2012年福建省中考数学试题
福建省宁德市2012中考数学试题含解析
2012年中考数学试题解析(福建宁德卷)锦元数学工作室编辑(本试卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)3.(2012福建宁德4分)2012年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔下窄,又被称为“伦敦碗”,预计可容纳80000人.将80000用科学记数法表示为【】A.80×103 B.0.8×105 C.8×104 D.8×103【答案】C。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值。
在确定n的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0)。
80000一共5位,从而80000=8×104。
故选C。
4.(2012福建宁德4分)下列事件是必然事件的是【 】 A .从一副扑克牌中任意抽取一张牌,花色是红桃 B .掷一枚均匀的骰子,骰子停止转动后6点朝上C .在同一年出生的367名学生中,至少有两人的生日是同一天D .两条线段可以组成一个三角形 【答案】C 。
【考点】必然事件、随机事件和不可能事件。
【分析】根据必然事件、随机事件和不可能事件和意义作出判断:A .从一副扑克牌中任意抽取一张牌,花色是红桃,是随机事件;B .掷一枚均匀的骰子,骰子停止转动后6点朝上,是随机事件;C .在同一年出生的367名学生中,至少有两人的生日是同一天,是必然事件(因为一年只有365天);D .两条线段可以组成一个三角形是不可能事件。
故选C 。
5.(2012福建宁德4分)下列两个电子数字成中心对称的是【 】【答案】A 。
【考点】中心对称图形。
【分析】根据轴中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
福建省各市2012年中考数学分类解析 专题3:方程(组)和不等式(组)
福建9市2012年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1. (2012福建宁德4分)二元一次方程组⎩⎨⎧x +y =32x -y =6的解是【 】A .⎩⎨⎧x =6y =-3 B .⎩⎨⎧x =0y =3 C .⎩⎨⎧x =2y =1 D .⎩⎨⎧x =3y =0【答案】D 。
【考点】解二元一次方程组。
【分析】3x 3x y 33x=9x=3y 0y 02x y 6=+=⎧⎧−−−−→−−−−−→−−−−→=⇒⎨⎨=-=⎩⎩①+②得两边除以得代入①得①②。
故选D 。
2. (2012福建莆田4分)方程()()x 1x 20-+=的两根分别为【 】A .1x =-1,2x =2B .1x =1,2x =2C .1x =―l ,2x =-2D .1x =1,2x =-2【答案】D 。
【考点】因式分解法解一元二次方程。
【分析】(x -1)(x +2)=0,可化为:x -1=0或x +2=0,解得:x 1=1,x 2=-2。
故选D 。
3. (2012福建莆田4分)甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x 棵,则根据题意列出方程正确的是 【 】 A .6070x 2x=+ B .6070xx 2=+ C.6070x 2x=- D.6070xx 2=-【答案】B 。
【考点】由实际问题抽象出分式方程。
【分析】本题需重点理解:甲班植60棵树所用的天数与乙班植70棵树所用的天数相等,等量关系为:甲班植60棵树所用的天数=乙班植70棵树所用的天数,根据等量关系列式:设甲班每天植树x 棵,乙班每天植树x +2棵,则甲班植60棵树所用的天数为60x,乙班植70棵树所用的天数为70x 2+,所以可列方程:6070xx 2=+。
故选B 。
4. (2012福建漳州4分)二元一次方程组x y 22x y 1+=⎧⎨-=⎩的解是【 】A .x 0y 2=⎧⎨=⎩ B .x 1y 1=⎧⎨=⎩ C .x 1y 1=-⎧⎨=-⎩ D .x 2y 0=⎧⎨=⎩【答案】B 。
无锡新领航教育福建省各市2012年中考数学分类解析 专题6:函数的图像与性质
- 1 - 无锡新领航教育福建9市2012年中考数学试题分类解析汇编专题6:函数的图象与性质一、选择题1. (2012福建龙岩4分)下列函数中,当x <0时,函数值y 随x 的增大而增大的有【 】 ①y=x ②y=-2x +1 ③1y=x -④2y=3x A .1个B .2个C .3个D . 4个 【答案】B 。
【考点】一次函数、反比例函数和二次函数的性质。
【分析】根据一次函数、反比例函数和二次函数的性质作出判断:①∵y=x 的k >0,∴当x <0时,函数值y 随x 的增大而增大;②∵y=-2x +1的k <0,∴当x <0时,函数值y 随x 的增大而减小; ③∵1y=x-的k <0,∴当x <0时,函数值y 随x 的增大而增大; ④∵2y=3x 的a >0,对称轴为x=0,∴当x <0时,函数值y 随x 的增大而减小。
∴正确的有2个。
故选B 。
2. (2012福建南平4分)已知反比例函数1y x =的图象上有两点A (1,m )、B (2,n ).则m 与n 的大小关系为【 】A .m >nB .m <nC .m=nD .不能确定【答案】A 。
【考点】反比例函数图象上点的坐标特征【分析】∵反比例函数1y x=中k=1>0,∴此函数的图象在一、三象限。
∵0<1<2,∴A 、B 两点均在第一象限。
∵在第一象限内y 随x 的增大而减小,∴m >n 。
故选A 。
3. (2012福建漳州4分)在公式I=U R中,当电压U 一定时,电流I 与电阻R 之间的函数关系可用图象大致表示为【 】。
2012年福州市中考数学试题及答案
二○一二年福州市初中毕业会考、高级中等学校招生考试数学试卷答案解析一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.3的相反数是A .-3B .13C .3D .-132.今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为 A .48.9×104 B .4.89×105 C .4.89×104 D .0.489×106 3.如图是由4个大小相同的正方体组合而成的几何体,其主视图是4.如图,直线a ∥b ,∠1=70°,那么∠2的度数是A .50°B .60°C .70°D .80°5.下列计算正确的是A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 76.式子x -1在实数范围内有意义,则x 的取值范围是A .x <1B .x ≤1C .x >1D .x ≥17.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是A .8,8B .8.4,8C .8.4,8.4D .8,8.48.⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是 A .200米 B .2003米 C .2203米 D .100(3+1)米故选D . 10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =kx(x >0)的图像与△ABC 有公共点,则k 的取值范围是A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤8第3题图A B CD a 第4题图12b 第9题图 A B CD30° 45°二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:x 2-16=_________________.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为__________________.13.若20n 是整数,则正整数n 的最小值为________________.14.计算:x -1x +1x=______________.15.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是______________.(结果保留根号) A B C D第15题图三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1) 计算:|-3|+(π+1)0-4. (2) 化简:a (1-a )+(a +1)2-1.17.(每小题7分,共14分)(1) 如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE . (2) 如图,方格纸中的每个小方格是边长为1个单位长度的正方形. ① 画出将Rt △ABC 向右平移5个单位长度后的Rt △A 1B 1C 1; ② 再将Rt △A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt △A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m =_______%,这次共抽取__________名学生进行调查;并补全条形图; (2) 在这次抽样调查中,采用哪种上学方式的人最多?(3) 如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名? A B C D E F 第17(1)题图 第17(2)题图 A BC 学生上学方式扇形统计图 学生上学方式条形统计图19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题?20.(满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD 交⊙O于点E.(1) 求证:AC平分∠DAB;(2) 若∠B=60º,CD=23,求AE的长.第20题图21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1) 直接用含t 的代数式分别表示:QB =______,PD =______.(2) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3) 如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.第21题图① B C D P Q 第21题图② B C D PQ22.(满分14分)如图①,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标; (3) 如图②,若点N 在抛物线上,且∠NBO =∠A BO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).A B D O x y 第22题图① A B D O x y 第22题图② N二○一二年福州市初中毕业会考、高级中等学校招生考试数学试卷答案解析一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.3的相反数是A .-3B .13C .3D .-13考点:相反数. 专题:存在型.分析:根据相反数的定义进行解答.解答:解:由相反数的定义可知,3的相反数是-3.故选A .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为 A .48.9×104 B .4.89×105 C .4.89×104 D .0.489×106 考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:解:489000=4.89×105.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图是由4个大小相同的正方体组合而成的几何体,其主视图是考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从正面看,下面一行是横放3个正方体,上面一行中间是一个正方体.故选C .点评:本题考查了三种视图中的主视图,比较简单.4.如图,直线a ∥b ,∠1=70°,那么∠2的度数是 A .50° B .60° C .70° D .80° 考点:平行线的性质.分析:根据两角的位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果. 解答:解:∵ a ∥b ,∴ ∠1=∠2, ∵ ∠1=70°, ∴ ∠2=70°. 故选C .点评:本题考查了平行线的性质,根据两直线平行同位角相等即可得到答案,比较简单,属于基础题. 5.下列计算正确的是A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 7 考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 专题:计算题.第3题图A B CD a 第4题图 12 b可.解答:解:A 、a +a =2a ,故本选项正确;B 、b 3•b 3=b 6,故本选项错误;C 、a 3÷a =a 2,故本选项错误;D 、(a 5)2=a 10,故本选项错误. 故选A .点评:本题考查的是合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则,熟知以上知识是解答此题的关键.6.式子x -1在实数范围内有意义,则x 的取值范围是A .x <1B .x ≤1C .x >1D .x ≥1 考点:二次根式有意义的条件.分析:根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. 解答:解:∵ 式子x -1在实数范围内有意义,∴ x -1≥0,解得x ≥1. 故选D .点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.7.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是A .8,8B .8.4,8C .8.4,8.4D .8,8.4 考点:中位数;算术平均数.分析:根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.解答:解:8,9,8,7,10的平均数为:15×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8. 故选B .点评:本题考查了中位数及算术平均数的求法,特别是中位数,首先应该排序,然后再根据数据的个数确定中位数.8.⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离 考点:圆与圆的位置关系.分析:由⊙O 1、⊙O 2的半径分别是3cm 、4cm ,若O 1O 2=7cm ,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可得出⊙O 1和⊙O 2的位置关系. 解答:解:∵ ⊙O 1、⊙O 2的半径分别是3cm 、4cm ,O 1O 2=7cm ,又∵ 3+4=7,∴⊙O 1和⊙O 2的位置关系是外切. 故选C .点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:① 两圆外离⇔d >R +r ;② 两圆外切⇔d =R +r ;③ 两圆相交⇔R -r <d <R +r (R ≥r );④ 两圆内切⇔d =R -r (R >r );⑤ 两圆内含⇔d <R -r (R >r ).9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是 A .200米 B .2003米 C .2203米 D .100(3+1)米考点:解直角三角形的应用-仰角俯角问题.分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可. 解答:解:由已知,得∠A =30°,∠B =45°,CD =100,∵ CD ⊥AB 于点D .∴ 在Rt △ACD 中,∠CDA =90°,tan A =CDAD,∴ AD =CD tan A =1003=100 3第9题图A B CD30° 45°在Rt △BCD 中,∠CDB =90°,∠B =45°, ∴ DB =CD =100米,∴ AB =AD +DB =1003+100=100(3+1)米. 故选D .点评:本题考查了解直角三角形的应用,解决本题的关键是利用CD 为直角△ABC 斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD 与BD 的长.10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =kx (x >0)的图像与△ABC 有公共点,则k 的取值范围是A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤8 考点:反比例函数综合题.专题:综合题.分析:先求出点A 、B 的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC 相交于点C 时k 的取值最小,当与线段AB 相交时,k 能取到最大值,根据直线y =-x +6,设交点为(x ,-x +6)时k 值最大,然后列式利用二次函数的最值问题解答即可得解. 解答:解:∵ 点C (1,2),BC ∥y 轴,AC ∥x 轴,∴ 当x =1时,y =-1+6=5,当y =2时,-x +6=2,解得x =4,∴ 点A 、B 的坐标分别为A (4,2),B (1,5),根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k =1×2=2最小, 设与线段AB 相交于点(x ,-x +6)时k 值最大, 则k =x (-x +6)=-x 2+6x =-(x -3)2+9, ∵ 1≤x ≤4,∴ 当x =3时,k 值最大, 此时交点坐标为(3,3),因此,k 的取值范围是2≤k ≤9. 故选A .点评:本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键. 二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:x 2-16=_________________. 考点:因式分解——运用公式法.分析:运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a 2-b 2=(a +b )(a -b ).解答:解:x 2-16=(x +4)(x -4).点评:本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为__________________. 考点:概率公式.分析:根据概率的求法,找准两点:① 全部情况的总数;② 符合条件的情况数目;二者的比值就是其发生的概率.解答:解;布袋中球的总数为:2+3=5,取到黄球的概率为:35.故答案为:35.点评:此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A 的概率P (A )=mn.13.若20n 是整数,则正整数n 的最小值为________________.专题:存在型.分析:20n 是正整数,则20n 一定是一个完全平方数,首先把20n 分解因数,确定20n 是完全平方数时,n 的最小值即可.解答:解:∵ 20n =22×5n .∴ 整数n 的最小值为5. 故答案是:5.点评:本题考查了二次根式的定义,理解20n 是正整数的条件是解题的关键.14.计算:x -1x +1x=______________.考点:分式的加减法. 专题:计算题.分析:直接根据同分母的分数相加减进行计算即可.解答:解:原式=x -1+1x=1.故答案为:1.点评:本题考查的是分式的加减法,同分母的分式相加减,分母不变,把分子相加减. 15.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是______________.(结果保留根号)考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义.分析:可以证明△ABC ∽△BDC ,设AD =x ,根据相似三角形的对应边的比相等,即可列出方程,求得x的值;过点D 作DE ⊥AB 于点E ,则E 为AB 中点,由余弦定义可求出cos A 的值. 解答:解:∵ △ABC ,AB =AC =1,∠A =36°,∴ ∠ABC =∠ACB =180°-∠A2=72°.∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠DBC =12∠ABC =36°. ∴ ∠A =∠DBC =36°, 又∵ ∠C =∠C , ∴ △ABC ∽△BDC , ∴ AC BC =BC CD, 设AD =x ,则BD =BC =x .则1x =x1-x ,解得:x =5+12(舍去)或5-12.故x = 5-12.如右图,过点D 作DE ⊥AB 于点E , ∵ AD =BD ,∴E 为AB 中点,即AE =12AB =12.在Rt △AED 中,cos A =AEAD =125-12=5+14.故答案是:5-12;5+14.点评:△ABC 、△BCD 均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cos A 时,注意构造直角三角形,从而可以利用三角函数定义求解.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) AB D 第15题图A B D E(1) 计算:|-3|+(π+1)0-4.(2) 化简:a (1-a )+(a +1)2-1.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1) 原式第一项根据绝对值的代数意义:负数的绝对值等于它的相反数进行化简,第二项利用零指数公式化简,第三项利用a 2=|a |化简,合并后即可得到结果;(2) 利用乘法分配律将原式第一项括号外边的a 乘到括号里边,第二项利用完全平方数展开,合并同类项后即可得到结果.解答:解:(1) 解:|-3|+(π+1)0-4=3+1-2=2.(2) 解:a (1-a )+(a +1)2-1=a -a 2+a 2+2a +1-1=3a .点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:绝对值的代数意义,零指数公式,二次根式的化简,完全平方公式,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.17.(每小题7分,共14分)(1) 如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE .(2) 如图,方格纸中的每个小方格是边长为1个单位长度的正方形.① 画出将Rt △ABC 向右平移5个单位长度后的Rt △A 1B 1C 1;② 再将Rt △A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt △A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).考点:作图——旋转变换;全等三角形的判定;扇形面积的计算;作图——平移变换.分析:(1) 由AB ∥CD 可知∠A =∠C ,再根据AE =CF 可得出AF =CE ,由AB =CD 即可判断出△ABF ≌CDE ;(2) 根据图形平移的性质画出平移后的图形,再根据在旋转过程中,线段A 1C 1所扫过的面积等于以点C 1为圆心,以A 1C 1为半径,圆心角为90度的扇形的面积,再根据扇形的面积公式进行解答即可. 解答:证明:∵ AB ∥CD ,∴ ∠A =∠C .∵ AE =CF ,∴ AE +EF =CF +EF ,即 AF =CE . 又∵ AB =CD ,∴ △ABF ≌△CDE .(2) 解:① 如图所示; ② 如图所示;在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42360=4π. 点评:本题考查的是作图-旋转变换、全等三角形的判定及扇形面积的计算,熟知图形平移及旋转不变性的性质是解答此题的关键.18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.A B C D E F 第17(1)题图 第17(2)题图 A BC 学生上学方式扇形统计图 学生上学方式条形统计图(1) m =_______%,这次共抽取__________名学生进行调查;并补全条形图;(2) 在这次抽样调查中,采用哪种上学方式的人最多?(3) 如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1) 用1减去其他各种情况所占的百分比即可求m 的值,用乘公交的人数除以其所占的百分比即可求得抽查的人数; (2) 从扇形统计图或条形统计图中直接可以得到结果; (3) 用学生总数乘以骑自行车所占的百分比即可. 解答:解:(1) 1-14%-20%-40%=26%;20÷40%=50; 条形图如图所示; (2) 采用乘公交车上学的人数最多; (3) 该校骑自行车上学的人数约为: 150×20%=300(人).点评:本题考查了条形统计图、扇形统计图及用样本估计总数的知识,解题的关键是从统计图中整理出进一步解题的信息.19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题?考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1) 设小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是68分,即可得到一个关于x 的方程,解方程即可求解;(2) 小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分,就是最后的得分,得分满足大于或等于70小于或等于90,据此即可得到关于x 的不等式组,从而求得x 的范围,再根据x 是非负整数即可求解.解答:解:(1) 设小明答对了x 道题,依题意得:5x -3(20-x )=68.解得:x =16.答:小明答对了16道题. (2) 设小亮答对了y 道题, 依题意得:⎩⎨⎧5y -3(20-y )≥705y -3(20-y )≤90. 因此不等式组的解集为1614≤y ≤1834. ∵ y 是正整数,∴ y =17或18. 答:小亮答对了17道题或18道题.点评:本题考查了列方程解应用题,以及列一元一次不等式解决问题,正确列式表示出最后的得分是关键.20.(满分12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD交⊙O 于点E .(1) 求证:AC 平分∠DAB ;(2) 若∠B =60º,CD =23,求AE 的长.考点:切线的性质;圆周角定理;相似三角形的判定与性质;解直角三角形.专题:几何综合题.分析:(1) 连接OC ,由CD 为⊙O 的切线,根据切线的性质得到OC 垂直于CD ,由AD 垂直于CD ,可得出OC 平行于AD ,根据两直线平行内错角相等可得出∠1=∠2,再由OA =OC ,利用等边对等角得到∠2=∠3,等量代换可得出∠1=∠3,即AC 为角平分线;(2) 法1:由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ACD 中,根据30°角所对的直角边等于斜边的一半,由CD 的长求出AC 的长,在直角三角形ABC 中,根据cos30°及AC 的长,利用锐角三角函数定义求出AB 的长,进而得出半径OE 的长,由∠EAO 为60°,及OE =OA ,得到三角形AEO 为等边三角形,可得出AE =OA =OE ,即可确定出AE 的长;第20题图 学生上学方式条形统计图法2:连接EC ,由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ADC 中,由CD 及tan30°,利用锐角三角函数定义求出AD 的长,由∠DEC 为圆内接四边形ABCE 的外角,利用圆内接四边形的外角等于它的内对角,得到∠DEC =∠B ,由∠B 的度数求出∠DEC 的度数为60°,在直角三角形DEC 中,由tan60°及DC 的长,求出DE 的长,最后由AD -ED 即可求出AE 的长.解答:(1) 证明:如图1,连接OC ,∵ CD 为⊙O 的切线,∴ OC ⊥CD ,∴ ∠OCD =90°.∵ AD ⊥CD ,∴ ∠ADC =90°.∴ ∠OCD +∠ADC =180°,∴ AD ∥OC ,∴ ∠1=∠2,∵ OA =OC ,∴ ∠2=∠3,∴ ∠1=∠3,即AC 平分∠DAB .(2) 解法一:如图2,∵ AB 为⊙O 的直径, ∴ ∠ACB =90°. 又∵ ∠B =60°,∴ ∠1=∠3=30°. 在Rt △ACD 中,CD =23, ∴ AC =2CD =43.在Rt △ABC 中,AC =43,∴ AB =AC cos ∠CAB =43cos30°=8. 连接OE ,∵ ∠EAO =2∠3=60°,OA =OE ,∴ △AOE 是等边三角形,∴ AE =OA =12AB =4. 解法二:如图3,连接CE∵ AB 为⊙O 的直径,∴ ∠ACB =90°.又∵ ∠B =60°, ∴ ∠1=∠3=30°. 在Rt △ADC 中,CD =23, ∴ AD =CD tan ∠DAC =23tan30°=6. ∵ 四边形ABCE 是⊙O 的内接四边形,∴ ∠B +∠AEC =180°.又∵ ∠AEC +∠DEC =180°,∴ ∠DEC =∠B =60°.在Rt △CDE 中,CD =23,∴ DE =CD tan ∠DEC =23tan60°=2. ∴ AE =AD -DE =4.点评:此题考查了切线的性质,平行线的性质,等边三角形的判定与性质,锐角三角函数定义,圆内接四边形的性质,以及圆周角定理,利用了转化及数形结合的思想,遇到直线与圆相切,常常连接圆心图2图3与切点,利用切线的性质得到垂直,利用直角三角形的性质来解决问题.21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1) 直接用含t 的代数式分别表示:QB =______,PD =______.(2) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;(3) 如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.考点:相似三角形的判定与性质;一次函数综合题;勾股定理;菱形的判定与性质.专题:代数几何综合题.分析:(1) 根据题意得:CQ =2t ,P A =t ,由Rt △ABC 中,∠C =90°,AC =6,BC =8,PD ∥BC ,即可得tan A = PD P A =BC AC =43,则可求得QB 与PD 的值; (2) 易得△APD ∽△ACB ,即可求得AD 与BD 的长,由BQ ∥DP ,可得当BQ =DP 时,四边形PDBQ 是平行四边形,即可求得此时DP 与BD 的长,由DP ≠BD ,可判定▱PDBQ 不能为菱形;然后设点Q 的速度为每秒v 个单位长度,由要使四边形PDBQ 为菱形,则PD =BD =BQ ,列方程即可求得答案;(3) 设E 是AC 的中点,连接ME .当t =4时,点Q 与点B 重合,运动停止.设此时PQ 的中点为F ,连接EF ,由△PMN ∽△PQC .利用相似三角形的对应边成比例,即可求得答案.解答:解:(1) QB =8-2t ,PD =43t . (2) 不存在.在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴ AB =10.∵ PD ∥BC ,∴ △APD ∽△ACB , ∴ AD AB =AP AC ,即:AD 10=t 6, ∴ AD =53t , ∴ BD =AB -AD =10-53t . ∵ BQ ∥DP ,∴ 当BQ =DP 时,四边形PDBQ 是平行四边形,即8-2t =43t ,解得:t =125. 当t =125时,PD =43×125=165,BD =10-53×125=6, ∴ DP ≠BD ,∴ □PDBQ 不能为菱形.设点Q 的速度为每秒v 个单位长度,则BQ =8-vt ,PD =43t ,BD =10-53t . 要使四边形PDBQ 为菱形,则PD =BD =BQ ,第21题图① B C D P Q 第21题图② B C D P Q 图1 B C D P Q当PD =BD 时,即43t =10-53t ,解得:t =103. 当PD =BQ 时,t =103时,即43×103=8-103v ,解得:v =1615. (3) 解法一:如图2,以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系.依题意,可知0≤t ≤4,当t =0时,点M 1的坐标为(3,0);当t =4时,点M 2的坐标为(1,4). 设直线M 1M 2的解析式为y =kx +b , ∴ ⎩⎨⎧3k +b =0k +b =4,解得:⎩⎨⎧k =-2b =6. ∴ 直线M 1M 2的解析式为y =-2x +6. ∵ 点Q (0,2t ),P (6-t ,0), ∴ 在运动过程中,线段PQ 中点M 3的坐标为(6-t 2,t ). 把x =6-t 2,代入y =-2x +6,得y =-2×6-t 2+6=t . ∴ 点M 3在直线M 1M 2上.过点M 2作M 2N ⊥x 轴于点N ,则M 2N =4,M 1N =2.∴ M 1M 2=25.∴ 线段PQ 中点M 所经过的路径长为25单位长度.解法二:如图3,设E 是AC 的中点,连接ME .当t =4时,点Q 与点B 重合,运动停止.设此时PQ 的中点为F ,连接EF . 过点M 作MN ⊥AC ,垂足为N ,则MN ∥BC .∴ △PMN ∽△PDC .∴ MN QC =PN PC =PM PQ ,即:MN 2t =PN 6-t =12. ∴ MN =t ,PN =3-12t , ∴ CN =PC -PN =(6-t )-(3-12t )=3-12t . ∴ EN =CE -CN =3-(3-12t )= 12t . ∴ tan ∠MEN =MN EN=2. ∵ tan ∠MEN 的值不变,∴ 点M 在直线EF 上.过F 作FH ⊥AC ,垂足为H .则EH =2,FH =4.∴ EF =25.∵ 当t =0时,点M 与点E 重合;当t =4时,点M 与点F 重合,∴ 线段PQ 中点M 所经过的路径长为25单位长度.点评:此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及一次函数的应用.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.22.(满分14分)如图①,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3) 如图②,若点N 在抛物线上,且∠NBO =∠A BO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).考点:二次函数综合题.分析:(1) 利用待定系数法求出二次函数解析式即可;(2) 根据已知条件可求出OB 的解析式为y =x ,则向下平移m 个单位长度后的解析式为:y =x -m .由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m 的值和D 点坐标;(3) 综合利用几何变换和相似关系求解.A B C M 1 x y P N Q M 2 M 3 D 图2 AB C P N Q D 图3 E M F H方法一:翻折变换,将△NOB 沿x 轴翻折; 方法二:旋转变换,将△NOB 绕原点顺时针旋转90°. 特别注意求出P 点坐标之后,该点关于直线y =-x 的对称点也满足题意,即满足题意的P 点有两解答:解:(1) ∵ 抛物线y =ax 2+bx (a ≠0)经过点A (3,0)、B (4,4).∴ ⎩⎨⎧9a +3b =016a +4b =4,解得:⎩⎨⎧a =1b =-3. ∴ 抛物线的解析式是y =x 2-3x .(2) 设直线OB 的解析式为y =k 1x ,由点B (4,4),得:4=4k 1,解得k 1=1.∴ 直线OB 的解析式为y =x .∴ 直线OB 向下平移m 个单位长度后的解析式为:y =x -m .∵ 点D 在抛物线y =x 2-3x 上.∴ 可设D (x ,x 2-3x ).又点D 在直线y =x -m 上,∴ x 2-3x =x -m ,即x 2-4x +m =0.∵ 抛物线与直线只有一个公共点,∴ △=16-4m =0,解得:m =4.此时x 1=x 2=2,y =x 2-3x =-2,∴ D 点坐标为(2,-2).(3) ∵ 直线OB 的解析式为y =x ,且A (3,0),∴ 点A 关于直线OB 的对称点A'的坐标是(0,3).设直线A'B 的解析式为y =k 2x +3,过点B (4,4),∴ 4k 2+3=4,解得:k 2=14. ∴ 直线A'B 的解析式是y =14x +3. ∵ ∠NBO =∠ABO ,∴ 点N 在直线A'B 上,∴ 设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上, ∴ 14n +3=n 2-3n , 解得:n 1=-34,n 2=4(不合题意,会去), ∴ 点N 的坐标为(-34,4516). 方法一:如图1,将△NOB 沿x 轴翻折,得到△N 1OB 1, 则N 1(-34,-4516),B 1(4,-4), ∴ O 、D 、B 1都在直线y =-x 上.∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 1OB 1, 第22题图① 第22题图②∴ OP 1ON 1=OD OB 1=12, ∴ 点P 1的坐标为(-38,-4532). 将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(4532,38). 综上所述,点P 的坐标是(-38,-4532)或(4532,38). 方法二:如图2,将△NOB 绕原点顺时针旋转90°,得到△N 2OB则N 2(4516,34),B 2(4,-4), ∴ O 、D 、B 2都在直线y =-x 上. ∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 2OB 2, ∴ OP 1ON 2=OD OB 2=12, ∴ 点P 1的坐标为(4532,38). 将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(-38,-4532). 综上所述,点P 的坐标是(-38,-4532)或(4532,38). 点评:本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题.。
2012年厦门中考数学试题【完整答案版】
2012年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,26小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确) 1. -2的相反数是A .2B .-2C .±2D .-122.下列事件中,是必然事件的是A . 抛掷1枚硬币,掷得的结果是正面朝上B . 抛掷1枚硬币,掷得的结果是反面朝上C . 抛掷1枚硬币,掷得的结果不是正面朝上就是反面朝上D .抛掷2枚硬币,掷得的结果是1个正面朝上与1个反面朝上3.图1是一个立体图形的三视图,则这个立体图形是 A .圆锥 B .球C .圆柱D .三棱锥4.某种彩票的中奖机会是1%,下列说法正确的是 A .买1张这种彩票一定不会中奖 B .买1张这种彩票一定会中奖 C .买100张这种彩票一定会中奖D .当购买彩票的数量很大时,中奖的频率稳定在1%5.若二次根式x -1有意义,则x 的取值范围是 A .x >1 B .x ≥1 C .x <1 D .x ≤16.如图2,在菱形ABCD 中,AC 、BD 是对角线, 若∠BAC =50°,则∠ABC 等于 A .40° B .50° C .80° D .100°7.已知两个变量x 和y ,它们之间的3组对应值如下表所示.x -1 0 1y-113则y 与x 之间的函数关系式可能是C B 图2DA图1俯视图左视图正视图A .y =xB .y =2x +1C .y =x 2+x +1D .y =3x二、填空题(本大题有10小题,每小题4分,共40分) 8.计算: 3a -2a = .9.已知∠A =40°,则∠A 的余角的度数是 . 10.计算: m 3÷m 2= .11.在分别写有整数1到10的10张卡片中,随机抽取1张卡片,则该卡片上的数字恰好是奇数的概率是 . 12.如图3,在等腰梯形ABCD 中,AD ∥BC ,对角线AC与BD 相交于点O ,若OB =3,则OC = . 13.“x 与y 的和大于1”用不等式表示为 . 14.如图4,点D 是等边△ABC 内一点,如果△ABD 绕点A逆时针旋转后能与△ACE 重合,那么旋转了 度. 15.五边形的内角和的度数是 .16.已知a +b =2,ab =-1,则3a +ab +3b = ;a 2+b 2= .17.如图5,已知∠ABC =90°,AB =πr ,BC =πr2,半径为r的⊙O 从点A 出发,沿A →B →C 方向滚动到点C 时停止. 请你根据题意,在图5上画出圆心..O 运动路径的示意图; 圆心O 运动的路程是 . 三、解答题(本大题有9小题,共89分) 18.(本题满分18分)(1)计算:4÷(-2)+(-1)2×40;(2)画出函数y =-x +1的图象;(3)已知:如图6,点B 、F 、C 、E 在一条直线上,∠A =∠D ,AC =DF ,且AC ∥DF . 求证:△ABC ≌△DEF .图6ABCDFE图4ABCDE图3ABDCO→图5ABCO19.(本题满分7分)解方程组: ⎩⎨⎧3x +y =4,2x -y =1.20.(本题满分7分)已知:如图7,在△ABC 中,∠C =90°,点D 、E 分别在边AB 、AC上,DE ∥BC ,DE =3, BC =9. (1)求 ADAB的值;(2)若BD =10,求sin ∠A 的值.21.(本题满分7分)已知A 组数据如下:0,1,-2,-1,0,-1,3.(1)求A 组数据的平均数;(2)从A 组数据中选取5个数据,记这5个数据为B 组数据. 要求B 组数据满足两个条件:①它的平均数与A 组数据的平均数相等;②它的方差比A 组数据的方差大.你选取的B 组数据是 ,请说明理由. 【注:A 组数据的方差的计算式是S A 2=17[(x 1-—x )2+(x 2-—x )2+(x 3-—x )2+(x 4-—x )2+(x 5-—x )2+(x 6-—x )2+(x 7-—x )2]】图7A BCDE22.(本题满分9分)工厂加工某种零件,经测试,单独加工完成这种零件,甲车床需用x 小时,乙车床需用 (x 2-1)小时,丙车床需用(2x -2)小时.(1)单独加工完成这种零件,若甲车床所用的时间是丙车床的 23,求乙车床单独加工完成这种零件所需的时间;(2)加工这种零件,乙车床的工作效率与丙车床的工作效率能否相同?请说明理由.23.(本题满分9分)已知:如图8,⊙O 是△ABC 的外接圆,AB 为⊙O 的直径,弦CD交AB 于E ,∠BCD =∠BAC . (1)求证:AC =AD ;(2)过点C 作直线CF ,交AB 的延长线于点F ,若∠BCF =30°,则结论“CF 一定是⊙O 的切线” 是否正确?若正确,请证明;若不正确,请举反例.图8FBCE DOA24.(本题满分10分)如图9,在平面直角坐标系中,已知点A (2,3)、B (6,3),连结AB .如果点P 在直线y =x -1上,且点P 到直线AB 的距离小于1,那么称点P 是线段AB 的“邻近点”.(1)判断点C( 72,52) 是否是线段AB 的“邻近点”,并说明理由;(2)若点Q (m ,n )是线段AB 的“邻近点”,求m 的取值范围.25.(本题满分10分)已知□ABCD ,对角线AC 与BD 相交于点O ,点P 在边AD 上,过点P 分别作PE ⊥AC 、PF ⊥BD ,垂足分别为E 、F ,PE =PF . (1)如图10,若PE =3,EO =1,求∠EPF 的度数; (2)若点P 是AD 的中点,点F 是DO 的中点,BF =BC +32-4,求BC 的长.E F图10ABCDOP xyB42642O图9A26.(本题满分12分)已知点A(1,c)和点B(3,d )是直线y=k1x+b与双曲线y=k2x(k2>0)的交点.(1)过点A作AM⊥x轴,垂足为M,连结BM.若AM=BM,求点B的坐标;(2)设点P在线段AB上,过点P作PE⊥x轴,垂足为E,并交双曲线y=k2x(k2>0)于点N.当PNNE取最大值时,若PN=12,求此时双曲线的解析式.2012年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后续部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后续部分应得分数的一半; 3.解答题评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共7小题,每小题3分,共21分)题号 1 2 3 4 5 6 7 选项ACADBCB二、填空题(本大题共10小题,每题4分,共40分)8. a . 9. 50°. 10. m . 11. 12. 12.3. 13. x +y >1.14. 60.15. 540°. 16. 5; 6. 17. ;2πr .三、解答题(本大题共9小题,共89分) 18.(本题满分18分)(1)解:4÷(-2) +(-1)2×40=-2+1×1 ····················································································· 4分 =-2+1 ··························································································· 5分 =-1. ···························································································· 6分(2)解:正确画出坐标系 ··············································································· 8分正确写出两点坐标 ········································································· 10分 画出直线 ························································································· 12分(3)证明:∵ AC ∥DF , ……13分∴ ∠ACB =∠DFE . ……15分 又∵ ∠A =∠D , ……16分 AC =DF , ……17分 ∴ △ABC ≌△EDF . ……18分19.(本题满分7分)解1:⎩⎨⎧3x +y =4, ①2x -y =1. ②①+②,得 ························································································ 1分 5x =5, ····························································································· 2分 x =1. ······························································································· 4分ABCDFE将x =1代入 ①,得 3+y =4, ························································································· 5分 y =1. ······························································································· 6分∴⎩⎨⎧x =1,y =1.························································································· 7分 解2:由①得 y =4-3x . ③ ·················································· 1分 将③代入②,得 2x -(4-3x ) =1. ··········································································· 2分 得x =1. ·························································································· 4分 将x =1代入③ ,得 y =4-3×1 ······················································································· 5分 =1. ······························································································ 6分∴⎩⎨⎧x =1,y =1.························································································· 7分 20.(本题满分7分)(1)解:∵ DE ∥BC ,∴ △ADE ∽△ABC . ……1分∴ AD AB =DEBC. ……2分∴ AD AB =13.……3分(2)解1:∵AD AB =13,BD =10, ∴AD AD +10=13················································································ 4分∴ AD =5 ······················································································· 5分 经检验,符合题意. ∴ AB =15. 在Rt △ABC 中, ·············································································· 6分 sin ∠A =BC AB =35. ············································································· 7分解2: ∵AD AB =13,BD =10, ∴AD AD +10=13················································································ 4分∴ AD =5 ······················································································· 5分 经检验,符合题意. ∵ DE ∥BC ,∠C =90° ∴ ∠AED =90° 在Rt △AED 中, ·············································································· 6分 sin ∠A =ED AD =35. ············································································· 7分解3:过点D 作DG ⊥BC ,垂足为G . ∴ DG ∥AC .∴∠A =∠BDG . ············································································· 4分A BCDEG又∵ DE ∥BC ,∴四边形ECGD 是平行四边形. ∴ DE =CG . ···················································································· 5分 ∴ BG =6.在Rt △DGB 中, ············································································· 6分 ∴ sin ∠BDG =BD GB =35. ·································································· 7分∴ sin ∠A =35.21.(本题满分7分)(1)解:A 组数据的平均数是0+1-2-1+0-1+37 ·································· 1分=0. ······························································ 3分(2)解1:选取的B 组数据:0,-2,0,-1,3. ···································· 4分∵ B 组数据的平均数是0. ··························································· 5分 ∴ B 组数据的平均数与A 组数据的平均数相同.∴ S B 2=145 ,S A 2=167. ································································ 6分 ∴ 145 >167. ····················································································· 7分∴ B 组数据:0,-2,0,-1,3.解2:B 组数据:1,-2,-1,-1,3. ············································ 4分∵ B 组数据的平均数是0. ··························································· 5分 ∴ B 组数据的平均数与A 组数据的平均数相同.∵S A 2=167, S B 2=165. ································································ 6分 ∴165>167························································································· 7分 ∴ B 组数据:1,-2,-1,-1,3.22.(本题满分9分) (1)解:由题意得,x =23(2x -2) ····················································································· 1分 ∴ x =4. ························································································· 2分 ∴ x 2-1=16-1=15(小时). ························································· 3分 答:乙车床单独加工完成这种零件所需的时间是15小时. ········· 4分(2)解1:不相同. ························································································ 5分若乙车床的工作效率与丙车床的工作效率相同,由题意得, ······· 6分1x 2-1=12x -2 . ·············································································· 7分 ∴ 1x +1=12.∴ x =1. ······················································································· 8分 经检验,x =1不是原方程的解. ∴ 原方程无解. ······················· 9分 答:乙车床的工作效率与丙车床的工作效率不相同.解2:不相同. ························································································ 5分若乙车床的工作效率与丙车床的工作效率相同,由题意得, ······· 6分 x 2-1=2x -2. ················································································ 7分 解得,x =1. ··················································································· 8分 此时乙车床的工作时间为0小时,不合题意. ······························ 9分 答:乙车床的工作效率与丙车床的工作效率不相同.23.(本题满分9分)(1)证明1:∵∠BCD =∠BAC ,∴ ︵BC =︵BD .……1分∵ AB 为⊙O 的直径, ∴ AB ⊥CD , ……2分 CE =DE . ……3分 ∴ AC =AD . ……4分证明2:∵∠BCD =∠BAC ,∴ ︵BC =︵BD . ············································································· 1分 ∵ AB 为⊙O 的直径, ∴ ︵BCA =︵BDA . ·································· 2分 ∴ ︵CA =︵DA . ················································································· 3分∴ AC =AD . ················································································· 4分证明3:∵ AB 为⊙O 的直径,∴ ∠BCA =90°. ····························· 1分∴ ∠BCD +∠DCA =90°, ∠BAC +∠CBA =90° ∵∠BCD =∠BAC ,∴∠DCA =∠CBA ········································ 2分∴ ︵CA =︵DA . ················································································· 3分∴ AC =AD . ················································································· 4分(2)解1:不正确. ························································································ 5分连结OC .当 ∠CAB =20°时, ······································································ 6分 ∵ OC =OA ,有 ∠OCA =20°.∵ ∠ACB =90°, ∴ ∠OCB =70°. ·································· 7分 又∵∠BCF =30°, ∴∠FCO =100°, ········································································· 8分 ∴ CO 与FC 不垂直. ···································································· 9分 ∴ 此时CF 不是⊙O 的切线.解2:不正确. ························································································ 5分连结OC .当 ∠CAB =20°时, ······································································ 6分 ∵ OC =OA ,有 ∠OCA =20°.∵ ∠ACB =90°, ∴ ∠OCB =70°. ·································· 7分 又∵∠BCF =30°, ∴∠FCO =100°, ········································································· 8分GAODE CBF。
福建省各市2012年中考数学分类解析 专题2:代数式和因式分解
福建9市2012年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1. (2012福建南平4分)下列计算正确的是【 】A .a 3+a 2=a 5B .a 5÷a 4=aC .a•a 4=a 4D .(ab 2)3=ab 6【答案】B 。
【考点】合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方与积的乘方。
【分析】分析根据同底数幂的除法,同底数幂的乘法,幂的乘方与积的乘方及合并同类项的法则进行计算后即可求得正确的答案:A 、a 3与a 2不是同类项,不能合并,故选项错误;B 、a 5÷a 4=a 5-4=a ,故选项正确;C 、a•a 4=a 4+1=a 5,故选项错误;D 、(ab 2)3=a 3b 6,故选项错误。
故选B 。
2. (2012福建宁德4分)下列运算正确的是【 】A .a 3+a 2=a 5B .a 3·a 2=a 5C .a 6÷a 2=a 3D .(4a)2=8a 2【答案】B 。
【考点】合并同类项,同底幂乘法和除法,幂的乘方和积的乘方。
【分析】根据合并同类项,同底幂乘法和除法,幂的乘方和积的乘方运算法则逐一计算作出判断:A .a 3和a 2不是同类项,不可以合并,选项错误;B .32325a a aa +⋅==,选项正确;C .62624a a a a -÷==,选项错误; D .2222(4a )4a 16a ==,选项错误。
故选B 。
3. (2012福建莆田4分)下列运算正确的是【 】A .3a a 3-=B .33a a a ÷=C .235a a a = D .222(a b)ab +=+【答案】C 。
【考点】合并同类项,同底幂乘法和除法,完全平方公式。
【分析】根据合并同类项,同底幂乘法和除法运算法则和完全平方公式逐一计算作出判断:A .3a a 2a -=,故本选项错误;B .3333a a a=a =1-÷=,故本选项错误;C.232+35,故本选项正确;a a a a==D.222+=++,故本选项错误。
2012年福建省福州市中考数学试题(含解析)
二○一二年福州市初中毕业会考、高级中等学校招生考试数学试卷答案解读一、选择题(共小题,每题分,满分分;每小题只有一个正确地选项,请在答题卡地相应位置填涂> .地相反数是.- . . .-考点:相反数.专题:存在型.分析:根据相反数地定义进行解答.解答:解:由相反数地定义可知,地相反数是-.故选.点评:本题考查地是相反数地定义,即只有符号不同地两个数叫做互为相反数..今年参观“·”海交会地总人数约为人,将用科学记数法表示为.× .× .× .×考点:科学记数法—表示较大地数.分析:科学记数法地表示形式为×地形式,其中≤<,为整数.确定地值时,要看把原数变成时,小数点移动了多少位,地绝对值与小数点移动地位数相同.当原数绝对值>时,是正数;当原数地绝对值<时,是负数.解答:解:=×.故选.点评:此题考查科学记数法地表示方法.科学记数法地表示形式为×地形式,其中≤<,为整数,表示时关键要正确确定地值以及地值..如图是由个大小相同地正方体组合而成地几何体,其主视图是简单组合体地三视图.从正面看到地图叫做主视图,从左面看到地图叫做左视图,从上面看到地图叫做俯视图.根据图中正方体摆放地位置判定则可.解:从正面看,下面一行是横放个正方体,上面一行中间是一个正方体. 故选. 点评:本题考查了三种视图中地主视图,比较简单. .如图,直线∥,∠=°,那么∠地度数是.° .° .° .° 考点:平行线地性质.分析:根据两角地位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果.解答:解:∵ ∥,∴ ∠=∠,∵ ∠=°,∴ ∠=°.故选.点评:本题考查了平行线地性质,根据两直线平行同位角相等即可得到答案,比较简单,属于基础题. .下列计算正确地是.+= .·= .÷= .(>=考点:同底数幂地除法;合并同类项;同底数幂地乘法;幂地乘方与积地乘方.专题:计算题.分析:分别根据合并同类项、同底数幂地除法与乘法、幂地乘方与积地乘方法则对各选项进行逐一计算即可.解答:解:、+=,故本选项正确;、•=,故本选项错误;、÷=,故本选项错误;、(>=,故本选项错误.故选.点评:本题考查地是合并同类项、同底数幂地除法与乘法、幂地乘方与积地乘方法则,熟知以上知识是解答此题地关键..式子在实数范围内有意义,则地取值范围是.< .≤ .> .≥考点:二次根式有意义地条件.分析:根据二次根式有意义地条件列出关于地不等式,求出地取值范围即可.解答:解:∵ 式子在实数范围内有意义,∴ -≥,解得≥.第题图 第题图故选.点评:本题考查地是二次根式有意义地条件,即被开方数大于等于..某射击运动员在一次射击练习中,成绩(单位:环>记录如下:,,,,.这组数据地平均数和中位数分别是 ., ., ., .,考点:中位数;算术平均数.分析:根据平均数公式求解即可,即用所有数据地和除以即可;个数据地中位数是排序后地第三个数. 解答:解:,,,,地平均数为:×(++++>=.,,,,排序后为,,,,,故中位数为.故选.点评:本题考查了中位数及算术平均数地求法,特别是中位数,首先应该排序,然后再根据数据地个数确定中位数..⊙和⊙地半径分别是和,如果=,则这两圆地位置关系是.内含 .相交 .外切 .外离考点:圆与圆地位置关系.分析:由⊙、⊙地半径分别是、,若=,根据两圆位置关系与圆心距,两圆半径,地数量关系间地联系即可得出⊙和⊙地位置关系.解答:解:∵ ⊙、⊙地半径分别是、,=,又∵ +=,∴⊙和⊙地位置关系是外切.故选.点评:此题考查了圆与圆地位置关系.解题地关键是掌握两圆位置关系与圆心距,两圆半径,地数量关系间地联系.圆和圆地位置与两圆地圆心距、半径地数量之间地关系:① 两圆外离⇔>+;② 两圆外切⇔=+;③ 两圆相交⇔-<<+(≥>;④ 两圆内切⇔=-(>>;⑤ 两圆内含⇔<-(>>..如图,从热气球处测得地面、两点地俯角分别为°、°,如果此时热气球处地高度为,点、、在同一直线上,则两点煌距离是 . . . .(+>考点:解直角三角形地应用-仰角俯角问题.分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.解答:解:由已知,得∠=°,∠=°,=,∵ ⊥于点.∴ 在△中,∠=°,=,∴ ===在△中,∠=°,∠=°,∴ ==,∴ =+=+=(+>.故选.点评:本题考查了解直角三角形地应用,解决本题地关键是利用为直角△斜边上地高,将三角形分成两个三角形,然后求解.分别在两三角形中求出与地长..如图,过点(,>分别作轴、轴地平行线,交直线=-+于、两点,若反比例函数=(>>地图像与△有公共点,则地取值范围是 .≤≤ .≤≤ .≤≤ .≤≤ 考点:反比例函数综合题. 专题:综合题. 分析:先求出点、地坐标,根据反比例函数系数地几何意义可知,当反比例函数图象与△相交于点时地取值最小,当与线段相交时,能取到最大值,根据直线=-+,设交点为(,-+>时值最大,然后列式利用二次函数地最值问题解答即可得解.解答:解:∵ 点(,>,∥轴,∥轴,∴ 当=时,=-+=,当=时,-+=,解得=,∴ 点、地坐标分别为(,>,(,>,根据反比例函数系数地几何意义,当反比例函数与点相交时,=×=最小,设与线段相交于点(,-+>时值最大,则=(-+>=-+=-(->+,∵ ≤≤,∴ 当=时,值最大,第题图 ° °此时交点坐标为(,>,因此,地取值范围是≤≤.故选.点评:本题考查了反比例函数系数地几何意义,二次函数地最值问题,本题看似简单但不容易入手解答,判断出最大最小值地取值情况并考虑到用二次函数地最值问题解答是解题地关键.二、填空题(共小题,每题分,满分分;请将正确答案填在答题卡相应位置>.分解因式:-=.考点:因式分解——运用公式法.分析:运用平方差公式分解因式地式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.-=(+>(->.解答:解:-=(+>(->.点评:本题考查因式分解.当被分解地式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解..一个袋子中装有个红球和个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球地概率为.考点:概率公式.分析:根据概率地求法,找准两点:①全部情况地总数;②符合条件地情况数目;二者地比值就是其发生地概率.解答:解;布袋中球地总数为:+=,取到黄球地概率为:.故答案为:.点评:此题主要考查了概率地求法,如果一个事件有种可能,而且这些事件地可能性相同,其中事件出现种结果,那么事件地概率(>=..若是整数,则正整数地最小值为.考点:二次根式地定义.专题:存在型.分析:是正整数,则一定是一个完全平方数,首先把分解因数,确定是完全平方数时,地最小值即可.解答:解:∵=×.∴整数地最小值为.故答案是:.点评:本题考查了二次根式地定义,理解是正整数地条件是解题地关键..计算:+=.考点:分式地加减法.专题:计算题.分析:直接根据同分母地分数相加减进行计算即可.解答:解:原式==.故答案为:.点评:本题考查地是分式地加减法,同分母地分式相加减,分母不变,把分子相加减..如图,已知△,==,∠=°,∠地平分线交于点,则地长是,地值是.(结果保留根号>考点:黄金分割;相似三角形地判定与性质;锐角三角函数地定义.分析:可以证明△∽△,设=,根据相似三角形地对应边地比相等,即可列出方程,求得地值;过点作⊥于点,则为中点,由余弦定义可求出地值.解答:解:∵△,==,∠=°,∴∠=∠==°.∵是∠地平分线,∴∠=∠=∠=°.∴∠=∠=°,又∵∠=∠,∴△∽△,∴=,设=,则==.则=,解得:=(舍去>或.第题图故=.如右图,过点作⊥于点,∵=,∴为中点,即==.在△中,===.故答案是:;.点评:△、△均为黄金三角形,利用相似关系可以求出线段之间地数量关系;在求时,注意构造直角三角形,从而可以利用三角函数定义求解.三、解答题(满分分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑>.(每小题分,共分>(> 计算:-+(π+>-.(> 化简:(->+(+>-.考点:整式地混合运算;实数地运算;零指数幂.专题:计算题.分析:(>原式第一项根据绝对值地代数意义:负数地绝对值等于它地相反数进行化简,第二项利用零指数公式化简,第三项利用=化简,合并后即可得到结果;(>利用乘法分配律将原式第一项括号外边地乘到括号里边,第二项利用完全平方数展开,合并同类项后即可得到结果.解答:解:(> 解:-+(π+>-=+-=.(> 解:(->+(+>-=-+++-=.点评:此题考查了整式地混合运算,以及实数地运算,涉及地知识有:绝对值地代数意义,零指数公式,二次根式地化简,完全平方公式,以及合并同类项法则,熟练掌握公式及法则是解本题地关键..(每小题分,共分>(> 如图,点、在上,∥,=,=.求证:△≌△.(> 如图,方格纸中地每个小方格是边长为个单位长度地正方形.① 画出将△向右平移个单位长度后地△;② 再将△绕点顺时针旋转°,画出旋转后地△,并求出旋转过程中线段所扫过地面积(结果保留π>.考点:作图——旋转变换;全等三角形地判定;扇形面积地计算;作图——平移变换.分析:(> 由∥可知∠=∠,再根据=可得出=,由=即可判断出△≌; (> 根据图形平移地性质画出平移后地图形,再根据在旋转过程中,线段所扫过地面积等于以点为圆心,以为半径,圆心角为度地扇形地面积,再根据扇形地面积公式进行解答即可.解答:证明:∵ ∥, ∴ ∠=∠.∵ =, ∴ +=+,即 =.又∵ =, ∴ △≌△.(> 解:① 如图所示;② 如图所示;在旋转过程中,线段所扫过地面积等于=π.点评:本题考查地是作图-旋转变换、全等三角形地判定及扇形面积地计算,熟知图形平移及旋转不变性地性质是解答此题地关键..(满分分>省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题地交通安全教育宣传周活动.某中学为了了解本校学生地上学方式,在全校范围内随机抽查了部分学生,将收集地数据绘制成如下两幅不完整地统计图(如图所示>,请根据图中提供地信息,解答下列问题.(>(> (> 考点:分析:(> 解答:÷=; 条形图如图所示; (> (> 第(>题图第(>题图 学生上学方式扇形统计图 学生上学方式条形统计图×=(人>.点评:本题考查了条形统计图、扇形统计图及用样本估计总数地知识,解题地关键是从统计图中整理出进一步解题地信息..(满分分>某次知识竞赛共有道题,每一题答对得分,答错或不答都扣分.(> 小明考了分,那么小明答对了多少道题?(> 小亮获得二等奖(~分>,请你算算小亮答对了几道题?考点:一元一次不等式组地应用;一元一次方程地应用.分析:(>设小明答对了道题,则有-道题答错或不答,根据答对题目地得分减去答错或不答题目地扣分是分,即可得到一个关于地方程,解方程即可求解;(>小明答对了道题,则有-道题答错或不答,根据答对题目地得分减去答错或不答题目地扣分,就是最后地得分,得分满足大于或等于小于或等于,据此即可得到关于地不等式组,从而求得地范围,再根据是非负整数即可求解.解答:解:(> 设小明答对了道题,依题意得:-(->=.解得:=.答:小明答对了道题. (> 设小亮答对了道题,依题意得:.因此不等式组地解集为≤≤.∵ 是正整数, ∴ =或. 答:小亮答对了道题或道题.点评:本题考查了列方程解应用题,以及列一元一次不等式解决问题,正确列式表示出最后地得分是关键..(满分分>如图,为⊙地直径,为⊙上一点,和过点地切线互相垂直,垂足为,交⊙于点.(> 求证:平分∠;(> 若∠=º,=,求地长.考点:切线地性质;圆周角定理;相似三角形地判定与性质;解直角三角形.专题:几何综合题.分析:(>连接,由为⊙地切线,根据切线地性质得到垂直于,由垂直于,可得出平行于,根据两直线平行内错角相等可得出∠=∠,再由=,利用等边对等角得到∠=∠,等量代换可得出∠=∠,即为角平分线;(>法:由为圆地直径,根据直径所对地圆周角为直角可得出∠为直角,在直角三角形中,由∠地度数求出∠地度数为°,可得出∠地度数为°,在直角三角形中,根据°角所对地直角边等于斜边地一半,由地长求出地长,在直角三角形中,根据°及地长,利用锐角三角函数定义求出地长,进而得出半径地长,由∠为°,及=,得到三角形为等边三角形,可得出==,即可确定出地长;法:连接,由为圆地直径,根据直径所对地圆周角为直角可得出∠为直角,在直角三角形中,由∠地度数求出∠地度数为°,可得出∠地度数为°,在直角三角形中,由及°,利用锐角三角函数定义求出地长,由∠为圆内接四边形地外角,利用圆内接四边形地外角等于它地内对角,得到∠=∠,由∠地度数求出∠地度数为°,在直角三角形中,由°及地长,求出地长,最后由-即可求出地长.解答:(> 证明:如图,连接,∵ 为⊙地切线,∴ ⊥,∴ ∠=°.∵ ⊥,∴ ∠=°.∴ ∠+∠=°,∴ ∥,∴ ∠=∠,∵ =,∴ ∠=∠,∴ ∠=∠,即平分∠.第题图(> 解法一:如图,∵ 为⊙地直径, ∴ ∠=°. 又∵ ∠=°,∴ ∠=∠=°. 在△中,=, ∴ ==.在△中,=,∴ ===.连接,∵ ∠=∠=°,=,∴ △是等边三角形,∴ ===.解法二:如图,连接∵ 为⊙地直径,∴ ∠=°.又∵ ∠=°, ∴ ∠=∠=°. 在△中,=, ∴ ===.∵ 四边形是⊙地内接四边形,∴ ∠+∠=°.又∵ ∠+∠=°, ∴ ∠=∠=°.在△中,=,∴ ===.∴ =-=.点评:此题考查了切线地性质,平行线地性质,等边三角形地判定与性质,锐角三角函数定义,圆内接四边形地性质,以及圆周角定理,利用了转化及数形结合地思想,遇到直线与圆相切,常常连接圆心与切点,利用切线地性质得到垂直,利用直角三角形地性质来解决问题..(满分分>如图①,在△中,∠=º,=,=,动点从点开始沿边向点以每秒个单位长度地速度运动,动点从点开始沿边向点以每秒个单位长度地速度运动,过点作∥,交于点,连接.点、分别从点、同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为秒(≥>.(> 直接用含地代数式分别表示:=,=.(>是否存在地值,使四边形为菱形?若存在,求出地值;若不存在,说明理由.并探究如何改变点地速度(匀速运动>,使四边形在某一时刻为菱形,求点地速度;(> 如图②,在整个运动过程中,求出线段中点所经过地路径长.考点:专题:分析:(> ==,则可求得与地值;(> ,由(> 相似三角形地对应边成比例,即可求得答案.解答:解:(> =-,=.(> 不存在.在△中,∠=°,=,=, ∴ =.∵ ∥,第题图①第题图② 图 图∴ △∽△,∴ =,即:=,∴ =,∴ =-=-.∵ ∥,∴ 当=时,四边形是平行四边形,即-=,解得:=.当=时,=×=,=-×=,∴ ≠,∴ □不能为菱形.设点地速度为每秒个单位长度,则=-,=,=-.要使四边形为菱形,则==,当=时,即=-,解得:=.当=时,=时,即×=-,解得:=. (> 解法一:如图,以为原点,以所在直线为轴,建立平面直角坐标系.依题意,可知≤≤,当=时,点地坐标为(,>;当=时,点地坐标为(,>. 设直线地解读式为=+,∴ ,解得:.∴ 直线地解读式为=-+.∵ 点(,>,(-,>,∴ 在运动过程中,线段中点地坐标为(,>. 把=,代入=-+,得=-×+=.∴ 点在直线上.过点作⊥轴于点,则=,=.∴ =. ∴ 线段中点所经过地路径长为单位长度. 解法二:如图,设是地中点,连接.当=时,点与点重合,运动停止.设此时地中点为,连接. 过点作⊥,垂足为,则∥.∴ △∽△.∴ ==,即:==.∴ =,=-, ∴ =-=(->-(->=-.∴ =-=-(->= .∴ ∠==.∵ ∠地值不变,∴ 点在直线上.过作⊥,垂足为.则=,=.∴ =.∵ 当=时,点与点重合;当=时,点与点重合,∴ 线段中点所经过地路径长为单位长度.点评:此题考查了相似三角形地判定与性质、平行四边形地判定与性质、菱形地判定与性质以及一次函数地应用.此题综合性很强,难度较大,解题地关键是注意数形结合思想地应用..(满分分>如图①,已知抛物线=+(≠>经过(,>、(,>两点.(> 求抛物线地解读式;(> 将直线向下平移个单位长度后,得到地直线与抛物线只有一个公共点,求地值及点地坐标;(> 如图②,若点在抛物线上,且∠=∠,则在(>地条件下,求出所有满足△∽△地点地坐标(点、、分别与点、、对应>.考点:二次函数综合题.分析:(> 利用待定系数法求出二次函数解读式即可;(>根据已知条件可求出地解读式为=,则向下平移个单位长度后地解读式为:=-.由于抛物线与直线只有一个公共点,意味着联立解读式后得到地一元二次方程,其根地判别式等于,由此可求图图出地值和点坐标;(> 综合利用几何变换和相似关系求解.方法一:翻折变换,将△沿轴翻折;方法二:旋转变换,将△绕原点顺时针旋转°.特别注意求出点坐标之后,该点关于直线=-地对称点也满足题意,即满足题意地点有两个,避免漏解.解答:解:(> ∵. ∴∴ (> ∴ ∴∵ ∴ ∴ - ∵ 抛物线与直线只有一个公共点,∴ △=-=,解得:=.此时==,=-=-,∴ 点坐标为(,->.(> ∵ 直线地解读式为=,且(,>,∴ 点关于直线地对称点'地坐标是(,>.设直线'地解读式为=+,过点(,>,∴ +=,解得:=.∴ 直线'地解读式是=+.∵ ∠=∠,∴ 点在直线'上,∴ 设点(,+>,又点在抛物线=-上,∴ +=-,解得:=-,=(不合题意,会去>, ∴ 点地坐标为(-,>. 方法一:如图,将△沿轴翻折,得到△,则(-,->,(,->, ∴ 、、都在直线=-上. ∵ △∽△, ∴ △∽△, ∴ ==,∴ 点地坐标为(-,->. 将△沿直线=-翻折,可得另一个满足条件地点(,>.综上所述,点地坐标是(-,->或(,>.方法二:如图,将△绕原点顺时针旋转°,得到△, 则(,>,(,->, ∴ 、、都在直线=-上. ∵ △∽△, ∴ △∽△, ∴ ==,∴ 点地坐标为(,>. 将△沿直线=-翻折,可得另一个满足条件地点(-,->.综上所述,点地坐标是(-,->或(,>.点评:>段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好地区分度,是一道非常好地中考压轴题.第题图① 第题图②申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
2012福建漳州中考数学试题及答案
2012年福建省漳州市中考试题数 学(满分150分,考试时间120分钟)一、选择题(共10小题,每小题4分,满分40分,每小题只有一个正确的选项) 1. (2012福建漳州,1,4分)6的倒数是( )A .61B .61-C .6D .-6【答案】A2. (2012福建漳州,2,4分)计算26a a ⋅的结果是( )A .12aB .8aC .4aD .3a 【答案】B3. (2012福建漳州,3,4分)如图,是一个正方体的平面展开图,圆正方体中“祝”的对面是( )A .考B .试C .顺D .利【答案】C4. (2012福建漳州,4,4分)二元一次方程组⎩⎨⎧==+1-22y x y x 的解是( )A .⎩⎨⎧==20y xB .⎩⎨⎧==11y xC .⎩⎨⎧==1-1-y xD .⎩⎨⎧==02y x【答案】B5. (2012福建漳州,5,4分)一组数据:-1、2、1、0、3,则这组数据的平均数和中位数分别是( )A .1,0B .2,1C .1,2D .1,1 【答案】D 6.(2012福建漳州,6,4分)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,∠B =80°,则∠D 的度数是( )A .120°B .110°C .100°D .80°【答案】C7. (2012福建漳州,7,4分)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )A .45°B .60°C .75°D .90°α 60°45°ABC D试 祝顺利你考【答案】C8. (2012福建漳州,8,4分)下列说法中错误的是( )A .某种彩票的中奖率为1%B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是61 【答案】A 9. (2012福建漳州,9,4分)如图,圆心移动的距离是( )A .2π cmB .4π D .16π cm【答案】B10. (2012福建漳州,10,4分)在公式RUI中,当电压U 一定时,电流I 与电阻R 之间的函数关系可用图象大致表示为( )A .B .C .D .【答案】D二、填空题(共6小题,每小题4分,满分24分)11. (2012福建漳州,11,4分)今年高考第一题,漳州的最低气温25℃,最高气温33℃,则这天的温差是______℃. 【答案】812. (2012福建漳州,12,4分)方程2x -4=0的解是_____. 【答案】x =213. (2012福建漳州,13,4分)据福建日报报道:福建省2011年地区生产总值约为17410亿元。
2012年福建省宁德市中考数学试题(含答案)
2012年中考数学试题(福建宁德卷)(本试卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1. 2012的相反数是【 】A .-2012B .2012C .-12012D .12012【答案】A 。
2.下列运算正确的是【 】A .a 3+a 2=a 5B .a 3·a 2=a 5C .a 6÷a 2=a 3D .(4a)2=8a 2 【答案】B 。
3. 2012年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔下窄,又被 称为“伦敦碗”,预计可容纳80000人.将80000用科学记数法表示为【 】 A .80×103 B .5 C .8×104 D .8×103 【答案】C 。
4.下列事件是必然事件的是【 】A .从一副扑克牌中任意抽取一张牌,花色是红桃B .掷一枚均匀的骰子,骰子停止转动后6点朝上C .在同一年出生的367名学生中,至少有两人的生日是同一天D .两条线段可以组成一个三角形 【答案】C 。
5.下列两个电子数字成中心对称的是【 】 【答案】A 。
6.二元一次方程组⎩⎨⎧x +y =32x -y =6的解是【 】A .⎩⎨⎧x =6y =-3B .⎩⎨⎧x =0y =3C .⎩⎨⎧x =2y =1D .⎩⎨⎧x =3y =0【答案】D 。
7.已知正n 边形的一个内角为135º,则边数n 的值是【 】 A .6 B .7 C .8 D .9 【答案】C 。
8.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得到的图案是【 】A .B .C .D .【答案】B 。
9.一次函数y 1=x +4的图象如图所示,则一次函数y 2=-x +b 的图象与y 1=x +4 的图象的交点不可能...在【 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D 。
无锡新领航教育福建省各市2012年中考数学分类解析 专题11:圆
- 1 -
无锡新领航教育
福建9市2012年中考数学试题分类解析汇编
专题11:圆
一、选择题
1. (2012福建漳州4分)如图,一枚直径为4cm 的圆形古钱币沿着直线滚动一周,圆心移动的距离是【
】
A .2πcm
B .4πcm
C .8πcm
D .16πcm 【答案】B 。
【考点】弧长的计算。
【分析】由于直径为4cm 的圆形古钱币沿着直线滚动一周,则圆心移动的距离等于圆的周
长,因此,圆心
移动的距离是π×4=4π。
故选B 。
2. (2012福建三明4分)如图,AB 是⊙O 的切线,切点为A ,OA=1,∠AOB=600
,则图中阴影部分的面积是【
】
A
.16
π B
13
π C
12
6
π-
D
12
3
π-
【答案】C 。
【考点】切线的性质,锐角三角函数定义,特殊角的三角函数值,扇形面积。
【分析】∵AB 是⊙O 的切线,切点为A ,∴O A ⊥AB ,即∠OAB=900。
∵在R t △AOB 中,OA=1,∠AOB=600
,∴AB= OAtan ∠
AOB=
∴2
AO B O AC 16011S S S 12
360
2
6
ππ∆⋅⋅=-=
⋅=
-
扇形影部分阴。
故选C 。
3. (2012福建福州4分)⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这。
2012福建省九地市中考数学试题汇编(3月更新)
23.(本小题满分 10 分) 如图,一次函数 y k1 x b 的图象过点 A(0,3),且与反比例函数 y 的图象相交于 B、C 两点. (1)(5 分)若 B(1,2),求 k1 k 2 的值; (2)(5 分) 若 AB=BC,则 k1 k 2 的值是否为定值?若是,请求出该定值; 若不是,请说明理由.
1 2 1 x x (0 x 10) .发射 3 s 18 6
后,导弹到达 A 点,此时位于与 L 同一水平面的 R 处雷达站测得 AR 的距离是 2 km, 再过 3s 后,导弹到达 B 点. (1)(4 分)求发射点 L 与雷达站 R 之间的距离; (2)(4 分)当导弹到达 B 点时,求雷达站测得的仰角(即∠BRL)的正切值.
数
学
试
题
(满分:150 分;考试时间:120 分钟) 一、精心选一选:本大题共 8 小题,每小题 4 分,共 32 分.每小题给出的四个选项中有且只有一个选项是符合题目要 求的.答对的得 4 分,答错、不答或答案超过一个的一律得 O 分. 1.下列各数中,最小的数是( ) A.-l B.O C.1 ) D. 3 2.下列图形中,是 中心对称图形,但不是 轴对称图形的是( . ..
2
_______ _______
0 甲班 乙班 0 0
1 1 1
2 1 0
3 3 2
4 4 5
5 11 12
6 16 15
7 12 13
8 2 2
请根据以上信息解答下列问题: (1)(2 分)甲班学生答对的题数的众数是______; (2)(2 分)若答对的题数大于或等于 7 道的为优秀,则乙班该次考试中选择题答题的优秀率=______ (优秀率=
2012 福建省九地市中考数学试题汇编
2012年福建省厦门市中考数学试卷(含解析版)
2012年福建省厦门市中考数学试卷一.选择题:本大题共7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项是正确的1.(2012•义乌市)﹣2的相反数是()A.2B.﹣2 C.±2 D.2.(2012•厦门)下列事件中,是必然事件的是()A.抛掷1枚硬币,掷得的结果是正面朝上B.抛掷1枚硬币,掷得的结果是反面朝上C.抛掷1枚硬币,掷得的结果不是正面朝上就是反面朝上D.抛掷2枚硬币,掷得的结果是1个正面朝上与1个反面朝上3.(2012•厦门)如图是一个立体图形的三视图,则这个立体图形是()A.圆锥B.球C.圆柱D.三棱锥4.(2012•厦门)某种彩票的中奖机会是1%,下列说法正确的是()A.买一张这种彩票一定不会中奖B.买1张这种彩票一定会中奖C.买100张这种彩票一定会中奖D.当购买彩票的数量很大时,中奖的频率稳定在1%5.(2012•厦门)若二次根式有意义,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1 6.(2012•厦门)如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC 等于()A.40°B.50°C.80°D.100°7.(2012•厦门)已知两个变量x和y,它们之间的3组对应值如下表所示x ﹣1 0 1y ﹣1 1 3A.y=x B.y=2x+1 C.y=x2+x+1 D.二.填空题(共10小题)8.(2009•贵港)计算:3a﹣2a=.9.(2012•厦门)已知∠A=40°,则∠A的余角的度数是.10.(2012•厦门)计算:m3÷m2=.11.(2012•厦门)在分别写有整数1到10的10张卡片中,随机抽取1张卡片,则该卡片的数字恰好是奇数的概率是.12.(2012•厦门)如图,在等腰梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,若OB=3,则OC=.13.(2012•厦门)“x与y的和大于1”用不等式表示为.14.(2012•厦门)如图,点D是等边△ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了度.15.(2012•厦门)五边形的内角和的度数是.16.(2012•厦门)已知a+b=2,ab=﹣1,则3a+ab+3b=;a2+b2=.17.(2012•厦门)如图,已知∠ABC=90°,AB=πr,BC=,半径为r的⊙O从点A出发,沿A→B→C方向滚动到点C时停止.请你根据题意,在图上画出圆心O运动路径的示意图;圆心O运动的路程是.三.解答题(共9小题)18.(2012•厦门)(1)计算:4÷(﹣2)+(﹣1)2×40;(2)画出函数y=﹣x+1;(3)已知:如图,点B、F、C、E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.(2012•厦门)解方程组:.20.(2012•厦门)已知:如图,在△ABC中,∠C=90°,点D、E分别在边AB、AC上,DE∥BC,DE=3,BC=9(1)求的值;(2)若BD=10,求sin∠A的值.21.(2012•厦门)已知A组数据如下:0,1,﹣2,﹣1,0,﹣1,3(1)求A组数据的平均数;(2)从A组数据中选取5个数据,记这5个数据为B组数据,要求B组数据满足两个条件:①它的平均数与A组数据的平均数相等;②它的方差比A组数据的方差大.你选取的B组数据是,请说明理由.【注:A组数据的方差的计算式是:=[+++++ +]】22.(2012•厦门)工厂加工某种零件,经测试,单独加工完成这种零件,甲车床需要x小时,乙车床需用(x2﹣1)小时,丙车床需用(2x﹣2)小时.(1)单独加工完成这种零件,甲车床所用的时间是丙车床的,求乙车床单独加工完成这种零件所需的时间;(2)加工这种零件,乙车床的工作效率与丙车床的工作效率能否相同?请说明理由.23.(2012•厦门)已知:⊙O是△ABC的外接圆,AB为⊙O的直径,弦CD交AB于E,∠BCD=∠BAC.(1)求证:AC=AD;(2)过点C作直线CF,交AB的延长线于点F,若∠BCF=30°,则结论“CF一定是⊙O的切线”是否正确?若正确,请证明;若不正确,请举反例.24.(2012•厦门)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”.(1)判断点C()是否是线段AB的“临近点”,并说明理由;(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围.25.(2012•厦门)已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若PE=,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+3﹣4,求BC的长.26.(2012•厦门)已知点A(1,c)和点B(3,d)是直线y=k1x+b与双曲线(k2>0)的交点.(1)过点A作AM⊥x轴,垂足为M,连接BM.若AM=BM,求点B的坐标.(2)若点P在线段AB上,过点P作PE⊥x轴,垂足为E,并交双曲线(k2>0)于点N.当取最大值时,有PN=,求此时双曲线的解析式.2012年福建省厦门市中考数学试卷参考答案与试题解析一.选择题(本大题共7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项是正确的)1.(2012•厦门)﹣2的相反数是()A.2B.﹣2 C.±2 D.考点:相反数。
无锡新领航教育福建省各市2012年中考数学分类解析 专题2:代数式和因式分解
- 1 - 无锡新领航教育福建9市2012年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1. (2012福建南平4分)下列计算正确的是【 】A .a 3+a 2=a 5B .a 5÷a 4=aC .a•a 4=a 4D .(ab 2)3=ab 6【答案】B 。
【考点】合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方与积的乘方。
【分析】分析根据同底数幂的除法,同底数幂的乘法,幂的乘方与积的乘方及合并同类项的法则进行计算后即可求得正确的答案:A 、a 3与a 2不是同类项,不能合并,故选项错误;B 、a 5÷a 4=a 5-4=a ,故选项正确;C 、a•a 4=a 4+1=a 5,故选项错误;D 、(ab 2)3=a 3b 6,故选项错误。
故选B 。
2. (2012福建宁德4分)下列运算正确的是【 】A .a 3+a 2=a 5B .a 3·a 2=a 5C .a 6÷a 2=a 3D .(4a)2=8a 2【答案】B 。
【考点】合并同类项,同底幂乘法和除法,幂的乘方和积的乘方。
【分析】根据合并同类项,同底幂乘法和除法,幂的乘方和积的乘方运算法则逐一计算作出判断:A .a 3和a 2不是同类项,不可以合并,选项错误;B .32325a a a a +⋅==,选项正确;C .62624a a aa -÷==,选项错误; D .2222(4a )4a 16a ==,选项错误。
故选B 。
3. (2012福建莆田4分)下列运算正确的是【 】A .3a a 3-=B .33a a a ÷=C .235a a a =D .222(a b)a b +=+ 【答案】C 。
【考点】合并同类项,同底幂乘法和除法,完全平方公式。
2012年福建省福州市中考数学试卷(含答案)
2012年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(本卷共四页,三大题,共22小题;满分150分,考试时间120分钟) 友情提示:所有答案都必须填涂在答题卡的相应的位置上,答在本试卷一律无效.毕业学校_________________姓名___________考生号_________一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1. 3的相反数是 B.31 D. 31- 2.今年参观“5·18”海交会的总人数约为498000人,将498000用科学记数法表示为 A.4109.48⨯ B.51089.4⨯ C.41089.4⨯ D.610489.0⨯ 3. 如图是由4个大小相同的正方体组合而成的几何题,其主视图是4. 如图,直线a ∥b ,∠1=70º,那么∠2的度数是(注:本题似乎应加上条件:直线a 、b 被直线c 所截) 5. 下列计算正确的是A.a +a =2aB.3332b b b =⋅C.33a a a =÷ D.725)(a a =6. 式子1-x 在实数范围内有意义,则x 的取值范围是A.x <1 B,x ≤1 C.x >1 D x ≥17. 某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是8. ⊙1O 和2O 的半径分别是3cm 和4cm,如果1O 2O =7cm,则这两圆的位置关系是 A.内含 B.相交 C.外切 D.外离 9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为 30º、45º,如果此时热气球C 处的高度CD 为100米, 点A 、D 、B 在同一条直线上,则A 、B 两点的距离是 米 B.3200米ACBD第3题图正面第4题图12 ca bA30º45º第9题图第17(2)题图ABC 其他 上学方式乘公交车 骑自行车 人数步行25 15 5 10 20 学生上学方式条形统计图13207C.3220米D.)13(100+米 10. 如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数xky =(x >0)的图象与△ABC 有公共点,则k 的取值范围是k ≤9 k ≤8 k ≤5 k ≤8二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:162-x =___________.12. 一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率是___________.13. 若n 20是整数,则正整数n 的最小值是_______. 14. 计算:xx x 11+-=___________. 15. 如图,已知△ABC ,AB =AC =1,∠A =36º,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是___________,cos A 的值是_________(结果保留根号).三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分) (1)计算:|-3|+(π+1)0-4.(2)1)1()1(2-++-a a a . 17. (每小题7分,共14分)(1)如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE . (2)如图,方格纸中的每个小方格是边长为1个单位长度的正方形. ①画出将R t △ABC 向右平移5个单位长度后的Rt △1A 1B 1C ;②再将Rt △1A 1B 1C 绕点1C 顺时针旋转90º,画出旋转后的Rt △2A 2B 1C ,并求出旋转过程中线段1A 1C 所扫过的面积(结果保留π).18 (满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在本xOyABCADC第15题图乘公交车40%学生上学方式扇形统计图 骑自行车 20%14%其他步行 m校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1)m =______%,这次共抽取________名学生进行调查;并补全条形图; (2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名?19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分. (1)小明考了68分,那么小明答对了多少道题?(2)小亮获得二等奖(70~90分),请你算算小亮答对了几道题?20.(满分12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .AD 交⊙O 于点E . (1)AC 平分∠DAB ;(2)若∠B =60º,CD =32,求AE 的长.21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1)直接用含t 的代数式分别表示:QB =__________,PD =___________.(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3)如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.22.(满分14分)如图①,已知抛物线bx ax y +=2(a ≠0)经过A (3,0)、B (4,4)两点. (1)求抛物线的解析式;(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标; (3)如图②,若点N 在抛物线上,且∠NBO =∠A BO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).ED ABC第20题图O·。
无锡新领航教育福建省各市2012年中考数学分类解析 专题4:图形的变换
- 1 - 无锡新领航教育
福建9市2012年中考数学试题分类解析汇编
专题4:图形的变换
一、选择题
1. (2012福建龙岩4分)左下图所示几何体的俯视图是【 】
【答案】C 。
【考点】简单几何体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得是一个圆,中间一点。
故选C 。
2. (2012福建龙岩4分)如图,矩形ABCD 中,AB=1,BC=2,把矩形ABCD 绕AB 所
在直线旋转一
周所得圆柱的侧面积为【 】
A .10π
B .4π
C .2π
D .2
【答案】B 。
【考点】矩形的性质,旋转的性质。
【分析】把矩形ABCD 绕AB 所在直线旋转一周所得圆柱是以BC=2为底面半径,AB=1
为高。
所以,它
的侧面积为221=4ππ⋅⋅。
故选B 。
3. (2012福建南平4分)如图所示,水平放置的长方体底面是长为4和宽为2的矩形,它的主视图的面积为12,则长方体的体积等于【 】。
2012年福建省厦门市中考数学试卷-答案
福建省厦门市2012年初中毕业及高中阶段各类学校招生考试数学答案解析一、选择题 1.【答案】A【解析】由相反数的定义可知,2-的相反数是(2)2--=. 【提示】根据相反数的定义进行解答即可. 【考点】相反数 2.【答案】C【解析】A .∵一枚硬币有两个面,∴抛掷1枚硬币,掷得的结果是正面朝上是随机事件,故本选项错误; B .∵一枚硬币有两个面,∴抛掷1枚硬币,掷得的结果是反面朝上是随机事件,故本选项错误; C .∵一枚硬币只有正反两个面,∴抛掷1枚硬币,掷得的结果不是正面朝上就是反面朝上是必然事件,故本选项正确;D .∵一枚硬币有两个面,∴抛掷2枚硬币,掷得的结果是1个正面朝上与1个反面朝上是随机事件,故本选项错误.【提示】根据随机事件的定义对各选项进行逐一解答即可. 【考点】随机事件 3.【答案】A【解析】A .圆锥的三视图分别为三角形,三角形,圆,故选项正确; B .球的三视图都为圆,错误;C .圆柱的三视图分别为长方形,长方形,圆,故选项错误;D .三棱锥的三视图分别为三角形,三角形,三角形及中心与顶点的连线,故选项错误. 【提示】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【考点】由三视图判断几何体 4.【答案】D【解析】A .因为中奖机会是1%,就是说中奖的概率是1%,机会较小,但也有可能发生,故本选项错误; B .买1张这种彩票中奖的概率是1%,即买1张这种彩票会中奖的机会很小,故本选项错误; C .买100张这种彩票不一定会中奖,故本选项错误;D .当购买彩票的数量很大时,中奖的频率稳定在1%,故本选项正确.【提示】由某种彩票的中奖机会是1%,即可得中奖的概率是1%,机会较小,但也有可能发生,即可求得答案,注意排除法在解选择题中的应用.22(3)证明:∵AC DF ∥,∴ACB EFD ∠=∠.在ABC △和DEF △中,A D AC DF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABC DEF △≌△.【解析】(1)204214÷-+-⨯()()21=-+ 1=-【提示】(1)利用有理数的运算法则进行运算即可; (2)利用两点法作出一次函数的图象即可; (3)利用ASA 证明两三角形即可.【考点】全等三角形的判定与性质,实数的运算,一次函数的图象19.【答案】11x y =⎧⎨=⎩【解析】3421x y x y +=⎧⎨+=⎩①②,①+②得,55x =,解得1x =;把1x =代入②得,21y -=,解得1y =,故此方程组的解为:11x y =⎧⎨=⎩【提示】先用加减消元法求出x 的值,再用代入消元法求出y 的值即可. 【考点】解二元一次方程组不是O 的切线.同理,当30CAB ∠=︒时,FC 不一定是O 的切线.不一定是O 的切<<.m354xk。
2012年福建省泉州市中考数学试卷含答案
2012年福建省泉州市初中毕业、升学考试数 学 试 题(满分150分,考试时间120分钟)友情提示:所有答案都必须填涂在答题卡的相应的位置上,答在本试卷一律无效.毕业学校_________________姓名___________考生号_________一、选择题(共7小题,每题3分,满分21分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1. 7-的相反数是( ).A. 7-B. 7C.71- D. 71解:应选B 。
⒉42)(a 等于( ).A.42a B.24a C.8a D. 6a 解:应选C 。
⒊把不等式01≥+x 在数轴上表示出来,则正确的是( ).解:应选B 。
⒋下面左图是两个长方体堆积的物体,则这一物体的正视图是( ).解:应选A 。
⒌若4-=kx y 的函数值y 随着x 的增大而增大,则k 的值可能是下列的( ).A .4- B.21- C.0 D.3 解:应选D 。
⒍下列图形中,有且只有两条对称轴的中心对称图形是( ). A .正三角形 B.正方形 C.圆 D.菱形 解:应选D 。
⒎如图,点O 是△ABC 的内心,过点O 作EF ∥AB ,与AC 、BC 分别交于点E 、F ,则( )A .EF>AE+BF B. EF<AE+BFC.EF=AE+BFD.EF ≤AE+BF C 解:应选C 。
B (第七题图)二、填空题(每题4分,共40分;请将正确答案填在答题卡相应位置) ⒏比较大小:5-__________0.(用“>”或“<”号填空〕解:<。
⒐因式分解:x x 52-=__________. 解:)5(-x x 。
⒑光的速度大约是300 000 000米/秒,将300 000 000用科学计数法法表示为__________. 解:8103⨯。
⒒某校初一年段举行科技创新比赛活动,各个班级选送的学生数分别为3、2、2、6、6、5,则这组数据的平均数是__________. 解:4.⒓n 边形的内角和为900°,则n =__________.解:7. ⒔计算:=---111m m m __________. 解:1. D⒕如图,在△ABC 中,AB=AC ,BC=6,AD ⊥BC 于点D ,则BD 的长是__________. 解:3.C D (第十四题图) ⒖如图,在△ABC 中,∠A=60°,∠B=40°,点D 、E 分别在BC 、AC 的延长线上,则∠1=_ °. 解:80°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年福建省南平市中考数学试卷3.(2012•南平)若要对一射击运动运员最近5次训练成绩进行统计分析,判断他的训练成绩是否稳定,则需要知6.(2012•南平)为验证“掷一个质地均匀的骰子,向上的点数为偶数的概率是0.5”,下列模拟实验中,不科学的是()8.(2012•南平)已知反比例函数y=的图象上有两点A(1,m)、B(2,n).则m与n的大小关系为()的体积等于()10.(2012•南平)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、11.计算:=__ 12.样本数据2,4,3,5,6的极差是_________.13.)分解因式:2x2﹣4x+2=14.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=68°,则∠BAC=_________ 15.(2012•南平)将直线y=2x向上平移1个单位长度后得到的直线是_________.16.如图,在山坡AB上种树,已知∠C=90°,∠A=28°,AC=6米,则相邻两树的坡面距离AB≈米.(精确到0.117某校举行A、B两项趣味比赛,甲、乙两名学生各自随即选择其中的一项,则他们恰好参加同一项比赛的概率是18.(2012•南平)设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是(填写序号)①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.5成立.19.(﹣3)3×()﹣2+|π﹣4|﹣20120.(2)解不等式组:20.x﹣3+=0.21.(2012•南平)如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明,备选条件:AE=CF,BE=DF,∠AEB=∠CFD,我选择添加的条件是:_________.(注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明)22.(2012•南平)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?23.(2012•南平)如图,直线l与⊙O交于C、D两点,且与半径OA垂直,垂足为H,已知OD=2,∠O=60°,(1)求CD的长;(2)在OD的延长线上取一点B,连接AB、AD,若AD=BD,求证:AB是⊙O的切线.24.(2012•南平)某乡镇决定对小学和初中学生用餐每生每天3元的标准进行营养补助,其中家庭困难的学生的补助标准为:小学生每生每天4元,初中生每生每天5元,已知该乡镇现有小学生和初中学生共1000人,且小学、初中均有2%的学生为家庭困难寄宿生.设该乡镇现有小学生x人.(1)用含x的代数式表示:该乡镇小学生每天共需营养补助费是_________元.该乡镇初中生每天共需营养补助费是_________元.(2)设该乡镇小学和初中生每天共需营养补助费为y元,求y与x之间的函数关系式;(3)若该乡镇小学和初中学生每天共需营养补助费为3029元,问小学生、初中生分别有多少人?25.(2012•南平)在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(m,1)(m>0),将此矩形绕O点逆时针旋转90°,得到矩形OA′B′C′.(1)写出点A、A′、C′的坐标;(2)设过点A、A′、C′的抛物线解析式为y=ax2+bx+c,求此抛物线的解析式;(a、b、c可用含m的式子表示)(3)试探究:当m的值改变时,点B关于点O的对称点D是否可能落在(2)中的抛物线上?若能,求出此时m的值.2012年福建省南平市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,每小题只有一个正确的选项,请在答题卡相应的位置填涂)÷==3.(2012•南平)若要对一射击运动运员最近5次训练成绩进行统计分析,判断他的训练成绩是否稳定,则需要知4.(2012•南平)正多边形的一个外角等于30°.则这个多边形的边数为()6.(2012•南平)为验证“掷一个质地均匀的骰子,向上的点数为偶数的概率是0.5”,下列模拟实验中,不科学的是()个红球一个绿球,它们出颜色外都相同,随机摸出红球的概率是,故本选项正确;,故本选项正确;、随机掷一枚质地均匀的硬币,正面朝上的概率是,故本选项错误;DE=EF=BC AC EF=8.(2012•南平)已知反比例函数y=的图象上有两点A(1,m)、B(2,n).则m与n的大小关系为()中y=中9.(2012•南平)如图所示,水平放置的长方体底面是长为4和宽为2的矩形,它的主视图的面积为12,则长方体的体积等于()10.(2012•南平)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为()EF=1+=二、填空题(本大题共8小题,每小题3分,共24分,请将答案填入答题卡的相应位置)11.(2011•无锡)计算:=2.∴12.(2012•南平)样本数据2,4,3,5,6的极差是4.13.(2009•崇左)分解因式:2x2﹣4x+2=2(x﹣1)2.14.(2012•南平)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=68°,则∠BAC=22°.对的圆周角,15.(2012•南平)将直线y=2x向上平移1个单位长度后得到的直线是y=2x+1.16.(2012•南平)如图,在山坡AB上种树,已知∠C=90°,∠A=28°,AC=6米,则相邻两树的坡面距离AB≈ 6.8米.(精确到0.1米)AB=≈17.(2012•南平)某校举行A、B两项趣味比赛,甲、乙两名学生各自随即选择其中的一项,则他们恰好参加同一项比赛的概率是.他们恰好参加同一项比赛的概率是:=故答案为:.18.(2012•南平)设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是④.(填写所有正确结论的序号)①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.5成立.三、解答题(本大题共8小题,共86分,请在答题卡相应位置作答)19.(2012•南平)(1)计算:(﹣3)3×()﹣2+|π﹣4|﹣20120.(2)解不等式组:.20.(2012•南平)解分式方程:x﹣3+=0.x=时,.21.(2012•南平)如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明,备选条件:AE=CF,BE=DF,∠AEB=∠CFD,我选择添加的条件是:BE=DF.(注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明)22.(2012•南平)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?,儿童玩具占得百分比是×所以从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是23.(2012•南平)如图,直线l与⊙O交于C、D两点,且与半径OA垂直,垂足为H,已知OD=2,∠O=60°,(1)求CD的长;(2)在OD的延长线上取一点B,连接AB、AD,若AD=BD,求证:AB是⊙O的切线.OD=1=CD=2HD=224.(2012•南平)某乡镇决定对小学和初中学生用餐每生每天3元的标准进行营养补助,其中家庭困难的学生的补助标准为:小学生每生每天4元,初中生每生每天5元,已知该乡镇现有小学生和初中学生共1000人,且小学、初中均有2%的学生为家庭困难寄宿生.设该乡镇现有小学生x人.(1)用含x的代数式表示:该乡镇小学生每天共需营养补助费是 3.02x元.该乡镇初中生每天共需营养补助费是3040﹣3.04x元.(2)设该乡镇小学和初中生每天共需营养补助费为y元,求y与x之间的函数关系式;(3)若该乡镇小学和初中学生每天共需营养补助费为3029元,问小学生、初中生分别有多少人?25.(2012•南平)在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(m,1)(m>0),将此矩形绕O点逆时针旋转90°,得到矩形OA′B′C′.(1)写出点A、A′、C′的坐标;(2)设过点A、A′、C′的抛物线解析式为y=ax2+bx+c,求此抛物线的解析式;(a、b、c可用含m的式子表示)(3)试探究:当m的值改变时,点B关于点O的对称点D是否可能落在(2)中的抛物线上?若能,求出此时m 的值.∴,解得26.(2012•南平)如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:AB=AC;结论二:∠AED=∠ADC;结论三:△ADE∽△ACD.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)BC=2==•BC=1最小为DC=CA=.BC=2==•AD=×,﹣;,.参与本试卷答题和审题的老师有:yangwy;sks;ZJX;zhangCF;HLing;刘超;caicl;sd2011;zjx111;zcx;sjzx;王岑;lantin;CJX;星期八;zhjh;冯延鹏;gsls。
(排名不分先后)菁优网2012年7月20日本资料仅限下载者本人学习或教研之用,未经菁优网授权,不得以任何方式传播或用于商业用途。