微积分定理归纳

合集下载

微积分定理归纳.doc

微积分定理归纳.doc

第一章函数与极限1、函数的有界性在定义域内有f(x) 2则K1函数f(x)在定义域上有下界,K1为下界;如果有f(x)W, K2则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}—定有界。

如果数列{xn}无界,那么数列{xn}—定发散;但如果数列{xn}有界,却不能断定数列{xn}—定收敛,例如数列1, -1, 1, -1, (-l)n+l该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1, 1,-1, (-l)n+l中子数列{x2k-l}收敛于1, {xnk}收敛于-1, {xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中0<lx-x0l表示xH xO,所以x—xO时f(x)有没有极限与f(x)在点xO有没有定义无关。

定理(极限的局部保号性)如果lim(x ->x0)时f(x)=A,而且A>0(或A<0),就存在着点那么xO的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。

函数f(x)当x-*xO时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(xO-O)=f(xO+O),若不相等则limf(x)不存在。

一般的说,如果lim(x —00 )f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。

如果lim(x -*xO)f(x)= ,00则直线x=xO是函数y=f(x)图形的铅直渐近线。

4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果Fl(x)2F2(x),而limF 1 (x)=a, limF2(x)=b,那么a2b.5、极限存在准则两个重要极限lim(x f O)(sinx/x)=l ;lim(x -*00 )(l + l/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:ynW xnW且znlimyn=a, limzn=a,那么limxn=a,对于函数该准则也成立。

微积分学基本定理

微积分学基本定理
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v(t )是时
间间隔[T1 ,T2 ]上t 的一个连续函数,且v(t ) 0 ,
求物体在这段时间内所经过的路程.
变速直线运动中路程为
T2 v(t )dt
T1
另一方面这段路程可表示为 s(T2 ) s(T1 )

F (b)

F (a)

F ( x)ba
微积分基本公式表明:
一个连续函数在区间[a, b]上的定积分等于 它的任意一个原函数在区间[a, b]上的增量.
求定积分问题转化为求原函数的问题.
注意
当a

b时, b a
f
(
x)dx

F
(b)

F
(a ) 仍成立.
; 快速阅读加盟 阅读加盟
2 x
解 当 x 0时,1 的一个原函数是ln | x |,
x
1
2
1dx x
ln |
x
|
1 2

ln1 ln 2 ln 2.
例 4 计算曲线 y sin x在[0, ]上与 x轴所围
计算: (1)
21 dx;
1x
3
1
(2) 1 (2x x2 )dx

(3)0 sin xdx;
2
(4) sin xdx;
2
(5)0 sin xdx;

例1

2 0
(
2
cos
x

sin
x

1)dx
.

原式

微积分基本定理

微积分基本定理

GMmh W R( R h )
其中 G 是地球引力常数, M 是地球的质量, R 是地球的半径.
例 2:一物体从 5000m 高空落下, .其下落速度为
g -1 2 kt v(t ) (1 e ) ,其中 g=9.8m/s ,k=0.2s k 问经过大约多少秒后该物体将接触到地面?
定积分在物理中的应用
例 3:证明:把质量为 m(单位:kg)的物体从地球 表面升高 h(单位:m)所作的功为
2
例 3:计算由曲线 y x 5 ,直线 y=x
2
-7 以及 x 轴所围图形的面积 S.
定积分在几何中的应用
例 3:直线 y=kx 分抛物线 y=x-x 与 x 轴 所围成图形为面积相等的两部分, 求 k 的值.
y
2
x
O
定积分在物理中的应用
例 1:有一个质量非均匀分布的细棒,已知其线密度 为 ( x ) (2 x 1)( x 1) (取细棒所在直线为 x 轴, 细棒的一端为原点),棒长为 l,求细棒的质量 m.
微积分基本定理
微积分基本定理
定理: 对于被积函数 f(x), 如果 F’(x)=f(x), 则 f ( x )dx F (b) F (a ) .
a b
这里 f(x)是 F(x)的导函数,我们把 F(x) 叫做 f(x)的原函数.
例1 计算定积分
(1)

3
1
2 dx(2)Biblioteka | x|3 2
x 1 (3) e 2 dx 1 x
2
(2 x 1)(2 x 3) dx 2x 1
cos 2 x (4) 2 dx 0 cos x sin x

微积分基本公式和基本定理

微积分基本公式和基本定理

x
sec2
xdx
tan
x
C
(9)
d sin
x
2
x
csc 2
xdx
cot
x
C
(10) sec x tan xdx sec x C
(11) csc x cot xdx csc x C
(12) ex dx ex C (13) a xdx a x C
ln a
(14) sh xdx ch x C
2
xdx.
2
2
0
0
例9

明2 e
1 4
2 e x2 xdx 2e2 .
0
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
例10
1 et2 dt

lim
x0
cos x
x2
.
解 d 1 et2dt d cos x et2dt,
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x ,
1 et2 dt
lim
x0
cos x
x2
lim sin x ecos2 x
x0
2x
1. 2e
ln
x
C
x 0时 ( ln x ) [ ln(x) ] 1
(4)
1
dx x
2
arctan
x
C
x
或 arccot x C

微积分基本定理

微积分基本定理

§3微积分基本定理()baf x dx ⎰=()ba f t dt ⎰. [,]x ab ∀∈.()()x aF x f t dt =⎰.在[,]a b 有定义.定理1 若[,]f R a b ∈,()()xaF x f t dt =⎰,则(1) ()F x 是[,]a b 上的连续函数.(2) 若()f x 在[,]a b 上连续,则()F x 是[,]a b 上可微,且()()F x f x '=. 证明:(1)0[,]x a b ∀∈,00()()()()()xx xaax F x F x f t dt f t dt f t dt -=-=⎰⎰⎰.[,]m M η∃∈.00()()()0F x F x x x η-=-→.(2)00()()()()F x F x f x x ξ-=-.00000()()limlim ()()x x x F x F x f f x x x ξξ→→-==-. 推论 ()()()()()(())()(())()x x F x f t dt f x x f x x ϕψϕϕψψ''''==-⎰.证明:设()()uaG u f t dt =⎰.()(())()x aG x f t dt ϕϕ=⎰.()(())()x aG x f t dt ψψ=⎰. ()()G u f u '=.((()))(())()G x G x x ϕϕϕ'''=. ()()()()()x x aaF x f t dt f t dt ϕψ=-⎰⎰.例1:232002sin 2limlim 33x x x x x x x ++→→==⎰. ()f x 的积分上限给出()f x 的一个原函数,即()()xaf x dx f t dt C =+⎰⎰()()xad f t dt f x dx =⎰ 若()()uaF u f t dt =⎰()u x ϕ=,则()(())()()[()]()x af t dt F u x f x x ϕϕϕϕ''''==⎰.同理,()()()[()]()[()]()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎰. 例:求极限2032000sin 22sin 2limlim lim 333x x x x x x x x x x +++→→→⋅===⎰. 二.微积分基本定理定理2 设()f x 在[,]a b 上连续,()F x 是()f x 在[,]a b 上的一个原函数,则成立()()()()bba af x dx F b F a F x =-⎰.证明:()()xaf t dt F x c =+⎰,()0F a c +=.()()()xaf t dt F x F a ∴=-⎰. ()()()baf t dt F b F a ∴=-⎰.例2:111lim 122n n n n →∞⎛⎫+++⎪++⎝⎭1111111lim lim 121111nn x i n i n n n n n n→∞→∞=⎛⎫⎡⎤ ⎪⎢⎥=+++=⋅ ⎪⎢⎥ ⎪⎢⎥++++ ⎪⎣⎦⎝⎭∑ 110011lim ()ln 1ln 21ni i x i f x dx x n ξ→∞==∆==+=+∑⎰. 例3:121limsin sin sinn n n n n n πππ→∞-⎛⎫+++ ⎪⎝⎭1lim ()ni i x i f x ξ→∞==∆∑1sin xdx =⎰11cos x ππ-==112πππ+=.三.定积分的计算1.第一类换元法:()()()(())()()u x bb aa f x x dx f u du ϕϕϕϕϕ='=⎰⎰(())()ba f x d x ϕϕ⎡⎤=⎣⎦⎰.例:cos cos cos 10sin cos ()xx x exdx e d x e e e πππ-=-=-=-⎰⎰.或cos 11111t xt te dt e e e =---=-=-=-⎰.2.第二类换元法:()()()()(())()x t baa bf x dx f t t dt ϕβαϕαϕβϕϕ==='=⎰⎰.例:2()11cos x xe x f x x-⎧≥⎪=⎨≤≤⎪+⎩ -1x 0 求:21()f x dx -⎰. 21()f x dx -⎰=2021011cos x dx xe dx x -++⎰⎰=20222101cos 1()1cos 2x x dx e d x x --+---⎰⎰ =2020111sin 2x ctgx e x --⎛⎫-+- ⎪⎝⎭=202101cos 1sin 2x x e x ----=041sin 111cos 22x e x ---++=41sin1(1)21cos1e --++. 3.分部积分法:()()()()()()bbba aau x v x dx u x v x v x u x dx ''=-⎰⎰.例:000sin (cos )cos sin x xdx x x xdx x ππππππ=-+=+=⎰⎰.4.利用函数的特殊性质计算积分: 定理3 ()[,]f x R a a ∈-, (1)若()f x 为偶函数,则有0()2()aaaf x dx f x dx -=⎰⎰;(2)若()f x 为奇函数,则有()0aaf x dx -=⎰.证明:()()()aa aaf x dx f x dx f x dx --=+⎰⎰⎰00()()[()()]a aaf t dt f x dx f x f x dx =--+=-+⎰⎰⎰.例:222202(sin )(cos )(sin )()(sin )x t f x dx f x dx f x dt f x dx πππππ=-==-=⎰⎰⎰⎰.例:222000sin cos sin cos 2sin cos sin cos sin cos 2x x x x dx dx A A dx x x x x x x ππππ+==⇒==+++⎰⎰⎰.例:2sin n n xdx I π=⎰,121sin [(1)sin cos ]n n n n xdx I n I x x n--==--⎰ 2201n n n n I II nπ--== 2n ≥. 210sin 1I xdx π==⎰, 02I π=.01131(1)!!22!!2132(1)!!23!!n n n I n n n n n n I n n n π---⎧=⋅⋅⋅=⋅⎪⎪-⎨---⎪=⋅⋅⋅=⎪-⎩ n=偶数 n=奇数例:设21()xt f x e dt -=⎰不能用初等函数表示,221111110000011()()()(1)(1)0(1)22x x f x dx xf x xf x dx f xe dx f e e --'=-=-=+=+-⎰⎰⎰.定理4 ()f x 是以T 为周期的可积函数,则a ∀有0()()a TTaf x dx f x dx +=⎰⎰.注:计算定积分应该注意的问题(1)换元时,上下限应改变.(2)第二类换元不必一一对应.(3)若积分函数积分区域不连续,应变形去掉不连续点.。

微积分基本定理

微积分基本定理
2 2 2π π 3π 2π
3 / 15
同步课程˙微积分基本定理
y
1
O
2 x
【答案】 | cos x | dx 2 cos xdx π2 ( cos x)dx 3π cos xdx
0 0 2 2

π


【例5 】 图中阴影部分的面积总和可用定积分表示为( A. f ( x)dx
a b
【例1 】 根据定义计算积分 x dx .
1
1
1 1 【解析】所求定积分为两个全等的等腰直角三角形的面积,故 x dx 2 1 1 1 . 1 2
【答案】1
2
【例2 】 根据定义计算积分
0
4 x 2 dx .
2
【解析】所求定积分为圆 x2 y 2 4 在 x 轴上半部的半圆的面积,故 【答案】 2π
2 / 15
同步课程˙微积分基本定理 四、微积分基本定理 如果 F ( x) f ( x) , 且 f ( x) 在 [a , b] 上可积, 则 f ( x)dx F (b) F (a) , 其中 F ( x) 叫做 f ( x) 的
a b
一个原函数. 由于 [ F ( x) c] f ( x) , F ( x) c 也是 f ( x) 的原函数,其中 c 为常数. 一般地,原函数在 [a , b] 上的改变量 F (b) F (a) 简记作 F ( x) b , a 因此,微积分基本定理可以写成形式: f ( x)dx F ( x) b a F (b) F ( a) .
【答案】
4 3
【例11】 (2 x 1)dx ______ .
0

高等数学微积分公式定理整理

高等数学微积分公式定理整理

高等数学公式中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

微积分学基本定理

微积分学基本定理
b a b b a a
(4)性质 : 1) Cf ( x )dx C f ( x )dx 2) f ( x ) g ( x )dx
a b

b
a
f ( x )dx g ( x )dx
a b c
b
3) f ( x )dx
a
b

c
a
f ( x )dx f ( x )dx
x ln x x (7 ) log a xdx ln a (9) cos xdx sin x C
计算不定积分: (1) ( x 3)( x 2)dx; ( x 1)( x 2) ( 2) dx; x cos 2 x ( 3) dx cos x sin x

b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
b a
计算定积分的方法: f ( x )dx
aபைடு நூலகம்
b
(1)定义法 ( 2)面积法(曲边梯形面积 ) ( 3)公式法( 微积分基本定理 )F ( x ) f ( x )
/

b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v ( t ) 是时 t 的一个连续函数,且v ( t ) 0 , 间间隔[T1 , T2 ]上 求物体在这段时间内所经过的路程.
变速直线运动中路程为
T
T2
1
v ( t )dt
另一方面这段路程可表示为 s(T2 ) s(T1 )

微积分的基本定理

微积分的基本定理

微积分的基本定理微积分是数学的重要分支和基石,广泛应用于物理、工程学、经济学和其他各种领域。

微积分的基本定理是微积分中最基本的一条公式,它用于计算定积分和求导数,是微积分计算的基础。

定积分是将函数在一定区间内的面积进行求和的过程。

而求导是计算函数的变化率,也就是斜率的过程。

微积分的基本定理连接了这两种计算方法。

基本定理分为两部分:第一部分,也被称为牛顿-莱布尼茨公式,描述了一个定积分的值可以通过函数的原函数来计算:∫a~b f(x)dx = F(b) - F(a)其中,F(x)是函数f(x)的原函数,a和b是积分区间的端点。

第二部分是求导和积分的关系,它描述了函数f(x)和它的原函数F(x)之间的对应关系:d/dx ∫a~x f(t)dt = f(x)这意味着,积分与求导是互逆的操作。

如果我们首先用函数f(x)在区间[a, x]上的面积来定义函数F(x),那么F'(x) = f(x)。

也就是说,如果我们知道函数f(x)的积分,那么就可以计算出它的导数。

基本定理是微积分的基础之一,它允许我们对复杂的函数进行计算。

例如,我们可以用基本定理来计算一个函数的平均值、最大值和最小值。

这些计算在数学模型、数据分析和工程中都非常有用。

此外,基本定理还允许我们计算偏导数。

如果一个函数有多个自变量,那么我们需要对其中一个自变量求偏导数。

基本定理可以用于计算偏导数,从而得到函数在某个变量上的变化率。

基本定理的重要性还体现在物理中。

如果我们想计算一个物体的速度或加速度,我们需要知道其位置或速度随时间的变化率。

基本定理允许我们计算这些变化率,从而在物理学中得到非常有用的结果。

微积分的基本定理是微积分中最基本的定理之一,它连接了定积分和求导两个计算方法,为微积分提供了基础。

基本定理的应用非常广泛,既包括学术领域,也包括实际应用中。

熟练掌握这个定理是理解微积分和充分利用微积分的关键。

微积分基本定理

微积分基本定理

1
2
x ,0 ≤ x < 1 , 例8 设 f ( x ) = x,1 ≤ x ≤ 2
2
上的表达式. 求 Φ( x ) = ∫0 f (t )dt ,在 [0,2] 上的表达式
x

当 0 ≤ x < 1 时,
Φ( x ) = ∫0 f (t )dt = ∫0 t dt
x x 2
1 t 3 = 1 x 3 = 3 0 3
3 2
3x 2 2x = − 12 1+ x 1 + x8
x 0 “ 型未定式,可利用洛必达法 型未定式, 解 这是一个 ” 0 1 −t cos x −t e 则计算, 则计算,分子为 ∫cos x dt=-∫1 e dt
2 2
例4
e ∫cos x 求 limt
由法则2得 由法则 得
(2)定理2 (2)定理2 定理
分上限函数Φ ( x ) = ∫ f (t )dt 是 f ( x ) 在区间
x
上连续, 若函数 f ( x ) 在 [a, b]上连续,则积
a
上的一个原函数. [a, b] 上的一个原函数.
此定理一方面说明了连续函数一定存在原函数, 此定理一方面说明了连续函数一定存在原函数, 另一方面也说明了定积分与原函数之间的关系, 另一方面也说明了定积分与原函数之间的关系, 从而可能用原函数来计算定积分. 从而可能用原函数来计算定积分
3.法则3 3.法则3 法则
α ( x ) ∈ [a , , β ( x ) ∈ [a , b] 且α ( x ) 与 β ( x ) b] ,
都可微, 都可微,则有
若函数 f ( x )在区间 [a, b]上连续, 上连续,

1.8微积分基本定理

1.8微积分基本定理

授课主题 微积分基本定理教学目标1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的积分.教学内容1. 微积分基本定理:如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ) .定理中的式子称为“牛顿—莱布尼茨公式”,通常称F (x )是f (x )的一个原函数.在计算定积分时,常常用记号F (x )|b a来表示F (b )-F (a ),于是牛顿—莱布尼茨公式也可写作ʃb a f (x )d x =F (x )|ba =F (b )-F (a ).2. 定积分和曲边梯形面积的关系:设曲边梯形在x 轴上方的面积为S 上,x 轴下方的面积为S 下,则 (1)当曲边梯形的面积在x 轴上方时,如图(1),则ʃb a f (x )d x =S 上. (2)当曲边梯形的面积在x 轴下方时,如图(2),则ʃb a f (x )d x =-S 下.(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图(3),则ʃba f (x )d x =S 上-S 下,若S 上=S 下,则ʃb a f (x )d x =0.题型一 利用微积分基本定理求定积分 例1 (1)求定积分⎰202x d x 的值;(2)求定积分⎰1-1(2x -x 2)d x 的值;(3)求定积分⎰0-π(sin x +2e x )d x 的值. 解析:(1) ⎰202x d x =2⎰20x d x =2×⎪⎪12x 220=22-02=4.(2) ⎰1-1(2x -x 2)d x =⎰1-12x d x +⎰1-1(-x 2)d x =x 2|1-1-13x 3|1-1=-23. (3) ⎰-π(sin x +2e x )d x =⎰0-πsin x d x +2⎰-πe x d x =-cos x |0-π+2e x |0-π=-cos 0+cos(-π)+2(e 0-e -π)=-2eπ. 点评:应用微积分基本定理求定积分时,首先要求出被积函数的一个原函数,在求原函数时,通常先估计原函数的类型,然后求导数进行验证,在验证过程中要特别注意符号和系数的调整,直到原函数F (x )的导函数F ′(x )=f (x )为止(一般情况下忽略常数),然后再利用微积分基本定理求出结果. 巩 固 求下列定积分的值.(1) ⎰10(2x +3)d x ; (2) ⎰1-2(1-t 3)d t ;(3) ⎰π02sin ⎝⎛⎭⎫x +π4d x ; (4) ⎰31⎣⎡⎦⎤6x ⎝⎛⎭⎫x +1x 2d x . 分析:利用微积分基本定理,关键是求出相应被积函数的一个原函数. 解析:(1)∵(x 2+3x )′=2x +3,∴⎰10(2x +3)d x =(x 2+3x )|10=1+3=4.(2)∵⎝⎛⎭⎫t -14t 4′=1-t 3, ∴⎰1-2(1-t 3)d t =⎪⎪⎝⎛⎭⎫t -14t 41-2=1-14-⎣⎡⎦⎤-2-14(-2)4=7-14=274. (3)因为2sin ⎝⎛⎭⎫x +π4=2⎝⎛⎭⎫sin x ·22+cos x ·22=sin x +cos x , 又(-cos x +sin x )′=sin x +cos x ,所以 ⎰π02sin ⎝⎛⎭⎫x +π4d x =⎰π0( sin x +cos x ) d x =(-cos x +sin x )|π0 =(-cos π+sin π)-(-cos 0+sin 0)=2. (4) ⎰31⎣⎡⎦⎤6x ⎝⎛⎭⎫x +1x 2d x =⎰31(6x 2+6+12x ) d x =(2x 3+6x +6x 2)|31=(54+18+54)-(2+6+6)=112 题型二 求分段函数的定积分例2 若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3],求⎰30f (x )d x 的值.解析:由积分的性质,知:⎰30f (x )d x =⎰10f (x )d x +⎰21f (x )d x +⎰32f (x )d x =14+432-23+8ln 2-4ln 2=-512+432+4ln 2. 点评:分段函数在区间[a ,b ]上的定积分可分成n 段定积分和的形式,分段的标准可按照函数的分段标准进行;带绝对值号的解析式,可先化为分段函数,然后求解. 巩 固 ⎰3-3 (|2x +3|+|3-2x |)d x .解析:设y=|2x+3|+|3-2x|=⎩⎪⎨⎪⎧-4x,x≤-32,6,-32<x<32,4x,x≥32.所以⎰3-3(|2x+3|+|3-2x|)d x=323(4)x---⎰d x+32326-⎰d x+3324x⎰d x==(-2)×⎝⎛⎭⎫322-(-2)×(-3)2+6×32-6×⎝⎛⎭⎫-32+2×32-2×⎝⎛⎭⎫322=45.题型三利用定积分求参数例3已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0,⎰10f(x)d x=-2,求a,b,c的值.解析:由f(-1)=2得a-b+c=2.①因为f′(x)=2ax+b,所以f′(0)=b=0.②又⎰10f(x)d x=⎰10(ax2+bx+c)d x=⎪⎪⎝⎛⎭⎫13ax3+12bx2+cx10=13a+12b+c,所以13a+12b+c=-2③解①②③组成的方程组得a=6, b=0,c=-4.点评:利用定积分求参数,根据题设条件列出关于参数的方程(组),解方程(组)得参数的值.巩固f(x)是一次函数,且⎰10f(x)d x=5,⎰10xf(x)d x=176,求f(x)的解析式.解析:设f(x)=ax+b(a≠0),则⎰10(ax+b)d x=⎰10ax d x+⎰10b d x=12ax2⎰10+bx⎰10=12a+b,⎰10x(ax+b)d x=⎰10(ax2+bx)d x=13ax3⎰10+12bx2⎰10=13a+12b,由⎩⎨⎧12a+b=5,13a+12b=176,解得a=4,b=3,故f(x)=4x+3.A组1.下列各定积分等于1的是()A.⎰10x d xB.⎰10(x+1)d xC.⎰101d xD.⎰1012d x解析:⎰10x d x =12x 2⎰10=12; ⎰10(x +1)d x =⎝⎛⎭⎫12x 2+x ⎰10=32;⎰101d x =x |10=1; ⎰1012d x =12x ⎰10=12. 答案:C 2. ⎰421xd x 等于( ) A .-2ln 2 B .2ln 2 C .-ln 2 D .ln 2 解析:⎰421xd x =ln x |42=ln 4-ln 2=ln 2. 答案:D3.函数y =⎰x 0cos x d x 的导数是( )A .cos xB .-sin xC .cos x -1D .sin x 答案:AB 组一、选择题1. ⎰10(e x+2x )d x =( )A .1B .e -1C .eD .e +1 答案:C2.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎰1-1f (x )d x 的值为( )A.32B.43C.23 D .-23 答案:B3.由曲线y =x 2-1,直线x =0,x =2和x 轴围成的封闭图形的面积(如图阴影部分)是( )A. ⎰20(x 2-1)d xB. |⎰20(x 2-1)d x |C. ⎰20|x 2-1|d xD. ⎰20(x 2-1)d x +⎰21(x 2-1)d x答案:C4.下列定积分计算正确的是( )A. ⎰π-πsin x d x =4 B. ⎰102xd x =1C. ⎰21⎝⎛⎭⎫1-1x d x =ln e 2D. ⎰1-13x 2d x =3解析:⎰π-πsin x d x =-cos x|π-π=0; ⎰102xd x =12ln 2x=log 2e ; ⎰21⎝⎛⎭⎫1-1x d x = |(x -ln x )21=1-ln 2=ln e 2; ⎰1-13x 2d x =x 3|1-1=2.故选C.答案:C5.若⎰a 1⎝⎛⎭⎫2x +1x d x =3+ln 2,则正数a 的值为( ) A .1 B .2 C .3 D .5解析:⎰a 1⎝⎛⎭⎫2x +1x d x = |(x 2+ln x )a 1=a 2+ln a -1=3+ln 2,所以a 2-1=3,所以a =-2(舍去),a =2.故选B. 答案:B 二、填空题6.定积分⎰21x d x =__________. 答案:23(22-1)7.若⎰T 0x 2d x =9,则常数T 的值为________.解析:因为⎝⎛⎭⎫x 33′=x 2,所以⎰T 0x 2d x =⎝⎛⎭⎫x 33|T 0=9,所以T =3. 答案:38.计算定积分⎰1-1(x 2+sin x )d x =________. 答案:23三、解答题9.计算下列定积分:(1) ⎰30|2-x |d x ;解析: ⎰30|2-x |d x =⎰20(2-x )d x +⎰32(x -2)d x = ⎪⎪⎝⎛⎭⎫2x -12x 220+⎪⎪⎝⎛⎭⎫12x 2-2x 32=2+12=52. (2)⎰π2-π2cos 2x d x .解析:10.若函数f (x )=ax +b (a ≠0),且⎰10f (x )d x =1,求证:⎰10[f (x )]2d x >1.证明:由于⎰10f (x )d x =⎰10(ax +b )d x =⎪⎪⎝⎛⎭⎫12ax 2+bx 10=12a +b , 所以12a +b =1,所以⎰10[f (x )]2d x =⎰10(ax +b )2d x =⎰10(a 2x 2+2abx +b 2)d x =⎪⎪⎝⎛⎭⎫13a 2x 3+abx 2+b 2x 10=13a 2+ab +b 2=⎝⎛⎭⎫12a +b 2+112a 2=1+112a 2>1(a ≠0),故原不等式成立.1. 设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则ʃ21f (-x )d x 的值等于 ( )A.56 B.12 C.23 D.16答案 A解析 由于f (x )=x m +ax 的导函数为f ′(x )=2x +1, 所以f (x )=x 2+x ,于是ʃ21f (-x )d x =ʃ21(x 2-x )d x =⎝⎛⎭⎫13x 3-12x 2|21=56. 2.(sin x -a cos x )d x =2,则实数a 等于( )A .-1B .1C .- 3 D. 3 答案 A 解析=-a +1=2,a =-1.3. 由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为 ( )A.12 B .1 C.32D. 3答案 D 解析4. 设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈[1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( )A.43B.54C.65D.76答案 A解析 根据定积分的运算法则,由题意,可知ʃe 0f (x )d x =ʃ10x 2d x +ʃe 11x d x =13x 3|10+ln x |e 1=13+1=43. 5. ʃ30(x 2+1)d x =________.答案 12解析 ʃ30(x 2+1)d x =⎝⎛⎭⎫13x 3+x |30=13×33+3=12. 6. 如图所示,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是________.答案 43解析 由⎩⎪⎨⎪⎧y =-x 2+2x +1y =1,得x 1=0,x 2=2.∴S =ʃ20(-x 2+2x +1-1)d x =ʃ20(-x 2+2x )d x =⎝⎛⎭⎫-x 33+x 2|20=-83+4=43.。

微积分学基本定理及基本积分公式

微积分学基本定理及基本积分公式
§2 微积分学基本定理及基本积分公式
1.变限定积分
f (t) 在[a, b]上可积,则对 x [a, b], f (t) 在[a, x]上
可积,即 x f (t )dt . a
---变上限定积分
1) 变上限定积分是上限的函数
设 f 在[a, b]上可积,
x
( x) a f (t)dt, x [a, b]
(1 x2 ) x2 x2 (1 x2 ) dx
=
1 x2
dx
1 1 x2
dx
=
1 x
arctan
x
C

结果是否正确,检验方法
求导,看积分结果的导函数是否为被积函数
例 5 (3) tan2 x dx (sec2 x 1)dx tan x x C
EXE (4)
1 dx 1 x2
F(x) ex2 (x2 ) 2xex2 .
一般地,
u(x)
v( x)
f (t) dt f (u( x))u( x) f (v( x))v( x)

( x) x f (t)dt , ( x) f ( x) .
2) 变上限a 定积分求导
例 2
F(x)
x
( x t) f (t) dt,
结论:若 F ( x)为 f ( x) 的任一原函数, 则(1)F(原 x) 函 C数为的f存( x在) 的性原函数的全体,其中 C 为常数.
已有结论:若 f ( x) C[a, b] , 则 f ( x) 在[a, b]上一定存在原函数.
(2) 原函数不唯一
若 f ( x) 在[a, b]上有原函数,则有一个必有无穷多个.
即从一条曲线上下平移而得 3) 基本积分公式

微积分基本定理概述

微积分基本定理概述

微积分基本定理概述概念介绍微积分是数学中一个重要的分支,研究函数的变化率、积分和微分运算等。

微积分基本定理是微积分中的核心理论之一,它包括两个定理:牛顿-莱布尼茨的第一基本定理和第二基本定理。

这两个定理为微积分提供了重要的工具,使我们能够更好地理解和应用微积分的知识。

第一基本定理牛顿-莱布尼茨的第一基本定理,也被称为积分的基本定理,是微积分中的重要定理之一。

它建立了微积分中微分和积分的关系。

简单来说,第一基本定理告诉我们,如果一个函数在一个区间上连续,并且它的导函数存在,则通过积分可以得到该函数在该区间上的原函数(不同的常数项除外)。

具体来说,设函数f(x)在区间[a, b]上连续,并且在(a, b)内有一个原函数F(x),那么有以下公式成立:∫[a,b] f(x)dx = F(b) - F(a)这个公式可以理解为函数f(x)在[a, b]上的积分等于它在b和a处的原函数值的差。

这个定理的意义在于,它给出了计算定积分的一个便捷方法。

第二基本定理第二基本定理是微积分中的另一个重要定理,也被称为微积分基本定理的加法形式。

它表明,对于一个函数f(x)在一个区间上的原函数F(x),我们可以通过对其求导得到f(x)本身。

具体来说,设函数f(x)在区间[a, b]上连续,并且在(a, b)内存在一个原函数F(x),那么有以下公式成立:d/dx ∫[a,x] f(t)dt = f(x)这个公式的意义很重要。

它告诉我们,如果一个函数在一个区间上连续,并且有一个原函数,那么对这个原函数求导将得到它本身。

这个定理对于求解微分方程和函数的导数等问题非常有用。

基本定理的应用微积分的基本定理在科学和工程领域中具有广泛的应用。

它们为我们提供了一种建立函数和导函数之间关系的方法,使得我们能够更好地理解和分析各种变化的现象。

举个例子来说,基本定理可以用于计算曲线下的面积和体积,解决物理学中的运动和力学问题,以及在统计学中对概率密度函数进行积分等。

微积分基本定理及其应用

微积分基本定理及其应用

微积分基本定理及其应用微积分是高等数学中的一门重要课程,它为理解自然规律和科学现象提供了强有力的数学工具。

在微积分中,基本定理是一个重要的概念,它是微积分中最基本的定理之一。

基本定理包括牛顿-莱布尼茨公式和分部积分公式两部分。

本文将分别介绍基本定理及其应用。

一、牛顿-莱布尼茨公式牛顿-莱布尼茨公式是微积分中的基本定理之一,它将微积分的两个重要概念联系起来,即微分和积分。

牛顿-莱布尼茨公式的表述如下:若函数 $f(x)$ 在区间 $[a,b]$ 上连续,则对于 $[a,b]$ 之间的任意一点 $x$,有:$$\int_{a}^{b}f(x)dx=F(b)-F(a)$$其中,$F(x)$ 是 $f(x)$ 的任意一个原函数。

牛顿-莱布尼茨公式的意义在于,它将积分转化为了原函数的差值,从而实现了对于函数 $f(x)$ 积分的求解。

在实际应用中,我们经常需要求解一些复杂的积分问题,而牛顿-莱布尼茨公式的使用,可以大大简化这个过程。

例如,求解下面的积分:$$\int_{0}^{1}x^2dx$$根据牛顿-莱布尼茨公式,我们可以先求出函数 $f(x)=x^2$ 的原函数 $F(x)$,然后再利用公式求解积分。

易得:$$F(x)=\frac{1}{3}x^3$$则:$$\int_{0}^{1}x^2dx=F(1)-F(0)=\frac{1}{3}$$二、分部积分公式分部积分公式是微积分中的另一个基本定理,它将积分于微分有机结合在了一起,从而将一些复杂的积分问题简化为一些其他积分问题的组合。

分部积分公式的表述如下:若函数 $u(x)$ 和 $v(x)$ 在区间 $[a,b]$ 上连续可微,则对于$[a,b]$ 之间的任意一点 $x$,有:$$\int u(x)v'(x)dx=u(x)v(x)-\int v(x)u'(x)dx$$分部积分公式可以用于求解一些复杂的积分问题,特别是在计算工程、物理和化学等领域中很常用。

微积分定理和公式

微积分定理和公式

一、函数定义 设在某一变化过程中有两个变量x 和y ,若对非空集合D 中的每一点x ,都按照某一对应规则f ,有惟一确定的实数y 与之相对应,则称y 是x 的函数,记作x 称为自变量,y 称为因变量,D 称为函数的定义域,y 的取值范围即集合{}D x x f y y ∈=),(|称为函数的值域.xoy 平面上点的集合{}D x x f y y x ∈=),(|),(称为函数)(x f y =的图形.定义域D 或记f D 与对应法则f 是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.二函数的几何特性 1.单调性1定义 设函数)(x f 在实数集D 上有定义,对于D 内任意两点21,x x ,当 1x <2x 时,若总有)(1x f ≤)(2x f 成立,则称D x f 在)(内单调递增或单增;若总有 )(1x f <)(2x f 成立,则称)(x f 在D 内严格单增,严格单增也是单增.当)(x f 在D 内单调递增时,又称D x f 是)(内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性定义 设函数内有定义在集合D x f )(,若存在实数M >0,使得对任意D x ∈,都有|)(|x f ≤M ,则称)(x f 在D 内有界,或称)(x f 为D 内的有界函数.定义 设函数内有定义在集合D x f )(,若对任意的实数M >0,总可以找到一D x ∈,使得|)(|x f >M ,则称)(x f 在D 内无界,或称)(x f 为D 内的无界函数.定义 设函数)(x f 在一个关于原点对称的集合内有定义,若对任意D x ∈,都有))()()(()(x f x f x f x f =--=-或,则称)(x f 为D 内的奇偶函数.奇函数的图形关于原点对称,当)(x f 为连续的函数时,)(x f =0,即)(x f 的图形过原点.偶函数的图形关于y 轴对称.关于奇偶函数有如下的运算规律: 设)()(21x f x f ±为奇函数,)(),(21y g x g 为偶函数,则)()(21x f x f ±为奇函数;)()(21x g x g ±为偶函数; )()(11x g x f ±非奇偶函数;)()(11x g x f ⋅为奇函数;)()(),()(2121x g x g x f x f ⋅⋅均为偶函数.常数C 是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助. 4.周期性定义 设函数内有定义在集合D d x f )(,如果存在非零常数T,使得对任意D x ∈,恒有)()(x f T x f =+成立,则称)(x f 为周期函数.满足上式的最小正数T,称为)(x f 的基本周期,简称周期.我们熟知的三角函数为周期函数考纲不要求,除此以外知之甚少.][x x y -=是以1为周期的周期函数.][x y =与][x x y -=的图形分别如图1-1a 和图1-1b 所示.三初等函数 1.基本初等函数1常数函数 C y =,定义域为-∞,+∞,图形为平行于x 轴的直线.在y 轴上的截距为c .2幂函数 αx y =,其定义域随着α的不同而变化.但不论α取何值,总在1,+∞内有定义,且图形过点1,1.当α>0时,函数图形过原点图1-2a b图1-23指数函数 )1,0(≠=ααα xy ,其定义域为-∞,+∞.当0<α<1时,函数严格单调递减.当α>1时,函数严格单调递增.子数图形过点0,1.微积分中经常用到以e 为底的指数函数,即xe y =图1-34对数函数 )1,0(log ≠=ααα x y ,其定义域为1,+∞,它与xy α=互为反函数.微积分中常用到以e 为底的对数,记作nx y 1=,称为自然对数.对数函数的图形过点1,0图1-4图1-3 图1-4 另有两类基本初等函数:三角函数与反三角函数,不在考纲之内.对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要.例如,设f b a x b a x f ),,(,),()(∈对任意区间内二阶可导在″)(x <0.则 1f ′)(x 在),(b a 内严格单调减少;2)(x f 在),1(b 上为凸弧,均不充分. 此题可以用举例的方法来说明1、2均不充分.由初等函数的图形可知,4x y -=为凸弧.y ′=34x -在-∞,∞+上严格单调递减,但y ″=-122x ≤0,因此1,2均不充分,故选E.此题若把题干改成f ″)(x ≤0,则1,2均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2.反函数定义 设函数)(x f y =的定义域为D ,值域为R ,如果对于每一个R y ∈,都有惟一确定的D x ∈与之对应,且满足)(x f y =x 是一个定义在R 以y 为自变量的函数,记作并称其为)(x f y =反函数.习惯上用x 作自变量,y 作因变量,因此)(x f y =反函数常记为R x x f y ∈=-),(1.函数)(x f y =与反函数)(1x fy -=的图形关于直线x y =对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.x y a y a xlog ==与互为反函.∈=x x y ,20,+∞的反函数为x y =,而∈=x x y ,2-∞,0的反函数为x y -=图1-2b.3.复合函数定义 已知函数f f R y D u u f y ∈∈=,),(.又D x x u ∈=),(ϕϕ,u ≤R ϕ,若ff R D 非空,则称函数为函数)()(x u u f y ϕ==与的复合函数.其中y 称为因变量,x 称为自变量,u 称为中间变量.4.初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.四隐函数若函数的因变量y 明显地表示成)(x f y =的形式,则称其为显然函数.1),13(1,222-=-==x y x n y x y 等.设自变量x 与因变量y 之间的对应法则用一个方程式0),(=y x F 表示,如果存在函数)(x f y =不论这个函数是否能表示成显函数,将其代入所设方程,使方程变为恒等式: 其中f D 为非空实数集.则称函数)(x f y =由方程0),(=y x F 所确定的一个隐函数.如方程1=+y x 可以确定一个定义在0,1上的隐函数.此隐函数也可以表示成显函数的形式,即但并不是所有隐函数都可以用x 的显函数形式来表示,如0=++y x exy因为y 我法用初等函数表达,故它不是初等函数.另外还需注意,并不是任何一个方程都能确定隐函数,如0122=++y x .五分段函数有些函数,对于其定义域内的自变量x 的不同值,不能用一个统一的解析式表示,而是要用两个或两个以上的式子表示,这类函数称为分段函数,如 都是定义在-∞,+∞上的分段函数.分段函数不是初等函数,它不符合初等函数的定义.二、极限不在考试大纲内,只需了解即可极限是微积分的基础. 一数列极限按照一定顺序排成一串的数叫做数列,如n n a a a a ⋅ 21,称为通项. 1.极限定义定义 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作否则称数列{}n a 发散或n n a ∞→lim 不存在. 2.数列极限性质1四则极限性质 设b y a x n n n n ==∞→∞→lim ,lim ,则2a x a x k n n n n =⇔=+∞→∞→lim lim k 为任意正整数.3若a x n n =∞→lim ,则数列{}n x 是有界数列.4夹逼定理 设存在正整数0N ,使得0N n ≥时,数列{}{}{}n n n z y x ,,满足不等式n n n y x z ≤≤.若a z y n n n n ==∞→∞→lim lim ,则a x n n =∞→lim .利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim =,是一个无理数. 5单调有界数列必有极限 设数列{}n x 有界,且存在正整数0N ,使得对任意0N n ≥都有n n x x ≤+1或n n x x ≥+1,则数列{}n x 的极限一定存在.利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim =,是一个无理数. 二函数的极限 1.∞→x 时的极限 定义 设函数)(x f 在)0(||>≥a ax 上有定义,当∞→x 时,函数)(x f 无限接近常数A ,则称)(x f 当∞→x 时以A 为极限,记作当+∞→x 或-∞→x 时的极限当x 沿数轴正负方向趋于无穷大,简记+∞→x -∞→x 时,)(x f 无限接近常数A ,则称)(x f 当+∞→x -∞→x 时以A 为极限,记作3.0x x →时的极限定义 设函数)(x f 在0x 附近可以不包括0x 点有定义,当x 无限接近)(00x x x ≠时,函数)(x f 无限接近常数A ,则称当0x x →时,)(x f 以A 为极限,记作4.左、右极限若当x 从0x 的左侧0x x <趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的左极限,记作.)(lim 0A x f x x =-→ 或 A x f =-)0(0若当x 从0x 的左侧0x x >趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的右极限,记作.)(lim 0A x f x x =+→ 或 A x f =+)0(0三函数极限的性质 1.惟一性若,B x f A x f x x x x ==→→)(lim ,)(lim 0则A=B . 2.局部有界性 若A x f x x =→)(lim 0.则在0x 的某邻域内点0x 可以除外,)(x f 是有界的.3.局部保号性若A x f x x =→)(lim 0.且A >0或A <0=,则存在0x 的某邻域点0x 可以除外,在该邻域内有)(x f >0或)(x f <0=;若A x f x x =→)(lim 0;且在0x 的某邻域点0x 可以除外有)(x f >0或)(x f <0=,则必有A≥0或A ≤0;4.不等式性质若A x f x x =→)(lim 0,B x g x x =→)(lim 0,且A>B ,则存在0x 的某邻域点0x 可以除外,使)(x f >)(x g .若A x f x x =→)(lim 0,B x g x x =→)(lim 0.且在0x 的某邻域点0x 可以除外有)(x f <)(x g 或)(x f ≤)(x g ,则A ≤B ;5.四则运算 同数列四无穷小量与无穷大量 1.无穷小量的定义定义 若0)(lim 0=→x f x x ,则称)(x f 是0x x →时的无穷小量;若,)(lim 0∞=→x g x x 则称)(x f 是0x x →时的无穷大量;2.无穷小量与无穷大量的关系无穷小量的倒数是无穷大量;无穷大量的倒数是无穷小量; 3.无穷小量的运算性质i 有限个无穷小量的代数和仍为无穷小量; ii 无穷小量乘有界变量仍为无穷小量; iii 有限个无穷小量的乘积仍为无穷小量; 4.无穷小量阶的比较设0)(lim,0)(lim 0==→→x x a x x x x β,5.等价无穷小常用的等价无穷小:0→x 是,)0(~1)1(,1~1,~)1(1,~1≠-+-+-ααααaxx n x x x n x e xx等价无穷小具有传递性,即)(~)(x x βα,又)(~)(x x γβ; 等价无穷小在乘除时可以替换,即)(~)(),(~)(**x x x x ββαα,则)()(lim )()(lim **)()(0x x x x x x x x x x βαβα∞→→∞→→=或或第二讲 函数的连续性、导数的概念与计算重点:闭区间上连续函数的性质、导数的定义、几何意义、基本初等函数的求导公式、复合函数求导公式、导数的四则运算;三、函数的连续性一函数连续的概念 1.两个定义定义 设函数)(x f y =的定义域为D x D ∈0,;若)()(lim 00x f x f x x =→,则称0)(x x f 在点连续;若D x f 在)(中每一点都连续,则称0)(x x f 在点右连续;定义 若)()(lim 00x f x f x x =+→,则称0)(x x f 在点右连续; 若)()(lim 00x f x f x x =-→,则称0)(x x f 在点左连续;0)(x x f 在点连续0)(x x f 在⇔点既左连续又右连续;2.连续函数的运算连续函数经过有限次四则运算或复合而得到的函数仍然连续,因而初等函数在其定义区间内处处连续;二间断点1.若)(lim )(lim 00x f x f x x x x -+→→与都存在,且不全等于)(0x f ,则称0x 为)(x f 的第一类间断点; 其中若)(lim 0x f x x →存在,但不等于)(0x f 或)(x f 在0x 无定义,则0x 为)(x f 的可去间断点;若)(lim )(lim 0x f x f x x x x -+→→与都存在,但不相等,则称0x 为)(x f 的跳跃间断点;2.若)(lim )(lim 0x f x f x x x x -+→→与中至少有一个不存在,则称0x 为)(x f 的第二类间断点;三闭区间上连续函数的性质若)(x f 在区间],[b a 内任一点都连续,又)()(lim ),()(lim b f x f f x f bx x ==-+→→αα,则称函数)(x f 在闭区间],[b a 上连续;1.最值定理设)(x f 在],[b a 上连续,则)(x f 在],[b a 上必有最大值M 和最小值m ,即存在],[,21b a x x ∈,使],[,)(,)(,)(11b a x M x f m m x f M x f ∈≤≤==且;2.价值定理设)(x f 在],[b a 上连续,且m,M 分别是)(x f 在],[b a 上最小值与最大值,则对任意的],[M m k ∈,总存在一点k c f b a c =∈)(],,[使;推论1 设)(x f 在],[b a 上连续,m,M 分别为最小值和最大值,且mM <0,则至少存在一点0)(],,[=∈c f b a c 使;推论1 设)(x f 在],[b a 连续,且0)()(<⋅b f a f ,则一定存在],,[b a c ∈使0)(=c f ; 推论1,推论2又称为零值定理;第二章 导数及其应用一、导数的概念1.导数定义定义 设y=fx 在x 0的某邻域内有定义,在该邻域内给自变量一个改变量x ∆,函数值有一相应改变量)()(00x f x x f y -∆+=∆,若极限存在,则称此极限值为函数y=fx 在x 0点的导数,此时称y=fx 在x 0点可导,用⎥⎦⎤⎢⎣⎡===''000)(,,)(x x dx x df x x dyx dyx x y x f 或或或表示.若)(x f y =在集合D 内处处可导这时称fx 在D 内可导,则对任意D x ∈0,相应的导数)(0x f '将随0x 的变化而变化,因此它是x 的函数,称其为y=fx 的导函数,记作⎪⎭⎫⎝⎛''dx x df dxdy y x f )(,,)(或或或. 2.导数的几何意义若函数fx 在点x 0处可导,则)(0x f '就是曲线y=fx 在点x 0,y 0处切线的斜率,此时切线方程为))((000x x x f y y -'=-.当)(0x f '=0,曲线y=fx 在点x 0,y 0处的切线平行于x 轴,切线方程为)(00x f y y ==. 若fx 在点x 0处连续,又当0x x →时∞→')(x f ,此时曲线y=fx 在点x 0,y 0处的切线垂直于x 轴,切线方程为x=x 0.3.左、右导数定义 设fx 在点x 0点的左侧邻域内有定义,若极限 存在,则称此极限值为fx 在点x 0处的左导数,记为)(0x f -')(0x f -'=xx f x x f ∆-∆+-→∆)()(lim 000类似可以定义右导数.fx 在点x 0点处可导的充要条件是fx 在点x 0点处的左、右导数都存在且相等,即)()()(000x f x f x f +-'='⇔'存在存在.若fx 在a,b 内可导,且)(a f +'及)(b f -'都存在,则称fx 在a,b 上可导. 4.可导与连续的关系若函数0)(x x f y 在=点可导,则)(x f 在点0x 处一定连续. 此命题的逆命题不成立.邮导数定义,极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(limlim0000存在可知,)(x f 在0x 点可导, 必有0→∆y ,故)(x f 在0x 点连续.但)(x f 在0x 点连续只说明当0→∆x 时,也有0→∆y ,而当y ∆的无穷小的阶低于x ∆时,极限即不存在,故)(x f 在0x 点不可导.只有y ∆与x ∆是同阶无穷小,或y ∆是比x ∆高阶的无穷小时,)(x f 在0x 点才可导. 例如,0||,31===x x y x y 在点连续,但不可导.二、导数的运算1.几个基本初等函数的导数 1.0='=y c y 2.,1-='=a aax y x y3x x x x e y e y na a y x y ='=='=,;1,4.1,1;11,log xy nx y na x y x y a ='=='=2.导数的四则运算 1)(])([x u c x u c '⋅='⋅; 2)()(])()([x v x u x v x u '+'='±;3)()()()()]()([x v x u x v x u x v x u '⋅+'⋅'=⋅;4)()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡; 3.复合函数的导数设函数)(x u ϕ=在x 处可导,而函数)(u f y =在相应的点)(x u ϕ=处可导,则复合函数)]([x u f y =在点x 处可导,且dxdudu dy dx dy x x f dxdy⋅='⋅'=或)()]([ϕϕ.4.高阶导数二阶导数若函数 区间a,b 内可导,一般说来,其导数)(x f y '='仍然是x 的函数,如果)(x f y '=' 也是可导的,则对其继续求导数,所得的导函数称为)(x f 的二阶导数,记为2222)(,),(,dxx f d dx d x f y y ''''. 注 更高阶的导数MBA 大纲不要求,二阶导数主要用来判定极值、函数凹凸区间及拐点.导数的计算要求非常熟练、准确第三讲 微分、导数的应用重点:微分的概念及运算、求曲线切线方程的方法、函数单调区间、极值、最值的求法 三、微分1.微分的概念定义 设)(x f y =在0x 的某邻域内有定义,若在其中给0x 一改变量x ∆,相应的函数值的改变量y ∆可以表示为其中A 与x ∆无关,则称)(x f 在0x 点可微,且称A x ∆为)(x f 在0x 点的微分,记为x A ∆是函数改变量y ∆的线性主部.)(x f y =在0x 可微的充要条件是)(x f 在0x 可导,且)(00x x f x x dy ∆'==.当x x f =)(时,可得x dx ∆=,因此由此可以看出,微分的计算完全可以借助导数的计算来完成.2微分的几何意义 当x 由0x 变到x x ∆+0时,函数纵坐标的改变量为y ∆,此时过0x 点的切线的纵坐标的改变量为dy.如图2-1所示.当dy <y ∆时,切线在曲线下方,曲线为凹弧. 当dy >y ∆时,切线在曲线上方,曲线为凸弧.2.微分运算法则 设)(),(x v x u 可微,则 一阶微分形式不变性:设)]([x f y ϕ=是由可微函数)(u f y =和)(x u ϕ=复合而成,则)]([x f y ϕ=关于x 可微,且由于du u f dy )('=,不管u 是自变量还是中间变量,都具有相同的形式,故称一阶微分形式不变.但导数就不同了:若u 是自变量,)(u f y '='.若u 是中间变量,x u u f y x u u '⋅'='=则),(.四、利用导数的几何意义求曲线的切线方程求切线方程大致有四种情况,最简单的一种是求过曲线)(x f y =上一点))(,(00x f x 的切线方程,此时只需求出)(0x f ',切线方程为))(()(000x x x f x f y -'=-.第二种情况是过曲线)(x f y =外一点a,b ,求曲线的切线方程,此时)(a f b ≠.设切点为))(,(00x f x ,切线方程为))(()(000x x x f x f y -'=-,将点a,b 代入方程中,有))(()(000x a x f x f b -'=-从中求出0x ,化成第一种情况的切线方程,若得到0x 惟一,则切线也不惟一.第三种情况是求两条曲线的公共切线,这两条曲线可能相离,也可能相交.设两曲线为)()(x g y x f y ==与解题方法是设在两条曲线上的切点分别为))(,()),(,(b g b a f a 这两点的切线斜率相等,从而有方程).()(b g a f '=' ①另外过点)(,a f a 的切线方程))(()(a x a f a f y -'=-也过点b,gb ,故有))(()()(a b a f a f b g -'=- ②由①、②求出a,b ,有了切点,切线方程也就可以写出来了. 第四种情况是求两条曲线在某公共点处的公切线.设曲线)()(x g y ax f y ==与在某点处相切,求a 的值与切线方程.则可设切点为))(,(0x g x ,从而有)())(()()(0000x g x x ax f x g ax f '=='=,由两方程联和可得a 的值及切点横坐标0x .即切点))(,(00x g x ,再由第一种情况,写出切线方程.五、函数的增减性、极值、最值1.函数的增减性的判定设函数)(x f 在闭区间],[b a 上连续,在a,b 内可导,若)0)((0)(<'>'x f x f 或,则)(x f 在a,b 上单调增加或单调减少.反之,若)(x f 在a,b 上单调增加或单调减少且可导,则)0)((0)(≤'≥'x f x f 或.二者的差异在于有没有等号.2.极值概念与判定定义 设)(x f 在0x 的某邻域内有定义,对该邻域内任意点x ,都有)(x f ≥)(0x f 或)(x f ≥)(0x f ,则称)(0x f 为极大值或极小值0x 为极大值点或极小值点.需要注意的是,极值点一定是内点,极值不可能在区间的端点取到.1极值存在的必要条件:若)(x f 在0x 点可导,且0x 为极值点,则)(0x f '=0.因此,极值点只需在)(x f '=0的点驻点或)(x f '不存在的点中去找,也就是说,极值点必定是)(x f '=0或)(x f '不存在的点,但这种点并不一定都是极值点,故应加以判别.2极值存在的充分条件,即极值的判别法,分为第一判别法和第二判别法.第一判别法用一阶导数判定.高)(x f 在0x 点连续,且)(0x f '=0或)(0x f '不存在.若存在0>δ,使得当),(00x x x δ-∈时,有)(x f >0或)(x f 不存在,当),(00δ+∈x x x 时,有)(x f '<0或)(x f '>0,此时0x 为极大极小值点.)(0x f 为极大极小值.若)(x f '在0x 的左右不变号,则0x 不是极值点.第二判别法需用二阶导数判定,只适用于二阶导数存在且不为零的点,因此有局限性. 当)(0x f '=0,若0)(0>''x f ,则0x 为极小值点,若0)(0<''x f ,0x 为极大值点,0)(0=''x f 判别法失效,仍需用第一判别法.3.函数在闭区间a,b 上的最大值与最小值.极值是函数的局部性质.最值是函数的整体性质.求最大值与最小值只需找出极值的可疑点驻点和不可导点,把这些点的函数值与区间的端点函数值比较,找出最大的与最小的即为最大值和最小值,相应的点为最大值点和最小值点.第四讲 函数图形的凹凸性、拐点、不定积分重点:函数图形凹凸区间及拐点求法、找原函数的换元积分法和分部积分法六、函数图形的凹凸性、拐点及其判定1.概念定义 若在某区间内,曲线弧上任一点处的切线位于曲线的下方,则称曲线在此区间内是上凹的,或称为凹弧简记为 ;反之,切线位于曲线上方,则称曲线是上凸的,亦称凸弧简记为,曲线凹、凸的分界点称为拐点.2.凹凸的判定设函数)(x f y =在区间a,b 内二阶可导,若在a,b 内恒有)(x f ''>0或)(x f ''<0,则曲线)(x f y =在a,b 内是凹弧或凸弧.3.拐点的求法与判定拐点存在的必要条件是)(0x f ''=0或)(0x f ''不存在请与极值比较其共性.设)(x f 在a,b 内二阶可导,)(0)(),,(000x f x f b a x ''=''∈或不存在,若)(x f ''在0x 点的左右变号,则点))(,(00x f x 是曲线)(x f y =的拐点,否则就不是拐点.由以上可以看出,要求函数的单调区间和极值点,只要找出其一阶导数等于零和一阶导不存在的点,设这种点一共有k 个,则这个k 个点把整个区间分成k+1个子区间,在每一个子区间内)(x f '不变号,由)(x f '>0或0)(<'x f 判定fx 在该子区间内单调递增或递减,同时也可以将极大值点和极小值点求出.求函数曲线的凹凸区间与拐点.只需求二阶导数等于零或二阶导数不存在的点,然后用上面的方法加以判定.第三章 定积分及其应用一、不定积分1.不定积分概念定义原函数 若对区间I 上的每一点x ,都有 则称Fx 是函数fx 在该区间上的一个原函数.原函数的特性 若函数fx 有一个原函数F x ,则它就有无穷多个原函数,且这无穷多个原函数可表示为Fx+C 的形式,其中C 是任意常数.定义不定积分 函数fx 的原函数的全体称为fx 的不定积分,记作⎰dx x f )(.若Fx 是fx的一个原函数,则定义原函数的存在性 在区间I 上连续的函数在该区间上存在原函数;且原函数在该区间上也必连续.2.不定积分的性质1积分运算与微分运算互为逆运算. 2⎰⎰≠=)0()()(k dx x f k dx x kf 常数3⎰⎰⎰±=±.)()()]()([dx x g dx x f dx x g x f3.基本积分公式4.求不定积分的基本方法和重要公式 1直接积分法所谓直接积分法就是用基本积分公式和不定积分的运算性质,或先将被积函数通过代数或三角恒等变形,再用基本积分公式和不定积分的运算性质可求出不定积分的结果.2换元积分法 I 第一换元积分法 公式 若⎰+=C u F du u f )()(,则=C u F +)( C x F +))((ϕ. 说明 1°运算较熟练后,可不设中间变量)(x u ϕ=,上式可写作2°第一换元积分法的实质正是复合函数求导公式的逆用.它相当于将基本积分公式中的积分变量x 用x 的可微函数)(x ϕ替换后公式仍然成立.用第一换元积分法的思路 不定积分⎰dx x f )(可用第一换元积分法,并用变量替换)(x u ϕ=,其关键是被积函数gx可视为两个因子的乘积且一个因子)())((x x f ϕϕ是的函数是积分变量x 的复合函数,另一个因子)(x ϕ'是)(x ϕ的导数可以相差常数因子.有些不定积分,初看起来,被积函数不具有上述第一换元积分法所要求的特征,在熟记基本积分公式的前提下,注意观察被积函数的特点,将其略加恒等变形:代数或三角变形,便可用第一换元积分法.II 第二换元积分法 公式⎰dx x f )( ⎰'dt t t f )())((ϕϕ C t F +)( 说明 第二换元积分法与第一换元积分法实际上正是一个公式从两个不同的方向运用用第二换元积分法的思路 若所给的积分⎰dx x f )(不易积出时,将原积分变量x 用新变量t 的某一函数)(t ϕ来替换,化成以t 为积分变量的不定积分⎰'dt t t f )())((ϕϕ,若该积分易于积出,便达到目的;被积函数是下述情况,一般要用第二换元积分法:1°被积函数含根式t b ax b a b ax n n =+≠+令时可以是,)0,0(,求其反函数;作替换)(1b t ax n -,可消去根式,化为代数有理式的积分; 变量替换令)(t x ϕ=变量替换令)(t x ϕ=第一换元法令令第一换元法ux x u ==)()(ϕϕ2°被积函数含根式a e x ±时,令t a e x =±,求其反函数,作替换)(12a t n x ±=可消去根式;被积函数含指数函数)(xxe a 或,有时也要作变量替换:令)(t e t a xx==或,设)1(111nt x nt nax ==或,以消去)(x x e a 或; 3分部积分法 公式⎰⎰'-='或dx x u x v x v x u dx x v x u )()()()()()(说明 分部积分法是两个函数乘积求导数公式的逆用; 用分部积分法的思路 I 公式的意义 欲求⎰'dx v u求⎰'.dx u vII 关于选取u 和v '用分部积分法的关键是,当被积函数看作是两个函数乘积时,选取哪一个因子为)(x u u =,哪一个因子为)(x v v '='.一般来说,选取u 和v '应遵循如下原则:1°选取作v '的函数,应易于计算它的原函数;2°所选取的u 和v ',要使积分⎰'dx u v 较积分⎰'dx v u 易于计算;3°有的不定积分需要连续两次或多于两次运用分部积分法,第一次选作v '或u 的函数,第二次不能选由v '或u 所得到的v 或v '.否则,经第二次运用,被积函数又将复原.Ⅲ分部积分法所适用的情况由于分部积分法公式是微分法中两个函数乘积的求导数公式的逆用,因此,被积函数是两个函数乘积时,往往用分部积分法易见效.5.求不定积分需要注意的问题1由于初等函数在其有定义的区间上是连续的,所以每个初等函数在其有定义的区间上都有原函数,但初等函数的原函数并不都是初等函数.例如nxe e e xx x 11,,,122-等的原函数就无法用初等函数表示.2对同一个不定积分,采用不同的计算方法,往往得到形式不同的结果.这些结果至多相差一个常数,这是由于不定积分的表达式中含有一个任意常数所致.第五讲重点:定积分的概念、性质、变限求导、牛顿-菜布尼兹公式、定积分的换元积方法和分部积分法二、定积分1.定积分的定义定义定积分 函数)(x f 在区间a,b 上的定积分定义为∑⎰=→∆∆==ni iix baxf dx x f I 1)(lim)(ξ,其中||max 1i ni x x ∆=∆≤≤.由定积分的定义,可推出以下结论:1定积分只与被积函数和积分区间有关; 2定积分的值与积分变量无关,即⎰⎰=babadt t f dx x f )()(;3⎰⎰-=abbadx x f dx x f )()(,特别地,⎰=aadx x f 0)(.定积分的几何意义 设)(x f 在a,b 上边续,⎰badx x f )(在几何上表示介于i 轴、曲线y =)(x f 及直线b x a x ==,之间各部分面积的代数和,在x 轴上方取正号,在x 轴下方取负号.利用定积分的几何意义,可以计算平面图形的面积,也是考纲中要求的定义应用内容. 定理可积的必要条件 若函数)(x f 在区间a,b 上可积,则)(x f 在a,b 上有界. 定理可积的充分条件 若函数)(x f 在区间a,b 上连续,则)(x f 在a,b 上可积.定理可积的充分条件 在区间a,b 上只有有限个间断点的有界函数)(x f 在该区间上可积.2.定积分的性质设)(x f ,)(x g 在a,b 上可积 1⎰⎰=baba k dx x f k dx x kf ,)()(为常数;2⎰⎰⎰±=±bababa dx x g dx x f dx x g x f )()()]()([;3对积分区间的可加性 对任意三个数a,b,c,总有 4比较性质 设],[),()(b a x x g x f ∈≤,则⎰⎰≤babadx x g dx x f )()(.特别地1°若],[,0)(b a x x f ∈≥,则0)(≥⎰badx x f ;2°⎰⎰≤babadx x f dx x f |)(|)(5⎰-=baa b dx .定理估值定理 若)(x f 在a,b 上的最大值与最小值分别为M 与m ,则)()()(a b M dx x f a b m ba-≤≤-⎰.定理积分中值定理 若)(x f 在a,b 上连续,则在a,b 上至少存在一点ξ,使))(()(a b f dx x f ba-=⎰ξ.上式若写成⎰-=ba dx x f ab f )(1)(ξ,该式右端称为函数)(x f 在区间a,b 上的平均值. 3.微积分学基本定理定理原函数存在性定理 若函数)(x f 在区间a,b 上连续,则函数 是)(x f 在a,b 上的一个原函数,即)()()(x f dt t f dx d x xa =⎪⎭⎫ ⎝⎛=Φ'⎰.设)(),(x x ψϕ可导 推论1 设⎰=Φϕadt t f x )()(,则)())(()(x x f x ϕϕ'=Φ'.推论2 设⎰=Φ)()()()(x x dt t f x ϕψ,则)())(()())(()(x x f x x f x ψψϕϕ'-'=Φ'.推论3 ⎰=Φ)()()()(x adt x g t f x ϕ,则)())(()()()()()()()()(x x f x g dt t f x g dt t f x g x x a x a ϕϕϕϕ'+'='⎥⎦⎤⎢⎣⎡=Φ'⎰⎰. 定理牛顿-莱布尼茨公式 若函数)(x f 在区间a,b 上连续,)(x F 是)(x f 在a,b 上的一个原函数,则)()()()(a F b F abx F dx x f ba-==⎰.上述公式也称为微积分基本定理,是计算定积分的基本公式. 4.计算定积分的方法和重要公式 1直接用牛顿-莱布尼茨公式这时要注意被积函数)(x f 在积分区间a,b 上必须连续. 2换元积分法公式 设函数)(x f 在区间a,b 上连续,而函数)(t x ϕ=满足下列条件:1°)(t ϕ在区间],[βα上是单调连续函数; 2°b a ==)(,)(βϕαϕ; 3°],[)(βαϕ在t '上连续, 则⎰⎰'=βαϕϕdt t t f dx x f ba)())(()(.该公式从右端到左端相当于不定积分的第一换元积分法;从左端到右端相当于不定积分的第二换元积分法,即用定积分的换元积分法与不定积分的换元积分法思路是一致的.作变量替换是,要相应地变换积分上下限.3分部积分法公式 设函数)(),(x v x u 在区间a,b 上有连续的导数,则⎰⎰'-='babadx x u x v a b x v x u dx x v x u )()()()()()(. 用该公式时,其思路与不定积分法的分部积分法是相同的.除此此外,当被积函数为变上限的定积分时,一般要用分部积分法.例如,设⎰⎰=xcbadx x f dt t x f )(,)()(求ϕ,这时,应设dx dv x f u ==),(.4计算定积分常用的公式 1°202241a dx x a aπ=-⎰.2°奇偶函数积分 设],[)(a a x f -在上连续,则 3°⎰⎰⎰-+=-+=--a aaaadx x f x f dx x f x f dx x f 0)]()([)]()([21)(.计算定积分,当积分区间为-a,a 时,应考虑两种情况:其一是函数的奇偶性;其二是作变量替换u x -=,用上述公式3°,当公式右端的积分易于计算时,便达目的.4°周期函数积分 设)(x f 是以T 为周期的周期函数,则⎰⎰=+TTa adx x f dx x f 0)()(.5°若)(x f 以T 为周期且是奇函数,则第六讲重点:广义积分、利用定积分的性质还应平面图形面积直角坐标系下.5.广义积分 前面引进的定积分⎰badx x f )(有两个特点:积分区间为有限区间;被积函数)(x f 在a,b 上。

微积分的基本定理

微积分的基本定理

微积分的基本定理微积分是数学中非常重要的一个分支,它的基本定理是微积分学习的核心内容之一。

微积分的基本定理包括牛顿-莱布尼茨公式和积分中值定理,这两个定理在微积分的发展过程中起到了重要的作用。

牛顿-莱布尼茨公式是微积分中最基本的定理之一。

它给出了积分和微分之间的关系。

根据牛顿-莱布尼茨公式,如果一个函数F(x)是另一个函数f(x)的原函数,那么f(x)在区间[a, b]上的定积分可以表示为F(b)减去F(a),即∫[a, b]f(x)dx = F(b) -F(a)。

这个公式的推导过程相对简单,但它的意义却非常重大。

它将微积分中的两个基本运算——微分和积分联系了起来,为后续的微积分理论奠定了基础。

牛顿-莱布尼茨公式的推导过程可以通过微分和积分的定义来完成。

首先,我们可以通过微分的定义将函数f(x)在点x处的微分表示为df = f'(x)dx,其中f'(x)是f(x)的导数。

然后,我们可以通过积分的定义将函数f(x)在区间[a, b]上的定积分表示为∫[a, b]f(x)dx = lim(n→∞)Σ(i=1 to n)f(xi)Δx,其中Σ(i=1 to n)f(xi)Δx是将区间[a, b]划分为n个小区间,每个小区间的长度为Δx,xi是每个小区间的中点。

接下来,我们可以将Σ(i=1 to n)f(xi)Δx表示为Σ(i=1 to n)f(xi)dx,其中dx是Δx的极限形式。

最后,我们可以将Σ(i=1 to n)f(xi)dx表示为F(b) - F(a),其中F(x)是f(x)的原函数。

因此,我们得到了牛顿-莱布尼茨公式。

牛顿-莱布尼茨公式的重要性体现在它将微积分中的两个基本运算联系了起来。

通过这个公式,我们可以通过求导来求解积分,或者通过积分来求解导数。

这为微积分的应用提供了很大的便利。

例如,在物理学中,我们经常需要求解速度、加速度等与时间相关的物理量,通过牛顿-莱布尼茨公式,我们可以将这些物理量与位移之间的关系表示为积分形式,从而更方便地进行计算。

微积分的基本定理

微积分的基本定理

dx a
由 F(x)
x
f (t)dt

F(x)
f (x) 你会想到什么?
a
F(x)是f(x)的一个原函数。
这说明,连续函数必有原函数。
定理
若 f (x) C([a,b]), 则 F(x)
x
f (t)dt, x [a,b]
a
为 f (x) 在[a,b] 上的一个原函数.
推论1 若 f (x) C( I ) , 则 f (x) 在 I 上原函数存在.
2x x2 sint 2dt 2x3 sin x4 . 0
例 6.3.2 设f ( x)为连续函数,证明:
x
xt
0 ( x t) f (t)dt 0 (0 f (u)du)dt.

设F( x)
x
( x t) f (t)dt, G( x)
xt
( f (u)du)dt.
0
0

2 0 | cos x | d x
去绝对 值符号(如果 是分段函数, 则利用积分 的性质将积 分分成几个 部分的和的 形式.)



2 2 cos x d x 0
2 (cos x)d x
2


2sin
x
2 0

2sin x

2
2.
2
例6.3.6 设
x2, 1 x 0
f
(
x)

e

x
,
0 x1
求 1 f ( x)dx. 1

1 f ( x)dx
0
f ( x)dx
1

微积分七个基本定理

微积分七个基本定理

微积分七个基本定理
1、定义域定理(积分定义域定理):如果函数f(x)有连续的导数f'(x),那么f(x)在定义域内具有定义连续性。

2、基本定理(积分基本定理):设内一区间上有一函数f(x),若f(x)在这区间上存在连续的导数f'(x),那么f(x)的定积分就存在,且可以用反常积分形式表示。

3、基本定理(积分变换定理):如果函数f(x)和函数g(x)都在某一区间(a,b)上具有反常积分,则有f(x)g(x)在区间(a,b)上有定积分。

4、分部积分定理(部分积分定理):若f(x)是a到b范围内任意一点x上的可积函数,则有∫f(x)dx=∫f(x)dx+∫f(x)dx。

5、置换定理:积分置换定理正如名字说的,即把函数f(x)的变量由x换成g(x)的变量,在规定的变换空间内,得到的积分值相等。

6、定理(积分级数定理):积分级数定理表明,若函数f(x)在区间[a,b]上连续,那么函数的定积分值等同于其积分级数的和。

7、变量替换定理:变量替换定理定义为:如果函数f(x)与变量x 具有连续导数,且变量u=g(x)具有连续导数,那么:∫f(u)d u=∫f (x)g'(x)dx。

微积分公式定理整理

微积分公式定理整理

微分积分公式整理一、导数1. 基本导数公式(1)()0='C (2)()1-='μμμx x(3)()x cos x sin =' (4)()x sin x cos -=' (5)()x sec x tan 2=' (6)()x csc x cot 2-=' (7)()x tan x sec x sec ⋅=' (8)()x cot x csc x csc ⋅-='(9)()x x e e =' (10)()a ln a a x x ='(11)()xx ln 1=' (12)()aln x x log a1=' (13)()211x x arcsin -=' (14)()211x x arccos --='(15)()211x x arctan +=' (16)()211x xcot arc +-='2. 导数的四则运算法则(1)()v u v u '±'=± (2)()v u v u uv '+'='(3)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 3. 常用等价无穷小代换: 当x →0时,xx sin →xx tan →xx arcsin →xx arctan →2211xx cos →- a ln x a x →-1 x e x →-1()x x ln →+1()abxbx a →+-11()nx x n1111→-+()a ln x x log a →+1 4. 高阶导数公式(1)()()[]()()()()()n n n x v x u x v x u ±=± (2)()[]()()x cu x cu n n = (3)()[]()()()b ax u a b ax u n n n +=+(4)莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑5.基本初等函数的n 阶导数公式 (1)()()!x x n n= (2)()()bax n n bax ea e ++⋅= (3)()()a ln a a n x n x=(4)()[]()⎪⎭⎫ ⎝⎛⋅++=+2x n b ax sin a b ax sin n n (5)()[]()⎪⎭⎫ ⎝⎛⋅++=+2x n b ax cos a b ax cos n n (6)()()()111++⋅-=⎪⎭⎫ ⎝⎛+n n nn b ax !n a b ax(7)()[]()()()()nn n n b ax !n a b ax ln +-⋅-=+-1116. 中值定理与导数应用:拉格朗日中值定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。

定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。

函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。

如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sin x/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。

单调有界数列必有极限。

6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。

不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。

如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。

非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。

定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。

定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间Iy={y|y=f(x),x∈Ix}上单调增加或减少且连续。

反三角函数在他们的定义域内都是连续的。

定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。

如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。

定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即m≤f(x)≤M.定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)×f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)。

推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值。

第二章导数与微分1、导数存在的充分必要条件函数f(x)在点x0处可导的充分必要条件是在点x0处的左极限lim(h→-0)[f(x0+h)-f(x0)]/h及右极限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左导数f-′(x0)右导数f+′(x0)存在相等。

2、函数f(x)在点x0处可导=>函数在该点处连续;函数f(x)在点x0处连续≠>在该点可导。

即函数在某点连续是函数在该点可导的必要条件而不是充分条件。

3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。

4、函数f(x)在点x0处可微=>函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。

第三章中值定理与导数的应用1、定理(罗尔定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点ξ(a<ξ<b),使的函数f(x)在该点的导数等于零:f’(ξ)=0.2、定理(拉格朗日中值定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点ξ(a<ξ<b),使的等式f(b)-f(a)=f’(ξ)(b-a)成立即f’(ξ)= [f(b)-f(a)]/(b-a)。

3、定理(柯西中值定理)如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F’(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(ξ)/F’(ξ)成立。

4、洛必达法则应用条件只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞0等形式。

5、函数单调性的判定法设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f’(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f’(x)<0,那么函数f(x)在[a,b]上单调减少。

如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f’(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。

在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。

定理(函数取得极值的必要条件)设函数f(x)在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f’(x0)=0.定理(函数取得极值的第一种充分条件)设函数f(x)在x0一个邻域内可导,且f’(x0)=0,那么:(1)如果当x取x0左侧临近的值时,f’(x)恒为正;当x去x0右侧临近的值时,f’(x)恒为负,那么函数f(x)在x0处取得极大值;(2)如果当x取x0左侧临近的值时,f’(x)恒为负;当x去x0右侧临近的值时,f’(x)恒为正,那么函数f(x)在x0处取得极小值;(3)如果当x取x0左右两侧临近的值时,f’(x)恒为正或恒为负,那么函数f(x)在x0处没有极值。

定理(函数取得极值的第二种充分条件)设函数f(x)在x0处具有二阶导数且f’(x0)=0,f’’(x0)≠0那么:(1)当f’’(x0)<0时,函数f(x)在x0处取得极大值;(2)当f’’(x0)>0时,函数f(x)在x0处取得极小值;驻点有可能是极值点,不是驻点也有可能是极值点。

7、函数的凹凸性及其判定设f(x)在区间Ix上连续,如果对任意两点x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凹的;如果恒有f[(x1+x2)/2]>[f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凸的。

定理设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内具有一阶和二阶导数,那么(1)若在(a,b)内f’’(x)>0,则f(x)在闭区间[a,b]上的图形是凹的;(2)若在(a,b)内f’’(x)<0,则f(x)在闭区间[a,b]上的图形是凸的。

判断曲线拐点(凹凸分界点)的步骤(1)求出f’’(x);(2)令f’’(x)=0,解出这方程在区间(a,b)内的实根;(3)对于(2)中解出的每一个实根x0,检查f’’(x)在x0左右两侧邻近的符号,如果f’’(x)在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点。

第四章不定积分1、原函数存在定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。

分部积分发如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。

如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u.2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

第五章定积分1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程2、函数可积的充分条件定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

3、定积分的若干重要性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0.推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx.推论|∫abf(x)dx|≤∫ab|f(x)|dx.性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

相关文档
最新文档