光纤激光切割原理
激光切割机分类 常见的三种激光切割机
激光切割机广泛的应用在我们的日常生活中,目前市场上常见的激光切割机有三种:光纤激光切割机、CO2激光切割机和YAG激光切割机1、光纤激光切割机光纤激光切割机是利用光纤激光发生器作为光源的激光切割机。
光纤激光器是国际上新发展的一种新型光纤激光器输出高能量密度的激光束,并聚集在工件表面上,使工件上被超细焦点光斑照射的区域瞬间熔化和气化,通过数控机械系统移动光斑照射位置而实现自动切割。
同体积庞大的气体激光器和固体激光器相比具有明显的优势,已逐渐发展成为高精度激光加工、激光雷达系统、空间技术、激光医学等领域中的重要候选者。
2、CO2激光切割机CO2激光切割机,可以稳定切割20MM以内的碳钢,10MM以内的不锈钢,8MM之下的铝合金。
CO2激光器的波长為10.6UM,相对容易被非金属汲取,可以高品质地切割木材、亚克力、pp、有机玻璃等非金属材料,但是CO2激光的光电转化率唯有10%左右。
CO2激光切割机在光束出口处装有喷吹氧气、压缩空气或惰性气体n2的喷嘴,用以提升切割速度和切口的平整光洁。
為了提升电源的稳定性和寿命,关于CO2气体激光要解决大功率激光器的放电稳定性。
依据国际安全规范,激光危害等级分4级,CO2激光属于危害最小的一级。
但是CO2激光切割机使用成本是这三种激光切割机中费用最高的一款。
三、YAG激光切割机YAG固体激光切割机具有价格低、稳定性好的特点,但能量效率低一般<3%,目前产品的输出功率大多在800W以下,由于输出能量小,主要用于打孔及薄板的切割。
它的绿色激光束可在脉冲或连续波的情况下应用,具有波长短、聚光性好适于精密加工特别是在脉冲下进行孔加工最为有效,也可用于切削、焊接和光刻等。
YAG固体激光切割机激光器的波长不易被非金属吸收,故不能切割非金属材料,且YAG固体激光切割机需要解决的是提高电源的稳定性和寿命,即要研制大容量、长寿命的光泵激励光源,如采用半导体光泵可使能量效率大幅度地增长。
激光切割工作原理
激光切割工作原理
激光切割是一种高精度的切割技术,利用聚光的激光束对材料进行切割,其工作原理主要包括以下几个方面:
1. 激光器:激光切割的关键是激光器产生高能量、高密度的激光束。
常见的激光器有CO2激光器和光纤激光器。
CO2激光
器利用气体放电产生激光,光纤激光器则通过光纤将激光传输到切割头部。
2. 激光传输:激光束由激光器产生后,通过光纤传输到切割头。
光纤具有高强度、高能量密度和较小的光束直径等优势,能够准确地将激光束传输到切割位置。
3. 切割头:切割头是激光切割的核心部件,包括聚焦透镜和喷气嘴等组成。
激光束通过聚焦透镜聚焦成小的光斑,增强能量密度;同时,喷气嘴向切割位置喷射辅助气体,将材料熔化并吹散。
4. 材料切割:激光束聚焦后,能量密度急剧增加,对材料表面进行剧烈炙烤。
材料很快升温,超过其熔点,形成液态金属或气态。
同时,辅助气体喷射时产生的气流将气态金属或气体吹散,形成一个窄而深的切割槽。
总结而言,激光切割的工作原理是通过激光器产生高能量的激光束,经由光纤传输到切割头,再通过聚焦和辅助气体的作用,对材料进行高效切割。
这种高度集中的能量可以实现非常精确的切割,并且适用于各种材料,如金属、塑料、木材等。
光纤激光切割机原理
光纤激光切割机原理光纤激光切割机是一种利用高能密度激光束对工件进行切割加工的设备。
它具有高精度、高速度、无污染等优点,被广泛应用于金属材料、非金属材料的切割加工领域。
那么,光纤激光切割机是如何实现对工件的精准切割的呢?下面我们将从光源、光路、焦距调节、气体辅助等方面来介绍光纤激光切割机的工作原理。
首先,光源部分。
光纤激光切割机的光源采用了高能密度的激光器,如光纤激光器、二氧化碳激光器等。
这些激光器能够产生高能量密度的激光束,具有较高的光束质量和稳定性,能够满足对工件进行精细切割的要求。
其次,光路部分。
光纤激光切割机的光路系统主要由准直器、反射镜、聚焦镜等光学元件组成。
激光束经过准直器的调节后,通过反射镜进行折射、反射,最终聚焦到工件表面。
光路系统的稳定性和精准度对于激光切割的质量有着重要影响。
然后,焦距调节部分。
光纤激光切割机通过调节聚焦镜的焦距,控制激光束的聚焦深度和焦点位置。
不同的工件材料和厚度需要不同的焦距,通过焦距调节可以实现对工件的精准切割。
最后,气体辅助部分。
在激光切割过程中,通常会采用氮气、氧气等作为辅助气体。
这些气体能够在激光束作用下与工件产生化学反应,加速切割速度,同时也能够将切割区域的熔融物吹除,保持切割区域的清洁。
综上所述,光纤激光切割机通过高能密度激光束的精准聚焦,结合气体辅助等技术手段,实现了对工件的精细切割。
其原理简单清晰,操作便捷高效,因此在工业制造领域有着广泛的应用前景。
希望本文所述内容能够帮助大家更好地理解光纤激光切割机的工作原理,为相关行业的从业人员提供一定的参考和指导。
光纤激光切割机原理
光纤激光切割机原理
光纤激光切割机是一种利用激光束对工件进行切割的设备。
它是利用激光束的高能量浓度和高聚焦性能,在工件表面产生高温区域,从而使工件表面材料融化或蒸发,并通过对切割时的材料蒸发物进行脱除,实现切割的目的。
光纤激光切割机的主要原理是利用激光器将电能转换为光能。
激光器通过光纤将激光束传输到切割头。
切割头内有一个透镜,能够将光束集中聚焦。
聚焦后的光束能量非常高,可以使工件表面的材料迅速升温并融化。
通常情况下,光纤激光切割机使用CO2激光器或光纤激光器
作为光源。
这两种激光器都是通过在材料中产生激光束来实现切割的。
CO2激光器产生的激光束波长为10.6微米,适用于
对非金属材料的切割,而光纤激光器产生的激光束波长为1.06微米,适用于对金属材料的切割。
在切割过程中,光束通过切割头聚焦到工件上。
光束的高能量密度使得工件表面的材料迅速升温,并融化或蒸发。
同时,机器移动切割头,使得光束沿着预定的路径进行切割。
切割路径可以通过计算机控制,从而实现对不同形状的工件进行精确切割。
在切割过程中,激光切割机需要控制光束的焦点位置、功率和速度等参数,以便实现对不同材料的切割需求。
为了提高切割效果,通常还会在切割头上设置气体喷嘴,以将气体喷射到切割区域,帮助清洁切割区域和冷却工件表面。
总之,光纤激光切割机通过将激光束聚焦到工件上,利用高能量密度使工件表面材料融化或蒸发,从而实现切割的过程。
这种切割方式不会产生机械应力和接触应力,切口质量好,适用于各种材料的切割。
光纤激光切割机原理
光纤激光切割机原理
光纤激光切割机是利用激光束的高能量密度和高精度控制技术进行物料切割的设备。
光纤激光切割机的工作原理如下:
1. 光源:光纤激光切割机使用光纤激光器作为光源。
光纤激光器可以将电能转化为激光能量,其输出为准单色激光束。
2. 光纤传输:准单色激光束通过优质的光纤传输到切割头。
光纤具有良好的柔性和导光性能,可以将激光束输送到较远距离的切割头。
3. 切割头:切割头是激光束聚焦和切割的关键组件。
它包括凸透镜和小孔。
凸透镜用于将光束聚焦到非常小的焦点上,提高能量密度。
小孔用于喷射助剂气体(如氧气或氮气)来吹刮切割区域以加速切割过程。
4. 切割过程:当激光束聚焦在工作表面上时,高能量密度的激光束将物料加热至高温,使其熔化或蒸发。
助剂气体的喷射带走了熔化或蒸发的物料,实现了切割过程。
5. 控制系统:光纤激光切割机的控制系统包括电脑数控系统和驱动系统。
电脑数控系统通过预先编程的程序控制激光切割头的移动和功率调节,实现精确的切割。
驱动系统控制切割表面的移动,以达到所需的切割形状和尺寸。
总之,光纤激光切割机通过激光束的高能量密度和精确的控制技术,使物料在热效应下熔化、蒸发或燃烧,从而实现切割目的。
光纤激光的工作原理
光纤激光的工作原理
光纤激光是一种通过光纤传输激光的技术。
它利用光纤的高折射率和低损耗特性,将激光信号传输到较远的位置。
光纤激光的工作原理可以概括为以下几个步骤:
1. 激光发射:激光器产生高能量、高聚集度、单色性好的激光光束。
2. 入射光纤:将激光光束通过一个耦合器入射到光纤中。
耦合器通常采用折射率逐渐变化的光纤尖端,以确保最大的能量传输效率。
3. 光纤传输:在光纤中,激光光束会一直进行全内反射,沿着光轴方向传输。
这是因为光线在光纤纤芯和包层的界面上发生了全内反射。
4. 光纤输出:在光纤的一端,光束可以通过一个耦合器耦合到另一个光纤或设备中,实现远距离激光传输。
在光纤激光传输过程中,要注意以下几点:
1. 光纤的折射率和几何参数:光纤的折射率和几何参数会影响光纤中光的传输特性。
不同类型的光纤有不同的折射率和几何参数,因此需要选择适合的光纤来传输激光信号。
2. 光纤的损耗:光纤中的光会因为散射、吸收、弯曲等原因而逐渐损失能量。
因此,需要考虑光纤的损耗,选择低损耗的光
纤来传输激光信号。
3. 光纤的光束质量:光纤激光器的输出光束质量对于传输距离和功率密度的要求都有很高的要求。
优化光纤的设计和制造工艺,可以提高光束质量,减小光纤传输中的功率损耗和光束扩散。
总之,光纤激光器利用光纤的特性实现了激光信号的远距离传输。
它在通信、医疗、材料加工等领域具有广泛的应用前景。
光纤激光器的原理及应用
光纤激光器的原理及应用光纤激光器的工作原理是通过受激辐射的过程产生激光。
首先,通过把电能、光能等能量输入石英玻璃纤维中,激发其中的电子从基态跃迁到激发态,电子在激发态寿命极短,相互作用强烈,从而形成了大量的受激辐射和激光产生,最后在光纤的末端通过光束输出。
1.制造业:光纤激光器在制造业中有广泛的应用,如切割、焊接和打标。
由于激光光束的高能量密度和小发散性,激光切割和激光焊接在金属加工中得到了广泛应用。
光纤激光器的高功率和高能量密度可实现更精确的切割和焊接,提高生产效率。
2.医疗领域:光纤激光器被广泛应用于医疗领域,例如激光手术、激光美容和激光治疗等。
光纤激光器的小尺寸和光纤的柔性使其能够在医疗设备中灵活使用,激光的高能量密度可精确控制和切割组织,可以用于手术刀替代、病变组织消融和切割等医疗操作。
3.通信领域:光纤激光器也广泛应用于通信领域,例如光纤通信和光纤传感。
光纤激光器的窄线宽和高功率输出能够提供更高的传输速率和传输距离,同时它的稳定性也能够保证信息的可靠传输。
光纤激光器在光纤传感中的应用主要是通过改变激光器输出的光强度或频率来检测物理变量,如温度、压力和应力等。
4.科学研究:在科学研究中,光纤激光器也扮演着重要的角色。
例如,在原子物理研究中,光纤激光器可用于冷却和操纵原子,使其接近绝对零度,从而研究量子行为。
在激光光谱学中,光纤激光器的高能量密度和带宽可用于光谱分析和材料表征等。
总之,光纤激光器凭借其小巧灵活、可靠性高、能量密度高、功率稳定等特点,在制造业、医疗、通信、科学研究等领域得到了广泛的应用。
随着光纤技术的不断发展和完善,光纤激光器在未来将继续发挥重要的作用,为各个领域的创新和发展提供有力支持。
激光切割机原理是什么
激光切割机原理是什么
激光切割机的原理是利用激光束的高能量密度和聚焦能力,在工件表面产生高热能,使其局部区域迅速升温,达到熔化或汽化的温度,然后通过气流喷射或运动机构将熔化或汽化的物质吹除,从而实现对工件进行切割的过程。
具体原理如下:
1. 激光发生器产生激光光束,通常采用CO2激光器或光纤激
光器。
激光光束经过光学透镜聚焦,使其能量密度变得更高。
2. 聚焦后的激光光束照射到工件表面,光能被吸收转化为热能。
工件材料的吸收特性与激光波长有关,一般金属对CO2激光
较为吸收,而光纤激光更适合非金属材料。
3. 高能量密度的激光束将工件表面的局部区域迅速加热,在极短的时间内达到熔点或汽化温度。
此过程为热传导。
4. 加热到熔点或汽化温度的材料被气流喷射或运动机构移动,将熔化或汽化的物质吹除。
喷射气体一般用氮气、氧气或压缩空气。
5. 激光束和气流/运动机构同时作用,切割出所需的形状。
光
束的运动速度决定了切割的速度。
总的来说,激光切割机利用激光束的高能量密度将工件局部区域加热到熔点或汽化温度,然后通过喷射气流或运动机构将熔化或汽化的物质吹除,从而实现对工件进行切割。
光纤激光切割原理
光纤激光切割原理光纤激光切割是一种高精度、高效率的切割技术,广泛应用于金属材料、非金属材料、电子元件等领域。
它的原理是利用激光光束对材料进行加热,使其局部温度升高,然后通过气体流将熔化的材料吹走,从而实现切割的目的。
光纤激光切割的原理相对简单,但实现它需要多个关键技术的协同作用。
首先,光纤激光切割系统由激光发射器、光纤传输系统、光束整形系统、焦距调节系统、切割平台和控制系统等组成。
激光发射器通过激光器将电能转化为激光能,然后通过光纤传输系统将激光能传输到切割头。
光束整形系统通过改变光束的形状和尺寸来控制激光的能量密度分布,从而实现对切割过程的控制。
焦距调节系统用于控制激光光斑的大小和位置,以使其与切割材料的表面保持一定的焦距。
切割平台用于支撑和固定被切割材料,控制材料的位置和移动。
控制系统通过对各个部件的控制和调整,实现对切割过程的自动化控制。
在光纤激光切割过程中,激光光束首先通过光纤传输到切割头,然后通过光束整形系统进行调整,使光束在切割头的焦点处形成一个小而密集的光斑。
当激光光斑与材料接触时,光能被材料吸收,使材料的温度迅速升高。
当温度达到材料的熔点时,材料开始熔化,并被高压气体流吹走。
随着激光光斑的移动,切割过程也在不断进行中。
通过控制激光光斑的大小、位置和移动速度,可以实现对材料的精确切割。
光纤激光切割具有许多优点。
首先,由于激光光束是通过光纤传输的,因此可以灵活地实现对切割头的位置控制,从而可以在较大的切割范围内进行切割。
其次,光纤激光切割具有高精度和高效率的特点。
激光光斑的大小可以调节,可以实现对不同材料的切割需求。
同时,激光光束的能量密度高,切割速度快,切割质量好。
此外,光纤激光切割还具有非接触性和非机械性的特点,可以避免材料的变形和磨损。
光纤激光切割在实际应用中具有广泛的前景。
它可以用于切割金属材料、非金属材料和电子元件等各种材料,可以应用于汽车制造、航空航天、电子制造、家电制造等领域。
激光切割机 原理
激光切割机原理
激光切割是一种高精度的切割技术,其原理是利用激光束对工件进行照射,使工件表面的材料迅速加热并融化或汽化,从而实现对工件的切割。
激光切割机主要由激光装置、切割头、焦距调节装置、控制系统和切割台等组成。
其工作原理为:激光发射器发射出的激光束经过整形镜和聚焦镜集中到焦点上,形成高能量密度的光斑。
当激光束对准工件表面时,被照射的材料开始吸收激光能量,温度迅速升高,材料因受热而融化或汽化。
激光束随之移动,通过控制工件和激光束的相对运动,从而实现对工件的切割。
激光切割机一般采用CO2激光源或光纤激光源。
CO2激光源
通过电子转换能量产生激光,而光纤激光源则利用高能量二极管激光发射出激光束。
两种激光切割机的工作原理相似,都是通过激光束对工件进行切割。
在激光切割过程中,控制系统起到关键作用。
控制系统通过编程将所需切割形状的数据传输给激光切割机,同时控制激光切割头的运动和激光的开关,实现对切割过程的精确控制。
切割台用于支撑和定位工件,保证切割过程的稳定性。
与传统机械切割相比,激光切割具有精度高、速度快、切割表面光滑等优点。
它广泛应用于金属制造、电子、汽车、航空航天、模具制造等领域。
激光切割机的应用不断拓展,并在科技发展中发挥着越来越重要的作用。
激光切割机工作原理
激光切割机工作原理
激光切割机是一种利用激光束对材料进行切割的设备。
其工作原理可以归纳为以下几个步骤:
1. 激光发射:激光切割机使用高功率激光器产生强大的激光束。
激光器中的活性物质(如二氧化碳、光纤等)受到电流或光电激励后,将能量转化为激光。
2. 调制激光:激光束经过光学系统聚焦后,进入到切割头。
在切割头中,激光束经过镜片和透镜进行精确的调节和聚焦,形成高能量密度的激光束。
3. 材料加工:激光束穿过切割头的喷嘴,照射到待切割的材料表面。
由于激光的高能量和密度,当激光束与材料接触时,会产生局部的高温,使材料迅速升温并融化或汽化。
4. 气体辅助:在切割过程中,常常会通过喷嘴向切割区域喷射辅助气体,通常是氧气或氮气。
这种辅助气体可以将融化或汽化的材料吹散,保持切割区域的清洁,并降低割缝宽度。
5. 控制系统:激光切割机还配备了先进的控制系统,可以根据工艺要求和所切割材料的不同,调节激光功率、速度、气体压力等参数,以实现精确的切割。
总的来说,激光切割机通过激光束的高能量和密度,在材料表面产生高温,使材料在辅助气体的作用下迅速融化或汽化,从
而实现对材料的切割。
这种切割方式精度高、速度快,并且能够切割各种不同类型的材料,如金属、塑料、纸张等。
光纤激光切割机和激光切割机的区别
光纤激光切割机和激光切割机的区别
光纤激光切割机和普通激光切割机在工业生产中都有着重要的应用,它们能够提高生产效率,降低生产成本,实现精确切割。
然而,光纤激光切割机和普通激光切割机在原理、结构和性能上存在一些显著的区别。
原理区别
光纤激光切割机和普通激光切割机的原理基本相同,都是利用高能激光束对工件进行加工,通过激光束的高能量浓度来实现快速切割。
但光纤激光切割机采用光纤作为传导媒介,将激光束传输到切割头,而普通激光切割机则直接从激光源发出激光束进行切割。
结构区别
光纤激光切割机相比普通激光切割机在结构上更加简洁高效。
光纤激光切割机由激光发生器、光纤传输系统和切割头组成,整个系统结构简单,激光传输过程更加稳定,减少能量损耗。
而普通激光切割机通常包含激光发生器、反射镜、透镜等组件,结构复杂一些。
性能区别
光纤激光切割机在性能上具有更高的切割精度和速度。
光纤激光切割机激光束传输更为稳定,切割过程更加精准,适用于对切割精度要求较高的工件。
而普通激光切割机在切割速度上可能比光纤激光切割机要慢一些,切割精度也不及光纤激光切割机。
总的来说,光纤激光切割机比普通激光切割机在结构、性能上更为优越,能够更好地满足工业生产中对于高精度、高速度切割的需求。
随着科技的不断发展,光纤激光切割机在工业生产中的应用也将会逐渐增加。
光纤激光切割机原理
光纤激光切割机原理光纤激光切割机是一种利用高能密度激光束对工件进行切割加工的设备,其原理是利用激光的高能量和高密度来实现对各种材料的高精度切割。
光纤激光切割机在工业生产中具有广泛的应用,其原理和工作过程对于理解其工作原理和性能具有重要意义。
首先,光纤激光切割机的原理基于激光的特性。
激光是一种高能量、高密度的光束,其具有单色性、相干性和方向性等特点。
利用这些特性,光纤激光切割机可以将激光束聚焦到极小的点上,产生高温和高能量,从而实现对工件的切割。
其次,光纤激光切割机利用光纤传输激光能量。
光纤是一种能够将光能有效传输的材料,通过光纤,激光能够迅速、稳定地传输到切割头,实现对工件的切割加工。
光纤的高效传输保证了激光能量的稳定和可靠,从而保证了切割的质量和精度。
另外,光纤激光切割机利用镜头和焦点调节激光束的聚焦和聚能。
通过精密的镜头和焦点调节系统,光纤激光切割机可以将激光束聚焦到极小的点上,产生高能量密度的光斑,从而实现对工件的精细切割。
这种聚焦和聚能的原理保证了切割的精度和效率。
此外,光纤激光切割机还利用数控系统控制激光切割的路径和参数。
数控系统可以根据工件的形状和要求,精确控制激光切割的路径和参数,实现对工件的精确切割。
这种精密控制的原理保证了切割的精度和一致性。
总的来说,光纤激光切割机的原理是利用高能量、高密度的激光束对工件进行精确切割。
通过光纤传输、镜头聚焦、数控系统控制等技术手段,光纤激光切割机实现了对各种材料的高精度切割加工,广泛应用于金属加工、电子制造、汽车制造等领域。
对光纤激光切割机的原理有深入的理解,有助于更好地掌握其工作原理和操作技术,提高切割加工的质量和效率。
光纤激光切割原理
光纤激光切割:超高效精确的神奇工艺
光纤激光切割,是现代工业中一种非常先进的金属切割手段。
它
利用激光束在金属表面快速打熔并喷出熔渣、气化等方式实现切割,
具有高效率、高精度、高质量等优势。
光纤激光切割原理主要是靠激光从光纤中传导出来,在凸透镜的
作用下汇聚为小于0.2mm的小点状光斑,然后通过计算机程序对工件
进行扫描进行切割。
那么,它的高效率、高精度、高质量具体表现在哪些方面呢?
首先,光纤激光切割的高效率得益于它的激光功率密度极高,可
以实现快速、高温、腐蚀、氧化、变性等高负荷作业。
其次,利用计
算机程序,可以灵活自如地实现小批量、多种产品的生产,免去了传
统方式下换刀的时间浪费。
此外,由于光斑极小,切割时切口宽度仅
为0.1-0.5毫米,被切割材料周围的热影响区域也很小,最大限度地
避免了金属变形,保证了高精度切割。
作为现代工业中的重要生产力量,光纤激光切割已广泛应用于电子、机械、航空、医疗、汽车等行业中。
它已经成为了实现产值、效益、质量提升的有力手段。
对于想要深入了解和应用光纤激光切割技术的读者来讲,要注意
合理选用激光功率、光线直径、切割速度等参数,保证切割质量和效
率相匹配,还可以结合数控技术自动化生产,最大限度地发挥其优势。
光纤激光切割机工作原理
光纤激光切割机工作原理
光纤激光切割机的工作原理是利用激光器产生的高功率密度能量,通过光路传输系统使聚焦镜片按序排列,在焦点处形成高密度的能量点。
高能量的激光束经扩束后输出并汇聚于工件表面上,在计算机控制下,数控装置按照程序设定的轨迹和速度移动到工件的边缘位置进行扫描加工。
加工过程中随时改变光束的行进方向、偏移量以及扫描路径等参数来适应不同形状的零件。
当工作表面上的材料被完全去除后,自动返回起始点继续下一道工序或等待下一次加工命令的下达(即循环加工)。
工作完成后由机床控制系统发出指令停止机器运行并退回原点。
光纤激光切割机广泛应用于金属材料、非金属材料、电子元器件、医疗器械等行业的加工领域,具有切割精度高、速度快、效率高等优势。
光纤激光切割机实习报告
实习报告:光纤激光切割机实习一、实习背景在我国制造业迅速发展的背景下,激光切割技术得到了广泛的应用。
作为一种高效、精准的切割方式,光纤激光切割机在金属加工、广告制作、电子电器等领域具有广泛的应用前景。
为了更好地了解光纤激光切割机的工作原理及其操作维护,我参加了为期一个月的光纤激光切割机实习。
二、实习内容1. 光纤激光切割机原理学习在实习过程中,我首先了解了光纤激光切割机的工作原理。
光纤激光切割机是利用光纤激光器产生的高能量激光束,通过聚焦透镜聚焦后,照射到金属材料表面,使材料熔化、蒸发并被高速气流吹走,从而实现切割。
光纤激光切割机具有切割速度快、精度高、切口质量好等优点。
2. 光纤激光切割机操作学习在掌握了光纤激光切割机的工作原理后,我开始学习操作光纤激光切割机。
实习过程中,我学会了如何启动和关闭设备、调整激光束焦点、设置切割参数、处理切割过程中的异常情况等。
此外,我还了解了如何使用光纤激光切割机进行排版,以提高材料利用率。
3. 光纤激光切割机运行维护在实习过程中,我了解到光纤激光切割机的日常维护对设备运行稳定性至关重要。
我学会了如何检查光纤激光切割机的运行状态,包括检查水冷系统、气路系统、控制系统等。
此外,我还学会了如何更换激光头、调整光学系统、更换切割头等维护操作。
三、实习收获通过这次实习,我对光纤激光切割机有了更深入的了解,收获如下:1. 掌握了光纤激光切割机的工作原理,了解了其切割过程及切割特性。
2. 学会了光纤激光切割机的操作,包括启动和关闭设备、调整激光束焦点、设置切割参数等。
3. 了解了光纤激光切割机的运行维护方法,学会了如何检查设备运行状态和进行日常维护。
4. 认识到光纤激光切割机在制造业中的重要应用价值,为其在实际工作中的应用奠定了基础。
四、实习总结通过这次实习,我对光纤激光切割机有了全面的了解,从原理到操作维护,都有了实践经验。
这次实习不仅提高了我的技能水平,也增强了我对激光切割技术的认识。
光纤激光切割工艺参数及原理
光纤激光切割工艺参数及原理光纤激光切割技术原理光纤激光技术是目前主流激光加工技术之一,通过激光器发出的高能激光束,利用光纤传导至加工材料,使被照射的材料迅速熔化、汽化、烧蚀或达到燃点,同时借助与光束同轴的高速气流吹除熔融物质,从而实现将工件切割,雕刻的目的。
常见的激光头结构如下:切割工艺的分类1)汽化切割利用高能密度的激光束加热工件。
在短的时间内汽化,形成蒸气。
在材料上形成切口。
材料的汽化热一般很大,所以激光汽化切割时需要大的功率和功率密度。
激光汽化切割多用于薄板金属材料和非金属材料(如纸、布、木材、塑料和橡皮等)的切割。
2)熔化切割激光熔化切割时,用激光加热使金属材料熔化,喷嘴喷吹非氧化性气体(氩气、氦气、氮气等),依靠气体的强大压力使液态金属排出,形成切口。
所需能量约为汽化切割的1/10。
激光熔化切割主要用于一些不易氧化的材料或活性金属的切割,如不锈钢、钛、铝及相关合金等。
3)氧气切割它是用激光作为预热热源,用氧气等活性气体作为切割气体。
喷吹出的气体一方面与切割金属作用,发生氧化反应,放出大量的氧化热;另一方面把熔融的氧化物和熔化物从反应区吹出,而切割速度一般大于激光汽化切割和熔化切割。
激光氧气切割主要用于碳钢、钛钢以及热处理钢等易氧化的金属材料。
光纤激光切割关键参数1)激光功率激光功率是影响激光加工的首要因素,对于不同的材料,所需的激光功率也有所不同,通常越厚的材料所需的激光功率也就越大,在同种同厚度板材切割中,激光输出功率越大,切割速度越快,切割端面也越光滑;但功率并非越大越好,过高的激光功率可能导致过烧等情况出现,同样会影响成品质量。
2)输出模式光纤激光输出模式又分为单模和双模,单模是指在一条光纤上运行一种波长的模态,多模是指在一条光纤线上运行一种以上波长的模态。
通常,单模激光光束质量好,形成的光斑小,适合进行微加工及薄板切割,且加工精度高;多模激光则适合金属焊接、工业零部件热处理及不锈钢、铝、钢材等厚板材料的高质量切割。
光纤切割原理
光纤切割原理光纤切割是一种利用高能密度激光束来进行材料切割的高精度加工技术。
它广泛应用于金属、非金属、塑料等各种材料的精密切割和雕刻。
光纤切割技术具有切割速度快、精度高、热影响区小等优点,因此受到了广泛关注和应用。
下面我们将详细介绍光纤切割的原理及其应用。
光纤切割的原理主要是利用高能密度激光束对材料进行瞬间加热,使其瞬间蒸发或熔化,从而实现材料的切割。
光纤切割系统主要由激光发生器、光纤传输系统、切割头和控制系统组成。
激光发生器产生高能量密度的激光束,经过光纤传输系统传输到切割头,切割头聚焦激光束并对材料进行加工,控制系统则控制整个加工过程。
在光纤切割过程中,激光束首先经过准直透镜进行准直,然后通过聚焦透镜聚焦成高能密度的激光束,瞬间照射到材料表面。
材料表面受到激光束的照射后,会产生瞬间的高温,使其瞬间蒸发或熔化,然后利用氧化剂或惰性气体将熔化的材料吹走,从而实现材料的切割。
由于激光束的能量密度极高,因此可以实现对各种材料的高精度切割。
光纤切割技术在工业制造中有着广泛的应用。
首先,光纤切割可以实现对各种材料的高精度切割,包括金属材料、非金属材料、塑料等。
其次,光纤切割具有切割速度快、精度高、热影响区小等优点,可以满足工业制造中对高精度加工的需求。
再次,光纤切割技术还可以实现对复杂形状的材料进行切割,具有很高的灵活性和适用性。
因此,在汽车制造、航空航天、电子产品制造等领域都有着广泛的应用。
总的来说,光纤切割技术以其高效、精准、灵活的特点,成为了现代工业制造中不可或缺的一种加工技术。
随着激光技术的不断发展和成熟,光纤切割技术在工业制造中的应用将会更加广泛,为工业制造带来更多的便利和效益。
激光切割的原理
激光切割的原理激光切割是一种利用激光束对材料进行切割的先进技术。
它在工业生产中得到了广泛应用,如金属加工、电子制造、汽车制造等领域。
激光切割技术以其精确、高效、无污染等特点,成为现代制造业中不可或缺的工艺之一。
激光切割的原理是利用高能量密度的激光束对材料进行加热,使其局部区域迅速熔化或蒸发,从而实现切割的目的。
激光切割过程主要包括激光生成、激光聚焦、材料加热和切割控制四个步骤。
激光生成是激光切割的前提条件。
激光是通过激发激光介质中的原子或分子,使其处于激发态,然后通过受激辐射释放出一束相干、单色、高能量的光束。
常用的激光器有CO2激光器、光纤激光器和半导体激光器等。
激光聚焦是将激光束聚焦到一个尖锐的焦点,以提高激光束的能量密度。
聚焦透镜是将激光束聚焦的关键装置,它可以使激光束变得更加集中,从而使切割效果更加精细。
激光聚焦的精度和稳定性对切割质量起着决定性的作用。
然后,材料加热是激光切割过程中的核心环节。
激光束通过聚焦透镜照射到材料表面,被吸收后会转化为热能,使材料局部区域升温。
当材料温度升高到熔点或沸点时,材料会熔化或蒸发,形成一个狭窄而深度可控的切割槽。
切割控制是激光切割的关键环节。
通过控制激光束的位置、功率和速度等参数,可以实现对切割槽形状和尺寸的精确控制。
切割控制系统通常由计算机控制,可根据不同的切割要求和材料特性进行调整,以实现高精度的切割效果。
激光切割技术具有许多优点。
首先,激光切割速度快、精度高,可以实现对各种形状的材料进行精确切割。
其次,激光切割过程无接触,不会对材料产生变形或机械应力,可以避免由于切割力造成的材料损坏。
此外,激光切割还可以实现对复杂图案的切割,适用于批量生产和个性化定制。
然而,激光切割也存在一些限制。
首先,激光切割设备价格昂贵,对于一些小型企业来说,投资成本比较高。
其次,激光切割对材料的选择有一定限制,主要适用于金属、塑料、木材等可导热材料。
对于不透明的材料,如玻璃和陶瓷等,激光切割效果较差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤激光切割原理
7轴联动工业机器人光纤激光切割机与五轴机床CO2激光切割机对比
三维切割系统的技术优势:
1.因为采用了业内最高精度的史陶比尔机械手,本体较轻,切割速度快,在小弧度的精细切割和大边的高速切割方面具有明显优势,实际切割速度可以达到18米/分钟而无抖动,综合加工效率是其他品牌机械手组合的两倍,性价比高,还可以节约一组的耗材和人工,后期可以少追加设备也能满足产能要求。
还可24小时持续工作。
一次性投入相对较少,在一个很短的折旧期内(两班8小时工
作制),史陶比尔机器人激光解决方案就可回收投资。
同时能耗少,体积小,维护需求低。
2.切割精度高。
采用史陶比尔专利齿轮减速系统JCS和JCM,独一无二的驱动技术,确保了无可匹敌的轨迹控制精度和速度。
即使是要求极高的小圆,或复杂立体几.何图形的加工,也可精确和快速完成,从而提升您的产品品质。
系统重复定位精度高达±0.05M,完全可以满足钣金件行业的精度需求。
可切割直径小至2MM的小圆,切割效果圆滑美观,目测无形变和毛刺。
3.切割幅面大,实际死角小。
选配臂长2.01米的机械手,除了实现直径达3米的半球形三维加工区域外,还可实现较大的二维平面切割,配合我公司配套生产的可移动工作台2.5mX5m(2m的运动行程),可实现2mX5m的二维平面切割。
4. 根据实际需要选配离线编程软件,可读取UG,SOLIDWORK等三维作图软件导出的vda,igs,x_t,sldprt,prt,stp,ipt,par等格式的数模,修改后直接生成切割轨迹,代替人工示教,简单易用。
5. 工业控制理念,模块化设计,全系统的防护等级为IP55,机械手防护等级更是高达IP65,系统集成度高,故障少,抗冲击振动,抗灰尘,无须光学调整或维护,真正适合于工业加工领域的应用用于恶劣的激光环境。
结构坚固,动态性更佳。
而其他同类产品为简单集成,设备的稳定性较差。
6.系统的工艺性和易用性较好。
简单而功能强大的史陶比尔激光专用标准软件LasMAN基于Windows操作系统,用户界面简单友好,集成了机器人运动控制、激光控制、数据处理和产品管理等功能。
友好的人机界面,模块化的设计,使得操作者仅需经过简单的培训即可达到系统产能最大化,同时也易于集成。
这就大大降低了对操作工人的要求,降低了对工人的管理难度。
性能指标:
激光功率: 200W/300W/400W/500W/1000(根据工件材质和料厚可选)
激光波长:1070NM
工作区域:半径2米的半球形工作区域(选配半径2米的机械手)
切割速度:0-18米/分钟(根据功率大小和工件材质与厚度可调)
供电电源:三相交流380V
用电功率: <8KW(根据选配激光器功率大小而定)
冷却方式:风冷/水冷(根据选配激光器功率大小而定)
切割头焦距:5-7英寸(根据工件厚度可选)
机械手重复定位精度:±0.05MM
机械手保护等级:IP65
系统使用寿命:十万小时
系统保修:2年
性能参数
耗电耗材:
系统耗电:<8KW(根据选配激光器功率大小而异)
零星耗材:<0.5元/小时(包括高功率激光器水冷系统的滤芯、切割头气嘴和切割头保护镜片)
吹气费用:<6元/小时(以用纯氧辅助切割2MM内碳钢为例)
(2)光纤激光切割机器人优缺点第一,用工业机器人代替五轴机床,两者都能进行空间轨迹描述实现三维立体切割。
工业机器人的重复定位精度比五轴机床稍低,约为±100μm,但这完全可以满足汽车钣金覆盖件和底盘行业的精度要求;而采用工业机器人大大降低了系统的成本造价,减少了耗电系统费用和系统运行维护费用,减少了系统的占地面积。
第二,光纤激光相比传统激光,具有更好的切割质量,更低的系统造价,更长的使用寿命和更低的维护费用,更低的耗电。
关键是光纤激光器的激光可以通过光纤传输,方便与工业机器人连接,实现柔性加工。
第三,本系统唯一的缺陷是只能加工金属工件,不能加工非金属工件。
这是因为本系统采用的是光纤激光,其波长为1064nm,相对于波长为10640nm的CO2激光,不易为非金属材料所吸收。
第四,采用工业机器人+光纤激光器的组合进行加工,修边冲孔等工艺一次完成,切口整齐无需后道工艺再处理,这样既大大缩短了工艺流程,降低了人工成本和模具费用的投入,也提高了产品档次和附加值。
选配离线编程软件,通过数值模拟直接生成切割轨迹,抛弃了繁杂的人工示教,更加适合小批量多批次的维修市场、新品试制和非标定制等个性化的切割需求。
三种加工方式对比如附表所示。
第五,先进光纤激光技术与数字控制技术完美融合,代表着最先进的激光切割水平;专业的激光切割机控制系统,电脑操作,能够保证切割质量,使切割工作更方便,操作更简单;配置智能机械手,可实现三维立体切割,操控方便,智能化程度高,保证设备的高速度、高精度、高可靠性;激光切割头配置进口激光切割头,反应灵敏、准确,与机械手有效配合,可避免切割头与加工板材碰撞,
并能保证切割焦点位置,保证切割质量稳定;激光切割头可承受1.0MPa气体压力,高压气路设备,提高了对不锈钢等难切割材料的切割能力。
三维光纤激光切割机器人的特点
(1)柔性高尤其适合小批量的三维钣金切割。
其高柔性主要表现在两个方面:
第一,对材料的适应性强,激光切割机通过数控程序基本可以切割任意板材。
第二,加工路径由程序控制,如果加工对象发生变化,只须修改程序即可,这一点在零件修边、切孔时体现得尤为明显。
由于修边模、冲孔模对其他不同零件的加工无能为力,而且模具的成本高,所以目前三维激光切割有取代修边模、冲孔模的趋势。
一般来说,三维机械加工的夹具设计及其使用比较复杂,但激光加工时对被加工板材不施加机械加工力,这使得夹具制作变得很简单。
此外,一台激光设备如果配套不同的硬件和软件,就可以实现多种功能。
总之,在实际生产中,三维激光切割在提高产品质量、生产效率,缩短产品开发周期、降低劳动强度、节省原材料等方面优势明显。
因此,尽管设备成本高、一次性投资大,国内还是有很多汽车、飞机生产厂家购进了三维激光加工机,部分高校也购进了相应设备进行科研,三维激光技术势必在我国制造业中发挥着越来越大的作用。