浙教版八年级数学期中试题
浙教版数学八年级期中试卷
考试时间:120分钟满分:100分一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. 2/32. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 03. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,-2),则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 04. 在梯形ABCD中,AD平行于BC,且AD = 4cm,BC = 6cm,AB = 3cm,CD = 5cm,则梯形ABCD的面积是()A. 18cm^2B. 24cm^2C. 30cm^2D. 36cm^25. 下列函数中,在定义域内单调递增的是()A. y = -2x + 3B. y = 2x - 3C. y = -2x^2 + 4x + 1D. y = 2x^2 - 4x + 16. 已知等差数列{an}的前三项分别为2,5,8,则第10项an是()A. 21B. 24C. 27D. 307. 在直角坐标系中,点P(2,-3)关于y轴的对称点Q的坐标是()A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)8. 下列各组数中,成等比数列的是()A. 1,3,9,27B. 2,4,8,16C. 1,2,4,8D. 1,2,4,109. 若sinα = 1/2,cosβ = 3/5,且α、β均为锐角,则sin(α + β)的值是()A. √3/5B. 2√3/5C. 4√3/5D. 3√3/510. 已知一次函数y = kx + b的图像经过点A(-2,3),且与y轴交于点B(0,4),则该函数的解析式是()A. y = 2x + 4B. y = -2x + 4C. y = 2x - 4D. y = -2x - 4二、填空题(每题5分,共25分)11. √(25 - 4) = ______12. 若a = -3,b = 2,则a^2 - 2ab + b^2 = ______13. 已知等比数列{an}的首项为3,公比为2,则第5项an = ______14. 在△ABC中,∠A = 60°,∠B = 45°,则sinC = ______15. 已知函数y = 2x - 3,若x的取值范围是[1,3],则y的取值范围是 ______三、解答题(共35分)16. (10分)已知等差数列{an}的首项为3,公差为2,求第10项an及前10项的和S10。
浙教版数学八年级下学期《期中考试卷》附答案
26.如图,平行四边形 中, , ,点 在 边上以每秒 的速度从点 向点 运动,点 在 边上,以每秒 的速度从点 出发,在 间往返运动,两个点同时出发,当点 到达点 时停止(同时点 也停止).设运动时间为 秒,当 为何值时,以点 、 、 、 为顶点的四边形是平行四边形?
答案与解析
一、选择题(每小题3分,共36分)
A.k≤1B.k>1C.k=1D.k≥1
[答案]A
[解析]
[详解]根据一元二次方程的根的判别式,可由方程有两个实数根,可得△=b2-4ac≥0,即4-4k≥0,解得k≤1.
故选A.
4.一个多边形的内角和是720°,这个多边形是()
A.五边形B.六边形C.七边形D.八边形
[答案]B
[解析]
利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.
17.在我国古代数学著作《九章算术》中记载了一道有趣 数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为 丈( 丈 尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面 尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是 尺,根据题意,可列方程为__________.
[详解]当k=0时,原方程为-x+1=0,
解得:x=1,
∴k=0符合题意;
当k≠0时,kx2-(k+1)x+1=(kx-1)(x-1)=0,
解得:x1=1,x2= ,
∵方程的根是整数,
∴ 为整数,k为整数,
∴k=±1.
综上可知:满足条件的整数k为0、1和-1.
浙教版数学八年级下学期《期中考试试题》含答案
浙 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列计算中正确的是( )A =B 1=C .3+=D 2= 2.居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则用电量的中位数是( )A .41度B .42度C .45度D .46度 3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 4.已知关于x 的一元二次方程()22210x m x m --+=有实数根,则m 的取值范围是( )A .0m ≠B .14m ≥C .14m ≤D .14m >5.若22440a b b -++++=,则 abc =( ) A .4 B .2C .− 2D .1 6.如图所示,在平行四边形ABCD 中,已知AD=5cm,AB=3cm,AE 平分∠BAD 交BC 边于点E,则EC 等于( )A .2 cmB .3 cmC .4 cmD .5 cm 7.如图,在长20米,宽12米的矩形ABCD 空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x 米,根据题意列方程,正确的是( )A .32x +2x 2=40B .x (32+4x )=40C .64x +4x 2=40D .64x ﹣4x 2=408.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD 交BC 于点E ,且ADC 60∠=,12AB BC =,连接OE .下列结论:∠AE CE >;∠ABC S AB AC =⋅;∠ABE AOE S S =;∠14OE BC =;成立的个数有( )A .1个B .2个C .3个D .4个9.已知m 、n 是正整数,,则满足条件的有序数对(m,n)为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是 10.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .B .C .6D .12二、填空题(本大题共7小题,每小题3分,共21分)11.某组数据的方差计算公式为()()()222212812282S x x x ⎡⎤=---+++⎣⎦,则该组数据的样本容量是_____,该组数据的平均数是________.12.若x 满足|2017-x|+ =x, 则x -20172=________13.如图,四边形ABCD 中,AC BC ⊥,AD //BC ,若AB a ,2AD BC b ==,M 为BD 的中点,则CM 的长为_______.14.设a ,b 分别是方程220220x x +-=的两个实数根,则22a a b ++的值是______. 15.等腰三角形一边长是3,另两边长是关于x 的方程240x x k -+=的两个根,则k 的值为_______.16.已知y +18,_____.17.如图,在平行四边形ABCD 中,AB ,点E 为AD 的中点,连接BE 、CE,且BE =BC,过点C 作CF∠BE,垂足为点F,若BF =2EF,则BC 的长=________.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)18.解方程(1)(1)(2)1x x x +-=+ 24x -=19.若a 2+b 2=c 2,则我们把形如ax 2=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a =3,b =4时,写出相应的“勾系一元二次方程”;(2)求证:关于x 的“勾系一元二次方程”ax 2=0(a≠0)必有实数根.20.计算:|(2)3+-21.2020年是特殊的一年,这一年我们经历了新型冠状病毒肺炎疫情,举国上下众志成城,共同抗疫.口罩成为人们防护防疫的必备武器.西安某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图∠中m的值为________;(2)统计的这组数据的中位数为________;众数为________;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩有多少枚?22.2020年是脱贫攻坚的关键年.为了让家乡早日实现脱贫目标,小伟利用网络平台帮助家乡销售特产“留香瓜”.已知小伟的家乡每年大约出产“留香瓜”600吨,利用网络平台进行销售前,人们主要依靠在本地自产自销和水果商贩上门收购,本地自产自销的价格为10元/千克,水果商贩上门收购的价格为8元/千克;利用网络平台进行销售后,因受网上销售火爆的影响,网上每销售100吨“留香瓜”,水果商贩的收购价将提高1元/千克.设网上销售价格为20元/千克,本地自产自销的价格仍然为10元/千克.(1)利用网络平台进行销售前,小伟的家乡每年本地自产自销的总收入不超过卖给水果商贩收入的14,求每年至少有多少吨“留香瓜”卖给了水果商贩?(2)利用网络平台进行销售后,小伟的家乡每年销售“留香瓜”的总收入大约为920万元,其中本地自产自销“留香瓜”的销量按(1)问中的最大值计算,求每年在电商平台上销售了多少吨“留香瓜”?23.如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠====.动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P,Q 分别从点B,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t(秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值;(3)当10.516t ≤<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值.答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列计算中正确的是( )A=B1=C.3+=D=[答案]D[分析]直接利用二次根式的加减运算法则分别计算得出答案.[详解]解:A无法合并,故此选项错误;B无法合并,故此选项错误;C、3无法合并,故此选项错误;D=故此选项正确;故选D.[点睛]此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.2.居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则用电量的中位数是( )A.41度B.42度C.45度D.46度[答案]C[分析]将用电量从小到大排列,再根据中位数的定义计算.解:将用电量从小到大排列为:42,42,42,42,42,42,45,45,45,50,50,50,50,50,共有3+5+6=14户,则中位数为:(45+45)÷2=45度,故选C .[点睛]本题考查了中位数,解题的关键是掌握中位数的求法.3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .[答案]A[分析]根据轴对称图形和中心对称图形的定义进行判断即可;[详解]A 、既是轴对称图形又是中心对称图形,符合题意;B 、既不是轴对称图形也不是中心对称图形,不符合题意;C 、是轴对称图形但不是中心对称图形,不符合题意;D 、不是轴对称图形是中心对称图形,不符合题意;故选:A .[点睛]本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键;4.已知关于x 的一元二次方程()22210x m x m --+=有实数根,则m 的取值范围是A .0m ≠B .14m ≥C .14m ≤D .14m > [答案]C[分析]由方程有实数根即△=b 2﹣4ac≥0,从而得出关于m 的不等式,解不等式即可得答案.[详解]△关于x 的一元二次方程()22210x m x m --+=有实数根, △△=b 2﹣4ac≥0,即[-(2m -1)]2-4m 2≥0,解得:m≤14, [点睛]本题主要考查根的判别式,对于一元二次方程y=ax 2+bx+c(a≠0),判别式△=b 2﹣4ac,当△>0时,方程有两个不相等得实数根;当△=0时,方程有两个相等得实数根;当△<0时,方程没有实数根;熟练掌握一元二次方程的根与判别式间的关系是解题的关键.5.若22440a b b -++++=,则 abc =( ) A .4B .2C .− 2D .1 [答案]C[分析] 先根据绝对值,完全平方式以及二次根式的非负性,求出a,b,c 的值,进而即可求解.[详解]△2|2|44a b b -+++△2|2|(2)0a b -+++=,△|2|a -=0,2(2)b +0=, 即: a=2,b=-2,c=12, △abc =2×(-2)×12=-2. 故选C .[点睛] 本题主要考查绝对值,完全平方式以及二次根式的非负性,根据非负性,求出a,b,c 的值,是解题的关键.6.如图所示,在平行四边形ABCD 中,已知AD=5cm,AB=3cm,AE 平分∠BAD 交BC 边于点E,则EC 等于( )A .2 cmB .3 cmC .4 cmD .5 cm[答案]A[分析] 根据在□ABCD 中,AE 平分△BAD,得到△BAE=△AEB,即AB=BE,即可求出EC 的长度.[详解]△在□ABCD 中,AE 平分△BAD,△△DAE=△BAE,△DAE=△AEB,△△BAE=△AEB,△AB=BE,△AD=5cm,AB=3cm,△BE=3cm,BC=5cm,△EC=5-3=2cm,故选:A.[点睛]本题是对平行四边形知识的考查,熟练掌握平行四边形性质及角平分线知识是解决本题的关键.7.如图,在长20米,宽12米的矩形ABCD空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x米,根据题意列方程,正确的是()A.32x+2x2=40B.x(32+4x)=40C.64x+4x2=40D.64x﹣4x2=40[答案]B[分析]设小路的宽度为x米,则小正方形的边长为2x米,根据小路的横向总长度(20+2x)米和纵向总长度(12+2x)米,根据矩形的面积公式可得到方程.[详解]解:设道路宽为x米,则中间正方形的边长为2x米,依题意,得:x(20+2x+12+2x)=40,即x(32+4x)=40,故选:B.[点睛]考查了一元二次方程的应用,解题的关键是找到该小路的总的长度,利用矩形的面积公式列出方程并解答.8.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD 交BC 于点E ,且ADC 60∠=,12AB BC =,连接OE .下列结论:∠AE CE >;∠ABC S AB AC =⋅;∠ABE AOE S S =;∠14OE BC =;成立的个数有( )A .1个B .2个C .3个D .4个[答案]B[分析] 利用平行四边形的性质可得60ABC ADC ∠=∠=︒,120BAD ∠=︒,利用角平分线的性质证明ABE ∆是等边三角形,然后推出12AE BE BC ==,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.[详解] 解:四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BAD ∠=︒,AE ∵平分BAD ∠,60BAE EAD ∴∠=∠=︒ABE ∴∆是等边三角形,AE AB BE ∴==,60AEB ∠=︒, 12AB BC =,12AE BE BC ∴==, AE CE ∴=,故△错误;可得30EAC ACE ∠=∠=︒90BAC ∴∠=︒,ABCD S AB AC ∴=⋅,故△正确;BE EC =,E ∴为BC 中点,ABE ACE S S ∆∆∴=,AO CO =,1122AOE EOC AEC ABE S S S S ∆∆∆∆∴===, 2ABE AOE S S ∆∆∴=;故△不正确;四边形ABCD 是平行四边形,AC CO ∴=,AE CE =,EO AC ∴⊥,30∠=︒ACE ,12EO EC ∴=, 12EC AB =, 1144OE BC AD ∴==,故△正确; 故正确的个数为2个,故选:B .[点睛]此题主要考查了平行四边形的性质,以及等边三角形的判定与性质.注意证得ABE ∆是等边三角形是关键.9.已知m 、n 是正整数,,则满足条件的有序数对(m,n)为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是 [答案]C[分析] 根据二次根式的性质分析即可得出答案.[详解]解:,m 、n 是正整数, △m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C .[点睛]本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.10.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A.B .C .6 D .12[答案]A[分析] 设B x ∠=,先根据平行四边形的性质可得,180,D B x BAD x AB CD ∠=∠=∠=︒-=,再根据直角三角形的两锐角互余、角的和差可得45x =︒,然后根据等腰直角三角形的判定与性质、勾股定理可得AB =从而可得CD =,最后利用平行四边形的面积公式即可得.[详解]设B x ∠=,四边形ABCD 是平行四边形,,180180,D B x BAD B x AB CD ∴∠=∠=∠=︒-∠=︒-=,,AG BC AH CD ⊥⊥,9090,9090BAG B x DAH D x ∴∠=︒-∠=︒-∠=︒-∠=︒-,又180,45BAG DAH BAD GAH x GAH ∠+︒-∠+∠=∠∠=︒=, 909100458x x x ︒-+︒-=∴︒+︒-,解得45x =︒,即45B ∠=︒,Rt ABG ∴是等腰直角三角形,2,BG AG AB ∴====CD ∴=,∴平行四边形ABCD 的面积是3AH CD ⋅=⨯=,故选:A .[点睛]本题考查了平行四边形的性质、直角三角形的两锐角互余、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握平行四边形的性质是解题关键.二、填空题(本大题共7小题,每小题3分,共21分)11.某组数据的方差计算公式为()()()222212812282S x x x ⎡⎤=---+++⎣⎦,则该组数据的样本容量是_____,该组数据的平均数是________.[答案]8 2[分析] 样本方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,其中n 是这个样本的容量,x 是样本的平均数.利用此公式直接求解.[详解] 解:由于22221281[(2)(2)(2)]8S x x x =-+-+⋯+-,所以该组数据的样本容量是8,该组数据的平均数是2.故答案为:8,2.[点睛]本题考查了方差,样本容量,平均数,熟练记住公式:2222121[()()()]n S x x x x x x n=-+-+⋯+-中各个字母所代表的含义.12.若x 满足|2017-x|+ =x, 则x -20172=________[答案]2018[分析]根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题. [详解]解:由条件知,x -2018≥0, 所以x≥2018,|2017-x|=x -2017.所以x -2017+ =x,即 =2017,所以x -2018=20172 ,所以x -20172=2018,故答案为:2018.[点睛]本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.13.如图,四边形ABCD 中,AC BC ⊥,AD //BC ,若AB a ,2AD BC b ==,M 为BD 的中点,则CM 的长为_______.[答案]12a [分析]延长BC ,使BE AD =,根据题意先证明四边形ABED 是平行四边形,可解得111222BC AD BE b ===,继而得到C 是BE 的中点,再结合中位线的性质解题即可.解:延长BC ,使BE AD =,//AD BC∴四边形ABED 是平行四边形,△DE=AB,,2AB a AD BC b ===111222BC AD BE b ∴=== C ∴是BE 的中点, M 为BD 的中点,111222CM DE AB a ∴=== 12CM a ∴= 故答案为:12a . [点睛]本题考查平行四边形的判定与性质、中位线的性质等知识,是重要考点,难度较易,掌握相关知识、作出正确的辅助线是解题关键.14.设a ,b 分别是方程220220x x +-=的两个实数根,则22a a b ++的值是______.[答案]2021根据题意得a 2+a -2022=0,即a 2+a=2022,利用根与系数的关系得到a+b=-1,代入整理后的代数式求值.[详解]解:a,b 分别是方程x 2+x -2022=0的两个实数根,△a+b=-1,a 2+a -2022=0,△a 2+a=2022,故a 2+2a+b=a 2+a+(a+b)=2022-1=2021,故答案为:2021.[点睛]本题主要考查了一元二次方程的根,根与系数的关系,一元二次方程20ax bx c ++=(0a ≠) 的根与系数的关系为12b x x a +=-,12c x x a=. 15.等腰三角形一边长是3,另两边长是关于x 的方程240x x k -+=的两个根,则k 的值为_______.[答案]3或4.[分析]分等腰三角形的腰长为3和底边为3两种情形求解即可.[详解]当等腰三角形的腰长为3时,则另一边长为3,△另两边长是关于x 的方程240x x k -+=的两个根,△x=3是方程240x x k -+=的根,△23430k -⨯+=,△2430x x -+=,△x=3或x=1,△等腰三角形的三边为3,3,1,存在,当等腰三角形的底边为3时,则两腰为方程的根,△另两边长是关于x 的方程240x x k -+=的两个根,△2(4)40k --=,△k=4,△2440x x -+=,△122x x ==,△等腰三角形的三边为2,2,3,存在,综上所述,k=3或k=4,故答案为:3或4.[点睛]本题考查了一元二次方程的根与等腰三角形的边长之间的关系,灵活运用分类思想,根的定义,根的判别式是解题的关键.16.已知y +18,_____.[答案][分析]首先由二次根式有意义的条件求得x =8,则y =18,然后代入化简后的代数式求值.[详解]解:由题意得,x﹣8≥0,8﹣x≥0,解得,x=8,则y=18,△x>0,y>0,△把x=8, y=18代入=﹣=故答案为:[点睛]本题考查了二次根式有意义的条件和二次根式的化简求值,解题关键是根据二次根式有意义的条件确定x、y的值,能够熟练的运用二次根式的性质化简.17.如图,在平行四边形ABCD中,AB,点E为AD的中点,连接BE、CE,且BE=BC,过点C作CF∠BE,垂足为点F,若BF=2EF,则BC的长=________.[答案][分析]过点C 作CG AD ⊥于点G,由平行四边形的性质可得://AD BC ,AB =,AD=BC,由平行线性质可得:BCE DEC ∠=∠,由BE =BC 可得:BCE BEC ∠=∠,进而可得=BEC DEC ∠∠,用AAS 可证EFC EGC ≅,可得EF=EG,FC=GC,由BF =2EF 可设EF=x ,则BF=2x ,BC=BE=3x ,在Rt BFC △中,由勾股定理可求FC 的长度,故可得CG 和DG 的长度, 在Rt CDG 中,由勾股定理可列方程解出x 即可求出.[详解]如图所示,过点C 作CG AD ⊥于点G,△四边形ABCD 为平行四边形,△//AD BC ,AB =△BCE DEC ∠=∠,△BE =BC,△BCE BEC ∠=∠,△=BEC DEC ∠∠,又△90EFC EGC ∠=∠=︒,EC=EC,△EFC EGC ≅,△EF=EG,FC=GC,△BF =2EF,△设EF=x ,则BF=2x ,BC=BE=3x ,在Rt BFC △中,FC ==,,EG=EF=x ,△E 为AD 中点, △ED= 12BC= 32x , △DG= 3122x x x -=,在Rt CDG 中,DG=12x ,△)22212x ⎛⎫+= ⎪⎝⎭,解得:3x =,△BC=3x =故答案为:[点睛]本题主要考查了全等三角形的判定与性质,勾股定理,平行四边形的性质,根据已知条件作出适当的辅助线构造直角三角形是解题的关键.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.解方程(1)(1)(2)1x x x +-=+ 24x -=[答案](1)11x =-,23x =;(2)1x =,2x =[分析](1)先将方程化为一般式,再利用因式分解法解题;(2)先将方程化为一般式,再利用配方法解题.[详解]解:(1)(1)(2)1x x x +-=+整理得,2230x x --=(3)(+1)=0x x -121,3x x ∴=-=;24x -=240x --=240x ∴--=2(60x ∴-=2(6x ∴-=x ∴=12x x ∴==[点睛]本题考查解一元二次方程,涉及因式分解法、配方法等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.若a 2+b 2=c 2,则我们把形如ax 2=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a =3,b =4时,写出相应的“勾系一元二次方程”;(2)求证:关于x 的“勾系一元二次方程”ax 2=0(a≠0)必有实数根.[答案](1)3x2x+4=0;(2)见解析[分析](1)由a=3,b=4,由a2+b2=c2求出c=±5,从而得出答案;(2)只要根据一元二次方程根的判别式证明△≥0即可解决问题.[详解](1)解:由a2+b2=c2可得:当a=3,b=4时,c=±5,相应的勾系一元二次方程为3x2x+4=0;(2)证明:根据题意,得△=2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0△△≥0,△勾系一元二次方程ax2=0(a≠0)必有实数根.[点睛]本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.20.计算:|(2)3+-[答案]3;(2)-[分析](1)分别化简各项,再作加减法;(2)利用完全平方公式和平方差公式展开,再作加减法.[详解]解:+=452+3;(2)3+-=2338+--=-[点睛]本题考查了二次根式的混合运算,解题的关键是掌握运算法则.21.2020年是特殊的一年,这一年我们经历了新型冠状病毒肺炎疫情,举国上下众志成城,共同抗疫.口罩成为人们防护防疫的必备武器.西安某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图∠中m的值为________;(2)统计的这组数据的中位数为________;众数为________;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩有多少枚?[答案](1)28,(2)1.5元,1.8元;(3)960[分析](1)根据扇形统计图中的数据,可以计算出m%的值,从而可以得到m的值;(2)根据条形统计图中的数据可以得到这组数据的众数和中位数;(3)根据统计图中的数据,可以计算出质量为1.8元的约多少枚.[详解]解:(1)m%=1﹣10%﹣22%﹣32%﹣8%=28%,即m的值是28,故答案为:28;(2)本次调查了5+11+14+16+4=50枚,中位数是:1.5元,众数是1.8元;故答案为:1.5元,1.8元;(3)3000×32%=960(枚),答:价格为1.8元的约960枚.故答案为:960.[点睛]本题考查条形统计图、扇形统计图、中位数、平均数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.2020年是脱贫攻坚的关键年.为了让家乡早日实现脱贫目标,小伟利用网络平台帮助家乡销售特产“留香瓜”.已知小伟的家乡每年大约出产“留香瓜”600吨,利用网络平台进行销售前,人们主要依靠在本地自产自销和水果商贩上门收购,本地自产自销的价格为10元/千克,水果商贩上门收购的价格为8元/千克;利用网络平台进行销售后,因受网上销售火爆的影响,网上每销售100吨“留香瓜”,水果商贩的收购价将提高1元/千克.设网上销售价格为20元/千克,本地自产自销的价格仍然为10元/千克.(1)利用网络平台进行销售前,小伟的家乡每年本地自产自销的总收入不超过卖给水果商贩收入的14,求每年至少有多少吨“留香瓜”卖给了水果商贩? (2)利用网络平台进行销售后,小伟的家乡每年销售“留香瓜”的总收入大约为920万元,其中本地自产自销“留香瓜”的销量按(1)问中的最大值计算,求每年在电商平台上销售了多少吨“留香瓜”?[答案](1)500吨;(2)300吨[分析](1)设利用网络平台进行销售前,每年有x 吨“留香瓜”卖给了水果商贩,根据题意列不等式即可求解;(2)设每年在网络平台上销售了m 吨“留香瓜”,根据题意列方程即可求解.[详解]解:(1)设利用网络平台进行销售前,每年有x 吨“留香瓜”卖给了水果商贩.由题意,得1101000(600)810004x x ⨯-≤⨯⨯ 解之得:x 500≥答:利用电商平台进行销售前,每年至少有500吨“留香瓜”卖给了水果商贩.(2)本地自产自销“留香瓜”的销量按(1)问中的最大值为:600-500=100(吨)设每年在网络平台上销售了m 吨“留香瓜”.则101000100201000m ⨯⨯+⨯+81000(500)9200000100m m ⎫⎛+⨯-= ⎪⎝⎭解得11400m =(舍去),2300m =,答:每年在网络平台上销售了300吨“留香瓜”.[点睛]本题考查了一元一次不等式的应用,一元二次方程的应用,解题关键是理清题目中的数量关系,列出方程或不等式.23.如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠====.动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P,Q 分别从点B,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t(秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值;(3)当10.516t ≤<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值.[答案](1)t=5;(2)t=9;(3)t=15[分析](1)由平行四边形的性质得出DQ=CP,当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,由题意得出方程,解方程即可;(2)当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,由梯形面积公式得出方程,解方程即可;(3)当10.5≤t <16时,点P 到达C 点返回,由梯形面积公式得出方程,解方程即可.[详解]解:(1)△四边形PQDC 是平行四边形,△DQ=CP,当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,如图1所示:△DQ=AD-AQ=16-t,CP=21-2t△16-t=21-2t解得:t=5;即当t=5秒时,四边形PQDC是平行四边形;(2)当0<t<10.5时,P、Q分别沿AD、BC运动,如图1所示:CP=21-2t,DQ=16-t,若以C,D,Q,P为顶点的四边形面积为60cm2,则12(DQ+CP)×AB=60,即12(16-t+21-2t)×12=60,解得:t=9;即当0<t<10.5时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为9秒;(3)当10.5≤t<16时,如图2所示,点P到达C点返回,CP=2t-21,DQ=16-t,则同(2)得:12(DQ+CP)×AB=60,即12(16-t+2t-21)×12=60,解得:t=15.即当10.5≤t<16时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为15秒.[点睛]本题是四边形综合题目,考查了直角梯形的性质、平行四边形的判定与性质、梯形的面积等知识,熟练掌握直角梯形的性质和平行四边形的判定与性质是解题的关键.。
最新浙教版第二学期浙教版八年级数学期中试题卷
(第12题)2021学年第二学期期中考试八年级数学试题卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 13x -,则x 的取值范围是()A .3x >B .3x ≥C .3x <D .3x ≠2.一元二次方程2231x x -=的二次项系数a 、一次项系数b 和常数c 分别是()A .2,3,1a b c ===-B .2,1,3a b c ===-C .2,3,1a b c ==-=-D .2,3,1a b c ==-=3.下列图形,既是轴对称图形又是中心对称图形的是()A .平行四边形B .正五边形C .等边三角形D .矩形4.五边形的内角和是()A .360°B .540°C .720°D .900°5.在平行四边形ABCD 中,已知∠A :∠B =1:2,则∠B 的度数是() A .45°B .90°C .120°D .135°6.用反证法证明某一命题的结论“b a <”时,应假设() A .b a >B .b a ≥C .b a =D .b a ≤7.已知点M (-2,3)在双曲线xky =上,则下列一定在该双曲线上的是( ) A .(3,一2) B .(一2,一3) C . (2,3) D . (3,2) 8.正方形具有而矩形不一定具有的性质是()A. 对角线相等B. 对角互相垂直C. 对角线互相平分D. 对边线平分一组对角 9.关于x 的一元二次方程ax 2-2x +1=0有实数根,则整数a 的最大值是( )A .1B .1-C .2D .2-10.如图,在矩形ABCD 中,AB =6,BC =8,M 是AD 上任意一点,且ME ⊥AC 于E , MF ⊥BD 于F ,则ME +MF 为( ) A .245B .125C .65D .不能确定二、填空题(本大题共有6小题,每小题4分,共24分)11.在菱形ABCD 中,对角线AC 、BD 长分别为8cm 、6cm ,则菱形的面积为 12.如图,A 、B 两点分别位于山脚的两端,小明想测量A 、B 两点间的距离,于是想了个主意:先在地上取一个可以直接达到A 、B 两点的点C ,找到AC 、BC 的中点D 、E ,并且测出DE 的长为 15m ,则A 、B 两点间的距离为 _m . 13.点()1,A m ,()3,B n 是双曲线3y x=上的点,则m n (填“>”,“<”,“=”). F EDC(第10题)14.已知06)(5)(22222=-+++y x y x ,则22y x +的值为 .15.如图,已知矩形ABCD 的边长AB =4,BC =6,对角线AC 的垂直平分线分别交AC 、AD 、BC 于O 、E 、F ,连结AF 、CE ,则AEBF= .. 16.如图,已知函数y =2x 和函数y =的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则k = ,满足条件的P 点坐标是 .(第16题)三、解答题(本题有8小题,共66分) 17.(本题满分6分)计算(1)64)7()3(22--+-(2)2)32()31)(31(+--+18.(本题满分6分)解方程 (1)240x x +=;(2)2670x x -+=.-19.(本题满分6分)已知关于x 的方程. x 2-2(m+1)x+m 2+2=0 (1)若方程总有两个实数根,求m 的取值范围; (2) 若两实数根x 1,x 2满足(x 1+1)(x 2+1)=8,求m 的值。
浙教版八年级下学期数学《期中测试题》及答案
C.体育场离早餐店1.5千米D.张强从早餐店回家的平均速度是3千米/小时
9.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()
A 12B. 24C.12 D.16
10.如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG,下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG= AD,其中正确的有( )
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.
已知:如图,在四边形ABCD中,
BC=AD,
AB=____.
求证:四边形ABCD是____四过形.
(1)在方框中填空,以补全已知和求证;
(2)按嘉淇 想法写出证明:
证明:
(3)用文宇叙述所证命题的逆命题为____________________.
22.如图,菱形ABCD中,E,F分别是BC,CD上的点,且CE=CF.
[分析]
A根据二次根式的性质判断;
根据 表示9的算术平方根,求出即可判断B答案;
=2≠4,即可判断C;
根据二次根式的加减法则:把同类二次根式的系数相加,根式不变,求出即可判断D.
[详解] =7≠-7,故A错误;
=3≠±3,故B错误;
=2≠4,故C错误;
浙教版八年级数学上册期中测试卷(附答案)
浙教版八年级数学期中测试卷班级: _________ 姓名: _________ 得分: _________一、仔细选一选(本题有10小题,每小题3分,共30分)1.下列命题是真命题的是()A.如果两个角不相等,那么这两个角不是对顶角B.两个互补的角一定是邻补角C.如果a2=b2.那么a = bD.如果两个角是同位角,那么这两个角一定相等2.已知等腰三角形一腰上的中线将它的周长分成6 cm和12 cm脚部分,则等腰三角形的底边长为()A.2 cmB. 10 cmC.6 cm或4 cmD.2 cm或10 cm3.下列语句不是命题的是()A.x与y的和等于0吗B.不平行的两条直线有一个交点C.两点之间线段最短D.对顶角不相等4.如图,∠ABC = ∠ACB,∠A = ∠ADB,则不可能是∠A的度数的是()A.55°B.65°C.75°D.85°5.如图,在△ABC中,D为AB上一点,E为BC上一点,且AC= CD= BD= BE,∠A= 50°.则∠CDE的度数为()A.50°B.51°C.51.5D.52.5°6.如图所示的正方形网格中,网格线的交点称为格点.已知A.B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是 ( )A.6B.7C.8D.9第4题第5题第6题第7题7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE = 13∠BAE,∠DBF =13∠ABF,则∠ADB的度数是 ( )A.45°B.50°C.60°D.无法确定8.在△ABC中,AB = 3,AC = 4,延长BC至点D,使CD = BC,连结AD,则AD的长的取值范围( )A.1 < AD < 7B.2 < AD < 14C.2.5 < AD < 5.5D.5 < AD < 119.如图,已知AB = AC = BD,那么∠1与∠2之间的关系是 ( )A.∠1 = 2∠2B.2∠1 + ∠2 = 180°C.∠1+3∠2=180°D.3∠1 -∠2 = 180°第9题第10题第13题10.如图,△ABC和△ADE都是等腰直角三角形,∠EAD= ∠BAC= 90°,∠DAB= 45°.连结BE.DC.EC.则下列说法正确的有()①BE = DC ②AD∥BC ③EC = DC ④BE = ECA.①③B.②①C.①③④D.①②③④二、认真填一填(本题有6小题,每小题4分,共24分)11.如果一个三角形的三边之比是1:3:2.则这个三角形的形状是 _________ .12.下刚命题:①钝角的补角是锐角:②两个无理数的商仍为无理数:③相等的角是对顶角:④若x是实数,则x2+ 1 > 0;⑤一个锐角与一个钝角的和等于一个平角.是真命题的有 _________ .(用序号表示)13.如图,在△ABC中,点D是BC的中点,作射线AD.在线段AD及其延长线上分别取点E,F,连结CE.BF.添加一个条件,使得△BDF≌△CDE.你添加的条件是 _________ .(不添加辅助线)第14题第16题14.三个等边三角形的位置如图所示,若∠3 = 40°,则∠1 + ∠2 = _________ °.15.在一张长为8 cm,宽为6 cm的矩形纸片上,现要剪下一个腰长为5 cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为 _________ cm2.16.如图,D,E分别是△ABC边AB,BC上的点,AD= 2BD.BE= CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC = 6,则S1-S2的值为 _________ .三、全面答一答(本题有7小题,共66分)17.(6分)如图,在△ABC中,∠C= 90°,边AB的垂直平分线交AB,AC边分别为点D,点E,连结BE.(1)若∠A = 40°,求∠CBE的度数;(2)若AB = 10,BC = 6.求△BCE的周长.18.(8分)如图,∠BAD = ∠CAE.AB = AD,AC = AE.(1)试说明△ABC ≌△ADE:(2)若∠B = 20°,DE = 6,求∠D的度数及BC的长.19.(8分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC= 60°.∠BCE= 40°.求∠ADB的度数.20.(10分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B = 90°,∠A= 30°;图②中,∠D= 90°,∠F= 45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D,E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,该同学发现:F,C两点间的距离逐渐 _________ ;连结FC,∠FCE的度数逐渐 _________ ;(填“不变”、“变大”或“变小”)(2)△DEF在移动的过程中,∠FCE与∠CFE的度数之和是否为定值,请加以说明;(3)能否将△DEF移动至某位置,使F,C的连线与AB平行?若存在,请求出∠CFE的度数.21.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB = ∠ECD = 90°,点D为AB边上一点,求证:(1)△ACE ≌△BCD;(2)AD2 + DB2 = DE2.22.(12分)已知在△ABC中,∠C= 90°,沿过B的一条直线BE折叠这个三角形,使点C与AB 边上的一点D重合,如图所示.(1)要使D恰为AB的中点,还应添加一个什么条件?(请写出一个你认为正确的添加条件)(2)将(1)中的添加条件作为题目的补充条件,试说明其能使D为AB中点的理由.解:(1)添加条件: _________ ;(2)说明:23.(12分)如图,在△ABC中,∠C= Rt∠,AB= 5 cm,BC= 3 cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1 cm,设出发的时间为ts.(1)出发2s后,求△ABP的周长;(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2 cm,若P,Q两点同时出发,当P,Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC 的周长分成相等的两部分?。
浙教版数学八年级下学期《期中考试题》含答案
浙教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分)1.一个多边形的外角和是内角和的2,这个多边形的边数是()7A. 7B. 8C. 9D. 102.疫情无情人有情,爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:则他们捐款金额的平均数、中位数、众数分别是()A. 27.6,10,20B. 27.6,20,10C. 37,10,10D. 37,20,103.一元二次方程x2=2x的根为()A. x=0B. x=2C. x=0或x=2D. x=0或x=−24.已知ab<0,则√−a2b化简后为()A. −a√−bB. −a√bC. a√bD. a√−b5.已知x=√5+1,y=√5−1,则x2+2xy+y2的值为()A. 20B. 16C. 2√5D. 4√56.九(1)班“环保小组”的5名同学在一次活动中捡废弃塑料袋的个数分别为4,6,8,16,16,则这组数据的中位数、众数分别为()A. 8,16B. 16,16C. 8,8D. 10,167.等腰三角形的一边长是3,另两边的长是关于x的方程x2−4x+k=0的两个根,则k的值为()A. 3B. 4C. 3或4D. 78.如图,在平行四边形ABCD中,AB=6,AD=8,∠B=60°,∠BAD与∠CDA的角平分线AE、BF相交于点G,且交BC于点E、F,则图中阴影部分的面积是()A. 14√3B. 10√3C. 7√3D. 112√39.对于一元二次方程ax2+bx+c=0(a≠0),下列说法.10.①若a+b+c=0,则b2−4ac≥0;11.②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;12.③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;13.④若x0是一元二次方程ax2+bx+c=0的根,则b2−4ac=(2ax0+b)214.其中正确的()A. 只有①②B. 只有①②④C. ①②③④D. 只有①②③15.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC=60°,AB=12BC,连接OE,下列结论:①∠CAD=30°;②OD=AB;③S▱ABCD=AC⋅CD;④S四边形OECD =32S△AOD,其中成立的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共7小题,每小题3分,共21分)16.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种5kg,乙种10kg,丙种10kg混在一起,则售价应定为每千克______.17.已知a=√5+1,则代数式a2−2a+7的值为______.18.某中学有一块长30m,宽20m的矩形空地,计划在这块空地上划分出四分之一的区域种花,小明同学设计方案如图所示,求花带的宽度.设花带的宽为xm,则可列方程为______.19.关于x的一元二次方程x2−2√3x+m=0有两个不相等的实数根,则实数m的取值范围是______.20.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是______.21.22.如图,将□ABCD沿对角线BD折叠,使点A落在点Aˈ处.若∠1=∠2=48°,则∠Aˈ的度数为________.23.24.25.在平行四边形ABCD中,AB<BC,已知∠B=30°,AB=√3,将△ABC沿AC翻折至△AB′C,使点B′落在平行四边形ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为____.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)26.解方程:27.(1)x(x+2)=2x+4;(2)3x2−x−2=0.)−2;28.(1)√9+(−1)2019+(6−π)0−(−1229.(2)|√3−3|−(2−√3)2−√27.30.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:31.根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.32.如图,在△ABC中,过点C作CD//AB,E是AC的中点,连接33.DE并延长,交AB于点F,交CB的延长线于点G,连接AD,34.CF.35.(1)求证:四边形AFCD是平行四边形.,求AB的长.36.(2)若GB=3,BC=6,BF=3237.已知x=2是关于x的方程x2−(5+m)x+5m=0的一个根.(1)求m的值;(2)若这个方程的另一个根为整数x2,且2<x2<6,这两个根恰好是等腰三角形ABC的两条边长,求△ABC的周长.38.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.39.40.(1)求证:四边形AEFD是平行四边形;41.(2)当t为何值时,△DEF为直角三角形?请说明理由.答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分)43.一个多边形的外角和是内角和的2,这个多边形的边数是()7A. 7B. 8C. 9D. 10[答案]C[解析]解:设这个多边形的边数为n,(n−2)180°=360°,依题意得:27解得n=9,故选:C.设这个多边形的边数为n,由n边形的内角和是(n−2)⋅180°,多边形的外角和是360°列出方程,解方程求出n的值即可.本题考查了多边形内角与外角,掌握n边形的内角和是(n−2)⋅180°,多边形的外角和是360°是解题的关键.44.疫情无情人有情,爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:则他们捐款金额的平均数、中位数、众数分别是()A. 27.6,10,20B. 27.6,20,10C. 37,10,10D. 37,20,10[答案]B×(5×6+10×17+20×14+50×8+100×5)= [解析]解:这组数的平均数是15027.6;=20,把这些数从小到大排列,最中间两个数的平均数20+202这组数据中,10出现次数17次,故众数为10.故选:B.根据平均数的计算公式求出这组数据的平均数,再根据中位数的定义直接求出这组数据的中位数即可.本题考查了平均数和中位数、平均数和众数,平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).45.一元二次方程x2=2x的根为()A. x=0B. x=2C. x=0或x=2D. x=0或x=−2[答案]C[解析]解:∵x2=2x,∴x2−2x=0,则x(x−2)=0,∴x=0或x−2=0,解得x1=0,x2=2,故选:C.移项后利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.46.已知ab<0,则√−a2b化简后为()A. −a√−bB. −a√bC. a√bD. a√−b[答案]D[解析]解:∵ab<0,−a2b≥0,∴a>0,∴b<0∴原式=|a|√−b,=a√−b,故选:D.根据二次根式的性质即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.47.已知x=√5+1,y=√5−1,则x2+2xy+y2的值为()A. 20B. 16C. 2√5D. 4√5[答案]A[解析]解:当x=√5+1,y=√5−1时,x2+2xy+y2=(x+y)2=(√5+1+√5−1)2=(2√5)2=20,故选:A.原式利用完全平方公式化简,将x与y的值代入计算即可求出值.此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.48.九(1)班“环保小组”的5名同学在一次活动中捡废弃塑料袋的个数分别为4,6,8,16,16,则这组数据的中位数、众数分别为()A. 8,16B. 16,16C. 8,8D. 10,16[答案]A[解析][分析]本题考查了中位数和众数,解答本题的关键是掌握众数和中位数的定义,属于基础题.根据中位数和众数的定义求解.[解答]解:这组数据的中位数为:8,众数为:16.故选:A.49.等腰三角形的一边长是3,另两边的长是关于x的方程x2−4x+k=0的两个根,则k的值为()A. 3B. 4C. 3或4D. 7[答案]C[解析][分析]本题考查了根的判别式、一元二次方程的解、等腰三角形的性质、三角形三边关系以及根与系数的关系,分3为腰长及3为底边长两种情况,求出k值是解题的关键.当3为腰长时,将x=3代入原一元二次方程可求出k的值;当3为底边长时,利用等腰三角形的性质可得出根的判别式△=0,解之可得出k值,利用根与系数的关系可得出两腰之和,将其与3比较后可得知该结论符合题意.[解答]解:当3为腰长时,将x=3代入x2−4x+k=0,得:32−4×3+k=0,解得:k=3;当3为底边长时,关于x的方程x2−4x+k=0有两个相等的实数根,∴△=(−4)2−4×1×k=0,解得:k=4,此时两腰之和为4,4>3,符合题意.∴k的值为3或4.故选:C.50.如图,在平行四边形ABCD中,AB=6,AD=8,∠B=60°,∠BAD与∠CDA的角平分线AE、BF相交于点G,且交BC于点E、F,则图中阴影部分的面积是()A. 14√3B. 10√3C. 7√3D. 112√3[答案]A[解析]解:过G作GH⊥AD于点H,交BC于点I.则HI=AB⋅sinB=6×√32=3√3,S平行四边形ABCD=8×3√3=24√3.∵四边形ABCD是平行四边形, ∴AD//BC,∴∠DAE=∠AEB,又∵∠DAE=∠BAE,∴∠BAE=∠AEB,∴BE=AB=6,同理,CF=CD=AB=6,∴EF=BE+CF−BC=6+6−8=4, ∵AD//BC,∴△ADG∽△EFG,∴HGGI =ADEF=2,∴HG=2√3,GI=√3,则S△ADG=12AD⋅HG=12×8×2√3=8√3,S△EFG=12EF⋅GI=12×4×√3=2√3,∴S阴影=S平行四边形ABCD−S△ADG−S△EFG=24√3−8√3−2√3=14√3.故选:A.首先过G作GH⊥AD于点H,交BC于点I,则HI是平行四边形的高,求得平行四边形的面积,然后根据平行线的性质,以及角平分线的定义证得∠BAE=∠AEB,则BE=AB,同理求得CF的长,则EF即可求得,根据△ADG∽△EFG,相似三角形对应边上的高的比等于相似比,即可求得HG和GI,求得△ADG和△EFG的面积,根据S阴影=S平行四边形ABCD−S△ADG−S△EFG求解.本题考查了平行线的性质,等腰三角形的判定方法,等角对等边,以及相似三角形的判定与性质,求得HG和GI的长是关键.51.对于一元二次方程ax2+bx+c=0(a≠0),下列说法.52.①若a+b+c=0,则b2−4ac≥0;53.②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;54.③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;55.④若x0是一元二次方程ax2+bx+c=0的根,则b2−4ac=(2ax0+b)256.其中正确的()A. 只有①②B. 只有①②④C. ①②③④D. 只有①②③[答案]B[解析]解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知△=b2−4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴△=0−4ac>0∴−4ac>0则方程ax2+bx+c=0的判别式△=b2−4ac>0∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0∴c(ac+b+1)=0若c=0,等式仍然成立但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=−b+√b2−4ac2a 或x0=−b−√b2−4ac2a∴2ax0+b=√b2−4ac或2ax0+b=−√b2−4ac∴b2−4ac=(2ax0+b)2故④正确.故选:B.按照方程的解的含义、一元二次方程的实数根与判别式的关系、等式的性质、一元二次方程的求根公式等对各选项分别讨论,可得答案.本题主要考查了一元二次方程的实数根与判别式的关系,牢固掌握二者的关系并灵活运用,是解题的关键.57.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC=60°,AB=12BC,连接OE,下列结论:①∠CAD=30°;②OD=AB;③S▱ABCD=AC⋅CD;④S四边形OECD =32S△AOD,其中成立的个数为()A. 1个B. 2个C. 3个D. 4个[答案]C[解析]解:∵四边形ABCD为平行四边形,∠ADC=60°,∴AD//BC,∠ABC=∠ADC=60°,OB=OD,∴∠DAE=∠AEB,∠BAD=∠BCD=120°,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB ∴△ABE为等边三角形,∴∠BAE=∠AEB=60°,AB=BE=AE,∵AB=12BC,∴EC=AE,∴∠EAC=∠ECA=30°,∴∠CAD=30°,故①正确;∵∠BAD=120°,∠CAD=30°,∴∠BAC=90°,∴BO>AB,∴OD>AB,故②错误;∴S▱ABCD=AB⋅AC=AC⋅CD,故③正确;∵∠BAC=90°,BC=2AB,∴E是BC的中点,∴S△BEO:S△BCD=1:4,∴S四边形OECD:S△BCD=3:4,∴S四边形OECD:S▱ABCD=3:8,∵S△AOD:S▱ABCD=1:4,∴S四边形OECD =32S△AOD,故④正确.故选:C.结合平行四边形的性质可证明△ABE为等边三角形,由AB=12BC可判定①,证明∠BAC=90°,可判定②;由平行四边形的面积公式可判定③;利用三角形中线的性质结合三角形的面积可求解判定④.本题主要考查平行线的性质,直角三角形的性质,三角形的面积,灵活运用三角形的面积解决问题是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分)58.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种5kg,乙种10kg,丙种10kg混在一起,则售价应定为每千克______.[答案]7.2元=7.2(元/千克),[解析]解:根据题意售价应该定为6×5+7×10+8×105+10+10故答案为7.2元.平均数的计算方法是求出所有糖果的总钱数,然后除以糖果的总质量.本题考查的是加权平均数的求法.本题易出现的错误是求6、7、8这四个数的平均数,对平均数的理解不正确.59.已知a=√5+1,则代数式a2−2a+7的值为______.[答案]11[解析]解:a2−2a+7=a2−2a+1+6=(a−1)2+6,当a=√5+1时,原式=5+6=11,故答案为:11.首先利用完全完全平方把式子进行变形,然后再代入a的值进行计算即可.此题主要考查了二次根式的化简求值,关键是掌握完全平方公式.60.某中学有一块长30m,宽20m的矩形空地,计划在这块空地上划分出四分之一的区域种花,小明同学设计方案如图所示,求花带的宽度.设花带的宽为xm,则可列方程为______.×20×30[答案](30−2x)(20−x)=34×20×30,[解析]解:设花带的宽度为xm,则可列方程为(30−2x)(20−x)=34×20×30.故答案为:(30−2x)(20−x)=34矩形空地的面积可得.根据剩余空白区域的面积=34本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.61.关于x的一元二次方程x2−2√3x+m=0有两个不相等的实数根,则实数m的取值范围是______.[答案]m<3[解析][分析]本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围.[解答]解:∵关于x的一元二次方程x2−2√3x+m=0有两个不相等的实数根,∴△=(−2√3)2−4×1×m>0,∴m<3.故答案为:m<3.62.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是______.63.[答案]120°[解析]解:∵点P是对角线BD的中点,点E、F分别是AB、CD的中点,∴PF=12BC,PE=12AD,又AD=BC,∴PE=PF,∴∠PFE=∠PEF=30°, ∴∠EPF=120°,故答案为:120°.根据三角形中位线定理得到PF=12BC,PE=12AD,根据题意得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.64.如图,将□ABCD沿对角线BD折叠,使点A落在点Aˈ处.若∠1=∠2=48°,则∠Aˈ的度数为________.65.66.[答案]108°[解析][分析]本题主要考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出∠ADB的度数是解决问题的关键.由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求∠1=24°,再由三角形内角和定理求出∠A,即可得到结果.出∠BDG=∠DBG=12[解答]解:∵AD//BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=48°,∴∠ADB=∠BDG=24°,又∵∠2=48°,∴△ABD中,∠A=108°,∴∠A′=∠A=108°,故答案为108°.67.在平行四边形ABCD中,AB<BC,已知∠B=30°,AB=√3,将△ABC沿AC翻折至△AB′C,使点B′落在平行四边形ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为____.[答案]2或3[解析][分析]本题主要考查了翻折变换的性质,解题的关键是画出图形,发现存在两种情况,进行分类讨论.在▱ABCD中,AB<BC,要使△AB′D是直角三角形,有两种情况:∠B′AD=90°或∠AB′D=90°,画出图形,分类讨论即可.[解答]解:当∠B′AD=90°,AB<BC时,如图1,∵AD=BC,BC=B′C,∴AD=B′C,∵AD//BC,∠B′AD=90°,∴∠B′GC=90°,∵∠B=30°,AB=√3,∴∠AB′C=30°,∴GC=12B′C=12BC,∴G是BC的中点,在Rt△ABG中,BG=√32AB=√32×√3=32,∴BC=3;当∠AB′D=90°时,如图2,设AD交CB′于O.∵AD=BC,BC=B′C,∴AD=B′C,∵∠1=∠2=∠3,∴OA=OC,∴OB=OD,∴∠4=∠5,∵∠AOC=∠DOB′,∴∠2=∠5,∴AC//B′D,∴四边形ACDB′是等腰梯形, ∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=√3,∴BC=AB÷√32=√3×√3=2,∴当BC的长为2或3时,△AB′D是直角三角形.故答案为2或3.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)68.解方程:69.(1)x(x+2)=2x+4;70.(2)3x2−x−2=0.[答案]解:(1)∵x(x+2)=2(x+2),∴x(x+2)−2(x+2)=0,则(x+2)(x−2)=0,∴x+2=0或x−2=0,解得x1=−2,x2=1;(2)∵3x2−x−2=0,∴(x−1)(3x+2)=0,∴x−1=0或3x+2=0,解得x1=1,x2=−23.[解析]利用因式分解法求解即可.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.)−2;71.(1)√9+(−1)2019+(6−π)0−(−1272.(2)|√3−3|−(2−√3)2−√27.)−2[答案]解:(1)√9+(−1)2019+(6−π)0−(−12=3+(−1)+1−4=−1;(2)|√3−3|−(2−√3)2−√27=3−√3−(4−4√3+3)−3√3=3−√3−7+4√3−3√3=−4.[解析](1)根据有理数的乘方、零指数幂和负整数指数幂可以解答本题;(2)先化简,然后根据二次根式的加减法可以解答本题.本题考查二次根式的混合运算、有理数的乘方、零指数幂和负整数指数幂,解答本题的关键是明确它们各自的计算方法.73.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:74.根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.[答案]9 9 8 10[解析]解:(1)设一班C等级的人数为x,则8.76(6+12+x+5)=6×10+9×12+8x+5×7,解得:x=2,补全一班竞赛成绩统计图如图所示:(2)a=9;b=9;c=8;d=10,故答案为:9,9,8,10.(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.(1)设一班C等级的人数为x,列方程求出C等级的人数,再补全统计图即可;(2)根据中位数、众数的概念分别计算即可;(3)先比较一班和二班的平均分,再比较一班和二班的中位数,即可得出答案.此题考查了中位数、平均数、众数,关键是掌握中位数、平均数、众数的概念和有关公式,会用来解决实际问题.75.如图,在△ABC中,过点C作CD//AB,E是AC的中点,连接76.DE并延长,交AB于点F,交CB的延长线于点G,连接AD,77.CF.78.(1)求证:四边形AFCD是平行四边形.79.(2)若GB=3,BC=6,BF=3,求AB的长.2[答案]解:(1)∵E是AC的中点, ∴AE=CE,∵AB//CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵{∠AFE=∠CDE ∠AEF=∠CED AE=CE,∴△AEF≌△CED(AAS),∴AF=CD,又AB//CD,即AF//CD,∴四边形AFCD是平行四边形;(2)∵AB//CD,∴△GBF∽△GCD,∴GBGC =BFCD,即33+6=32CD,解得:CD=92,∵四边形AFCD是平行四边形,∴AF=CD=92,∴AB=AF+BF=92+32=6.[解析](1)由E是AC的中点知AE=CE,由AB//CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB//CD即可得证;(2)证△GBF∽△GCD得GBGC =BFCD,据此求得CD=92,由AF=CD及AB=AF+BF可得答案.本题主要考查平行四边形的判定与性质,解题的关键是掌握全等三角形、相似三角形及平行四边形的判定与性质.80.已知x=2是关于x的方程x2−(5+m)x+5m=0的一个根.(1)求m的值;(2)若这个方程的另一个根为整数x2,且2<x2<6,这两个根恰好是等腰三角形ABC的两条边长,求△ABC的周长.[答案]解:(1)将x=2代入方程,得4−2(5+m)+5m=0,解得m=2;(2)由(1)得方程:x2−7x+10=0.∵x2为整数,且2<x2<6,∴可找出x2=5是方程x2−7x+10=0的另一个根.∵这两个根恰好是等腰三角形ABC的两条边长,∴三边长只能为2,5,5,∴△ABC的周长=2+5+5=12.[解析]本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系,等腰三角形的性质.(1)把x=2代入方程x2−(5+m)x+5m=0得4−2(5+m)+5m=0,然后解关于m 的方程即可;(2)方程化为x2−7x+10=0,结合方程的另一根2<x2<6且为整数,可得x2=5,根据三角形三边的关系得到等腰三角形ABC的腰长为5,底边长为2,然后计算△ABC的周长.81.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.82.83.(1)求证:四边形AEFD是平行四边形;84.(2)当t为何值时,△DEF为直角三角形?请说明理由.[答案](1)证明:∵∠B=90°,∠A=60°,∴∠C=30°,AC=30,∴AB=12由题意得,CD=4t,AE=2t,∵DF⊥BC,∠C=30°,CD=2t,∴DF=12∴DF=AE,∵DF//AE,DF=AE,∴四边形AEFD是平行四边形;(2)当∠EDF=90°时,如图①,∵DE//BC,∴∠ADE=∠C=30°,∴AD=2AE,即60−4t=2t×2,,解得,t=152当∠DEF=90°时,如图②,∵AD//EF,∴DE⊥AC,∴AE=2AD,即2t=2×(60−4t),解得,t=12,或12时,△DEF为直角三角形.综上所述,当t=152[解析](1)根据三角形内角和定理得到∠C=30°,根据直角三角形的性质求出DF,得到DF=AE,根据平行四边形的判定定理证明;(2)分∠EDF=90°、∠DEF=90°两种情况,根据直角三角形的性质列出算式,计算即可.本题考查的是平行四边形的判定、直角三角形的性质,掌握平行四边形的判定定理、含30°的直角三角形的性质是解题的关键.。
浙教版数学八年级下学期《期中检测试题》含答案
浙 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列根式中,属于最简二次根式的是( ) A .21x +B .27C .2a bD .122.下列各式正确的是( ) A .235+=B .2(3)3-=C .114293=⨯ D .4499--=-- 3.下列图形中,既是中心对称图形又是轴对称图形的是( )4.用配方法将方程2440x x --=化成2()x m n +=的形式,则m ,n 的值是( ) A .2-,0B .2,0C .2-,8D .2,85.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环),下列说法中正确的个数是( ) ①若这5次成绩的平均数是8,则8x =; ②若这5次成绩的中位数为8,则8x =; ③若这5次成绩的众数为8,则8:x = ④若这5次成绩的方差为8,则8x = A .1个B .2个C .3个D .4个6.利用反证法证明“直角三角形至少有一个锐角不小于45︒”,应先假设( ) A .直角三角形的每个锐角都小于45︒ B .直角三角形有一个锐角大于45︒C .直角三角形的每个锐角都大于45︒D .直角三角形有一个锐角小于45︒7.如图,ABC ∆中,D 是AB 的中点,E 在AC 上,且1902AED C ∠=︒+∠,则2BC AE +等于( )A .ABB .ACC .32ABD .32AC 8.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( )A .322203220570x x +⨯=⨯-B .(322)(20)570x x --=C .(32)(20)3220570x x --=⨯-D .2322202570x x x +⨯-=9.下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有( )个平行四边形.A .22B .24C .26D .2810.如图,在ABCD 中,4AB =,BAD ∠的平分线与BC 的延长线交于点E ,与DC 交于点F ,且F 恰好为DC 的中点,DG AE ⊥,垂足为G .若1DG =,则AE 的长为( )A .23B .4C .3D .8二.填空题(共8小题) 11.计算:16(1)3⨯-= .12.某学生数学学科课堂表现为95分,平时作业为92分,期末考试为90分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是 分.13.若关于x 的方程2(2)(23)10a x a x a -+-++=有两个不相等的实数根,则a 的取值范围是 . 14.设a 、b 是方程22020x x l +-=的两个实数根,则(1)(1)a b --的值为 .15.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:)m 这六次成绩的平均数为7.7m ,方差为160.如果李阳再跳一次,成绩为7.7m .则李阳这7次跳远成绩的方差______(填“变大”、“不变”或“变小” ).16.某公司前年缴税200万元,今年缴税338万元,则该公司这两年缴税的年均增长率为 .17.如图,在ABCD 中,100D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE .若AE AB =,则EBC ∠的度数为 .18.如图,在ABC ∆中,90BAC ∠=︒,4AB =,6AC =,点D 、E 分别是BC 、AD 的中点,//AF BC 交CE 的延长线于F .则四边形AFBD 的面积为 .三.解答题(共8小题) 19.计算: (1)121263483(2)21(23)2323+20.解方程(1)23520x x -+= (2)(1)(3)8x x ++=21.已知关于x 的一元二次方程2(8)80x k x k -++= (1)求证:无论k 取任何实数,方程总有实数根;(2)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.22.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛.在最近的五次选拔测试中,他俩的成绩分别如下表:12345小王 60 75 100 90 75 小李7090808080根据上表解答下列问题: (1)完成下表: 姓名 平均成绩(分)中位数(分)众数(分) 方差 小王 75 75 190 小李8080(2)在这五次测试中,哪位同学的成绩比较稳定?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获一等奖,那么你认为应选谁参赛比较合适?说明你的理由.23.如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180︒. ②新多边形的内角和与原多边形的内角和相等. ③新多边形的内角和比原多边形的内角和减少了180︒.(2)将多边形只截去一个角,截后形成的多边形的内角和为2520︒,求原多边形的边数.24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示: (1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?25.如图1,在OAB ∆中,90OAB ∠=︒,30AOB ∠=︒,8OB =.以OB 为边,在OAB ∆外作等边OBC ∆,D 是OB 的中点,连接AD 并延长交OC 于E . (1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.26.在四边形ABCD 中,//AB CD ,90BCD ∠=︒,10AB AD cm ==,8BC cm =,点P 从点A 出发,沿折线ABCD 方向以3/cm s 的速度匀速运动;点Q 从点D 出发,沿线段DC 方向以2/cm s 的速度匀速运动.已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为()t s . (1)求CD 的长;(2)当四边形PBQD 为平行四边形时,求四边形PBQD 的周长;(3)在点P 、Q 的运动过程中,是否存在某一时刻,使得BPQ ∆的面积为220cm ?若存在,请求出所有满足条件的t 的值;若不存在,请说明理由.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列根式中,属于最简二次根式的是()A.B.C.D.[分析]找到被开方数中不含分母的,不含能开得尽方的因数或因式的式子即可.[解析]A、,被开方数中不含分母,不含能开得尽方的因数或因式,属于最简二次根式,符合题意;B、3,被开方数能继续开方,不属于最简二次根式,不符合题意;C、,被开方数能继续开方,不属于最简二次根式,不符合题意;D、,被开方数中包含分母,不属于最简二次根式,不符合题意;故选:A.2.下列各式正确的是()A.B.C.D.[分析]直接利用二次根式的性质分别化简得出答案.[解析]A、无法合并,故此选项错误;B、3,正确;C、,故此选项错误;D、,故此选项错误;故选:B.3.下列图形中,既是中心对称图形又是轴对称图形的是()[分析]结合中心对称图形和轴对称图形的概念求解即可.[解析]A、既是中心对称图形,又是轴对称图形.故本选项正确;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误;故选:A.4.用配方法将方程x2﹣4x﹣4=0化成(x+m)2=n的形式,则m,n的值是()A.﹣2,0 B.2,0 C.﹣2,8 D.2,8[分析]将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.[解析]∵x2﹣4x﹣4=0,∴x2﹣4x=4,则x2﹣4x+4=4+4,即(x﹣2)2=8,∴m=﹣2,n=8,故选:C.5.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环),下列说法中正确的个数是()①若这5次成绩的平均数是8,则x=8;②若这5次成绩的中位数为8,则x=8;③若这5次成绩的众数为8,则x=8:④若这5次成绩的方差为8,则x=8A.1个B.2个C.3个D.4个[分析]根据平均数的定义判断①,根据中位数的定义判断②;根据众数的定义判断③;根据方差的定义判断④.[解析]①若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;②若这5次成绩的中位数为8,则x为任意实数,故本选项错误;③若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;④如果x=8,则平均数为(8+9+7+8+8)=8,方差为[3×(8﹣8)2+(9﹣8)2+(7﹣8)2]=0.4,故本选项错误.故选:A.6.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°[分析]熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.[解析]用反证法证明命题“在直角三角形中,至少有一个锐角不小于45°”时,应先假设直角三角形的每个锐角都小于45°.故选:A.7.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC[分析]如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.由三角形中位线的性质得到EF=AE.则由平行线的性质和邻补角的定义得到∠DEF=∠BFC=90°∠C,即∠FBC=∠BFC,等角对等边得到BC=FC,故BC+2AE=AC.[解析]如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°∠C)=90°∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.8.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x=32×20﹣570B.(32﹣2x)(20﹣x)=570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=570[分析]六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.[解析]设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:B.9.下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有()个平行四边形.A.22 B.24 C.26 D.28[分析]第1幅可看作2×1﹣1=1,第2幅可看作2×2﹣1=3,第3幅可看作2×3﹣1=5,第4幅可看作2×4﹣1=7;从而求得第n幅图共有的平行四边形数,即可求得答案.[解析]根据图形分析可知:第1幅时,有2×1﹣1=1个平行四边形;第2幅时,有2×2﹣1=3个平行四边形;第3幅时,有2×3﹣1=5个平行四边形;第4幅时,有2×4﹣1=7个平行四边形;…;第n幅时,有2×n﹣1=2n﹣1个平行四边形;∴第6幅图时,有2×6﹣1=11个平行四边形,第7幅图,有2×7﹣1=13个平行四边形,∴第6幅和第7幅图中合计有11+13=24个平行四边形;故选:B.10.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且F恰好为DC的中点,DG⊥AE,垂足为G.若DG=1,则AE的长为()A.2B.4 C.4D.8[分析]由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.[解析]∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DF A,∴∠DAE=∠DF A,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF DC AB=2,在Rt△ADG中,根据勾股定理得:AG,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:C.二.填空题(共8小题,每题3分,满分24分)11.计算:(1)=.[分析]根据二次根式的乘除法则运算.[解析]原式.故答案为.12.某学生数学学科课堂表现为95分,平时作业为92分,期末考试为90分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是分.[分析]根据加权平均数的定义,将各成绩乘以其所占权重,即可计算出加权平均数.[解析]根据题意得:95×30%+92×30%+90×40%=92.1(分),答:该学生数学学科总评成绩是92.1分;故答案为:92.1.13.若关于x的方程(a﹣2)x2+(2a﹣3)x+a+1=0有两个不相等的实数根,则a的取值范围是.[分析]根据二次项系数非零结合根的判别式△>0,即可得出关于a的一元一次不等式组,解之即可得出结论.[解析]∵关于x的一元二次方程(a﹣2)x2+2ax+a﹣1=0有两个不相等的实数根,∴,解得a≠2.故a的取值范围是a≠2.故答案为:a≠2.14.设a、b是方程x2+x﹣202l=0的两个实数根,则(a﹣1)(b﹣1)的值为.[分析]根据根与系数的关系得出a+b=﹣1,ab=﹣2021,再代入计算即可.[解析]∵a、b是方程x2+x﹣2021=0的两个实数根,∴a+b=﹣1,ab=﹣2021,∴(a﹣1)(b﹣1)=ab﹣(a+b)+1=﹣2021+1+1=﹣2019,故答案为:﹣2019.15.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:m)这六次成绩的平均数为7.7m,方差为.如果李阳再跳一次,成绩为7.7m.则李阳这7次跳远成绩的方差(填“变大”、“不变”或“变小”).[分析]根据平均数的定义先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.[解析]∵李阳再跳一次,成绩分别为7.7m,∴这组数据的平均数是7.7,∴这7次跳远成绩的方差是:S2[(7.5﹣7.7)2+(7.6﹣7.7)2+3×(7.7﹣7.7)2+(7.8﹣7.7)2+(7.9﹣7.7)2],∴方差变小;故答案为:变小.16.某公司前年缴税200万元,今年缴税338万元,则该公司这两年缴税的年均增长率为30%.[分析]增长率问题,一般用增长后的量=增长前的量×(1+增长率)2,如果设该公司这两年缴税的年平均增长率为x,首先表示出2006年的缴税额,然后表示出2007年的缴税额,即可列出方程.[解析]设该公司这两年缴税的年均增长率为x,依题意得:200(1+x)2=338,解得x=0.3=30%.故答案是:30%.17.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.[分析]由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.[解析]∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为12.[分析]由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.[解析]∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC AB•AC4×6=12,∴S四边形AFBD=12.故答案为:12三.解答题(共8小题)19.计算:(1)263(2)()2+23[分析](1)直接化简二次根式进而合并得出答案;(2)直接化简二次根式进而利用二次根式的乘除运算法则计算得出答案.[解析](1)263=4612=4212=14;(2)()2+23=2+3﹣23=2+3﹣22=5.20.解方程(1)3x2﹣5x+2=0(2)(x+1)(x+3)=8[分析](1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.[解析](1)分解因式得:(3x﹣2)(x﹣1)=0,3x﹣2=0,x﹣1=0,x1,x2=1;(2)整理得:x2+4x﹣5=0,(x+5)(x﹣1)=0,x+5=0,x﹣1=0,x1=﹣5,x2=1.21.已知关于x的一元二次方程x2﹣(8+k)x+8k=0(1)求证:无论k取任何实数,方程总有实数根;(2)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.[分析](1)先计算△=(8+k)2﹣4×8k,整理得到△=(k﹣8)2,根据非负数的性质得到△≥0,然后根据△的意义即可得到结论;(2)先解出原方程的解为x1=k,x2=8,然后分类讨论:腰长为5时,则k=5;当底边为5时,则x1=x2,得到k=8,然后分别计算三角形的周长.[解析](1)证明:∵△=(8+k)2﹣4×8k=(k﹣8)2,∵(k﹣8)2,≥0,∴△≥0,∴无论k取任何实数,方程总有实数根;(2)解方程x2﹣(8+k)x+8k=0得x1=k,x2=8,①当腰长为5时,则k=5,∴周长=5+5+8=18;②当底边为5时,∴x1=x2,∴k=8,∴周长=8+8+5=21.22.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛.在最近的五次选拔测试中,他俩的成绩分别如下表:1 2 3 4 5小王60 75 100 90 75小李70 90 80 80 80根据上表解答下列问题:(1)完成下表:姓名平均成绩(分) 中位数(分) 众数(分) 方差小王8075 75 190小李80 8080 40(2)在这五次测试中,哪位同学的成绩比较稳定?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获一等奖,那么你认为应选谁参赛比较合适?说明你的理由.[分析](1)根据平均数、中位数、众数、方差的概念即公式即可得出答案;(2)根据方差的意义即方差反映数据的波动程度,得出方差越小越稳定,应此小李的成绩稳定;(3)选谁参加比赛的答案不唯一,小李的成绩稳定,所以获奖的几率大;小王的90分以上的成绩好,则小王获一等奖的机会大.[解析]小王的平均分80,小李的中位数=80,众数=80,方差40;(2)在这五次考试中,成绩比较稳定的是小李;(3)方案一:我选小李去参加比赛,因为小李的优秀率高,有4次得80分以上,成绩比较稳定,获奖机会大.方案二:我选小王去参加比赛,因为小王的成绩获得一等奖的机率较高,有2次90分以上(含90分),因此有可能获得一等奖.23.如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180°.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180°.(2)将多边形只截去一个角,截后形成的多边形的内角和为2520°,求原多边形的边数.[分析](1)①过相邻两边上的点作出直线即可求解;②过一个顶点和相邻边上的点作出直线即可求解;③过相邻两边非公共顶点作出直线即可求解;(2)根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.[解析](1)如图所示:(2)设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,故原多边形的边数可以为15,16或17.24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?[分析](1)设一次函数解析式为:y=kx+b由题意得出:当x=2,y=120;当x=4,y=140;得出方程组,解方程组解可;(2)由题意得出方程(60﹣40﹣x)(10 x+100)=2090,解方程即可.[解析](1)设一次函数解析式为:y=kx+b当x=2,y=120;当x=4,y=140;∴,解得:,∴y与x之间的函数关系式为y=10x+100;(2)由题意得:(60﹣40﹣x)(10 x+100)=2090,整理得:x2﹣10x+9=0,解得:x1=1.x2=9,∵让顾客得到更大的实惠,∴x=9,答:商贸公司要想获利2090元,则这种干果每千克应降价9元.25.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB 的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.[分析](1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG的长即可.[解答](1)证明:∵Rt△OAB中,D为OB的中点,∴AD OB,OD=BD OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=84,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.26.在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,沿折线ABCD方向以3cm/s的速度匀速运动;点Q从点D出发,沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为t(s).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.[分析](1)过A作AM⊥DC于M,得出平行四边形AMCB,求出AM,根据勾股定理求出DM即可;(2)根据平行四边形的对边相等得出方程,求出即可;(3)分为三种情况,根据题意画出符合条件的所有图形,根据三角形的面积得出方程,求出符合范围的数即可.[解析](1)如图1,过A作AM⊥DC于M,∵在四边形ABCD中,AB∥CD,∠BCD=90°,∴AM∥BC,∴四边形AMCB是矩形,∵AB=AD=10cm,BC=8cm,∴AM=BC=8cm,CM=AB=10cm,在Rt△AMD中,由勾股定理得:DM=6cm,CD=DM+CM=10cm+6cm=16cm;(2)如图2,当四边形PBQD是平行四边形时,PB=DQ,即10﹣3t=2t,解得t=2,此时DQ=4,CQ=12,BQ, 所以C▱PBQD=2(BQ+DQ);即四边形PBQD的周长是(8+8)cm;(3)当P在AB上时,如图3,即,S△BPQ BP•BC=4(10﹣3t)=20,解得;当P在BC上时,如图4,即,S△BPQ BP•CQ(3t﹣10)(16﹣2t)=20,、此方程没有实数解;当P在CD上时:若点P在点Q的右侧,如图5,即6<t,S△BPQ PQ•BC=4(34﹣5t)=20,解得,不合题意,应舍去;若P在Q的左侧,如图6,即,S△BPQ PQ•BC=4(5t﹣34)=20,解得;综上所述,当秒或秒时,△BPQ的面积为20cm2.。
浙教版八年级下册数学期中考试试卷附答案
浙教版八年级下册数学期中考试试题一、单选题1.下列几何图形是中心对称图形的是()A .B .C .D .2x 的取值范围是()A .2x ≥B .2x ≠C .2x >D .2x ≤3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中正确的是()A .平均数为4.5,众数是6B .平均数为5,众数是6C .平均数为4.5,众数是5D .平均数为5,众数是54.下列各式中正确的是()A4=±B 4=C 4=-D .2(7=5.下列条件不能判定四边形ABCD 是平行四边形的是().A .AD BC =,AB CD =B .AC ∠=∠,BD ∠=∠C .//AB CD ,BC AD=D .//AD BC ,B D∠=∠6.某快递公司今年一月份完成投递的快递总件数为10万件,二月份、三月份每月投递的件数逐月增加,第一季度总投递件数为33.1万件,问:二、三月份平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程().A .()2101331x +=.B .()()210110133.1x x +++=C .()21010133.1x ++=D .()()210101101331x x ++++=.7.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,过点O 作直线m 交线段AB于点E ,交线段CD 于点F .则图中共有几对全等三角形()A .4B .5C .6D .78.已知关于x 的一元二次方程2430x x m ++-=有两个负整数根,则符合条件的所有正整数m 的和为()A .16B .13C .10D .79.如图所示,以平行四边形ABCD 的边AB 为边向内作等边ABE △,使AD AE =,且点E 在平行四边形内部,连结,DE CE ,则CED ∠的度数为()A .150︒B .145︒C .135︒D .120︒10.如图所示,点E 为ABCD 内一点,连结,,,,EA EB EC ED AC ,已知BCE 的面积为2,CED 的面积为10,则阴影部分ACE 的面积为()A .5B .6C .7D .8二、填空题11=________=_______.12.一个多边形的内角和为900︒,则这个多边形是___边形,它的外角和等于____.13.已知一组数据12345,,,,a a a a a 的方差是1S ,另一组数据123456,6,6,6,6a a a a a -----的方差是2S ,则1S 与2S 的大小关系是1S _____2S (填写“>”、“<”或“-”).14.已知关于x 的方程()21210a x x --+=有两个实数根,则a 的取值范围是______.15.如图,在平行四边形ABCD 中,,AC BD 相交于点O ,点E ,F 在对角线BD 上,有下列条件:①BF DE =;②AE CF =;③EAB FCO ∠=∠;④//AF CE .其中一定能判定四边形AECF 是平行四边形的是______.16.如图所示,在平行四边形ABCD 中,点E 在线段BC 上且2BE CE =,点F 是CD 边的中点,若AE =4AF =,且45EAF ∠=︒,则AB 的长是_______.三、解答题17.计算:(1)2(2))2218.解一元二次方程:(1)22530x x +-=(2)()23412x x -=-19.如图所示,在平行四边形ABCD 中,点E ,点F 分别是AD 、BC 的中点.连结BE 、DF .(1)求证:四边形BEDF 是平行四边形.(2)若BE 平分,3ABC AB ∠=,求平行四边形ABCD 的周长.20.张老师对李华和刘强两位同学从数学运算、逻辑推理、直观想象和数据分析四个方面考核他们的数学素养.单项检测成绩(百分制)列表如下:姓名数学运算逻辑推理直观想象数据分析李华86858085刘强74878784(1)分别对两人的检测成绩进行数据计算,补全下表:姓名平均分中位数众数方差李华848585刘强838722.8(2)你认为李华和刘强谁的数学素养更好?结合数据,从两个角度进行分析.(3)若将数学运算、逻辑推理、直观想象、数据分析四个检测成绩分别按权重30%,40%,20%,10%的比例计算最终考核得分,请分别计算李华和刘强的最终得分.21.如图所示,某品牌1L 的牛奶包装盒,高25cm ,底面为长方形,将包装剪开铺平,得到如图的纸样.(1)牛奶包装盒底面长方形的长和宽分别是多少?(2)若不改变牛奶盒的容积和高度,将生奶盒的底面改为正方形,能否节约包装盒的纸张面积?若能,请计算每个生奶盒可节约的纸张面积;若不能,请说明理由.22.已知关于x 的一元二次方程()222440x m x m m -+++=.(1)求证:无论m 取何值,此方程总有两个不相等的实数根.(2)设方程的两个实数根分别为12,x x ,①求代数式2212124x x x x +-的最大值;②若方程的一个根是6,1x 和2x 是一个等腰三角形的两条边,求等腰三角形的周长.23.如图所示,ABC 是一个边长为4的等边三角形,D 是直线BC 边上一点,以AD 为边作ADE ,使,120AE AD DAE =∠=︒,并以AB ,AE 为边作平行四边形ABFE .(1)当点D 在线段BC 上时,AD 交BF 于点G ,求证:ABD BCF ≌;(2)求线段BF 的最小值;(3)当直线AE 与ABC 的一边垂直时,请直接写出平行四边形ABFE 的面积.参考答案1.B 【分析】根据中心对称图形的定义判断即可.【详解】解:A 、图形不是中心对称图形,故本选项不合题意;B 、图形是中心对称图形,故本选项符合题意;C 、图形不是中心对称图形,故本选项不合题意;D 、图形不是中心对称图形,故本选项不合题意;故选:B .【点睛】本题考查的是中心对称图形的定义,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.A利用二次根式有意义的条件可得2x -4≥0,再解不等式即可.【详解】解:由题意得:2x -4≥0,解得:x ≥2,故选:A .【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.3.B 【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.【详解】解:这组数据的众数为6吨,平均数为()14635666⨯+++++=5吨,故选:B .【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数、中位数.4.D 【分析】根据二次根式的性质分别计算,即可判断.【详解】解:A 4=,因此选项A 不正确;B =B 不正确;C 4=,因此选项C 不正确;D .2(7=,因此选项D 正确;故选:D .本题考查二次根式的性质,掌握二次根式的化简方法是正确计算的前提.5.C【分析】根据平行四边形的判定逐一判断即可.【详解】解:A.由AD=BC,AB=CD可根据两组对边分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;B.由∠A=∠C,∠B=∠D可根据两组对角分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;C.由AB∥CD,BC=AD不能判定四边形ABCD是平行四边形,此选项符合题意;D.由AD∥BC知∠A+∠B=180°,结合∠B=∠D知∠A+∠D=180°,所以AB∥CD,此时可根据两组对边分别平行的四边形是平行四边形知四边形ABCD是平行四边形,此选项不符合题意;故选:C.【点睛】本题主要考查平行四边形的判定,解题的关键是掌握两组对边分别平行的四边形是平行四边形、两组对边分别相等的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形.6.D【分析】根据该快递公司今年一月份及第一季度完成投递的快递总件数,即可得出关于x的一元二次方程,此题得解.【详解】解:依题意,得:10+10(1+x)+10(1+x)2=33.1.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.C利用平行四边形的性质和全等三角形的判定可求解.【详解】解: 四边形ABCD 是平行四边形,AB CD ∴=,AD BC =,//AD BC ,//AB CD ,AO CO =,BO DO =,CAB ACD ∴∠=∠,在ABC ∆和CAD ∆中,AB CD AC AC BC AD =⎧⎪=⎨⎪=⎩,()ABC CAD SSS ∴∆≅∆,同理可得ABD CDB ∆≅∆,在AOE ∆和COF ∆中,CAB ACD AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOE COF ASA ∴∆≅∆,同理可得BOE DOF ∆≅∆,AOB COD ∆≅∆,AOD COB ∆≅∆,∴共有6对全等三角形,故选:C .【点睛】本题考查了平行四边形的性质,全等三角形的判定,解决本题的关键是掌握平行四边形的性质.8.B 【分析】根据方程的系数结合根的判别式△≥0,即可得出m ≤7,由m 为正整数结合该方程的根都是负整数,即可求出m 的值,将其相加即可得出结论.【详解】解: 关于x 的一元二次方程2430x x m ++-=中的1a =,4b =,3c m =-,且该方程有两个负整数根,∴△22444(3)2840b ac m m =-=--=- ,7m ∴ .m 为正整数,且该方程的根都是负整数,2x ∴=-±∴2020⎧-⎪⎨-⎪⎩.解得3m >.则37m < .又 是整数,m ∴的值为6或7,6713∴+=.故选:B .【点睛】本题考查了一元二次方程的整数根与有理根,需要运用根的判别式以及一元二次方程的整数解的知识点解答,牢记“当△≥0时,方程有实数根”是解题的关键.9.A 【分析】根据平行四边形的性质和等边三角形的性质可证明AD =AE =BE =BC ,得∠ADE =∠AED ,∠BCE =∠BEC ,设∠ADE =∠AED =x ,∠BCE =∠BEC =y ,可得∠DAE =180°-2x ,∠CBE =180°-2y ,由平行四边形的邻角互补得出方程,求出x +y =150°,即可得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴AD =BC ,∠BAD +∠ABC =180°,∵△ABE 是等边三角形,∴AE =AB =BE ,∠AEB =∠EAB =∠ABE =60°,∵AD =AE ,∴AD =AE =BE =BC ,∴∠ADE =∠AED ,∠BCE =∠BEC ,设∠ADE =∠AED =x ,∠BCE =∠BEC =y ,∴∠DAE =180°-2x ,∠CBE =180°-2y ,∴∠BAD =180°-2x +60°=240°-2x ,∠ABC =240°-2y ,∴∠BAD +∠ABC =240°-2x +240°-2y =180°,∴x +y =150°,∴∠CED =360°-150°-60°=150°,故选:A .【点睛】本题考查了平行四边形的判定与性质、等边三角形的判定与性质,等腰三角形的性质,熟练掌握平行四边形的性质,根据题意列出方程是解决问题的关键.10.D 【分析】过点B 作BF CD ⊥于点F ,设ABE ∆和CDE ∆的AB 和CD 边上的高分别为a 和b ,根据平行四边形的性质可得12ABE CDE ABCD S S ∆∆+=平行四边形,12ABE CBE ABCD S S S S ∆∆++=阴影平行四边形,进而可得CDE CBE S S S ∆∆=-阴影.【详解】解:如图,过点B 作BF CD ⊥于点F ,设ABE ∆和CDE ∆的AB 和CD 边上的高分别为a 和b ,12ABE S AB a ∆∴=⨯⨯,12CDE S CD b ∆=⨯⨯,a b BF += ,AB CD =,11()22ABE CDE S S AB a CD b AB BF ∆∆∴+=⨯⨯+⨯=⋅,ABCD S CD BF =⋅ 平行四边形,12ABE CDE ABCDS S ∆∆∴+=平行四边形,12ABE CBE ABCD S S S S ∆∆++= 阴影平行四边形,ABE CDE ABE CBE S S S S S ∆∆∆∆∴+=++阴影,1028CDE CBE S S S ∆∆∴=-=-=阴影.故选:D .【点睛】本题考查了平行四边形的性质.三角形的面积,解决本题的关键是掌握平行四边形的性质.112【分析】根据二次根式的性质化简即可.【详解】3=,22.【点睛】本题主要考查了二次根式的性质,熟练掌握二次根式的非负性是解答此题的关键.12.七360︒【分析】设这个多边形是n 边形,它的内角和可以表示成(n -2)•180°,就得到关于n 的方程,求出边数n .然后根据多边形的外角和是360°,即可求解.【详解】解:设这个多边形是n 边形,根据题意得:(n -2)•180°=900°,解得n =7.它的外角和等于360°.故答案为:七,360°.【点睛】本题考查了多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.同时考查了多边形的外角和定理.13.=【分析】由数据a 1-6,a 2-6,a 3-6,a 4-6,a 5-6是将数据a 1,a 2,a 3,a 4,a 5分别减去6所得,知两组数据的波动幅度相同,根据方差的性质可得答案.【详解】解:根据题意知,数据a 1-6,a 2-6,a 3-6,a 4-6,a 5-6是将数据a 1,a 2,a 3,a 4,a 5分别减去6所得,所以两组数据的波动幅度相同,∴S 1=S 2,故答案为:=.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14.a ≤2且a ≠1【分析】根据方程有两个实数根可得△≥0且a −1≠0,解之即可.【详解】解:∵方程()21210a x x --+=有两个实数根,∴Δ=(−2)2−4×(a −1)×1≥0,且a −1≠0,解得:a ≤2且a ≠1.故答案为:a ≤2且a ≠1.【点睛】本题主要考查一元二次方程根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根,反之也成立.【分析】根据全等三角形的判定与性质和平行四边形的判定与性质分别推理论证,即可得到结论.【详解】解:①∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,OB =OD ,OA =OC ,∵BF =DE ,∴BF -OB =DE -OD ,即OF =OE ,∴四边形AECF 是平行四边形;②∵AE =CF ,不能判定△ABE ≌△CDF ,∴不能判定四边形AECF 是平行四边形;③∠EAB =∠FCO 不能判定四边形AECF 是平行四边形;④∵AF ∥CE ,∴∠AFB =∠CED ,在△ABF 和△CDE 中,ABF CDE AFB CED AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△CDE (AAS ),∴BF =DE ,∴BF -OB =DE -OD ,即OF =OE ,又∵OA =OC ,∴四边形AECF 是平行四边形;故答案为:①④.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.16.过点F 作FM AE ⊥于点M ,过点M 作//MG AB 交BC 于点G ,连接EF ,可得AMF ∆是等腰直角三角形,证明GM 是三角形AEB 的中位线,可得四边形GMFC 是平行四边形,再根据勾股定理即可得AB 的长.【详解】解:如图,过点F 作FM AE ⊥于点M ,过点M 作//MG AB 交BC 于点G ,连接EF ,45EAF ∠=︒ ,AMF ∴∆是等腰直角三角形,2AM MF ∴===AE =EM AE AM ∴=-=,AM EM ∴=,//MG AB ,BG GE \=,GM ∴是三角形AEB 的中位线,//GM AB ∴,12GM AB =,12GM CD ∴=,点F 是CD 边的中点,12CF CD ∴=,//GM CF ∴,GM CF =,∴四边形GMFC 是平行四边形,GC MF ∴==22BE BG GE == ,2BE CE =,BG GE EC ∴==,BE GC ∴==FM AE ⊥ ,//FM GC ,AE GC ∴⊥,AE =AB ∴=故答案为:.【点睛】本题考查了平行四边形的判定与性质,三角形中位线定理,勾股定理,解决本题的关键是掌握平行四边形的判定与性质.17.(1)(2)7-【分析】(1)先计算二次根式的乘法和乘方,再计算除法即可;(2)先利用完全平方计算、化简二次根式,再计算加减即可.【详解】解:(1)原式=2=(2)原式=34+-=7-【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.18.(1)13x =-,20.5x =;(2)13x =,27x =【分析】利用因式分解法求解即可.【详解】解:(1)∵2x 2+5x -3=0,∴(x +3)(2x -1)=0,则x +3=0或2x -1=0,解得x 1=-3,x 2=0.5;(2)∵(x -3)2=4x -12,∴(x-3)2-4(x-3)=0,则(x-3)(x-7)=0,∴x-3=0或x-7=0,解得x1=3,x2=7.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.(1)见解析;(2)18【分析】(1)由平行四边形的性质和中点的性质可得DE=BF,即可得结论;(2)由角平分线的性质和平行线的性质可证AB=AE=3,即可求解.【详解】解:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E,点F分别是AD,BC的中点,∴AE=DE=12AD,BF=CF=12BC,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形;(2)∵BE平分∠ABC,∴∠ABE=∠EBC,又∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=3,∴AD=2AE=6,∴平行四边形ABCD的周长=2×(3+6)=18.【点睛】本题考查了平行四边形的判定和性质,掌握平行四边形的性质是本题的关键.20.(1)见详解;(2)李华的数学素养更好,理由见详解;(3)84.3,82.8【分析】(1)根据方差和中位数的定义求解即可;(2)可从平均分、中位数、方差的意义求解即可;(3)根据加权平均数的定义列式计算即可.【详解】解:(1)李华成绩的方差为14×[(86−84)2+2×(85−84)2+(80−84)2]=5.5,刘强成绩的中位数为84872+=85.5,补全表格如下:姓名平均分中位数众数方差李华848585 5.5刘强8385.58722.8(2)李华的数学素养更好,从平均数看,李华的平均分高于刘强,所以李华的平均成绩更好;从方差看,李华的方差小于刘强,所以李华的成绩更加稳定(答案不唯一,合理均可);(3)李华的最终成绩为86×30%+85×40%+80×20%+85×10%=84.3(分),刘强的最终成绩为74×30%+87×40%+87×20%+84×10%=82.8(分).【点睛】本题主要考查数据的整理和统计量的意义,解题的关键是掌握平均数、众数、中位数及方差的意义.21.(1)长为8cm,宽为5cm;(2)能,(650-cm2【分析】(1)设长方形的长为x,宽为y,列出方程组,解之即可;(2)设底面正方形边长为a,分别计算前后单个纸盒的面积,作差比较即可.【详解】解:(1)设长方形的长为x,宽为y,且11000L ml=;由题意可得:2()26 251000x yxy+=⎧⎨=⎩,解得:85x y =⎧⎨=⎩或5(8x x y y =⎧<⎨=⎩,舍去);∴长方形的长为8cm ,宽为5cm .(2)设底面正方形边长为a ,则有2251000a =,1a ∴=,2a =-,此时单个纸盒的面积为2222542)S cm =⨯+⨯=,原来纸盒的面积为212852625730()S cm =⨯⨯+⨯=,21273080650)S S cm ∴-=-=-,6500- ,∴能节约包装盘的纸张面积,且每个牛奶盘可节约2(650cm -.【点睛】本题考查二次根式的应用和剪纸的相关内容,解题的关键在于熟记长方体的体积公式并准确运算.22.(1)见解析;(2)①24;②14或22或26【分析】(1)通过判别式△求解.(2)①通过两根之积与两根之和的关系将x 12+x 22-4x 1x 2配方求解.②把x =6代入方程求出m ,再将m 代入原方程求出另外一个解,再根据三角形两边之和大于第三边确定x 的值.【详解】解:(1)△=(2m +4)2-4(m 2+4m )=16,16>0,∴此方程总有两个不相等的实数根.(2)①x 12+x 22-4x 1x 2=(x 1+x 2)2-6x 1x 2,∵x 1+x 2=()241m -+-=2m +4,x 1x 2=m 2+4m ,∴(x 1+x 2)2-6x 1x 2=(2m +4)2-6(m 2+4m )=-2m 2-8m +16=-2(m +2)2+24,∴当m =-2时x 12+x 22-4x 1x 2的最大值为24.②把x =6代入原方程可得m 2-8m +12=0,解得m =2或m =6,当m =2时,原方程化简为x 2-8x +12=0,解得x =2或x =6,三角形三边长为6,6,2时三角形周长为14,三角形边长为2,2,6时不存在.当m =6时,原方程化简为x 2-16x +60,解得x =6或x =10.三角形三边长为6,6,10时三角形周长为22,三角形三边长为10,10,6时,三角形周长为26.∴等腰三角形周长为14或22或26.【点睛】本题考查一元二次方程综合应用,解题关键是熟练掌握一元二次方程的判别式与根与系数的关系.23.(1)见解析;(2)(3)【分析】(1)由BF AE =,AE AD =,可得BF AD =,ABC ∆是等边三角形可得AB BC =,60CBF ABG ∠+∠=︒且60ABD BAG ∠+∠=︒可得CBF BAD ∠=∠,从而可证ABD BCF ∆≅∆;(2)由ABD BCF ∆≅∆知BF AD =,故BF 最小时,AD 也最小,求出AD 最小值即可;(3)分三种情况:①AE AC ⊥时,②AE AB ⊥时,AE BC ⊥时,分别画出图形,求出底边长度和高,即可得到答案.【详解】解:(1)证明: 四边形ABFE 是平行四边形,BF AE ∴=,//BF AE ,AE AD = ,BF AD ∴=,ABC ∆ 是等边三角形,AB BC ∴=,60ABC ∠=︒,即60CBF ABG ∠+∠=︒,//BF AE ,120DAE ∠=︒,60AGF ∴∠=︒,60ABD BAG ∴∠+∠=︒,CBF BAD ∴∠=∠,在ABD ∆和BCF ∆中,BF AFCBF BAD BC AB=⎧⎪∠=∠⎨⎪=⎩,()ABD BCF SAS ∴∆≅∆;(2)由(1)知ABD BCF ∆≅∆,BF AD ∴=,BF 最小时,AD 也最小,此时AD BC ⊥,如图:ABC ∆ 是等边三角形,60ABD ∴∠=︒,2ABAD ∴==BF ∴=故答案为:(3)直线AE 与ABC ∆的一边垂直,分三种情况:①AE AC ⊥时,如图:此时90CAE ∠=︒,//AE BF ,90AFB CAE ∴∠=∠=︒,又60BAC ∠=︒,在Rt ABF ∆中,114222AF AB ==⨯=,42ABBF =⨯ABFE S AE BF ∴=⋅= ,②AE AB ⊥时,如图:此时90BAE ∠=︒,平行四边形ABFE 为矩形,在Rt ABE ∆中,60ABC ∠=︒,AE ∴=ABFE S AB AE ∴=⋅= ③AE BC ⊥时,延长EA 交BC 于H ,如图:此时90EHD ∠=︒,30HAC ∴∠=︒,120DAE ∠=︒ ,30CAD ∴∠=︒,18030ADH AHD HAC CAD ∴∠=︒-∠-∠-∠=︒,Rt AHC ∆中,122CH AC ==,AH ==2BH ∴=,Rt AHD ∆中,2AD AH ==,BF AE AD ∴===ABFE S BF BH ∴=⋅= ,综上所述,直线AE 与ABC ∆的一边垂直,ABFE 的面积为【点睛】本题考查等边三角形、平行四边形性质及应用,涉及全等三角形、矩形等知识,解题的关键是分别画出图形,分类讨论.。
浙教版数学八年级下学期《期中检测试卷》及答案
A.4、5、6B.3、5、6C. D.
[答案]C
[解析]
[分析]
如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
[详解]解:A、42+52≠62,不能构成直角三角形,故此选项错误;
B、32+52≠62,不能构成直角三角形,故此选项错误;
C、( )2+( )2=( )2,能构成直角三角形,故此选项正确;
D、因为22+( )2≠( )2所以三条线段不能组成直角三角形, 故此选项错误.
故选:C
[点睛]本题主要考查了勾股定理的逆定理的运用,解题时注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
22.高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度 h(单位:m)近似满足公式 t= (不考虑风速的影响)
(1)从50m高空抛物到落地所需时间t1是多少s,从100m高空抛物到落地所 需时间t2是多少s;
(2)t2是t1的多少倍?
(3)经过1.5s,高空抛物下落的高度是多少?
A. 8B. 10C. 15D. 17
6.按如图所示的运算程序,若输入数字“9”,则输出的结果是
A. 7B. 11﹣6 C. 1D. 11﹣3
7.如图,在矩形ABCD中,对角线 相交于点 ,则AB的长是
A. 3cmB. 6cmC. 10cmD. 12cm
8.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为 米,顶端距离地面 米 若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面 米,则小巷的宽度为
浙教版初中数学八年级上册期中测试卷(较易)(含答案)
浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分)1.观察下列作图痕迹,所作CD为△ABC的边AB上的中线是( )A. B.C. D.2.如图,N,C,A三点在同一条直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,△MNC≌△ABC,则∠BCM:∠BCN等于( )A. 1:2B. 1:3C. 2:3D. 1:43.如图,若AB//EF,CE=CA,∠E=65°,则∠CAB的度数为( )A. 25°B. 50°C. 60°D. 65°4.一个直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线的长是( )A. 5B. 6C. 6.5D. 135.不等式3(1−x)>2−4x的解在数轴上表示正确的是( )A. B.C. D.>x的最大整数解为( )6.不等式4−x3A. x=−1B. x=0C. x=1D. x=27.如图,用尺规作图作“一个角等于已知角”的原理是:因为△D′O′C′≌△DOC,所以∠D′O′C′=∠DOC.由这种作图方法得到的△D′O′C′和△DOC全等的依据是( )A. SSSB. SASC. ASAD. AAS8.如图,在△ABC中,∠ABC与∠ACB的角平分线交于点O.若∠A=α,则∠BOC的度数是.( )A. 180∘−12αB. 90∘+12αC. 90∘−12αD. 12α9.下列命题中,正确的是( )A. 等腰三角形顶角的外角平分线与底边平行B. 等腰三角形的高线、中线、角平分线互相重合C. 顶角相等的两个等腰三角形全等D. 等腰三角形的一边不可以是另一边的2倍10.如图,在△ABC中,∠ACB=90°,∠B=30°,点D为AB的中点,若AC=2,则CD的长为( )A. 2B. 3C. 4D. 511.某不等式的解集在数轴上表示如下,该不等式的解是( )A. x≤−2B. x>−2C. x<−2D. x≥−212.若0<a<1,则下列不等式正确的是( )A. a<1<1a B. a<1a<1 C. 1a<a<1 D. 1<1a<a第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 关于x 、y 的方程组{x −y =a +13x +2y =a 的解满足x +y <1,则a 的取值范围是______.14. 如图,已知∠OAB =∠OBC =∠OCD =90°,AB =BC =CD =1,OA =2,则OD =________.15. 已知:一等腰三角形的两边长x 、y 满足方程组{2x −y =33x +2y =8,则此等腰三角形的周长为 .16. 如图,在△ABC 中,∠BAC =80°,∠B =40°,AD 是∠BAC 的角平分线,则∠ADB =________°.三、解答题(本大题共9小题,共72分)17. 如图,在△ABC 和△DAE 中,∠BAC =∠DAE ,AB =AE ,AC =AD ,连结BD ,CE ,求证:△ABD ≌△AEC .18. 一个零件的形状如图,按规定,若∠A 是90°,∠B 和∠C 分别是32°和21°,则零件合格,检验工人量得∠BDC 是149°,就判定这个零件不合格.请运用三角形的有关知识说明零件不合格的理由.19.如图,D为等腰△ABC底边BC上的一点,AD=DC,∠B=30°.试判断△ABD是不是直角三角形,并说明理由.20.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC,若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.21.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这倍,购进数量比第一次少了30支.次每支的进价是第一次进价的54(1)第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,则每支售价至少是多少元?22.已知不等式6x−1>2(x+m)−3+1<x+3的解集相同,求m的值;(1)若它的解集与不等式x−52+1<x+3的解,求m的取值范围.(2)若它的解都是不等式x−5223. 已知关于x ,y 的方程组{x −y =−3x +y =1−3a 的解满足3x +y ≥2,求a 的取值范围. 24. 如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.25. 如图,在△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过点C 作CF ⊥AE ,垂足为F ,过点B 作BD ⊥BC ,交CF 的延长线于点D .(1)求证:AE =CD .(2)若AC =12 cm ,求BD 的长.答案和解析1.【答案】B【解析】解:观察作图痕迹可知:A.CD⊥AB,但不平分,所以A选项不符合题意;B.CD为△ABC的边AB上的中线,所以B选项符合题意;C.CD是∠ACB的平分线,所以C选项不符合题意;D.不符合基本作图过程,所以D选项不符合题意.故选:B.根据题意,CD为△ABC的边AB上的中线,就是作AB边的垂直平分线,交AB于点D,连接CD即可判断.本题考查了作图−基本作图、三角形的角平分线、中线和高、线段垂直平分线的性质,解决本题的关键是掌握三角形的中线.2.【答案】D【解析】【分析】本题考查了全等三角形的性质;利用三角形的三角的比,求得三个角的大小是很重要的方法,要注意掌握.利用三角形的三角的比,求出三角的度数,再进一步根据各角之间的关系求出∠BCM、∠BCN的度数可求出结果.【解答】解:在△ABC中,∠A:∠ABC:∠ACB=3:5:10,设∠A=3x°,则∠ABC=5x°,∠ACB=10x°,∵∠A+∠ABC+∠ACB=180°,∴3x+5x+10x=180,解得x=10,则∠A=30°,∠ABC=50°,∠ACB=100°,∴∠BCN=180°−100°=80°,又∵△MNC≌△ABC,∴∠ACB=∠MCN=100°,∴∠BCM=∠NCM−∠BCN=100°−80°=20°,∴∠BCM:∠BCN=20°:80°=1:4.故选D.3.【答案】B【解析】【分析】本题是等腰三角形的性质:等边对等角,与平行线的性质的综合应用.CE=CA即△ACE 是等腰三角形.∠E是底角,根据等腰三角形的两底角相等得到∠E=∠EAC=65°,由平行线的性质得到:∠EAB=115°,从而求出∠CAB的度数.【解答】解:∵CE=CA,∴∠E=∠EAC=65°,又∵AB//EF,∴∠EAB=180°−∠E=115°,∴∠CAB=∠EAB−∠EAC=50°.故选B.4.【答案】C【解析】【分析】本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.【解答】解:如图,在△ABC中,∠C=90°,AC=12,BC=5,则根据勾股定理知,AB=√122+52=13,∵CD为斜边AB上的中线,AB=6.5.∴CD=12故选C.5.【答案】A【解析】解:去括号,得:3−3x>2−4x,移项,得:−3x+4x>2−3,合并,得:x>−1,在数轴上表示为,故选:A.根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答案.本题主要考查解一元一次不等式以及在数轴上表示不等式的解集,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变以及在数轴上表示注意空心点和实心点.6.【答案】B>x,【解析】解:4−x34−x>3x,−x−3x>−4,x<1,>x的最大整数解是0.∴不等式4−x3故选:B.根据不等式的解法求出不等式的解集,然后再找出最大整数解即可.本题主要考查了一元一次不等式的解法,在解题时要注意解不等式的步骤和符号.7.【答案】A【解析】解:由作法得OD=OC=OD′=OC′,CD=C′D′,所以根据“SSS”可判断△D′O′C′≌△DOC.故选:A.根据作图得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法求解.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定与性质.8.【答案】B【解析】【分析】本题考查了三角形的内角和定理、角平分线的定义等知识.根据BO、CO分别是∠ABC与∠ACB的角平分线,用α的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数.【解答】解:∵∠A=α,∴∠ABC+∠ACB=180°−α,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=12(180°−α)=90°−12α,∴∠BOC=180°−(∠OBC+∠OCB)=90°+1 2α故选B.9.【答案】A【解析】【分析】本题主要考查对于等腰三角形的性质定理的记忆与理解.从各选项提供的已知条件,根据等腰三角形的性质,全等三角形的判定对各个命题进行分析,从而得到答案.【解答】解:A.因为等腰三角形顶角的外角等于两底角的和,作顶角的外角的平分线得到的角就等于等腰三角形的底角,根据内错角相等,两直线平行就可以得到:等腰三角形顶角的外角平分线与底边平行,所以此命题正确;B.应该为等腰三角形底边上的高线,中线,角平分线重合,所以原命题不正确;C.因为顶角相等的两个等腰三角形对应边不一定相等,因而不一定全等,所以原命题不正确;D.等腰三角形的腰可以为底边的两倍,所以原命题不正确;故选A.10.【答案】A【解析】解:∵AC=2,∠B=30°,∠ACB=90°,∴AB=2AC=4,∵点D为AB的中点,AB=2,∴CD=12故选:A.利用直角三角形的性质得到AB长,然后再利用直角三角形斜边上的中线的性质可得答案.此题主要考查了直角三角形斜边上的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.11.【答案】D【解析】【分析】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.根据数轴上不等式的解集得出x≥−2即可.【解答】解:根据数轴上不等式的解集得:x≥−2,故选D.12.【答案】A【解析】【分析】.即可判断出.本题考查了不等式的基本性质,属于基础题.由0<a<1,可得a<1<1a【解答】解:∵0<a<1,∴1<1 aa<1<1 a故选A.13.【答案】a<6【解析】解:{x−y=a+1 ①3x+2y=a ②,①×2+②得:5x=3a+2,即x=3a+25,把x=3a+25代入②得:y=−2a+35,根据题意得:3a+25−2a+35<1,解得:a<6,故答案为a<6.把a看做已知数表示出方程组的解,根据题意不等式求出a的范围即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14.【答案】√7【解析】【分析】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.在直角三角形AOB中,由OA与AB的长,利用勾股定理求出OB的长,在直角三角形BOC中,由OB与BC的长,利用勾股定理求出OC的长,在直角三角形OCD中,由OC与CD的长,利用勾股定理即可求出OD 的长.【解答】解:∵∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,∴在Rt△AOB中,根据勾股定理得:OB=√OA2+AB2=√4+1=√5,在Rt△BOC中,根据勾股定理得:OC=√BC2+OB2=√5+1=√6,在Rt△COD中,根据勾股定理得:OD=√OC2+CD2=√6+1=√7.故答案为√7.15.【答案】5【解析】解:解方程组{2x −y =33x +2y =8得{x =2y =1.所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以这个等腰三角形的周长为5.故答案为:5.先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案. 本题考查了三角形三边关系及解二元一次方程组,难度一般,关键是掌握分类讨论的思想解题.16.【答案】100【解析】【分析】本题考查了角平分线定义和性质、三角形外角性质以及三角形内角和,注意:三角形的一个外角等于和它不相邻的两个内角的和.根据角平分线定义求出∠CAD ,再根据三角形外角性质求出即可.【解答】解:∵在△ABC 中,∠BAC =80°,∠B =40°,AD 是△ABC 的角平分线,∴∠C =60°,∠CAD =40°,∴∠ADB =∠CAD +∠C =100°,故答案为100.17.【答案】证明:∵∠BAC =∠DAE ,∴∠BAC −∠BAE =∠DAE −∠BAE ,即∠BAD =∠CAE ,在△ABD 和△AEC 中,{D =AC ∠BAD =∠EAC AB =AE, ∴△ABD≌△AEC(SAS).【解析】本题考查了全等三角形的判定,判断三角形全等的方法有:SSS ,SAS ,ASA ,AAS ,以及判断两个直角三角形全等的方法HL .根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论.18.【答案】解:如图,延长CD交AB于M.∵∠A=90°,∠C=21°,∴∠1=∠A+∠C=90°+21°=111°,∵∠B=32°,∴∠BDC=∠B+∠1=32°+111°=143°.又∵∠BDC=149°,∴这个零件不合格.【解析】延长CD交AB于M,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠BDC,然后即可判断.本题考查的是三角形外角的性质,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.19.【答案】【解答】解:△ABD是直角三角形.∵AD=DC,∠B=30°,∴∠DAC=30°,∵△ABC是等腰三角形,∴∠B=∠C=30°,∠BAC=120°,∴∠BAD=∠BAC−∠DAC=120°−30°=90°,∴△ABD是直角三角形.【解析】【解析】本题主要考查了三角形的内角和定理,三角形的性质的综合应用,等腰三角形的判定,等腰三角形的性质,直角三角形的判定及性质.解题关键是利用等腰三角形的性质及判定,利用三角形内角和定理,及已知条件解出∠BAD 的度数,从而判断三角形的形状.20.【答案】解:(1)∠DAC 的度数不会改变;∵EA =EC ,∴∠CAE =∠C ,①∵∠BAE =90°,∴∠BAD =12[180°−(90°−2∠C)]=45°+∠C ,∴∠DAE =90°−∠BAD =90°−(45°+∠C)=45°−∠C ,②由①,②得,∠DAC =∠DAE +∠CAE =45°;(2)设∠ABC =m°,则∠BAD =12(180°−m°)=90°−12m°,∠AEB =180°−n°−m°,∴∠DAE =n°−∠BAD =n°−90°+12m°, ∵EA =EC ,∴∠CAE =12∠AEB =90°−12n°−12m°,∴∠DAC =∠DAE +∠CAE =n°−90°+12m°+90°−12n°−12m°=12n°. 【解析】本题考查了等腰三角形的性质,三角形的内角和定理,正确的识别图形是解题的关键.(1)根据等腰三角形的性质得到∠CAE =∠C ,①求得∠DAE =90°−∠BAD =90°−(45°+∠C)=45°−∠C ,②;由①,②即可得到结论;(2)设∠ABC =m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.21.【答案】解:(1)设第一次每支铅笔的进价为x 元,则第二次每支铅笔的进价为54x 元. 根据题意列方程得600x −60054x =30, 解得x =4.经检验,x =4是原分式方程的解,即第一次每支铅笔的进价为4元;(2)设售价为y 元,根据题意列不等式为6004(y −4)+6004×54(y −4×54)≥420,解得y≥6,即每支售价至少是6元.【解析】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键,最后不要忘记检验.(1)设第一次每支铅笔进价为x元,则第二次每支铅笔进价为54x元,根据题意可列出分式方程解答;(2)设售价为y元,求出利润表达式,然后列不等式解答.22.【答案】解:6x−1>2(x+m)−3,6x−2x>2m−3+1,4x>2m−2,x>m−1 2(1)x−52+1<x+3,解得:x>−9,∴m−12=−9,解得m=−17;(2)解不等式x−52+1<x+3得,x>−9,由题意可得,m−12≥−9,解得:m≥−17.【解析】(1)分别求出两个不等式的解,然后根据两个不等式的解集相同而得到方程,再解方程即可.(2)根据题意列出不等式,求解即可得出m的取值范围.本题考查了解一元一次不等式,分别求出两个不等式的解集,再列出关于m的不等式是解题的关键.23.【答案】解:{x−y=−3①x+y=1−3a②,①+②,得:2x=−2−3a,解得:x=−1−32a,②−①,得:2y=4−3a,解得:y =2−32a ,∴方程组的解为{x =−1−32a y =2−32a, ∵关于x ,y 的方程组{x −y =−3x +y =1−3a的解满足3x +y ≥2, ∴3(−1−32a)+2−32a ≥2, 去括号得:−3−92a +2−32a ≥2,移项得:−92a −32a ≥2+3−2,合并同类项得:−6a ≥3,系数化为1得:a ≤−12.【解析】本题考查了加减消元法解二元一次方程,解一元一次不等式,二元一次方程组的解.先利用加减消元法得到方程组的解,根据题意即可得到关于a 的一元一次不等式,解不等式即可.24.【答案】解:△AFC 是等腰三角形.理由:在△BAD 与△BCE 中,∵∠B =∠B ,∠BAD =∠BCE ,BD =BE ,∴△BAD≌△BCE ,∴BA =BC ,∴∠BAC =∠BCA ,∴∠BAC −∠BAD =∠BCA −∠BCE ,即∠FAC =∠FCA ,∴△AFC 是等腰三角形.【解析】本题考查了全等三角形的判定与性质及等腰三角形的判定等知识点,利用全等三角形来得出角相等是本题解题的关键.要判断△AFC 的形状,可通过判断角的关系来得出结论,那么就要看∠FAC 和∠FCA 的关系.因为∠BAD =∠BCE ,因此我们只比较∠BAC 和∠BCA 的关系即可.根据题中的条件:BD =BE ,∠BAD =∠BCE ,△BDA 和△BEC 又有一个公共角,因此两三角形全等,那么AB =AC ,于是∠BAC =∠BCA ,由此便可推导出∠FAC =∠FCA ,那么三角形AFC 应该是个等腰三角形.25.【答案】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,在△DBC和△ECA中,∵{∠D=∠AEC∠DBC=∠ECA=90∘BC=AC,∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:由(1)得AE=CD,AC=BC,在Rt△CDB和Rt△AEC中{AE=CDAC=BC,∴Rt△CDB≌Rt△AEC(HL),∴BD=CE,∵AE是BC边上的中线,∴BD=EC=12BC=12AC,且AC=12cm.∴BD=6cm.【解析】本题考查的是全等三角形的判定与性质有关知识.(1)证两条线段相等,通常用全等,本题中的AE和CD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD=EC=12BC=12AC,且AC=12,即可求出BD的长.。
浙教八年级上数学期中试卷
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a + 3 < b + 3D. a - 3 > b - 32. 下列各数中,有理数是()A. √2B. πC. -1/3D. 2.53. 在下列各式中,代数式是()A. 3x + 4B. 2x² - 5x + 2C. 5x + 3D. x² - 2x + 14. 已知等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积是()A. 24cm²B. 36cm²C. 48cm²D. 60cm²5. 若直角三角形的两个锐角分别为30°和60°,则该三角形的斜边与直角边的比是()A. 2:1B. 3:1C. 4:1D. 5:16. 已知一元二次方程x² - 5x + 6 = 0的解为x₁和x₂,则x₁ + x₂的值是()A. 5B. -5C. 6D. -67. 在平面直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)8. 下列函数中,一次函数是()A. y = 2x + 1B. y = x² - 2x + 1C. y = √xD. y = x³ - 2x² + 19. 在下列各式中,完全平方公式是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²10. 下列各数中,正数是()A. -1/2B. 0C. -3/4D. 1/3二、填空题(每题5分,共25分)11. 已知x² - 3x + 2 = 0,则x₁ = __________,x₂ = __________。
浙教版数学八年级下学期《期中检测题》及答案
6.用反证法证明命题“在直角三角形中,至少有一个锐角不大于 ”时,应先假设().
A. 有一个锐角小于 B. 每一个锐角小于
C. 有一个锐角大于 D. 每一个锐角大于
7.化简二次根式 的结果是()
A. B. C. D.
8.把方程 的左边配方后可得方程()
[详解]解:∵平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、C(3,2)、D(2,0),
∴AB= = ,BC=3,
∵若点A关于BP的对称点为A',
∴BA′=BA= ,
在△BA′C中,由三角形三边关系可知A′C≥BC-BA′,
∴A′C≥3- ,即A′C的最小值为3- ,
故选B.
[点睛]本题考查平行四这形及轴对称的性质,利用三角形的三边关系得到A′C≥BC-BA′是解题的关键.
13.顺次连接四边形各边中点所得的四边形是________
[答案]平行四边形
[解析]
试题分析:根据中位线的性质可得四边形的对边分别平行且相等,则所得到的四边形为平行四边形.
14.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为 ,根据题意列出的方程是_________.
(1)若要围成总面积为36m2 花圃,边AB的长应是多少?
(2)花圃的面积能否达到36.75m2?若能,求出边AB的长;若不能,请说明理由.
答案与解析
一、选择题
1.下列图案,既是轴对称图形又是中心对称图形的个数是().
A.1B.2C.3D.4
[答案]C
[解析]
[分析]
根据轴对称图形与中心对称图形的概念求解.
浙教版初中数学八年级上册期中测试卷(标准难度)(含解析)
中浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.如图,已知:AB=DE,∠1=∠2,下列条件中能使△ABC≌△DEF的是( )A. AF=CDB. ED=BCC. AB=EFD. ∠B=∠E2.下面说法正确的个数是( )(1)三角形中最小的内角不能大于60°;(2)三角形的一个外角等于这个三角形的两个内角的和;(3)三角形任意两个内角的和大于第三个内角;(4)直角三角形只有一条高;(5)在同圆中任意两条直径都相互平分;(6)三角形一边上的高小于这个三角形的其他两边.A. 5个B. 4个C. 3个D. 2个3.已知:如图所示,将△ABC的∠C沿DE折叠,点C落在点C′处,若设∠C=α,∠AEC′=β,∠BDC′=γ,则下列关系成立的是( )A. 2α=β+γB. α=β+γC. α+β+γ=180°D. α+β=2γ4. 若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有( )①∠A =∠B −∠C ;②∠A :∠B :∠C =3:4:5;③a 2=(b +c)(b −c);④a :b :c =5:12:13.A. 1个B. 2个C. 3个D. 4个5. 如图,三角形是直角三角形,四边形是正方形,已知正方形A 的面积是64,正方形B 的面积是100,则半圆C 的面积是( )A. 4.5πB. 9πC. 36D. 18π6. 如图,Rt △ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G.若AB =10,BC =8,则点G 到直线AB 的距离为( )A. 83B. 3C. 4D. 2457.如果关于x 的不等式组{x−m2>0x−43−x <−4的解集为x >4,且整数m 使得关于x ,y 的二元一次方程组{mx +y =83x +y =1的解为整数(x,y 均为整数),则符合条件的所有整数m 的和是( )A. −2B. 2C. 6D. 108. 不等式组1≤8−x 3−1<2的解集在数轴上表示正确的是( )A.B.C.D.9. 如果关于x 的不等式{x +8<4x −1x >m的解集是x >3,那么m 的取值范围是( )A. m ≥3B. m ≤3C. m =3D. m <310. 某种商品的进价为200元,商场的标价是300元,后来由于商品积压,商场准备打折销售,为了保证利润率不低于5%,则该商品最多打几折( )中A. 9折B. 8折C. 7折D. 6折11. 若数a 使关于x 的不等式组{x+13≥−1−x 25x −2>x +a有且仅有五个整数解,且使关于y 的方程y+ay−1+2a1−y =2的解为非负数,则符合条件的所有整数a 的和为( ) A. −3 B. −2 C. 1 D. −112. 如图,利用尺规作∠AOB 的平分线,作法如下:①以点O 为圆心,适当长为半径画弧,交OA 于点D ,交OB 于点E ;②分别以点D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部交于点C ; ③画射线OC ,射线OC 就是∠AOB 的平分线. 通过上述作法,可得△OEC≌△ODC ,其依据是( )A. SSSB. ASAC. AASD. SAS第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,AB//CD ,EF 分别与AB ,CD 交于点B ,F.若∠E =30∘,∠EFC =130∘,则∠A = .14. 在△ABC 中,∠A −∠B =35°,∠C =55°,则∠B 等于______°.15. 如图,在Rt △ABC 中,∠ACB =90°,AC =2,BC =4,点P 为AB 上不与A ,B 重合的一个动点,连接CP ,将△ACP 沿CP 折叠得到△QCP ,点A 的对应点为点Q ,连接BQ ,则线段BQ 的取值范围为______.16. 已知方程组{2x +y =m4x +5y =2的解x 、y 满足x +y >1,则m 的取值范围是______.三、解答题(本大题共9小题,共72分。
浙教版八年级数学上册期中考试卷(附答案)
浙教版八年级数学上册期中考试卷(附答案)一、选择题1.下列图标是节水、绿色食品、回收、节能的标志,其中是轴对称图形的是()A.B.C.D.2.下列长度的三条线段,首尾顺次相连能组成三角形的是()A.2,3,6B.4,4,8C.5,9,14D.6,12,133.若点A(m−n,m−2n)与点B(m−3n,1−12m)关于y轴对称,则点P(m,n)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.某品牌自行车进价为每辆800元,标价为每辆1 200元.店庆期间,商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%,则最多可打()折.A.六B.七C.八D.九5.根据下列已知条件,能画出惟一的△ABC的是()A.AB=3cm,BC=7cm,AC=4cmB.AB=3cm,BC=7cm,△C=40°C.△A=30°,AB=3cm,△B=100°D.△A=30°,△B=100°,△C=50°6.如图,在Rt△ABC中,△C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC,AB于点M,N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=15,则△ABD的面积为()A.15B.30C.45D.607.下列命题:①全等三角形的对应角相等;②线段垂直平分线上的点到线段两端的距离相等;③等腰三角形的两个底角相等.其中逆命题是真命题的个数是()A.0B.1C.2D.38.如图,AF//CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE②AC//BE③∠CBE+∠D=90°④∠DEB=2∠ABC其中正确的有()A.1个B.2个C.3个D.4个9.如图,在△ABC中,BD平分∠ABC交AC于点D,且BD⊥AC,F在BC上,E为AF的中点,连接DE,若BF=DE,AC=2√3DE,BD=6则AB的长为()A.3√6B.4√3C.√42D.910.如图,在平面直角坐标系中,点A的坐标为(4,0),点Q是直线y=√3x上的一个动点,以AQ为边,在AQ的右侧作等边△APQ,使得点P落在第一象限,连接OP,则OP+AP的最小值为()A.6B.4√3C.8D.6√3二、填空题11.已知a,b,c是△ABC的三条边长,化简|a+b−c|+|a−b−c|的结果为.12.如图,在△ABC中∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC.则∠4的度数为.13.如图,已知圆柱的底面直径BC为6π,高AB为5,一只小虫在圆柱表面爬行,从C点爬到A点,则这只小虫爬行的最短路程是.14.如图所示,在△ABC中△BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E和点N在BC 上,则△EAN=.15.关于x的不等式组{2x−3≤5−x+a<2只有4个整数解,则a的取值范围是.16.Rt△ABC中,点D是斜边AB的中点.(1)如图1,若DE⊥BC与E,DF⊥AC于F,DF=4则AB=;(2)如图2,若点P是CD的中点,且CP=52,PA2+PB2=.三、计算题17.解下列不等式组,并把解集在数轴上表示出来:(1){x+1>010−2x>0(2){5x−1>3(x+1) 2x−13−5x+12≤1四、作图题18.如图,在3×6的方格纸中,已知格点P和线段AB.△画一个锐角三角形(顶点均在格点上且不与点A,B重合),使P为其中一边的中点.△再画出该三角形关于直线AB对称的图形.五、解答题19.已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC求证:DE=BC.20.如图,在△ABC中,D是BC延长线上一点,满足CD=BA,过点C作CE//AB,且CE=BC,连接DE 并延长,分别交AC,AB于点F,G.(1)求证:△ABC△△DCE;(2)若BD=12,AB=2CE,求BC的长度.21.某旅游景点的一个商场为了抓住国庆节长假这一旅游旺季的商机,决定购进甲,乙两种纪念品,若购进甲种纪念品1件、乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品共100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时甲种纪念品又不能超过60件,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?22.下面是小明同学证明定理时使用的两种添加辅助线的方法,选择其中一种,完成证明.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.已知:如图,在△ABC中∠C=90°,∠A=30°.求证:BC=12AB.方法一证明:如图,延长BC到点D,使得CD=BC,连接AD.方法二证明:如图,在线段AB上取一点D,使得BD= BC,连接CD.23.已知△ABC中AB=AC,BM⊥AC于点M,点D在直线BC上DE⊥AB,垂足为点E,DF⊥AC垂足为点F.(1)如图1,点D在边BC上时,小明同学利用①三角形全等知识和②图形等面积法两种方法发现了DE,DF,BM三线段之间的数量关系,请直接写出三线段之间的数量关系是;(2)如图2,图3,当点D在点B左边或者在点C右边的直线上时,问题(1)中DE,DF,BM三线段的数量关系是否还成立?若成立请选择一个图形进行证明,若不成立,请在图2或图3中选择一个图形,写出三线段新的数量关系,并进行证明.24.已知△ABC.(1)如图1,按如下要求用尺规作图:①作出△ABC的中线CD;②延长CD至E,使DE=CD,连接AE;(不要求写出作法,但要保留作图痕迹.)(2)如图2,若∠ACB=90°,CD是中线.试探究CD与AB之间的数量关系,并说明理由;(3)如图3,若∠ACB=45°,AC=BC,CD是△ABC的中线,过点B作BE⊥AC于E,交CD于点F,连接DE.若CF=4,求DE的长.答案解析部分1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】C6.【答案】B7.【答案】C8.【答案】D9.【答案】A10.【答案】C11.【答案】2b12.【答案】45°13.【答案】√3414.【答案】32°15.【答案】2<a ≤316.【答案】(1)10(2)62.517.【答案】(1)解:{x +1>0①10−2x >0②解不等式①得:x >−1解不等式②得:x <5所以不等式组的解集为−1<x <5.把解集在数轴上表示出来,如图:(2)解:{5x −1>3(x +1)①2x−13−5x+12≤1②解不等式①得x >2解不等式②得x ≥−1所以不等式组的解集为x >2把解集在数轴上表示出来,如图:18.【答案】解:△如图所示,△DCE 即为所求(答案不唯一);△如图所示,△FGH 即为所求.19.【答案】证明:∵DE ∥AC∴∠EDB =∠C∵{∠EDB =∠C ∠E =∠ABC BD =AC∴△BED ≌△ABC(AAS)∴DE =BC .20.【答案】(1)证明:∵CE//AB∴∠B =∠ECD在△ABC 与△DCE 中{AB =CD ∠B =∠ECD BC =CE∴△ABC △△DCE(SAS)(2)解:∵△ABC△△DCE ,∴AB =DC ,BC =CE∵AB =2CE ,∴CD =2BC∴BD =CD+BC =3BC∵BD =12∴BC =421.【答案】(1)解:设购进甲种纪念品每件需要x 元,购进乙种纪念品每件需要y 元根据题意,得{x +2y =1602x +3y =280解得{x =80y =40答:购进甲种纪念品每件需要80元,购进乙种纪念品每件需要40元; (2)解:设购进甲种纪念品m 件,则购进乙种纪念品(100-m)件根据题意得{80m +40(100−m )≥6000m ≤60解得50≤m≤60∵m 为整数∴m=50,51,52,53,54,55,56,57,58,59,60∴该商场共有11种进货方案;(3)解:设利润为w 元则w=30m+12(100-m )=18m+1200∴当m 取最大值时,w 最大∴当m=60时,获得利润最大,最大利润w=18×60+1200=2280元答:购进甲种纪念品60件,乙种纪念品40件时获利最大,最大利润是2280元. 22.【答案】解:若选择方法一:如图:延长BC 到点D ,使得CD =BC ,连接AD∵∠ACB =90°,∠BAC =30°∴∠B =90°−∠BAC =60°,∠ACD =180°−∠ACB =90°∴∠ACD =∠ACB =90°∵AC =AC∴△BCA △△DCA(SAS)∴AD =AB∴△ABD 是等边三角形∴AB =BD∵BC =CD =12BD ∴BC =12AB ; 若选择方法二:如图,在线段AB 上取一点D ,使得BD =BC ,连接CD∵∠ACB=90°,∠A=30°∴∠B=90°−∠A=60°∴△BCD是等边三角形∴BC=BD=DC,∠BCD=60°∴∠DCA=∠ACB−∠BCD=30°∴∠DCA=∠A=30°∴DC=DA∴BC=BD=DA=1 2AB即BC=12AB.23.【答案】(1)BM=DE+DF(2)解:不成立.连接AD.当点D在点B左边的直线上时,如图.∵SΔACD−SΔABD=SΔABC∴12AC⋅DF−12AB⋅DE=12AC⋅BM∵AB=AC∴DF−DE=BM;当点D点C右边的直线上时,如图.∵SΔABD−SΔACD=SΔABC∴12AB ⋅DE −12AC ⋅DF =12AC ⋅BM ∵AB =AC∴DE −DF =BM .24.【答案】(1)解:①如图1所示,线段CD 即为所求. 作法:1.分别以A ,B 为圆心,大于12AB 为半径画弧,交于两点 2.连接这两点与AB 交于点D 3.连接CD线段CD 即为所求.②如图1中,线段DE ,AE 即为所求.作法:1.延长线段CD 至点E ,使DE =CD 2.连接AE线段DE ,AE 即为所求;(2)解:AB 与CD 的数量关系是:AB =2CD ,理由如下: 如图,延长CD 至E ,使DE =DC ,连接BE∵CD 是中线∴AD =BD在△ADC 和△BDE 中{AD =BD ∠ADC =∠BDE DC =DE∴△ADC ≌△BDE(SAS)∴∠E =∠ACD ,AC =BE∴AC∥BE∴∠ACB+∠EBC=180°∵∠ACB=90°∴∠EBC=90°在△ACB和△EBC中{AC=BE ∠ACB=∠EBC CB=BC∴△ACB≌△EBC(SAS)∴AB=CE∵CE=2CD∴AB=2CD.(3)解:如图3中∵BE⊥AC,∠ACB=45°∴∠CEB=∠BEA=90°,∠ECB=∠EBC=45°∴EC=EB∵AC=BC,CD是中线∴CD⊥AB∵∠CEF=∠BDF=90°,∠CFE=∠BFD∴∠ECF=∠ABE在△CEF和△BEA中{∠ECF=∠EBA CE=BE ∠CEF=∠BEA∴△CEF≌△BEA(ASA)∴CF=AB=4∵AD=BD,∠AEB=90°∴DE=12AB=2.。
浙教版八年级下学期数学《期中考试试题》附答案
解得, , (不符合题意,舍去)
∴ 5.
故答案为:5.
[点睛]本题考查了用换元法解一元二次方程,设 是解题的关键,注意:平方都是非负数.
14.如图,已知正六边形 ,连接 ,则 _________°.
[答案]60
[解析]
[分析]
作出正六边形的外接圆,连接OE,OA则可知∠AOE=120°,从而可得∠ECA的度数.
A. B. C. D.
[答案]D
[解析]
[分析]
根据题意直接利用二次根式有意义的条件得出x的取值范围进而得出答案.
[详解]解:式子 在实数范围内有意义,
则1-x≥0,
解得: .
故选:D.
[点睛]本题主要考查二次根式有意义的条件,正确掌握二次根式的性质是解题的关键.
2.一元二次方程 配方后可变形为().
浙 教 版 数 学 八年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
一、选择题
1. 在实数范围内有意义,则 的取值范围是()
A. B. C. D.
2.一元二次方程 配方后可变形为().
A. B.
C. D.
3.下列运算中,正确的是()
A. B.
[答案]3
[解析]
[分析]
先求出 的取值范围,即可求出 的整数部分和小数部分,然后代入求值即可.
[详解]解:∵ < <
∴2< <3
∴ 的整数部分为2, 的小数部分为a= -2
∴(4 -2)( -2)=( +2)( -2)=7-4=3
故答案为:3.
[点睛]此题考查的是求一个数算术平方根的小数部分,掌握实数比较大小方法是解决此题的关键.
八年级数学上学期期中模拟测试卷02(浙教版)考试版
2023-2024学年八年级数学上学期期中模拟测试卷2(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一-第三单元(浙教版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列图形中,属于轴对称图形的是()A.B.C.D.2.下列长度(单位:cm)的三条线段能组成三角形的是()A.5,5,13B.1,2,3C.5,7,12D.11,12,133.若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<04.如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)5.等腰三角形有一个内角为80°,则它的顶角为()A.80°B.20°C.80°或20°D.不能确定6.下列命题中,是假命题的是()A.两点之间,线段最短B.对顶角相等C.直角的补角仍然是直角D.同旁内角互补7.设点P(x,y)在第二象限,且|x|=5,|y|=2,则点P的坐标是()A.(﹣5,2)B.(5,2)C.(﹣5,﹣2)D.(5,﹣2)8.如图,在△ABC中,∠ABC,∠ACB的平分线交于点D,过点D作EF∥BC交AB于点E,交AC于点F.若AB=12,AC=8,BC=13,则△AEF的周长是()A.15B.18C.20D.229.若不等式组的解集为x<1,则a的取值范围为()A.a≥1B.a≤1C.a≥2D.a=210.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④第Ⅱ卷二、填空题(本题共6小题,每小题4分,共24分.)11.命题“如果a+b>0,那么a>0,b>0”的逆命题是.12.不等式2x﹣1<3的解集是.13.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.15.如图,已知△ABC的面积为18,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是.16.如图:长方形ABCD中,AD=26,AB=12,点Q是BC的中点,点P在AD边上运动,当△BPQ是以QP为腰的等腰三角形时,AP的长为.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)解不等式(组)(1)7x﹣2≥5x+2;(2).18.(8分)如图,M为△ABC的边AC上一点,请用尺规作图,在边BC上找到一点N,使得△MNB是以BM为底边的等腰三角形(保留作图痕迹,不写作法),19.(8分)如图,在△ABC中,AB=AC,BD=CF,BE=CD.(1)求证:△BDE≌△CFD;(2)若∠A=70°,求∠EDF的度数.20.(8分)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:A型B型进价(元/盏)4065售价(元/盏)60100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B种台灯多少盏?21.(8分)某中学A,B两栋教学楼之间有一块如图所示的四边形空地ABCD,学校为了绿化环境,计划在空地上种植花草,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)求出四边形空地ABCD的面积;(2)若每种植1平方米的花草需要投入120元,求学校共需投入多少元.22.(12分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF⊥DE于点F.(1)求证:△ACD≌△BEC;(2)若∠DCE=120°,求∠CDE的度数,(3)求证:CF平分∠DCE.23.(14分)△ABC和△DEC是等腰直角三角形,∠ACB=∠DCE=90°,AC=BC,CD =CE.【观察猜想】当△ABC和△DEC按如图1所示的位置摆放,连接BD、AE,延长BD交AE 于点F,猜想线段BD和AE有怎样的数量关系和位置关系.【探究证明】如图2,将△DCE绕着点C顺时针旋转一定角度α(0°<α<90°),线段BD和线段AE的数量关系和位置关系是否仍然成立?如果成立,请证明;如果不成立,请说明理由.【拓展应用】如图3,在△ACD中,∠ADC=45°,CD=,AD=4,将AC绕着点C 逆时针旋转90°至BC,连接BD,求BD的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年八年级数学期中学力检测卷2011.4温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项, 不选、多选、错选,均不给分)1.小明的表弟缠着八年级的小明问表哥比他大几岁,小明说大16岁,表弟听不懂,其实数学里的16就是( ▲ )A 、4±B 、2C 、4D 、8 2.你认为方程x (x -2)= 0的根是( ▲ ) A .0B .2C .0或2D .无解3.下列语句中,属于命题的是( ▲ )A .任何一元二次方程都有两个实数解;B .作直线AB 的垂线;C .∠1与∠2相等吗?D .若a 2 = 3,求a 的值.4a 的取值范围应该是( ▲ )A . a < 1B .a > 1C . a ≤ 1D . a ≥ 15.义乌汽车满街跑,下面这几个常见的车标中,是中心对称图形而不是轴对称图形的共有( ▲ )A .1个B .2个C .3个D .4个6.镶嵌在现实中有着广泛的应用,下列图形中,不能..单独镶嵌成平面图形的是( ▲ ) A .正三角形 B .正方形 C .正五边形 D . 正六边形7.下列各数中,可以用来说明命题 “任何偶数都是4的倍数”是假命题的反例..是( ▲ ) A . 3 B 12 C . 14 D . 168.用配方法将方程01162=-+x x 变形为()n m x =+2的形式是( ▲ )A.()2032=-x B.()2032=+x C.()232=-x D.()232=+x9.如果□ABCD 的周长是L ,AB=12BC ,那么BC 的长为( ▲ )A .L 31 B .L 41 C .L 51 D .L 6110.坡比记得吗?如图,水库大坝的横截面是梯形,坝顶BC=5米,坝高BE=CF=20米,斜坡AB 的坡比i=1:2.5(i 为坡比),斜坡CD 的坡比i=1:2,则坝底AD 的长是( ▲ )A .75B . 85C .95D .105二、细心填一填,你一定能行!(每题4分,共24分)11.五边形的外角和等于▲ 度。
12.张华所在小组体育模拟考试中长跑的成绩(单位:分)5,10,9,10,9,9,9,8则这组数的极差为▲ 。
13.请写出命题:“两直线平行,同位角相等”的逆命题▲ 。
14.观察分析,探求规律,然后填空:—,2,—,,,……,▲ .(请在横线上写出第2011个数)。
15.一个平行四边形的边长都满足方程x2-6x+8=0,则这个平行四边形的周长为▲ .16.如图,已知四边形ABCD是边长为2的正方形,以对角线BD为边作正三角形BDE,过E作DA的延长线的垂线EF,垂足为F。
(1)正三角形BDE的面积是▲ .(2)AF的长为▲ .三、耐心解一解,你一定是学习中的强者!(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(本题满分6分)(1)计算:(-6)2-25+)3(- 2(2)解方程:x2-2x-2=018.(本题满分6分)已知a ,b 2,(1)求a+b与ab的值;(2的值。
19.(本题满分6分)如图(a)中实线部分是正方形纸板制成的一副七巧板,由七小块图形组成.(1)在图(b)中画出只.用三小块....拼成的是轴对称而不是中心对称的图形(要求各小块的顶点为格点,相邻的两小块至少有一个公共点,但不能重叠);(2)在图(c)中画出只.用三小块....拼成的是中心对称而不是轴对称的图形(要求同(1)).开学初,某校开展了“助贫困,献爱心”活动,全校学生充分响应“一人有难,八方支援”的号召,纷纷捐款.以下统计该初中802班学生的捐款数额(均为整数),得到如下频数分布表(部分空格未填).请你思考并回答下列问题:(1)完成频数分布表;(2)画出频数分布折线图;(3)求该班学生的平均捐款数额是多少元?某校802班学生捐款金额频数分布表21.(本题满分8分)如图,在□ABCD中,E、F分别是AD、BC上的点,且AE=CF。
请问BE与DF相等吗?请说明理由。
22.(本题满分10分)某学校组织小记者去该风景区采风,共支付给春秋旅行社费用27000元,请问该学校这次共有多少名小记者去该风景区采风?如图,C 为线段B D 上一动点,分别过点B D ,作AB BD ⊥,ED BD ⊥,连接A C E C ,.已知3AB =,1D E =,8BD =,设CD x =. (1)用含x 的代数式表示AC CE +的长;(2)请问点C 满足什么条件时,AC CE +的值最小? (3)根据(2)中的规律和结论,请构图..的最小值(要求画出构图的草图,并求出最小值).24.(本题满分12分)已知,在平行四边形OABC 中,OA=5,AB=4,∠COA=30°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q 从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t 秒.(1)t 为何值时以A 、P 、C 、B 为顶点的四边形是平行四边形? (2)t 为何值时三角形APQ 为等腰三角形?(3)先阅读以下材料:①最大边的平方等于两较小边的平方和的三角形是直角三角形;②最大边的平方小于两较小边的平方和的三角形是锐角三角形;③最大边的平方大于两较小边的平方和的三角形是钝角三角形。
请仔细理解,对你解题很有帮助。
存不存在t 为某值时三角形ACQ 以AP 为斜边的直角三角形?若存在请求出t 的值,若不存在请说明理由。
A BCD2011年八年级数学期中学力检测答题卷一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项, 不二、细心填一填,你一定能行!(每题4分,共24分)11.______________ 12.______________ 13.______________14.______________ 15.______________16.(1)______________ (2)______________三、耐心解一解,你一定是学习中的强者!(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(本题满分6分)(1)计算:(-6)2-25+)3(- 2 (2)解方程:x2-2x-2=0 18.(本题满分6分)已知a ,b 2,(1)求a+b与ab的值;(2的值。
19.(本题满分6分)20.(本题满分8分)某校802班学生捐款金额频数分布表21.(本题满分8分)22.(本题满分10分)23.(本题满分10分)(1)用含x的代数式表示AC CE+的长;(2)请问点C满足什么条件时,AC CE+的值最小?(3)根据(2的最小值.ABCDE24.(本题满分12分)(1)t为何值时四边形ACBP为平行四边形?(2)t为何值时三角形APQ为等腰三角形?(3)存不存在t为某值时三角形ACQ以AP为斜边的直角三角形?若存在请求出t的值,若不存在请说明理由。
2011年八年级数学期中答案一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项, 不二、细心填一填,你一定能行!(每题4分,共24分) 11. 36012. 513. 同位角相等,两直线平行14.15. 8或12或16 (答对两个得3分,答对一个得2分)16.(1)(21三、耐心解一解,你一定是学习中的强者!(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.(本题满分6分) (1)=6-5+3=4 (2)1211x x ==18.(本题满分6分)解:(1)a+b= ab=1 …………………………2分(2)5 …………………………4分 19.(本题满分6分) 解:略 每小题3分,共6分 20.(本题满分8分)某校802班学生捐款金额频数分布表3分 (3)71.5元 3分21.(本题满分8分)略 22.(本题满分10分) 解:设有x 名小记者去采风 ∵25000<27000 ∴人数>25则()1000202527000x x --=⎡⎤⎣⎦ 即27513500x x -+=145x = 230x =…………………………5分当45x =时,()10002025600x --=<700,故舍去…………………………2分 当30x =时,()10002025900x --=>700,符合题意…………………………2分 ∴共有30名小记者去采风。
…………………………1分另外方法类似给分。
23.(本题满分10分)(1)AC CE ++3分(2)当点C 为直线AE 与BD 交点时, AC CE +的值最小。
………………………3分(3)构图如下………………2分+的最小值为13.…………2分24.(本题满分12分)(1)①t=0时,………………………………2分②P运动到A右边AP=2t-5当BC=AP时,即2t-5=5,t=5 四边形ABCP为平行四边形……………………………2分(2)第1情况:P在A左边时,即0<t<52时△APQ为等腰三角形时只有AP=AQ,即5-2t=t,t=53…………1分第2种情况:P在A右边时,即t>52时①AP=AQ时,-5+2t=t,t=5时…………1分②PA=PQ时,12252tt=-,t=,即11t=…………1分③QA=QP时,()12522tt-=,得5t=,即(52t=+,10t=+分(3)不存在。
…………………1分可证∠CAB为钝角,则∠ACP不能为直角∵(2222541AC=+-=-AB2=16 BC2=25∴AC2+AB2=57-<BC2……………………2分∴△CAB为钝角三角形∴∠CAB为钝角故△CAP不可能为直角三角形……………………1分。