⎭,故①恒成立; 由于a +1a ≥2,b +1b≥2, ∴114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当a =b =1时,等号成立,故②恒成立;由于a +b 11a b +≥ 故(a +b )11a b ⎛⎫+ ⎪⎝⎭≥4,当且仅当a =b 时,等号成立,故③恒成立; 当a =3时,a 2+9=6a ,故④不恒成立.综上,恒成立的是①②③.故答案为:①②③四、双空题18.(2020·浙江瓯海·温州中学高三一模)《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足.问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少.问人数、猪价各多少?”.设,x y 分别为人数、猪价,则x =___,y =___.【答案】10 900【解析】由题意可得100100900x y x y -=⎧⎨-=⎩,解得10y 900x ==,.故答案为10 90019.(2020·山东高三其他)已知正实数,a b 满足10ab b -+=,则14b a +的最小值是__________,此时b =_________.【答案】932 【解析】由10ab b -+=可得1b a b -=, 由10b a b-=>,得1b >, 所以11444(1)511b b b b a b b +=+=+-+--, 因为14(1)41b b +--,所以149b a +,当且仅当13,32a b ==时等号成立. 故答案为:9;32. 20.(2020·曲靖市第二中学(文))已知x >0,y >0,且x +2y =xy ,若x +2y >m 2+2m 恒成立,则xy 的最小值为_____,实数m 的取值范围为_____.【答案】8 (4,2)-【解析】∵x >0,y >0,x +2y =xy , ∴21x y+=1,∴121x y =+≥ ∴xy ≥8,当且仅当x =4,y =2时取等号,∴x +2y =xy ≥8(当x =2y 时,等号成立),∴m 2+2m <8,解得﹣4<m <2.故答案为:8;(﹣4,2)21.(2020·山东威海·高三一模)为满足人民群众便利消费、安全消费、放心消费的需求,某社区农贸市场管理部门规划建造总面积为22400m 的新型生鲜销售市场.市场内设蔬菜水果类和肉食水产类店面共80间.每间蔬菜水果类店面的建造面积为228m ,月租费为x 万元;每间肉食水产店面的建造面积为220m ,月租费为0.8万元.全部店面的建造面积不低于总面积的80%,又不能超过总面积的85%.①两类店面间数的建造方案为_________种.②市场建成后所有店面全部租出,为保证任何一种建设方案平均每间店面月租费不低于每间蔬菜水果类店面月租费的90%,则x 的最大值为_________万元.【答案】16 1【解析】设蔬菜水果类和肉食水产类店分别为,a b ,(1)由题意知,0.852********.82400a b ⨯≥+≥⨯,化简得:48075510a b ≤+≤,又+80a b =,所以48075(80)510a a ≤+-≤,解得:4055a ≤≤,40,41,,55a ∴=共16种; (2)由题意知0.80.980b ax x +≥, 0.8(80)72b b x x ∴+-≥,0.880.8[1]88b x b b ∴≤=+--, max 804040b =-=,850.8(1)0.81324x ∴≤+=⨯=, 即x 的最大值为1万元,故答案为:16;1五、解答题22.(2020·全国高一课时练习)(1)已知0x >,求4y x x =+的最小值.并求此时x 的值; (2)设302x <<,求函数4(32)y x x =-的最大值;(3)已知2x >,求42x x +-的最小值; (4)已知0x >,0y >,且191x y+=,求x y +的最小值; 【答案】(1)当2x =时,4y x x =+取得最小值4;(2)92;(3)6;(4)16 【解析】(1)因为0x >,所以44y x x =+≥=,当且仅当4x x =,即2x =时取等号;故当2x =时,4y x x=+取得最小值4; (2)302x <<,320x ∴->. []22(32)94(32)22(32)222x x y x x x x +-⎡⎤∴=-=-=⎢⎥⎣⎦. 当且仅当232x x =-,即34x =时,等号成立. 33(0,)42∈, ∴函数34(32)(0)2y x x x =-<<的最大值为92. (3)2x >,20x ∴-> ()(4422222622x x x x x ∴+=-++-=--,当且仅当422x x -=-时取等号,即4x =时,42x x +-的最小值为6, (4)0x ,0y >,191x y +=,1999()1021016y x y x x y x y x y x yx y ⎛⎫∴+=++=++⋅= ⎪⎝⎭. 当且仅当9y x x y =时,上式等号成立,又191x y +=,4x ∴=,12y =时,()16min x y +=. 点睛:利用基本不等式求函数最值是高考考查的重点内容,对不符合基本不等式形式的应首先变形,然后必须满足三个条件:一正、二定、三相等.同时注意灵活运用“1”的代换.23.(2020·全国高一课时练习)已知x ,y 都是正数.求证:()12y x x y+≥; ()2()()()2233338.x y x y x y x y +++≥【答案】()1证明见解析;()2证明见解析.【解析】()1证明:由x ,y 都是正实数,可得2y x x y +≥=(当且仅当x y =时取得等号);()2证明:由基本不等式可知()()()(()(22332x y x y x y xy +++≥⋅⋅ ()23388xy xy x y =⋅=,(当且仅当x y =时取得等号). 24.(2020·全国高一课时练习)日常生活中,在一杯含有a 克糖的b 克糖水中,再加入m 克糖,则这杯糖水变甜了.请根据这一事实提炼出一道不等式,并加以证明. 【答案】a a mb b m+<+,0a b <<,0m >,证明见解析 【解析】 由题知:原来糖水的浓度为100%a b⨯, 加入m 克糖后的浓度为100%+⨯+a m b m,0a b <<,0m >. 因为这杯糖水变甜了,所以100%100%+⨯<⨯+a a m b b m, 整理得:a a m b b m +<+,0a b <<,0m >. 因为()()-++-=-=+++a b m a a m a a m b b m b b m b b m , 又因为0a b <<,0m >,所以0a b -<,()0-<m a b ,()0+>b b m ,所以()()0-<+a b m b b m ,即证a a m b b m+<+. 25.(2020·全国高一课时练习)如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系).【答案】a 2+b 2≥2ab.【解析】如图,设大正方形四个角上的直角三角形的两个直角边分别为,a b ,则大正方形的面积为2()a b +,四个矩形的面积和为4ab ,显然,大正方形的面积大于等于四个矩形的面积和,所以2()4,a b ab +≥所以a 2+b 2≥2ab.26.(2020·浙江高一课时练习)已知关于x 的不等式2260(0)kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或2}x >-,求k 的值.(2)若不等式的解集是1xx k ⎧⎫≠-⎨⎬⎩⎭∣,求k 的值. (3)若不等式的解集是R ,求k 的取值范围.(4)若不等式的解集是∅,求k 的取值范围.【答案】(1)25k =-;(2)6k =-;(3)6k <-;(4)6k ≥. 【解析】 (1)由不等式的解集为{3xx <-∣或2}x >-可知k 0<,且3x =-与2x =-是方程2260kx x k -+=的两根,2(3)(2)k∴-+-=,解得25k =-.(2)由不等式的解集为1x x k ⎧⎫≠-⎨⎬⎩⎭∣可知204240k k <⎧⎨∆=-=⎩,解得k =(3)依题意知20,4240,k k <⎧⎨∆=-<⎩解得6k <-.(4)依题意知20,4240,k k >⎧⎨∆=-≤⎩解得k ≥. 27.(2020·宁夏兴庆·银川一中高一期末)解关于x 的不等式()222ax x ax a R -≥-∈.【答案】当0a =时,不等式的解集为{}|1x x ≤-;当0a >时,不等式的解集为2{|x x a≥或1}x ≤-; 当20a -<<时,不等式的解集为2{|1}x x a ≤≤-; 当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为2{|1}x x a-≤≤.【解析】原不等式可化为()2220ax a x +--≥,即()()210ax x -+≥, ①当0a =时,原不等式化为10x +≤,解得1x ≤-,②当0a >时,原不等式化为()210x x a ⎛⎫-+≥ ⎪⎝⎭, 解得2x a≥或1x ≤-, ③当0a <时,原不等式化为()210x x a ⎛⎫-+≤ ⎪⎝⎭. 当21a >-,即2a <-时,解得21x a-≤≤; 当21a=-,即2a =-时,解得1x =-满足题意; 当21a<-,即20a -<<时,解得21x a ≤≤-. 综上所述,当0a =时,不等式的解集为{}|1x x ≤-;当0a >时,不等式的解集为2{|x x a≥或1}x ≤-; 当20a -<<时,不等式的解集为2{|1}x x a ≤≤-; 当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为2{|1}x x a-≤≤.。

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【新教材】人教统编版高中数学A版必修第一册第一章教案教学设计+课后练习及答案1.1 《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108 好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5 个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30 的非负实数③直角坐标平面的横坐标与纵坐标相等的点④ 的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2 的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A 的元素,或者不是集合 A 的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.( 4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belongto) A,记作a € A(b)如果a不是集合A的元素,就说a不属于(not belong to) A,记作a A例如:A表示方程x2=1的解. 2 A, 1CA( 5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号”。

2022届高三数学(人教A版文)复习习题:第一章 集合与常用逻辑用语 课时规范练2 Word版含答案

2022届高三数学(人教A版文)复习习题:第一章 集合与常用逻辑用语 课时规范练2 Word版含答案

课时规范练2不等关系及简洁不等式的解法基础巩固组1.(2021安徽合肥模拟)已知a,b∈R,下列命题正确的是()A.若a>b,则|a|>|b|B.若a>b,则C.若|a|>b,则a2>b2D.若a>|b|,则a2>b22.已知集合A={x|(1-x)(1+x)≥0},集合B={y|y=2x,x<0},则A∩B=()A.(-1,1]B.[-1,1]C.(0,1)D.[-1,+∞)3.若集合A={x|ax2-ax+1<0}=⌀,则实数a的取值范围是()A.{a|0<a<4}B.{a|0≤a<4}C.{a|0<a≤4}D.{a|0≤a≤4}4.(2021贵州贵阳测试)下列命题正确的是()A.若a>b,c>d,则ac>bdB.若ac>bc,则a>bC.若,则a<bD.若a>b,c>d,则a-c>b-d5.(2021重庆一中调研,文5)若a>1>b>-1,则下列不等式恒成立的是()A.a>b2B.C.D.a2>2b6.不等式<0的解集为()A.{x|1<x<2}B.{x|x<2,且x≠1}C.{x|-1<x<2,且x≠1}D.{x|x<-1或1<x<2}7.若不等式mx2+2mx-4<2x2+4x对任意x都成立,则实数m的取值范围是()A.(-2,2]B.(-2,2)C.(-∞,-2)∪[2,+∞)D.(-∞,2]〚导学号24190850〛8.(2021陕西西安模拟)已知存在实数a满足ab2>a>ab,则实数b 的取值范围是.9.已知关于x的不等式ax2+bx+a<0(ab>0)的解集是空集,则a2+b2-2b的取值范围是.10.已知a∈R,关于x的不等式ax2+(1-2a)x-2>0的解集有下列四种说法:①原不等式的解集不行能为⌀;②若a=0,则原不等式的解集为(2,+∞);③若a<-,则原不等式的解集为;④若a>0,则原不等式的解集为∪(2,+∞).其中正确的个数为. 11.对任意x∈[-1,1],函数f(x)=x2+(k-4)x+4-2k的值恒大于零,则k的取值范围是.综合提升组12.(2021吉林长春模拟)若<0,则在下列不等式:①;②|a|+b>0;③a->b-;④ln a2>ln b2中,正确的不等式是()A.①④B.②③C.①③D.②④13.若关于x的不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图象为()14.(2021河南郑州月考)已知实数x,y满足0<xy<4,且0<2x+2y<4+xy,则x,y的取值范围是()A.x>2,且y>2B.x<2,且y<2C.0<x<2,且0<y<2D.x>2,且0<y<2〚导学号24190851〛15.(2021江西九江模拟)若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是.创新应用组16.(2021辽宁大连模拟)已知函数f(x)=(ax-1)(x+b),假如不等式f(x)>0的解集是(-1,3),那么不等式f(-2x)<0的解集是()A.B.C.D.〚导学号24190852〛17.(2021湖北襄阳高三1月调研,文15)已知f(x)=若对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则t 的取值范围是.〚导学号24190853〛课时规范练2不等关系及简洁不等式的解法1.D当a=1,b=-2时,A不正确,B不正确,C不正确;对于D,a>|b|≥0,则a2>b2,故选D.2.C由题意得A={x|-1≤x≤1}=[-1,1],B={y|0<y<1}=(0,1),所以A∩B=(0,1),故选C.3.D由题意知当a=0时,满足条件.当a≠0时,由集合A={x|ax2-ax+1<0}=⌀,可知得0<a≤4.综上,可知0≤a≤4.4.C取a=2,b=1,c=-1,d=-2,可知A错误;当c<0时,ac>bc⇒a<b,∴B错误;∵,∴c≠0,又c2>0,∴a<b,C正确;取a=c=2,b=d=1,可知D错误.5.A对于A,∵-1<b<1,∴0≤b2<1.∵a>1,∴a>b2,故A正确;对于B,若a=2,b=,此时满足a>1>b>-1,但,故B错误;对于C,若a=2,b=-,此时满足a>1>b>-1,但,故C错误;对于D,若a=,b=,此时满足a>1>b>-1,但a2<2b,故D错误.6.D由于不等式<0等价于(x+1)·(x-1)(x-2)<0,所以该不等式的解集是{x|x<-1或1<x<2}.故选D.7.A原不等式等价于(m-2)x2+2(m-2)x-4<0,当m=2时,对任意x不等式都成立;当m-2<0时,Δ=4(m-2)2+16(m-2)<0,∴-2<m<2.综上,得m∈(-2,2].8.(-∞,-1)∵ab2>a>ab,∴a≠0.当a>0时,有b2>1>b,即解得b<-1;当a<0时,有b2<1<b,即无解.综上可得b<-1.9. ∵不等式ax2+bx+a<0(ab>0)的解集是空集,∴a>0,b>0,且Δ=b2-4a2≤0.∴b2≤4a2.∴a2+b2-2b≥+b2-2b=≥-.∴a2+b2-2b的取值范围是.10.3原不等式等价于(ax+1)(x-2)>0.当a=0时,不等式化为x-2>0,得x>2.当a≠0时,方程(ax+1)(x-2)=0的两根分别是2和-,若a<-,解不等式得-<x<2;若a=-,不等式的解集为⌀;若-<a<0,解不等式得2<x<-;若a>0,解不等式得x<-或x>2.故①不正确,②③④正确.11.(-∞,1)函数f(x)=x2+(k-4)x+4-2k的图象的对称轴方程为x=-.当<-1,即k>6时,f(x)的值恒大于零等价于f(-1)=1+(k-4)×(-1)+4-2k>0,解得k<3,故k不存在;当-1≤≤1,即2≤k≤6时,f(x)的值恒大于零等价于f+4-2k>0,即k2<0,故k不存在;当>1,即k<2时,f(x)的值恒大于零等价于f(1)=1+(k-4)+4-2k>0,即k<1.综上可知,当k<1时,对任意x∈[-1,1],函数f(x)=x2+(k-4)x+4-2k的值恒大于零.12.C由于<0,故可取a=-1,b=-2.由于|a|+b=1-2=-1<0,所以②错误;由于ln a2=ln(-1)2=0,ln b2=ln(-2)2=ln 4>0,所以④错误.综上所述,②④错误,故选C.13.B(方法一)由根与系数的关系知=-2+1,-=-2,解得a=-1,c=-2.所以f(x)=-x2-x+2.所以f(-x)=-x2+x+2=-(x+1)(x-2),图象开口向下,与x轴的交点为(-1,0),(2,0),故选B.(方法二)由题意可画出函数f(x)的大致图象,如图.又由于y=f(x)的图象与y=f(-x)的图象关于y轴对称,所以y=f(-x)的图象如图.14.C由题意得由2x+2y-4-xy=(x-2)(2-y)<0,得又xy<4,可得故选C.15.(-∞,-2)不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max.令g(x)=x2-4x-2,x∈(1,4),∴g(x)<g(4)= -2,∴a<-2.16.A由f(x)>0的解集为(-1,3),易知f(x)<0的解集为(-∞,-1)∪(3,+∞),故由f(-2x)<0得-2x<-1或-2x>3,∴x>或x<-.17.[,+∞)(方法一)∵对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,∴f(t+t)=f(2t)≥2f(t).当t<0时,f(2t)=-4t2≥2f(t)=-2t2,这不行能,故t≥0.∵当x∈[t,t+2]时,有x+t≥2t≥0,x≥t≥0,∴当x∈[t,t+2]时,不等式f(x+t)≥2f(x),即(x+t)2≥2x2,∴x+t≥x,∴t≥(-1)x对于x∈[t,t+2]恒成立.∴t≥(-1)(t+2),解得t≥.(方法二)当x<0时,f(x)=-x2单调递增,当x≥0时,f(x)=x2单调递增,∴f(x)=在R上单调递增,且满足2f(x)=f(x),∵不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,∴x+t≥x在[t,t+2]上恒成立,即t≥(-1)x在x∈[t,t+2]恒成立,∴t≥(-1)(t+2),解得t≥,故答案为[,+∞).。

《精编》安徽省泗县高三数学第一学期质量检测 文 新人教A版.doc

《精编》安徽省泗县高三数学第一学期质量检测 文 新人教A版.doc

安徽省泗县—学年度高三第一学期质量检测〔数学文〕本试卷分第I 卷〔选择题〕和第II 卷〔非选择题〕两局部。

全卷总分值150分,考试时间120分钟。

第I 卷〔选择题 共50分〕一、选择题。

〔本大题共10小题,每题5分,共50分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.设集合{|1},{|22},A x x B x x AB =>-=-<<则=〔 〕A .{|2}x x >-B .{|1}x x >-C .{|21}x x -<<-D .{|12}x x -<<2.i 是虚数单位,(1)i i +=〔 〕 A .1+i B .-1-i C .1-iD .-1+i 3.椭圆22413x y +=的离心率为〔 〕A B .34 C D .234.设,,OB xOA yOC x y R =+∈且A 、B 、C 三点共线〔该直线不过点O 〕,那么x+y=〔 〕 A .-1B .1C .0D .2 5.函数22()14y ax x π=--是〔 〕A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数6.假设圆22240x y z y +--=的圆心到直线0x y a -+=的距离为2,那么a 的值为〔 〕A .-2或2B .2132或C .20或D .-2或07.实数x ,y 满足不等式组00220y x y x y ≥⎧⎪-≥⎨⎪--≥⎩,那么11y w x -=+的取值范围是〔 〕 A .1[1,]3- B .11[,]23- C .1,2⎡⎫+∞⎪⎢⎣⎭ D .1,12⎡⎫-⎪⎢⎣⎭8.给出以下四个命题:①假设直线垂直于平面内的两条直线,那么这条直线垂直于这个平面;②假设直线与平面内的任意一条直线都垂直,那么这条直线垂直于这个平面; ③互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;④过点P 有且仅有一条直线与异面直线,l m 都垂直。

第6单元-不等式-数学(文科)-新课标-人教A版-安徽

第6单元-不等式-数学(文科)-新课标-人教A版-安徽
教师给予适度的指导和点评.
返回目录
使用建议
(2)要重视实际应用问题的分析过程、建模过程.应 用问题的难点是数学建模,本单元涉及了较多的应用题, 在这些探究点上教师的主要任务就是指导学生如何通过设 置数量、变量把实际问题翻译成数学问题,重视解题的过 程. (3)不等式在高考数学涉及各个部分,要循序渐进地 解决,在本单元中涉及不等式的综合运用时,我们的选题
2.不等式的性质 (1)a>b⇔ac2>bc2.(
) a b (2)a>b>0,c>d>0⇒ > .( ) d c (3)如果 n∈N,n>1,a,b 为正数,则 a>b⇔an>bn, n n a>b⇔ a> b.( )
[答案] (1)× (2)√ (3)√
返回目录
第31讲
双 向 固 基 础
不等关系与不等式
第31讲
不等关系与不等式
返回目录
考试大纲
了解现实世界和日常生活中的不等关系,了解不等式 (组)的实际背景.
返回目录
第31讲
双 向 固 基 础
不等关系与不等式
—— 知 识 梳 理 —— 一、两个实数大小的比较原理 1.差值比较原理:设a,b∈R,则a>b⇔a-b>0,
a-b<0 a=b⇔a-b=0,a<b⇔________.
[答案] (1)√ (2)×
返回目录
第31讲
双 向 固 基 础
不等关系与不等式
[解析] (1)根据实数与数轴上点的对应关系,两个实 数之间只能有 a>b,a=b,a<b 三种关系中的一种. a (2)当 b 为负数时,在 >1 两边同乘以 b,得 a<b. b
返回目录

新课标人教A版高一数学全套练习大全(附答案,共55页)

新课标人教A版高一数学全套练习大全(附答案,共55页)

第一章 集合一、基础知识:1、一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的 (或 ) 。

构成集合的每个对象叫做这个集合的 (或 )。

2、若a 是集合的A 的元素,就说 ,记作 ;若a 不是集合的A 的元素,就说 ,记作3、把 叫做空集,记作4、集合元素的特征:(1) (2) (3)5、根据集合含有元素的个数,可分为两类:(1) (2)6、常用数集符号:自然数集 ;正整数集 ;整数集 ;有理数集 ;实数集 ;第2课时 集合的表示方法7、由1,3,5,7,10构成的集合,可以表示为 ,这种表示集合的方法叫做 法。

8、a 与{}a 的区别是: 9、集合A 形式为{()}x I p x ∈时,用的表示方法为 法,它表示集合A 是由中具有性质 所有元素构成的。

10、一般地,如果 ,那么集合A 叫做集合B 的子集,记做。

11、一般地,如果 ,那么集合A 叫做集合B 的真子集,记做 。

12、一般地,如果 ,那么集合A 等于集合B ,记做 。

13、一般地,对于两个给定的集合A 、B ,由 构成的集合,叫做A 、B 的交集,记做 ,读做 。

14、一般地,对于两个给定的集合A 、B ,由 构成的集合,叫做A 、B 的并集,记做 ,读做 。

15、如果给定集合A 是全集U 的一个子集,由 构成的集合,叫做A 在U 中的的补集, 记做 ,读做 。

二、练习题1.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )A .1B .—1C .1或—1D .1或—1或02.设集合{}21<≤-=x x M ,{}0≤-=k x x N ,若MN M =,则k 的取值范围( ) (A )(1,2)- (B )[2,)+∞ (C )(2,)+∞ (D)]2,1[-3.如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( ) A 、 ()M P S B 、 ()M P SC 、 ()u MP C S D 、 ()u M P C S4.设{}022=+-=q px x x A ,{}05)2(62=++++=q x p x x B ,若⎭⎬⎫⎩⎨⎧=21B A ,则=B A ( )(A )⎭⎬⎫⎩⎨⎧-4,31,21 (B )⎭⎬⎫⎩⎨⎧-4,21 (C )⎭⎬⎫⎩⎨⎧31,21 (D)⎭⎬⎫⎩⎨⎧215.设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列关系中成立的是Φ=⋂=⊂⊂Q P D Q P C P Q B Q P A 、、、、6、符合条件{}{}c b a P a ,,⊆⊂的集合P 的个数有( ) A 、2 B 、3 C 、4 D 、57. 设{}{}I a A a a =-=-+241222,,,,,若{}1I C A =-,则a=__________。

《精编》安徽省宣城市高三数学联合测评考文科新人教A版.doc

《精编》安徽省宣城市高三数学联合测评考文科新人教A版.doc

安徽省宣城市届高三联合测评考文科数学扫描版含答案新人教A版高三联合测评考试卷数学〔文科〕试题参考答案1.B 解析:(2)(2)20225z x yi x y x y i x y i i +-++==∈⇒+=--R . 2.C 解析:利用韦恩图可知选C.3.C 解析:()4142112151222a S a a --==⨯4.C 解析:奇函数定义是一个全称命题, 当该命题为假时,其否命题必为真.5.B 解析:画出2x y =与12log y x =的图像可知当0x >a 时,122log x >x ,故0()0f x >.6.A 解析:作出可行域可知当目标函数过点〔2,0〕时取最大值6,过点〔12,3〕时取最小值3-2,故取值范围是3[,6]2-. 7.D 解析:2()2,3AC AF FC DC CF a b a a b x y =+=--=---=--=.8.B 解析: 双曲线22145x y -=的右焦点为(3,0),∴抛物线的准线为3x =-,代入双曲线方程得52y =±,故所截线段长度为5.9.A 解析:∵1>x e x x ≥+,∴0x e x ->,结合选项可知选A.10.A 解析:根据点到直线的距离公式有2d =假设点P 在O 上,那么22200x y r +=,d r =,相切; 假设点P 在O 外,那么22200x y r +>,d r <,相交; 假设点P 在O 内,那么22200x y r +<,d r >,相离,故只有①正确. 11.23π 解析:由题意可得1=0=-1,=-2a b a a b θ+⋅⇒⋅()则cos ,所以夹角为23π. 12.112解析:(),x y 为坐标的点落在直线28x y +=上的的情形有(1,6),(2,4),(3,2)共3种,所以概率是31.3612= 13.120 解析:①处填2S S i =+∧,②处填1i i =+.假设顺序颠倒,那么所求的算式应为22221011+++,输出的结果比原来大120.14.2π 解析:该几何体是一个高为6,底面半径为2的圆锥的14 ,故其体积V=21126=243ππ⋅⋅⋅⋅. 15.①②④ 解析:由题意得22(),2422k k k k k ππθππθππππ+<<+⇒+<<+∈Z 所以2θ是第一或第三象限角,①正确;当k 为偶数时,sin()sin ;k παα+=当k 为奇数时,sin()sin ;k παα+=-②正确;在③中,应为k ∈Z ,③错误;④正确;设()(),2x F x f =(2)F x a +=()()(),22x x f a f F x +==即周期为2,a ⑤错误.16.解析: (Ⅰ)a =0时符合题意;……………………2分当0a ≠时,要使函数()f x =的定义域为R,需 20440a a a >⎧⎨∆=-≤⎩解得01a <≤.……………………4分 综上可得0 1.a ≤≤……………………6分(Ⅱ)原不等式可化为()((1))0x a x a --->. 当102a ≤<时,1,a a <-解集为{}|1x x a x a <>-或;……………………8分 当12a =时,解集为1|2x x ⎧⎫≠⎨⎬⎩⎭;……………………10分 当112a <≤时,1,a a >-解集为{}|1x x a x a <->或.……………………12分 17.解析:(Ⅰ)∵tan 21tan A c Bb +=,∴ sin cos 2sin 1sin cos sin A B C B A B+=, 即sin cos sin cos 2sin sin cos sin B A A B C B A B+=,∴sin()2sin sin cos sin A B C B A B +=,整理得1cos 2A =. ∵0A π<<,∴3A π=.……………………6分 (Ⅱ)在ABC ∆中,2222cos a b c bc A =+-,且a =∴22222122b c bc b c bc =+-⋅=+-, ∵222b c bc +≥,∴32bc bc ≥-,即3bc ≤,当且仅当b c ==bc 取得最大值.又a =bc 取得最大值时,ABC ∆为等边三角形. ……………………12分18.解析:〔Ⅰ〕由可得2001111()|32|1x x c a a a b c f x x ax b ==⎧=-=-⎧⎪⎪-=⇒=-⎨⎨⎪⎪='=++=-⎩⎩.……………5分 〔Ⅱ〕由〔Ⅰ〕可知1)(23+--=x x x x f , )1)(13(123)(2-+=--='x x x x x f ,令10)(=⇒='x x f 或1-=x ,于是所以()f x 的极大值为2732)31(=-f ,极小值为0)1(=f .……………………12分 19.解析:〔Ⅰ〕连接AC 交BD 于点O ,连接EO.∵底面ABCD 是正方形,∴O 是AC 的中点,又E 是PC 的中点,∴PA ∥OE ,∵OE ⊂平面BDE ,PA ⊄平面BDE ,∴PA ∥平面BDE ……………………5分 〔Ⅱ〕在棱PB 上存在点F ,1,3PF PB =使PB ⊥平面DEF ,证明如下: 设2,PD CD ==那么2322,23,,3BD PB PF === 在直角三角形PBD 中,3cos ,3PD PF BPD PB PD∠=== ∴PDF ∆为直角三角形,即;DF PB ⊥又,,,BC CD BC PD CD PD D ⊥⊥=∴BC ⊥平面PCD ,∵DE ⊂平面PCD ,∴BC ⊥,DE∵,PD CD =E 是PC 的中点,∴,DE PC ⊥,PCBC C =∴DE ⊥平面PBC ,∴,DE PB ⊥ 又,DF DE D =∴PB ⊥平面DEF.∴在棱PB 上存在点F ,且1,3PF PB =使PB ⊥平面DEF. ……………………13分 20.解析:〔Ⅰ〕依题意得⎪⎩⎪⎨⎧=-===36122a b a a c e b ,解得a b ⎧=⎪⎨=⎪⎩31 ∴椭圆的方程为.x y +=2213……………………4分 〔Ⅱ〕①当AB .3||,=⊥AB x 轴时 ……5分②当AB 与x 轴不垂直时,设直线AB 的方程为),(),,(,2211y x B y x A m kx y +=,由,231||2=+k m 得),1(4322+=k m ………………………6分 m kx y +=把代入椭圆方程整理得,0336)13(222=-+++m kmx x k.13)1(3,1362221221+-=+-=+∴k m x x k km x x 21222))(1(||x x k AB -+=∴]13)1(12)13(36)[1(2222222+--++=k m k m k k 222222222)13()19)(1(3)13()13)(1(12+++=+-++=k k k k m k k 24222121233(0)196196k k k k k k=+=+≠++++.4632123=+⨯+≤ 当且仅当33,1922±==k kk 即时等号成立,此时.2||=AB ………10分 ③当.3||,0==AB k 时…..11分综上所述2||max =AB ,所以AOB ∆面积的最大值.2323||21max =⨯=AB S ………13分 21.解析:〔Ⅰ〕经计算33=a ,44a =,59a =,66a =.当n 为奇数时,23n n a a +=,即数列}{n a 的奇数项成等比数列,1213n n a --∴=; 当n 为偶数时,22n n a a +-=,即数列}{n a 的偶数项成等差数列,22n a n ∴=;因此数列}{n a 的通项公式为123(21,*),(2,*).n n n k k a n n k k -⎧⎪=-∈=⎨⎪=∈⎩N N .……………………6分〔Ⅱ〕由〔Ⅰ〕知123n n b n -=⨯,221214363(22)323n n n S n n --=⨯+⨯+⨯+-⨯+⨯ ① 2313234363(22)323n n n S n n -=⨯+⨯+⨯++-⋅+⋅ ②①-②得212 21+23+232323n n n S n --=⨯⨯⨯++⨯-⋅3123n n n =--⋅(21)312n n n S -⋅+∴=.……………………13分。

安徽省合肥市高三数学第一次教学质量检测试题 文 新人

安徽省合肥市高三数学第一次教学质量检测试题 文 新人

合肥市2014年第一次教学质量检测数学(文)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数i z 2-=,则11+z 的虚部为( ) A .i 52 B .52C .i 552 D .552 2. “p q ∨是真命题”是“p ⌝为假命题”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.双曲线1222-=-y x 的离心率为( )A .26 B .3 C .2 D .22 4.函数()2cos 2f x x x =+的一条对称轴方程是( )A .12x π=-B .3x π=C .512x π=D .23x π= 5.已知数列}{n a 的前n 项和为n S ,并满足:n n n a a a -=++122,354a a -=,则=7S ( )A .7B .12C .14D .216.一个几何体的三视图如图所示,则该几何体的体积是( )A . 8B . 10C . 12D . 147.函数1)(2+-=ax x x f 在区间)3,21(上有零点,则实数a 的取值范围是( )A .),2(+∞B .),2[+∞C .)25,2[D .)310,2[221 12正视图侧视图俯视图8.已知程序框图如图所示,则输出的结果为( )A .56B .65C .70D .729.已知函数)12(log )(-+=b x f xa )10(≠>a a ,且在R 上单调递增,且42≤+b a ,则a b的取值范围为( )A .)2,32[B .]2,32[C .]2,32(D .)2,32(10.对于函数()f x ,若∀,,a b c R ∈,()()(),,f a f b f c 边长,则称()f x 为“可构造三角形函数”.以下说法正确的是( )A . ()()1f x x R =∈不是“可构造三角形函数”B . “可构造三角形函数”一定是单调函数C .()()211f x x R x =∈+是“可构造三角形函数” D .若定义在R 上的函数()f x 的值域是e ⎤⎦(e 为自然对数的底数)()f x 一定是 “可构造三角形函数”第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知集合}31|{<<=x x A ,}2|{≤=x x B ,则=⋂)(B C A R _____________. 12.函数11ln)(+=x x f 的值域是__________. 13.已知ABC ∆中,c b a ,,分别为C B A ∠∠∠,,的对边, ο60=∠B ,2=b ,x a =,如c 有两组解,则x 的取值范围是14.已知点(),1A a 和曲线C:220x y x y +--=,若过点A 的任意直线都与曲线C 至少有一个交点,则实数a 的取值范围是 . 15有下列命题:①已知b a ρρ,是平面内两个非零向量,则平面内任一向量c ρ都可表示为b a ρρμλ+,其中R ∈μλ,;②对任意平面四边形ABCD ,点E 、F 分别为AB 、CD 的中点,则+=2; ③直线02=--y x 的一个方向向量为()1,1-;④已知a ρ与b ρ夹角为6π,且a ρ·b ρ=3,则|a ρ-b ρ|的最小值为13-;ACDEF⑤c a ρρ//是(a ρ·b ρ)·c ρ=a ρ·(b ρ·c ρ)的充分条件;其中正确的是 (写出所有正确命题的编号).三、解答题:本大题共六个小题,共75分.解答应写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知a ρ=)1),4(cos(πθ-,b ρ=)0,3(,其中)45,2(ππθ∈,若a ρ·b ρ=1.(Ⅰ)求θsin 的值; (Ⅱ)求θ2tan 的值.17.(本小题满分12分)如图,在多面体ABCDEF 中,底面ABCD 是梯形,且AD=DC=CB=12AB .直角梯形ACEF 中,1//2EF AC ,FAC ∠是锐角,且平面ACEF ⊥平面ABCD . (Ⅰ)求证:BC ⊥AF ;(Ⅱ)试判断直线DF 与平面BCE 的位置关系,并证明你的结论.18.(本小题满分12分)某电视台举办青年歌手大奖赛,有10名评委打分,已知甲、乙两名选手演唱后的打分情况如茎叶图所示:(Ⅰ)从统计的角度,你认为甲与乙比较,演唱水平怎样?(Ⅱ)现场有3名点评嘉宾A 、B 、C ,每位选手可以从中选2位进行指导,若选手选每位点评嘉宾的可能性相等,求甲乙两选手选择的点评嘉宾恰重复一人的概率.19.(本小题满分13分)已知函数x ax x a x f ln 22)1()(2--+=. (Ⅰ)求证:0=a 时,1)(≥x f 恒成立; (Ⅱ)当]1,2[--∈a 时,求)(x f 的单调区间.20.(本小题满分13分)已知ABC ∆的三个顶点都在抛物线22(0)y px p =>上,且抛物线的焦点F 满足=++,若BC 边上的中线所在直线l 的方程为0mx ny m +-=(,m n 为常数且0≠m ). (Ⅰ)求p 的值;(Ⅱ)O 为抛物线的顶点,OFA OFB OFC ∆∆∆、、的面积分别记为123S S S 、、,求证:222123S S S ++为定值.21.(本小题满分13分) 已知函数xx x f 1)(+=,(x >0),以点))(,(n f n 为切点作函数图像的切线n l ,(Z n n ∈≥,1),直线1+=n x 与函数)(x f y =图像及切线n l 分别相交于n n B A ,,记n n n B A a =. (Ⅰ)求切线n l 的方程及数列{}n a 的通项;(Ⅱ)设数列{}n na 的前n 项和为n S ,求证:n S <1.合肥市2014年第一次教学质量检测数学(文)参考答案一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.11.)3,2( 12.(],0-∞ 13.)334,2( 14.1][0,15.②④⑤三、解答题:本大题共六个小题,共75分.解答应写出文字说明、证明过程和演算步骤. 16.(12分)【答案解析】(Ⅰ)由已知得:31)4cos(=-πθ,322)4sin(=-πθ θsin =]4)4sin[(ππθ+-=4cos )4sin(ππθ-+4sin )4cos(ππθ-=624+. ……6分 (Ⅱ)由31)4cos(=-πθ得32cos sin =+θθ,两边平方得:92cos sin 21=+θθ 即972sin -=θ,∵),4(4πππθ∈-,且)4cos(>-πθ,)2,4(4πππθ∈-∴)43,2(ππθ∈∴ )23,(2ππθ∈∴ 从而9242cos -=θ 8272tan =∴θ. ……12分17.(12分)【答案解析】(Ⅰ)证明:取AB 中点H ,连结CH ,Θ底面ABCD 是梯形,且AD=DC=CB=12AB,易证四边形AHCD 为平行四边形,∴AD=HC=12AB , ∴ACB ∠=ο90 AC BC ⊥∴, ……3分Θ平面⊥ACEF 平面ABCD ,且平面I ACEF 平面ABCD AC =,⊥∴BC 平面ACEF ,而AF ⊂平面ACEF ,故BC ⊥AF . ……6分(Ⅱ)//DF 平面BCE ,以下证明:ABCDEFMH取AC 的中点M ,连接DM ,FM .在平面ABCD 中,DM ,BC ⊥AC ,故DM ∥BC . ……8分 在直角梯形ACEF 中,//EF CM,故FM ∥EC . ……10分而BC ,CE ⊂平面BCE ,BC ∩CE=C ,而DM ,MF ⊂平面DMF ,DM ∩MF=M ,故平面BCE ∥平面DMF ,DF ⊂平面DMF ,从而,DF ∥平面BCE . ……12分18.(12分)【答案解析】(Ⅰ)由茎叶图可得:5.87=甲X ,7.86=乙X ,乙甲X X >,所以甲演唱水平更高一点,但甲的方差较大,即评委对甲的水平认可存在较大的差异 ……5分(Ⅱ)依题意,共有 9 个基本事件:甲的选择 乙的选择其中,甲乙两选手选择的点评嘉宾恰重复一人包含6个基本事件. 所以,所求概率为3296==P . ………………12分 19.(13分)【答案解析】(Ⅰ)0=a 时,x x x f ln 2)(2-=,),0(+∞∈x xx x x x x f )1)(1(222)(-+=-=',令0)(='x f ,解得:)1(1舍去-==x x 当)1,0(∈x 时,0)(<'x f ,)(x f 在)1,0(上单调递减; 当),1(+∞∈x 时,0)(>'x f ,)(x f 在),1(+∞上单调递增。

安徽省宿州市高三数学第一次教学质量检查试题 文 新人教A版

安徽省宿州市高三数学第一次教学质量检查试题 文 新人教A版

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件A B 、互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(选择题 满分50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数21i ai++的实部和虚部相等,则实数a 等于 A .12B .2-C .13-D .3 2 设全集U =R ,集合A ={y|y=x 2+2x,x ∈R}则=A {-1,+∞}B (-1,+∞)C {-∞,-1] D(∞,-1) 3 下列双曲线中,渐近线方程是y=2x 的是A2211248x y -= B 22163y x -= C 2214x y -= D 22163y x -= 4设O 为坐标原点,M (1,2),若N (x,y )满足,则的最大值为A 4B 6C 8 D105. 3πα=“”是3sin α=“的 A .必要而不充分条件 B .充分而不必要条件 C .充要条件 D .既不充分也不必要条件6.如图,右边几何体的正视图和侧视图可能正确的是7.定义某种运算a b ⊗,运算原理如图所示,则式子1100(131(2))43lne lg tanπ-⊗+⊗的值为 正视图 侧视图 D.图 B. 图 A. 正视图 侧视图 C.A .13B .11C .8D .48.在空间四边形ABCD 中,E F 、分别为AC BD 、的中点,若24CD AB EF AB ==⊥,,则EF 与CD 所成的角为A .ο90B .ο60C .ο45D .ο309.对于给定的实数1a ,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),记出现向上的点数分别为m n 、,如果m n +是偶数,则把1a 乘以2后再减去2;如果m n +是奇数,则把1a 除以2后再加上2,这样就可得到一个新的实数2a ,对2a 仍按上述方法进行一次操作,又得到一个新的实数3a .当31a a >时,甲获胜,否则乙获胜.若甲获胜的概率为34,则1a 的值不可能是A .0B .2C .3D .410.已知函数()lg()x xf x x a b =+-中,常数101a b a b a b >>>=+、满足,且,那么()1f x >的解集为A .(01),B .(1)+∞,C .(110),D .(10)+∞, 第Ⅱ卷(非选择题 满分100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置上. 11.已知向量a 是单位向量,若向量b 满足()0-⋅=a b b ,则b 的取值范围是 . 12.两圆相交于两点(13),和(1)m -,,两圆圆心都在直线0x y c -+=上,且m c 、均为实数,则m c += .13.已知a b >,且1ab =,则22a b a b+-的最小值是 .14.已知数列{}n a 满足11log (1)n n a a n ==+,*2()n n N ≥∈,.定义:使乘积12a a ⋅⋅…k a ⋅为正整数的*()k k N ∈叫做“简易数”.则在[12012],内所有“简易数”的和为 . 15.以下五个命题: ①标准差越小,则反映样本数据的离散程度越大; ②两个随机变量相关性越强,则相关系数越接近1; ③在回归直线方程0.412y x =-+中,当解释变量x 每增加1个单位时,则预报变量y 减少0.4个单位; ④对分类变量X 与Y 来说,它们的随机变量2K 的观测值k 越小,“X 与Y 有关系”的把握程度越大; ⑤在回归分析模型中,残差平方和越小,说明模型的拟合效果越好.其中正确的命题是: (填上你认为正确的命题序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知A B C 、、为ABC ∆的三内角,且其对边分别为a b c 、、.若向量2(cos2A =m ,cos1)2A -,向量(1=n ,cos 1)2A+,且21⋅=-m n . (1)求A 的值; (2)若a =,三角形面积S =b c +的值.17.(本小题满分12分)在“2012魅力宿州”青少年才艺表演评比活动中,参赛选手成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下图,据此回答以下问题:(1)求参赛总人数和频率分布直方图中[80,90)之间的矩形的高,并完成直方图; (2)若要从分数在[80,100]之间任取两份进行分析,在抽取的结果中,求至少有一份分数在[90,100]之间的概率.18.(本小题满分12分)5 8 008 0设函数329(62)f x x x a x =-+-.(1)对于任意实数x ,'()f m x ≥在15(,]恒成立(其中'()f x 表示()f x 的导函数),求m 的最大值;(2)若方程()0f x =在R 上有且仅有一个实根,求a 的取值范围.19.(本小题满分13分)如图,四边形ABCD 为矩形,AD ⊥平面2ABE AE EB BC ===,,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE BE ⊥; (2)求三棱锥D AEC -的体积;(3)设M 在线段AB 上,且满足2AM MB =,试在线段CE 上确定一点N面DAE .20.(本小题满分12分) 椭圆22221(0)x y aba b +=>>的左、右焦点分别为1F 、2F ,点(P a ,)b 满足212PF F F =.(1)求椭圆的离心率e ;(2)设直线2PF 与椭圆相交于A B 、两点,若直线2PF 与圆22(16(1)x y +=+-相交于M N 、两点,且58MN AB =,求椭圆的方程.21.(本小题满分14分)已知函数2()x f x k kx b=-,(,N )b ∈*,满足(2)2f =,(3)2f >.(1)求k ,b 的值;(2)若各项为正的数列{}n a 的前n 项和为n S ,且有14()1n nS f a ⋅-=-,设2n n b a =,求数列{}n n b ⋅的前n 项和n T ;(3)在(2)的条件下,证明:ln(1)n n b b +<.黄山市2013届高中毕业班第一次质量检测 数学试题答案 (文科)二、填空题:本大题共5小题,每小题5分,共25分.11.[01],12.3 13. 14.2036 15.③⑤ 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 解:(1)∵向量2coscos122()A A =-,m ,向量(1cos1)2A =+,n ,且21⋅=-m n .∴221cossin 222A A -=-, …………………………………………………………………3分 得1cos 2A =-,又(0)A π∈,,所以23A π=. …………………………………………5分 (2)112sin sin 223ABC S bc A bc π∆===4bc =. ………………………………7分 又由余弦定理得:2222222cos3a b c bc b c bc π=+-=++.……………………………9分 ∴216()b c =+,所以4b c +=. …………………………………………………………12分 17.(本小题满分12分)解:(1)由茎叶图知,分数在[5060),之间的频数为2. 由频率分布直方图知,分数在[5060),之间的频率为0.008100.08⨯=所以,参赛总人数为2250.08=(人).………………………2分 分数在[8090),之间的人数为25271024----=(人), 分数在[8090),之间的频率为40.1625=, 得频率分布直方图中[8090),间矩形的高为0.160.01610=.………4分 完成直方图,如图.……………………………………………………………………………6分(2)将[8090),之间的4个分数编号为1,2,3,4[90,100];之间的2个分数编号为56和.则在00000[80100],之间任取两份的基本事件为:(12),(13),(14),(15),(16),(23),(24),(25),(26),,,,,,,,,, (34),(35),(36),(45),(46),(56),,,,,,共15个,其中至少有一个在[90,100]之间的基本事件为:(15),(16),(25),(26),(35),(36),(45),(46),(56),,,,,,,,,共9个. ………………………10分 故至少有一份分数在[90,100]之间的概率是93155=.……………………………………12分 18.(本小题满分12分)解:(1)2'()396f x x x =-+, 15x ∈(,].法一:'()f x m ≥在15(,]恒成立2396m x x ⇔≤-+在15(,]恒成立.…………………3分 由2233'()3963()24f x x x x =-+=--在15(,]的最小值为34-, 所以,得34m ≤-,即m 的最大值为34-. …………………………………………………6分 法二:令()2396g x x x m =-+-,15x ∈(,].要使'()f x m ≥在15(,]恒成立,则只需()0g x ≥在15(,]恒成立. 由于()y g x =的对称轴为32x =,当15x ∈(,]时,min ()(32727)60242g x g m =-+-≥=, 解得34m ≤-,所以m 的最大值为34-.……………………………………………………6分 (2)因为当1x <时, '()0f x >;当12x <<时, '()0f x <;当2x >时, '()0f x >; 即()y f x =在(,1)-∞和(2,)+∞单增,在(1,2)单减.所以5()=(1)2f x f a =-极大值,()=(2)2f x f a =-极小值.………………………………9分故当(2)0f >或(1)0f <时,方程()0f x =仅有一个实根. 得2a <或52a >时,方程()0f x =仅有一个实根. 所以5(,2)(,)2a ∈-∞+∞.………………………………………………………………12分 19.(本小题满分13分)证明:(1)∵AD ⊥平面ABE ,且//AD BC∴BC ⊥平面ABE ,则BC AE ⊥.………………………………………2分又∵BF ⊥平面ACE ,则BF AE ⊥,且BF 与BC 交于B 点,∴AE ⊥平面BCE ,又BE ⊂平面BCE ∴AE BE ⊥.………………4分 (2)由第(1)问得AEB ∆为等腰直角三角形,易求得AB∴1433D AECE ADC V V --==⨯=.…………………………………………………7分 (3)在三角形ABE 中过M 点作//MG AE 交BE 于G 点,在三角形BEC 中过G 点作//GN BC 交EC 于N 点,连MN . 由比例关系易得13CN CE =.………………………………………………………………9分 ∵//MG AE MG ⊄,平面ADE ,AE ⊂平面ADE ,∴//MG 平面ADE . 同理,//GN 平面ADE ,且MG 与GN 交于G 点, ∴平面//MGN ADE 平面.………………………………………………………………11分 又MN MGN ⊂平面, ∴//MN ADE 平面.∴N 点为线段CE 上靠近C 点的一个三等分点.…………………………………………13分 20.(本小题满分12分) 解:(1)设12(,0)(,0)(0)F c F c c ->、,因为212PF F F =,2c =. …………………………………………………………………2分整理得22()10c c a a +-=,得1c a =-(舍),或12c a =.所以12e =.……………………………………………………………………………………4分(2)由(1)知2,a c b ==,椭圆方程2223412x y c +=,2PF 的方程为)y x c =-.,A B 两点的坐标满足方程组2223412)x y cy x c ⎧+=⎪⎨=-⎪⎩,消去y 并整理,得2580x cx -=.解得1280,5x x c ==.得方程组的解110x y =⎧⎨=⎩,2285x cy ⎧=⎪⎨⎪=⎩.………………………7分不妨设8(),(0,)5A c B,则165AB c ==. 于是528MN AB c ==.圆心(-到直线2PF的距离d 10分因为222()42MN d +=,所以223(2)164c c ++=,整理得2712520c c +-=. 得267c =-(舍),或2c =. 所以椭圆方程为2211612x y +=. ……………………………………………………………12分21.(本小题满分14分)解:(1)由 4(2)22229629(3)23f k b k bk b f k b ⎧==⎪-=⎧⎪-⇒⎨⎨-<⎩⎪=>⎪-⎩…①…②,由①代入②可得52k <,且*k N ∈.……………………………………………………2分 当2k =时,2b =(成立),当1k =时,0b =(舍去).所以2k =,2b =.…………………………………………………………………………4分(2)2114()4122n n n nna S f S a a ⋅-=⋅=---,即22n n n S a a =+…③. 2n ≥时, 21112n n n S a a ---=+…④.所以,当2n ≥时,由③-④可得22112()()n n n n n a a a a a --=-+-, 整理得,11()(1)0n n n n a a a a --+--=. 又0n a >得11n n a a --=,且11a =,所以{}n a 是首项为1,公差为1的等差数列,即n a n =,2nn b =.2n n nb n ∴=⋅. ………………………………………………………………………………7分 1231122232(1)22n n n T n n -=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅, 23412122232(1)22n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,由上两式相减得 123122222nn n T n +-=+++⋅⋅⋅+-⋅12(12)212n n n +-=-⋅-.1(1)22n n T n +∴=-+. ……………………………………………………………………10分(3)由(2)知2nn b =,只需证ln(12)2n n +<.设()ln(12)2x x f x =+-(1x ≥且x R ∈).则2ln 22ln 2'()2ln 2(2)01212x x xx x xf x =-=⋅-<++, 可知()f x 在[1,)+∞上是递减,max ()(1)ln 320f x f ∴==-<. 由*x N ∈,则()(1)0f n f ≤<,故ln(1)n n b b +<. …………………………………………………………………………14分。

2025版新教材高中数学同步练习33对数换底公式新人教A版必修第一册

2025版新教材高中数学同步练习33对数换底公式新人教A版必修第一册

同步练习33 对数换底公式必备学问基础练一、选择题(每小题5分,共45分)1.[2024·江苏南通高一期中]lg 2·log 810=( ) A .3 B .log 310 C .13D .lg 3 2.[2024·安徽怀宁新安中学高一期中]设lg 2=a ,lg 3=b ,则log 1210=( )A .12a +bB .1a +2bC .2a +bD .2b +a3.[2024·山东聊城高一期末]若x log 32=1,则4x=( ) A .9 B .3C .2log 32D .2log 234.设log 23log 36log 6m =log 416,则m =( ) A .2 B .4C .8D .-2或45.[2024·河南信阳高一期末]若4m=3,则log 312=( ) A .m +1mB .2m +1mC .m +2mD .2m +12m6.[2024·浙江温州高一期末]已知a log 34=1,2b=6,则( ) A .a =1+b B .b =1+a C .a =1+2b D .b =1+2a7.已知2a =3b=m (m >0),且1a +1b=2,则m =( )A . 6B .8C .6D .138.(多选)已知a ,b 均为不等于1的正数,则下列选项中与log a b 相等的有( )A .1log b aB .lg a lg bC .aD .b n 9.(多选)实数a ,b 满意2a =5b=10,则下列关系式不正确的有( ) A .1a +1b =1 B .2a +1b=2C .1a +2b =2D .1a +2b =12二、填空题(每小题5分,共15分) 10.log 23×log 34×log 48=________.11.[2024·安徽师范高校附中高一期末]已知lg 2=a ,lg 3=b ,用a ,b 表示log 1815=____________.12.[2024·河南南阳高一期中]若5a=2,25b=8,则a b=________. 三、解答题(共20分)13.(10分)计算下列各式的值 (1)log 29×log 34+2ln e +log 24;(2)(2log 43+log 83)(log 32+log 92).14.(10分)若3x =4y =6z≠1,求证:1x +12y =1z.关键实力提升练15.(5分)[2024·山东临沂高一期末]某科研小组研发一种抗旱小麦品种,已知第1代有40粒种子,若之后各代每粒种子可收获下一代15粒种子,则所得种子重量首次超过1吨(约2 400万粒)的是(lg 2≈0.3,lg 3≈0.48)( )A .第6代种子B .第7代种子C .第8代种子D .第9代种子23n +1在区间(1,50)内全部“贺数”的和是________.17.(10分)已知lg a ,lg b 是方程2x 2-4x +1=0的两个根,求lg (ab )·(log a b +log b a )的值.同步练习33 对数换底公式必备学问基础练1.答案:C解析:lg2·log 810=lg2×lg10lg8=lg2×1lg23=lg2×13lg2=13.故选C. 2.答案:A解析:log 1210=1lg12=1lg3+2lg2=12a +b .故选A.3.答案:A解析:因为x log 32=1,则x =1log 32=log 23,所以4x==()2=32=9.故选A.4.答案:B解析:由log 23log 36log 6m =log 416, 可得ln3ln2·ln6ln3·ln mln6=2,即ln m =2ln2,∴m =4.故选B. 5.答案:A解析:由4m=3得m =log 43,则log 312=1+log 34=1+1log 43=1+1m =m +1m .故选A.6.答案:D解析:由a log 34=1可得,a =1log 34=log 43=12log 23,即2a =log 23,由2b=6得,b =log 26,依据对数运算法则可知b =log 26=log 2(2×3)=log 22+log 23=1+2a ,即b =1+2a .故选D.7.答案:A解析:由2a =3b =m 得a =log 2m ,b =log 3m ,1a +1b=log m 2+log m 3=log m 6=2,m 2=6,m=6(负值舍去).故选A.8.答案:AD 解析:1log b a =log a b ,lg alg b=log b a ,log ba =logb a ,log an b n =log a b .故选AD.9.答案:BCD解析:实数a ,b 满意2a =5b=10,则a =log 210,b =log 510,∴1a =lg2,1b=lg5.对于A 选项,1a +1b =lg2+lg5=lg10=1,A 选项正确;对于B 选项,2a +1b =2lg2+lg5=lg (4×5)=lg20≠2,B 选项错误; 对于C 选项,1a +2b=lg2+2lg5=lg (2×25)=lg50≠2,C 选项错误;对于D 选项,1a +2b =lg2+2lg5=lg (2×25)=lg50≠12,D 选项错误.故选BCD.10.答案:3解析:原式=log 23×log 24log 23×log 28log 24=log 223=3.11.答案:b -a +12b +a解析:log 1815=lg15lg18=lg3+lg5lg2+2lg3=lg3+1-lg2lg2+2lg3=b -a +12b +a .12.答案:23解析:由5a =2可得a =log 52,由25b=8可得b =log 258=3log 52log 525=32log 52,故a b =23.13.解析:(1)log 29×log 34+2lne +log 24 =2log 23×2log 32+2+2 =4(log 23×log 32)+4 =4+4=8.(2)(2log 43+log 83)(log 32+log 92)=(log 4123+3)(log 32+2)=(log 23+13log 23)(log 32+12log 32)=43log 23×32log 32=2. 14.证明:设3x=4y=6z=m ,则m ≠1且x =log 3m ,y =log 4m ,z =log 6m , ∴1x =log m 3,1y =log m 4,1z=log m 6,∴1x +12y =log m 3+log m 2=log m 6, ∴1x +12y =1z.关键实力提升练15.答案:A解析:设第x 代种子的数量为40×15x -1,由题意得40×15x -1≥2.4×107,得x ≥log 15(6×105)+1.因为log 15(6×105)+1=lg 6+lg 105lg 15+1=lg 6+5lg 3+lg 5+1=lg 2+lg 3+5lg 3+1-lg 2+1≈5.9,故种子数量首次超过1吨的是第6代种子.故选A. 16.答案:52解析:因为log 23×log 34×…×log n +1(n +2)=lg3lg2×lg4lg3×…×lg (n +2)lg (n +1)=lg (n +2)lg2=log 2(n +2),又log 24=2,log 28=3,log 216=4,log 232=5,log 264=6,…,所以当n +2=4,8,16,32,即n =2,6,14,30时,log 2(n +2)为整数, 所以在区间(1,50)内全部“贺数”的和是2+6+14+30=52. 17.解析:由题设,得lg a +lg b =2,lg a ·lg b =12.所以lg (ab )·(log a b +log b a ) =(lg a +lg b )·(lg b lg a +lg alg b )=(lg a +lg b )·(lg a )2+(lg b )2lg a ·lg b=(lg a +lg b )·(lg a +lg b )2-2lg a ·lg blg a ·lg b=2×22-2×1212=12.。

2023-2024学年安徽省高一上学期数学人教A版-三角函数-强化训练-15-含解析

2023-2024学年安徽省高一上学期数学人教A版-三角函数-强化训练-15-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年安徽省高一上学期数学人教A 版-三角函数-强化训练(15)姓名:____________班级:____________ 学号:____________考试时间:120分钟 满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 下图是函数的部分图象,则( ) A. B. C. D.2. 设,且 ,则 的范围是( )A. B. C. D.- -3. cos330°=( )A. B. C. D. -44-884. 已知,则 的值为 ( )A. B. C. D. 5. 已知sin (α+β)= , sin (α-β)=,则tanαcotβ=( )A. B. C. D.6. 已知 , 且 , 则x 的取值范围是( )A. B. C. D.﹣ ﹣ ﹣ ﹣7. 下列选项中,与sin2017°的值最接近的数为( )A. B. C. D. ﹣ ﹣ 8. 在平行四边形ABCD 中,点E 为CD 中点,= , = ,则 等于( )A. B. C. D.sin (﹣)>sin (﹣) cos (﹣)>cos (﹣)cos250°>cos260° tan144°<tan148°9. 下列各式中,正确的是( )A. B. C. D. --10. sin (﹣600°)的值是( )A. B. C. D. 第一象限角第二象限角第三象限角第四象限角11. 若, ,则 是( )A. B. C. D. 0112.( )A. B. C. D. 13. 砖雕是我国古建筑雕刻中很重要的一种艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形OCD 截去同心扇形OAB 所得部分.已知, , ,则该扇环形砖雕的面积为 .14. 已如函数,若 ,且 在 上是单调函数,则 的最大值是 .15. 的值是 .16. 若函数f(x)=cosωx(ω>0)在 x上的最大、最小值之和为0,则ω的最小值为.17. 已知为锐角,,.(1) 求的值;(2) 求的值.18. 如图,点A、B在单位圆上,点A的坐标为,点B在第二象限,为正三角形,点C是单位圆与x轴正半轴的交点.(1) 求的值;(2) 求的值.19.(1) 化简:;(2) 证明: .20. 已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.21. 已知(1) 化简;(2) 若是第三象限角,且,求的值.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.21.(1)(2)。

2023-2024学年安徽省高中数学人教A版 必修二平面向量及应用强化训练-18-含解析

2023-2024学年安徽省高中数学人教A版 必修二平面向量及应用强化训练-18-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年安徽省高中数学人教A 版 必修二平面向量及应用强化训练(18)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 已知向量 满足,若M为AB 的中点,并且,则λ+μ的最大值是( )A.B. C. D.2-21-12. 设是互相垂直的单位向量,且(+ )⊥(+2 ),则实数 的值是( )A.B. C.D. 3.某快递公司在我市的三个门店 , , 分别位于一个三角形的三个顶点处,其中门店, 与门店 都相距,而门店 位于门店 的北偏东方向上,门店 位于门店的北偏西方向上,则门店 ,间的距离为()A.B.C.D.充分而不必要条件必要而不充分条件充分必要条件既不充分也不必要条件4. 设非零向量,则“ ”是“”的( )A. B. C. D. 5. 如图,函数在一个周期内的图象(不包括端点)与 轴, 轴的交点分别为 ,,与过点 的直线另相交于 ,两点, 为图象的最高点, 为坐标原点,则( )A. B. C. D.充分不必要条件必要不充分条件充要条件既不充分也不必要条件6. 已知的三个内角 , , 所对边分别为 , , , 则“”是“为直角三角形”的是( )A. B. C. D. 30°60°120°150°7. 已知 ,则向量 与 的夹角为( )A. B. C. D. 8. 如图,已知长方体中,.则与所成角的余弦值为( )A. B. C. D.-229. 在 中, 分别为的对边,O 为的外心,且有,,若,,则( )A. B. C.D.42110. 已知向量 的夹角为,则 ( )A. B. C.D. 11. 在 中, 是 上一点,且 ,则 ( )A. B. C. D.12. 在 ,角 , , 的对边分别为 , , ,向量 , ,若 ,则 ()A.B. C. D.13. 已知 中,角 所对边分别为 , , , ,则.14. 在中,,,,是所在平面内任意一点,则的最小值是 .15. 已知,若与的夹角为锐角,则的取值范围为.16. 在扇形中,,C为弧上的一个动点.若,则的取值范围是 .17. 已知中,内角的对边分别为,且满足.(1) 求的值;(2) 若,求面积的最大值.18. 在中,内角A,B,C所对的边分别为a,b,c,且.(Ⅰ)求角A;(Ⅱ)若c=2,,求的面积.19. 在中,角、、的对边分别为、、,已知.(1) 若,,求;(2) 若角,求角.20. 已知圆:与直线:,动直线过定点 .(1) 若直线与圆相切,求直线的方程;(2) 若直线与圆相交于、两点,点M是PQ的中点,直线与直线相交于点N .探索是否为定值,若是,求出该定值;若不是,请说明理由.21. 已知的内角A,B,C所对的边分别为a,b,c;,且边,(1) 求的周长;(2) 若角,求的面积.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.19.(1)(2)20.(1)(2)21.(1)(2)。

2023-2024学年安徽省高中数学人教A版 必修二平面向量及应用专项提升-17-含解析

2023-2024学年安徽省高中数学人教A版 必修二平面向量及应用专项提升-17-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年安徽省高中数学人教A 版 必修二平面向量及应用专项提升(17)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)23451. 在 中,分别为内角的对边,若, ,且,则 ( )A. B. C. D. 2.中 为其内角,设,,且,则 ( )A. B. C. D.公共弦所在直线方程为公共弦的长为线段中垂线方程为3. 圆和圆的交点为 , 则有( )A. B. C.D.124. 已知 是相互垂直的单位向量,与共面的向量 满足则的模为( )A. B.C. D.1﹣3﹣2﹣15. 若向量=(1,0), =(2,1), =(x ,1)满足条件3 ﹣ 与 共线,则x 的值( )A. B. C. D. 6. 在 中, 为边 上的任意一点,点 在线段 上,且满足 ,若 ,则的值为( )14A. B. C. D.7. 在中,角,,所对的边分别为,,,若,,成等差数列,,则()A. B. C. D.8. 已知向量,若,则的值为().A. B. C. D.9. 已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C 的方程为()A. B. C. D.913182410. 在我国勾股定理最早的证明是东汉末数学家赵爽在为《周髀算经》作注时给出的.如图就是著名的赵爽弦图,它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.若,则()A. B. C. D.70.57171.57211. 雷峰塔又名黄妃塔、西关砖塔,位于浙江省杭州市西湖区,地处西湖风景区南岸夕照山(海拔46米)之上.是吴越国王钱俶为供奉佛螺髻发舍利、祈求国泰民安而建.始建于北宋太平兴国二年(977年),历代屡加重修.现存建筑以原雷峰塔为原型设计,重建于2002年,是“西湖十景”之一,中国九大名塔之一,中国首座彩色铜雕宝塔.李华同学为测量塔高,在西湖边相距的、两处(海拔均约16米)各放置一架垂直于地面高为米的测角仪、(如图所示).在测角仪处测得两个数据:塔顶仰角及塔顶与观测仪点的视角在测角仪处测得塔顶与观测仪点的视角,李华根据以上数据能估计雷锋塔的高度约为()(参考数据:,)A. B. C. D.-11-2212. △ABC内接于以O为圆心,1为半径的圆,且,则的值为()A. B. C. D.阅卷人得分二、填空题(共4题,共20分)13. 如图,已知,为的中点,分别以、为直径在的同侧作半圆,、分别为两半圆上的动点(不含端点、、 ),且,则的最大值为 .14. 设向量,,且与夹角为锐角,则实数的取值范围是.15. 已知向量,,,若,则.16. 如图,在四边形中,对角线与相交于点 .已知,,,且是的中点,若,则的值为 .17. 如图1,边长为的菱形中,,,,分别是,,的中点.现沿对角线折起,使得平面平面,连接,如图2.(1) 求;(2) 若过,,三点的平面交于点,求四棱锥的体积.18. 在中,分别为角所对的边, .(1) 求角的大小;(2) 若,的面积为,求 .19. 已知平面直角坐标系中,点为原点,,(1) 若,且方向相反,求的坐标;(2) 若,与的夹角为,且向量与互相垂直,求的值.20. 在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2bsinA= a.(Ⅰ)求角B;(Ⅱ)求cosA+cosB+cosC的取值范围.21. 在△ABC中,若角A,B,C的对边分别为a,b,c,,且.(1) 求∠C的大小;(2) 若△ABC的面积,求角A的最大值.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)。

新课标A版数学理·安徽练案

新课标A版数学理·安徽练案

第一节集合一、选择题1.(2013·新课标全国卷Ⅱ)已知集合M={x|(x-1)2<4,x∈R},N ={-1,0,1,2,3},则M∩N=()A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}解析不等式(x-1)2<4等价于-2<x-1<2,得-1<x<3,故集合M={x|-1<x<3},则M∩N={0,1,2}.故选A.答案 A2.(2013·福建卷)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3C.4 D.6解析A∩B={1,3},子集有n=22=4个.答案 C3.(2013·江西卷)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4 B.2C.0 D.0或4解析当a=0时,原方程为0x+1=0,无实数解;当a≠0时,依题意得Δ=a2-4a=0,解得a=0(舍去),或a=4.故选A.答案 A4.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}解析 因为A ∪B ={0,1,2,3,4,5,6,8},所以(∁U A )∩(∁U B )=∁U (A ∪B )={7,9}.答案 B5.设S ={x |x <-1,或x >5},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( )A .(-3,-1)B .[-3,-1]C .(-∞,-3]∪[-1,+∞)D .(-∞,-3)∪(-1,+∞) 解析 在数轴上表示两个集合,因为S ∪T =R ,由图可得⎩⎨⎧a <-1,a +8>5,解得-3<a <-1.答案 A6.(2014·大连模拟)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩∁I M =∅,则M ∪N 等于( )A .MB .NC .ID .∅解析 由N ∩(∁I M )=∅知N ⊆M ,又M ≠N , ∴M ∪N =M .答案 A二、填空题7.(2014·杭州模拟)设全集U={-1,0,1,2,3,4},∁U M={-1,1},N={0,1,2,3},则集合M∩N=________.解析∵∁U M={-1,1},∴M={0,2,3,4}.∴M∩N={0,2,3}.答案{0,2,3}8.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.解析∵∁U A={1,2},∴A={0,3}.又A={x∈U|x2+mx=0}={0,-m},∴-m=3,∴m=-3.答案-39.(2014·济南模拟)设集合S n={1,2,3,…,n},若X⊆S n,把X 的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.则S4的所有奇子集的容量之和为________.解析∵S4={1,2,3,4},∴X=∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X={1},{3},{1,3},其容量分别为1,3,3,所以S4的所有奇子集的容量之和为7.答案7三、解答题10.若集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,求实数a ,b .解 ∵A =B ,∴B ={x |x 2+ax +b =0}={-1,3}.∴⎩⎨⎧-a =-1+3=2,b =(-1)×3=-3.∴a =-2,b =-3.11.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B ); (2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B , ∴2a -1=9或a 2=9, ∴a =5或a =-3或a =3.经检验a =5或a =-3符合题意. ∴a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈A 且9∈B , 由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 此时A ∩B ={9};当a =5时,A ={-4,9,25},B ={0,-4,9}, 此时A ∩B ={-4,9},不合题意.∴a =-3.12.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. 解 由已知得A ={x |-1≤x ≤3}, B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎨⎧m -2=0,m +2≥3,∴m =2.(2)∁R B ={x |x <m -2或x >m +2}, ∵A ⊆∁R B ,∴m -2>3或m +2<-1, 即m >5或m <-3.因此实数m 的取值范围是{m |m >5或m <-3}.。

2022数学课时规范练3命题及其关系充要条件文含解析新人教A版

2022数学课时规范练3命题及其关系充要条件文含解析新人教A版
15。(-∞,—2]q: 〉0化为(x+2)(x-1)<0,解得-2〈x<1.
∵p是q的必要不充分条件,
∴a≤—2,即实数a的取值范围是(-∞,-2].
16.A由题意圆O的圆心O(0,0),半径r=1,当m= 时,圆心O到直线l的距离d= =1,所以直线l与圆O相切,因为当直线l与圆O相切时,圆心O到直线l的距离d= =1,解得m=± ,故“m= ”是“直线l与圆O相切”的充分不必要条件,故选A.
17。B由题意知两个几何体的高相等,由V1=V2得不到一定S1=S2;若两个几何体被平行于这两个平面的任意平面截得的两个截面的面积S1=S2,又它们的高相等,则两个几何体的体积V1=V2.故选B。
6.B当a=2时,x∈R;当a—2〈0时,Δ=4(a—2)2—4(a—2)×(-2)<0,解得0〈a<2,此时x∈R,综上,命题p:0〈a≤2。因为命题q:0〈a〈2,所以p是q的必要不充分条件.故选B.
7.充分不必要由α=β⇒sinα=sinβ,所以充分性成立;由sinα=sinβ,得α=β或α=π-β,必要性不成立.
A.充分不必要条件B.必要不充分条件
C。充要条件D.既不充分也不必要条件
12。在命题p的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f(p),已知命题p:“若两条直线l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0平行,则a1b2-a2b1=0”,那么f(p)等于()
3。C对于①,原命题显然为真命题,故其逆否命题也为真命题。对于②,其否命题是“若x≠-3,则x2+x—6≠0”,由于x=2时,x2+x-6=0,故否命题是假命题.所以①为真命题,②为假命题,故选C。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 集合
一、选择题
1.(2013·新课标全国卷Ⅱ)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )
A.{0,1,2} B.{-1,0,1,2}
C.{-1,0,2,3} D.{0,1,2,3}
解析 不等式(x-1)2<4等价于-2<x-1<2,得-1<x<3,故集合M ={x|-1<x<3},则M∩N={0,1,2}.故选A.
答案 A
2.(2013·福建卷)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为( )
A.2 B.3
C.4 D.6
解析 A∩B={1,3},子集有n=22=4个.
答案 C
3.(2013·江西卷)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )
A.4 B.2
C.0 D.0或4
解析 当a=0时,原方程为0x+1=0,无实数解;当a≠0时,依题意得Δ=a2-4a=0,解得a=0(舍去),或a=4.故选A.
答案 A
4.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=( )
A.{5,8} B.{7,9}
C.{0,1,3} D.{2,4,6}
解析 因为A∪B={0,1,2,3,4,5,6,8},所以(∁U A)∩(∁U B)=∁U(A∪B)={7,9}.
答案 B
5.设S={x|x<-1,或x>5},T={x|a<x<a+8},S∪T=R,则a的取值范围是( )
A.(-3,-1) B.[-3,-1]
C.(-∞,-3]∪[-1,+∞) D.(-∞,-3)∪(-1,+∞)
解析 在数轴上表示两个集合,因为S∪T=R,由图可得解得-
3<a<-1.
答案 A
6.(2014·大连模拟)已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁I M=∅,则M∪N等于( )
A.M B.N
C.I D.∅
解析 由N∩(∁I M)=∅知N⊆M,又M≠N,
∴M∪N=M.
答案 A
二、填空题
7.(2014·杭州模拟)设全集U={-1,0,1,2,3,4},∁U M={-1,1},N ={0,1,2,3},则集合M∩N=________.
解析 ∵∁U M={-1,1},∴M={0,2,3,4}.
∴M∩N={0,2,3}.
答案 {0,2,3}
8.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.
解析 ∵∁U A={1,2},∴A={0,3}.
又A={x∈U|x2+mx=0}={0,-m},
∴-m=3,∴m=-3.
答案 -3
9.(2014·济南模拟)设集合S n={1,2,3,…,n},若X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.则S4的所有奇子集的容量之和为________.
解析 ∵S4={1,2,3,4},∴X=∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},
{2,3,4},{1,2,3,4}.其中是奇子集的为X={1},{3},{1,3},其容量分别为1,3,3,所以S4的所有奇子集的容量之和为7.
答案 7
三、解答题
10.若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.
解 ∵A=B,∴B={x|x2+ax+b=0}={-1,3}.
∴∴a=-2,b=-3.
11.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.
(1)9∈(A∩B);
(2){9}=A∩B.
解 (1)∵9∈(A∩B),∴9∈A且9∈B,
∴2a-1=9或a2=9,
∴a=5或a=-3或a=3.
经检验a=5或a=-3符合题意.
∴a=5或a=-3.
(2)∵{9}=A∩B,∴9∈A且9∈B,
由(1)知a=5或a=-3.
当a=-3时,A={-4,-7,9},B={-8,4,9},
此时A∩B={9};
当a=5时,A={-4,9,25},B={0,-4,9},
此时A∩B={-4,9},不合题意.
∴a=-3.
12.已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁R B,求实数m的取值范围.
解 由已知得A={x|-1≤x≤3},
B={x|m-2≤x≤m+2}.
(1)∵A∩B=[0,3],∴∴m=2.
(2)∁R B={x|x<m-2或x>m+2},
∵A⊆∁R B,∴m-2>3或m+2<-1,
即m>5或m<-3.
因此实数m的取值范围是{m|m>5或m<-3}.。

相关文档
最新文档