大连理工大学大学物理作业2(静电场二)及答案详解
2静电场二参考答案
静电场二 参考答案一 . 1.BC 2.D 3.B 4.B 5.D 6.E 7.A 解: 1. 由于0q W U PP =,所以C 正确. 再由电场力做功等于势能增量的负值,B 正确. 2. –q 在空间产生电势,它在A ,B ,C ,D 点产生的电势相等,所以试验电荷0q 在这四点具有相同的电势能U q W 0=, 电场力做功等于势能增量的负值,所以把试验电荷从A 移到B 、C 、D 各点,电场力做功均为0,相等。
3. 电势叠加原理,P 的电势等于q 在P 的电势加上Q 在P 的电势,得B4. 点电荷的电势aQa Q rQ U 0002)2/(44πεπεπε===5. 方法一:可根据场强积分计算⎰⋅=PMP l d E U .方法二:我们知道一点处的电势和电势零点的选取有关,但是两点之间的电势差和电势零点的选取无关. 如果以无穷远处作为电势零点,则aqa q a q U U P M 00084)2(4πεπεπε-=-=-,那么选取P 点为电势零点时(0=P U ),但同样应该aq U U P M 08πε-=-,则得aq U M 08πε-=.6. 场强等于电势的负梯度U E -∇=,分析可得结果.7. 方法一:先计算两带点球面之间的电场强度,再根据场强积分计算电势差 由高斯定理,两带点球面之间一点(距球心为r )的电场强度为204r q E πε=)11(44020212121Rr qdr r q Edr l d E U U Rr-===⋅=-⎰⎰⎰πεπε 方法二:根据电势叠加原理,先分别计算两球面的电势,再求其差球面1处的电势:R Q r q U 00144πεπε+=球面2处的电势:RQRqU 00244πεπε+=,得21U U -的值二. 1. 106.36-⨯-; 106.36-⨯; 106.36-⨯; 106.36-⨯- 2. 不闭合3. V 0200-.4.垂直(正交); 电势降落最快5. >6.22028d xR R l q +επ;2204x R q +πε;Rq 04πε;()2/32204x R qx +πε;⎪⎪⎭⎫⎝⎛+-2200114a R Rqq πε解:1. 电场力做功等于势能增量的负值。
大学物理(二)答案
大学物理(二)练习册 参考解答第12章 真空中的静电场一、选择题1(A),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ; (5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r qε ; (7). -2³103V ; (8).⎪⎪⎭⎫ ⎝⎛-πb a r r q q 11400ε(9). 0,pE sin α ; (10). ()()j y x i xy40122482+-+-- (SI) ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示. 半无限长直线A ∞在O 点产生的场强:()j i R E -π=014ελ半无限长直线B ∞在O 点产生的场强:()j i R E +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i R E +π=034ελ由场强叠加原理,O 点合场强为: ()j i RE E E E +π=++=03214ελBA∞O BA∞∞2. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C .(1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85³10-12 C 2²N -1²m -2)解:(1) 设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S 平行地面)上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E²S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S高斯面S 包围的电荷∑q i =h ∆S ρ由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴() E E h1201-=ερ=4.43³10-13C/m 3(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理⎰⎰E²S d =∑i1qε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9³10-10C/m 33. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R R qE 00204d sin 4d d εφφλεπ=π= 在x 、y 轴上的二个分量d E x =-d E cos φ, d E y =-d E sin φ 对各分量分别求和⎰ππ=000d cos sin 4φφφελR E x =0 RRE y 000208d sin 4ελφφελ-=π=⎰π∴ j Rj E i E E y x008ελ-=+=(2)2(1)4. 一“无限长”圆柱面,其电荷面密度为: σ = σ0cos φ ,式中φ 为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ = σ0cos φ R d φ, 它在O 点产生的场强为:φφεσελd s co 22d 000π=π=R E它沿x 、y 轴上的二个分量为: d E x =-d E cos φ =φφεσd s co 220π-d E y =-d E sin φ =φφφεσd s co sin 20π 积分:⎰ππ-=2020d s co 2φφεσx E =2εσ0)d(sin sin 2200=π-=⎰πφφεσy E∴ i i E E x02εσ-==5. 一半径为R 的带电球体,其电荷体密度分布为4πRqr =ρ (r ≤R ) (q 为一正的常量)ρ = 0 (r >R )试求:(1) 带电球体的总电荷;(2) 球内、外各点的电场强度;(3) 球内、外各点的电势.解:(1) 在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 d q = ρd V = qr 4πr 2d r /(πR 4) = 4qr 3d r/R 4 则球体所带的总电荷为 ()q r r Rq V Q rV===⎰⎰34d /4d ρ(2) 在球内作一半径为r 1的高斯球面,按高斯定理有4041241211d 414Rqr r r Rqr E r r εε=π⋅π=π⎰得402114R qr E επ=(r 1≤R),1E方向沿半径向外.在球体外作半径为r 2的高斯球面,按高斯定理有 0222/4εq E r =π得22024r q E επ=(r 2 >R ),2E方向沿半径向外.(3) 球内电势⎰⎰∞⋅+⋅=RR r r E r E U d d 2111⎰⎰∞π+π=RRr r rq r Rqrd 4d 4204021εε40310123Rqr R qεεπ-π=⎪⎪⎭⎫ ⎝⎛-π=3310412R r R qε ()R r ≤1 球外电势 2020224d 4d 22r q r rq r E U r Rr εεπ=π=⋅=⎰⎰∞()R r >26. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2/ (4ε0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεk S b x d x kSSE E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为i xx E012εσ='圆盘在该处的场强为i x R x x E⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i xR xE E E 220212+=+=εσ该点电势为 ()220222d 2xR R xR x x U x+-=+=⎰εσεσ8.一真空二极管,其主要构件是一个半径R 1=5³10-4m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B A B A rr r E U U ελ120ln 2R R ελπ-= 得到()120/ln 2R R UUAB-=πελ, 所以 ()rR R UUE AB1/ln 12⋅-=在阴极表面处电子受电场力的大小为()()11211/c R R R U U e R eE F A B ⋅-===4.37³10-14N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 241rq E πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
大连理工大学大学物理作业及答案详解1-22
大连理工大学大学物理作业及答案详解作业1 (静电场一)1.关于电场强度定义式,下列说法中哪个是正确的?[ ]A .场强E的大小与试探电荷0q 的大小成反比。
B .对场中某点,试探电荷受力F与0q 的比值不因0q 而变。
C .试探电荷受力F 的方向就是场强E的方向。
D .若场中某点不放试探电荷0q ,则0F = ,从而0E =。
答案: 【B 】[解]定义。
场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相反,C 错;电荷产生的电场强度是一种客观存在的物质,不因试验电荷的有无而改变,D 错;试验电荷所受的库仑力与试验电荷的比值就是电场强度,与试验电荷无关,B 正确。
2.一个质子,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示,已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示哪个正确?[ ]答案: 【D 】[解]a m E q=,质子带正电且沿曲线作加速运动,有向心加速度和切线加速度。
存在向心加速度,即有向心力,指向运动曲线弯屈的方向,因此质子受到的库仑力有指向曲线弯屈方向的分量,而库仑力与电场强度方向平行(相同或相反),因此A 和B 错;质子沿曲线ACB 运动,而且是加速运动,所以质子受到的库仑力还有一个沿ACB 方向的分量(在C 点是沿右上方),而质子带正电荷,库仑力与电场强度方向相同,所以,C 错,D 正确。
3.带电量均为q +的两个点电荷分别位于X 轴上的a +和a -位置,如图所示,则Y 轴上各点电场强度的表示式为E= ,场强最大值的位置在y = 。
答案:j y a qyE 23220)(2+=πε,2/a y ±= [解]21E E += )(422021y a qE E +==πε关于y 轴对称:θcos 2,01E E E y x ==y a qyE y 23220)(2+==∴πε沿y 轴正向的场强最大处0=dydEy y a y y a dy dE 2)(23)(25222322⨯+-+∝-- 2/a y = 2/a y ±=处电场最强。
大连理工大物2作业答案_33-39
I.作业33答案1、什么叫波动光学?什么叫几何光学?什么情况下可以用几何的方法研究光学问题?答:波动光学是以波动理论来研究光的干涉、衍射等现象的光学分支;几何光学是以光线为基础,研究光的传播和成像规律的光学分支。
在光学中,可以忽略波长,即相当于λ→0极限情况的这一分支,通常称为几何光学,因为在这种近似处理下,光学定律可以用几何学的语言来表述。
2、费马原理的数学表达式为 Nnd l <Mnd l ,请说明“<”两边积分式的物理意义。
答:左边是光程,右边是光学长度,光线沿光学长度最短的路径传播。
3、光在折射率为n (x )的空间沿直线从P 1(x 1)传播到P 2(x 2),写出这段光程的数学表示式。
答:δ= x 2x 1n (x )dx4、图33-1中的P 是物P 经薄透镜L 所成的像。
(1)请用作图法画出入射平行光经透镜后的像;(2)简单写出步骤和理由。
解:(1)(2)先利用两条特殊光线a ,b 确定焦点位置,再作出焦平面;这束平行光中过透镜中心的光线与焦平面交点P ,则该平行光汇聚在P 点。
5、如图33-2所示,F 、F 分别是薄透镜L 的物空间和像空间的焦点。
请用作图法分别求物P 的像(用P 表示)。
6、杨氏双缝实验,己知d=0.3mm,D=1.2m ,测得两个第7级暗条纹中心的间距为22.78mm ,求入射单色光的波长,并说明其颜色。
解:单色光杨氏双缝干涉实验中,暗条纹的位置为x k =(2k −1)Dλ2d ∆x =x 7−x −7=13Dλd所以λ=∆xd 13D =22.78×10−3×0.3×10−313×1.2m =438nm光的颜色为紫色7、如图33-4所示,洛埃镜长2cm ,观察屏与镜边相距l 1=1.6cm ;线光源S 离镜面的高度为h=0.5mm ,到镜另一边的水平距离l 2=2cm ,实验用准单色光波长为600nm ,(1)求屏上干涉条纹的间距;(2)标出屏幕上的相干区域;(3)计算最多能出现的明条纹数目。
大学物理作业--静电场二解答
E dS rdV
S
0
2 Ar r≤R时: E 4r 2 Ar 4r 2 dr 0 E ˆ r 4 0 0 4 AR r>R时: E 4r 2 Ar 4r 2 dr 0 E ˆ r 2 4 0 r 0
R
静电场二
x
静电场二
第五章 静电场
三、计算题
1. 真空中一立方体形的高斯面,边长a=0.1m,位于图中所 示位置. 已知空间的场强分布为:Ex=bx , Ey=0, Ez=0. 常 量b=1000N/(C•m).试求通过该高斯面的电通量. 解:
F E dS El a 2 ER a 2
两异号无限大带电平板间的场强为
E s 0
sS ˆ ES F1 E Sn 0 sS ˆ ES F 2 E Sn 0
E
+s M N
-s
n
静电场二
第五章 静电场
3. 有一个球形的橡皮膜气球,电荷q均匀地分布在表 面上,在此气球被吹大的过程中,被气球表面掠过的 点(该点与球中心距离为r),其电场强度的大小将 由 变为 . r
解:平板具有面对称性,取柱状高斯面
d
S1
O
x
S2
静电场二 由高斯定理有:
dq rS 2 x E
1
第五章 静电场
S1
E dS 2E S
x 1
0
0
x
rx 0
d
S1
O
x
rx Ex 0
S2
d d x 2 2
dq rS
C
B
C
B
E
A A
院大学物理作业题答案及详解1-22
大连理工大学软件学院大学物理作业及答案作业11.关于电场强度定义式,下列说法中哪个是正确的?[ ] A .场强E 的大小与试探电荷0q 的大小成反比。
B .对场中某点,试探电荷受力F 与0q 的比值不因0q 而变。
C .试探电荷受力F 的方向就是场强E 的方向。
D .若场中某点不放试探电荷0q ,则0F =,从而0E =。
答案: 【B 】[解]定义。
场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相反,C 错;电荷产生的电场强度是一种客观存在的物质,不因试验电荷的有无而改变,D 错;试验电荷所受的库仑力与试验电荷的比值就是电场强度,与试验电荷无关,B 正确。
2.一个质子,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示,已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示哪个正确?[ ]答案: 【D 】[解]a m E q=,质子带正电且沿曲线作加速运动,有向心加速度和切线加速度。
存在向心加速度,即有向心力,指向运动曲线弯屈的方向,因此质子受到的库仑力有指向曲线弯屈方向的分量,而库仑力与电场强度方向平行(相同或相反),因此A 和B 错;质子沿曲线ACB 运动,而且是加速运动,所以质子受到的库仑力还有一个沿ACB 方向的分量(在C 点是沿右上方),而质子带正电荷,库仑力与电场强度方向相同,所以,C 错,D 正确。
3.带电量均为q +的两个点电荷分别位于X 轴上的a +和a -位置,如图所示,则Y 轴上各点电场强度的表示式为E = ,场强最大值的位置在y = 。
答案:j y a qyE 23220)(2+=πε,2/a y ±=[解]21E E += )(422021y a qE E +==πε关于y 轴对称:θcos 2,01E E E y x ==y a qyE y 23220)(2+==∴πε沿y 轴正向的场强最大处0=dydEy y a y y a dy dE 2)(23)(25222322⨯+-+∝-- 2/a y = 2/a y ±=处电场最强。
大学物理作业-静电场二解答
一均匀带电细棒,总电荷量为Q,长度为L,求距离棒的一端为a处的电场强度。
THANKS
感谢您的观看
接触带电
摩擦带电
通过摩擦的方式使得物体带电,如用 丝绸摩擦玻璃棒,玻璃棒带正电。
不同物体接触时,由于物体内部电子 的转移,使得物体带电。
导体表面电荷分布规律
电荷分布在导体外表面
01
在静电平衡状态下,导体内部电场强度为零,电荷只分布在导
体的外表面。
电荷分布与导体形状有关
02
导体表面的电荷分布受到导体形状的影响,曲率半径小的地方
连续分布的电荷产生的电势可以通过对电荷 密度进行积分得到。对于线电荷密度 $lambda$、面电荷密度$sigma$和体电荷密 度$rho$,其产生的电势分别为$V = int frac{klambda dl}{r}$、$V = int frac{ksigma da}{r}$和$V = int frac{krho dv}{r}$。
求解方法:能量守恒定律、积分运算等
能量守恒定律
在静电场中的能量转换过程中,能量 守恒定律始终成立。即系统总能量的 变化等于外界对系统所做的功。
积分运算
在计算静电场的总能量时,需要对能 量密度在整个场空间中进行积分运算。 根据问题的具体情况,可以选择合适 的坐标系和积分方法进行求解。
Part
05
总结回顾与拓展延伸
求解方法:镜像法、保角变换等
镜像法
通过引入虚拟的“镜像”电荷,将复杂问题简化为求 解点电荷的电场问题。适用于求解具有对称性的导体 表面的电场问题。
保角变换
通过复变函数中的保角变换,将复杂形状的导体表面 变换为简单形状,从而简化问题的求解过程。适用于 求解具有复杂形状的导体表面的电场问题。
大学物理静电场作业(二)习题与解答
1、如图所示, 把单位正电荷从一对等量异号电荷的连线中点, 沿任意路径移到无穷远处时,电场力作功为__0__。
2、在点电荷Q 旁作一高斯面S ,包围Q ,在S 面外再引入另一点电荷q ,则通过S 面的电通量有无变化?__不变化____。
S 面上各处的电场强度有无变化?____有变化_____。
3、电场力作功从该点移动到无穷远处则把试验电荷试验电荷势为以知静电场中某点的电C,103.0100v,-80⨯=-q-3.0×10-6J4、如图所示的电场分布,则A 点的电势比B 点的电势____高__(填高、低、相等)5、两个同心的球面半径分别为R 1和R 2(R 1 < R 2),带电量分别为q 1和q 2 , 则在小球面内 距球心为 r 1处一点的电势为______________,在两球面之间距球心为 r 2处一点的电势为_______________。
20212201202121014)11(44)11(4R qq R r q R q q R R q πεπεπεπε++-++-6、已知一带电细杆,杆长为l ,其线电荷密度为λ = cx ,其中c 为常数。
试求距杆右端距离为a 的P 点电势。
O+q qA B。
。
Eϖ考虑杆上坐标为x 的一小块d x d x 在P 点产生的电势为x a l xdxc x a l dx dU -+=-+=00441πελπε 求上式的积分,得P 点上的电势为])ln()[(44000l a a l a l c x a l xdx c U l -++=-+=⎰πεπε7、求均匀带电圆环轴线上任一点P 处的电场强度(圆环半径为R ,带电量为Q )22022223/222001d d d 4 d 01d 44()x x qq E R xE QxE E E R x R x R x πεπεπε⊥=+=∴====+++⎰⎰⎰在圆环上任取电荷元,则,由对称性知,8、在半径为R 1、电荷体密度为ρ的均匀带电球体中挖去一半径为R 2, 的球形空腔, 空腔的中心为O ’ , 球心与空腔的中心的距离OO ’为a , 求空腔内任一点的电场强度E 。
大连理工大学大学物理静电场习题-推荐下载
带
电细线,弯成图示形状,若圆弧半径为 R ,试求 O 点的场强。
8.一个金属球带上正电荷后,质量有所增大?减小?不变?
9.以点电荷为中心,半径为 R 的球面上,场强的大小一定处处相等吗?
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
大学物理-13静电场单元练习二答案
13.静电场单元练习(二)答案1. C 2. D 3. B 4. C 5.224141041r QR Q R Q o o o πεπεπε;;; 6. >7. 解:假设阴极A 与阳极B 单位长度带电分别为–λ与λ,由高斯定律求电场分布,并进一步求出阴极与阳极间的电势差U ,由已知量求电场强度并由阴极表面的电场强度求电子刚从阴极射出时所受的电场力12ln 22R R U rE o o πελ=πελ=12lnR R r U E =N R R R eU eE F 141211034.4ln-⨯===8.解:(1)方法一:取同心球面为高斯面,利用高斯定理求电场强度的分布再求电势分布;)(011R r E <=)(4421212122R r R e rQ E Q r E ro o<<πε=ε=π)(44222132123R r e rQ Q E Q Q r E ro o >πε+=ε+=π2212213344R r r Q Q l d e r Q Q l d E V o rr o r>πε+=⋅πε+=⋅=⎰⎰∞∞⎰⎰⎰⎰∞∞⋅πε++⋅πε=⋅+⋅=22222212132244R r o R rr o R R rl d e rQ Q l d e r Q l d E l d E V21221244R r R R Q r Q V o o <<πε+πε=⎰⎰⎰⎰⎰∞∞⋅πε++⋅πε=⋅+⋅+⋅=221221122121321144R r o R R r o R R R R rl d e r Q Q l d e r Q l d E l d E l d E V12211144R r R Q R Q V o o <πε+πε=方法二:带电量为Q ,半径为R 的带电球面对电势的贡献球面内电势:R Q V o πε=4 球面外电势:rQV o πε=4有电势的叠加求电势分布;结果与方法一一致。
最新大学物理B2作业及答案,答案在最后讲述
作业题一(静止电荷的电场)班级:_____________ 姓名:_____________ 学号:_____________ 一、选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零. (D) 无法判定 .[ ] 2. 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]3. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]4. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A)06εq . (B) 012εq. (C) 024εq . (D) 048εq . [ ]5. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场.02εxP +q 0(B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ]6. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. [ ]7. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]8. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ]二、填空题9. A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.则A 、B 两平面上的电荷面密度分别 为σA =_______________, σB =____________________.ABE 0E 0/3E 0/310. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强 度分别为:E A =_________________,E B =_____________, E C =_________,E D =___________ (设方向向右为正).11. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所 示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.12. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强 度通量=______________;若以 0r 表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题13. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.14. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.+σ+σ+σABCD15. 一半径为R的带电球体,其电荷体密度分布为 ρ =Ar(r≤R) ,ρ =0 (r>R)A为一常量.试求球体内外的场强分布.16. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为:Ex =bx,Ey=0,Ez=0.高斯面边长a=0.1 m,常量b=1000 N/(C·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12C2·N-1·m-2 ) x作业题二(电势)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A)a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) aq08επ-. [ ]2. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为: (A) E =0,U =104R Q επ. (B) E =0,U =⎪⎪⎭⎫ ⎝⎛-π21114R R Qε.(C) E =204r Q επ,U =r Q04επ (D) E =204r Q επ,U =104R Q επ.[ ] 3. 关于静电场中某点电势值的正负,下列说法中正确的是: (A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取.(D) 电势值的正负取决于产生电场的电荷的正负. 4. 点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. [ ] 5. 如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功A7.-(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ ] 6. 半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2为: (A)⎪⎭⎫ ⎝⎛-πR r q 1140ε . (B) ⎪⎭⎫⎝⎛-πr R Q 1140ε .(C) ⎪⎭⎫ ⎝⎛-πR Q r q 041ε . (D)r q04επ . [ ] 7. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为(A) d S q q 0212ε+. (B) d Sq q 0214ε+.(C) d S q q 0212ε-. (D) d Sq q 0214ε-. [ ]8. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ ] 二、填空题9. 如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为 零的球面半径r = __________________.10. 真空中一半径为R 的均匀带电球面,总电荷为Q .今在球面上挖去很小一块面积△S (连同其上电荷),若电荷分布不改变,则挖去小块后球心处电势(设无穷远处电势为零)为________________.11. 把一个均匀带有电荷+Q 的球形肥皂泡由半径r 1吹胀到r 2,则半径为R (r 1<R <r 2)的球面上任一点的场强大小E 由______________变为______________;电 势U 由 __________________________变为________________(选无穷远处为电势零点).12. 静电场的环路定理的数学表示式为:______________________.该式的物理意义是:____________________________________________________________.该定理表明,静电场是______ _________场.AS q 1q 2三、计算题13. 一“无限大”平面,中部有一半径为R的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O并与平面垂直的直线上各点的场强和电势(选O点的电势为零).14. 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R1,外表面半径为R2.设无穷远处为电势零点,求空腔内任一点的电势.15.两个带等量异号电荷的均匀带电同心球面,半径分别为R1=0.03 m和R2=0.10 m.已知两者的电势差为450 V,求内球面上所带的电荷.16. 有两根半径都是R的“无限长”直导线,彼此平行放置,两者轴线的距离是d (d≥2R),沿轴线方向单位长度上分别带有+λ和-λ的电荷,如图所示.设两带电导线之间的相互作用不影响它们的电荷分布,试求两导线间的电势差.作业题三(导体和电介质)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为 [ ](A) S Q 012ε .(B) SQ Q 0212ε-.(C) SQ01ε. (D) S Q Q 0212ε+.2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地. (B) N 上有正电荷入地. (C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ] 3. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 [ ] (A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E .4. 一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则 [ ](A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=.5. 在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D为电位移矢量),则S面内必定 [ ](A) 既无自由电荷,也无束缚电荷. (B) 没有自由电荷. (C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零.1+Q 2AB6. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 [ ](A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定.7.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化: [ ](A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大. (C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变. 8. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ ] 二、填空题9. 半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D =____________,电场强度的大小 E =____________.10. 一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的 _________倍;电场能量是原来的_________倍.11. 一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场 能量是原来的___________ 倍.12. 分子的正负电荷中心重合的电介质叫做_______________ 电介质 .在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.三、计算题13. 如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求:(1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势.(3) 球心O 点处的总电势.+Q14. 半径分别为R1和R2 (R2 > R1 )的两个同心导体薄球壳,分别带有电荷Q1和Q2,今将内球壳用细导线与远处半径为r的导体球相联,如图所示, 导体球原来不带电,试求相联后导体球所带电荷q.1115. 假想从无限远处陆续移来微量电荷使一半径为R的导体球带电.(1) 当球上已带有电荷q时,再将一个电荷元d q从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开始增加到Q的过程中,外力共作多少功?16. 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R= 2 cm,R2 = 5 cm,其间充满相对介电常量为εr 的各1向同性、均匀电介质.电容器接在电压U = 32 V的电源上,(如图所示),试求距离轴线R = 3.5 cm处的A点的电场强度和A点与外筒间的电势差.1213作业题四(电流的磁场)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为 [ ](A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 =21B 2. (D) B 1 = B 2 /4.2. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但B 3≠ 0. [ ] 3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:[ ](A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .4. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为: (A) 01=B ,02=B .(B) 01=B ,lIB π=0222μ.(C) lIB π=0122μ,02=B .C q3.a14 (D) l I B π=0122μ,lIB π=0222μ. [ ] 5. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) 0d =⎰⋅Ll B,且环路上任意一点B = 0. (B) 0d =⎰⋅L l B,且环路上任意一点B ≠0. (C) 0d ≠⎰⋅Ll B,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅Ll B,且环路上任意一点B =常量. [ ]6. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的?(A) I l H L 2d 1=⎰⋅. (B)I l H L =⎰⋅2d(C) I l H L -=⎰⋅3d. (D)I l H L -=⎰⋅4d. [ ]7. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大? (A) Ⅰ区域. (B) Ⅱ区域. (C) Ⅲ区域. (D) Ⅳ区域. (E) 最大不止一个. [ ]8. 如图两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置.电流I 沿ab 连线方向由a 端流入,b 端流出,则环中心O 点的磁感强度的大小为 (A) 0. (B) RI40μ.(C) RI420μ. (D) R I 0μ. (E)RI820μ. [ ] 4ⅠⅡⅢⅣIIba15二、填空题9. 如图,在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路.两个回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行.则通过面积为S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为____________. 10. 如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B_____________.(2) 磁感强度B沿图中环路L 的线积分=⎰⋅Ll Bd __________________________________.11. 图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位垂直长度上流过的电流)为i ,则圆筒内部的磁感强度的大 小为B =________,方向_______________.12. 将半径为R 的无限长导体薄壁管(厚度忽略)沿轴向割去一宽度为h ( h << R )的无限长狭缝后,再沿轴向流有在管壁上均匀分布的电流,其面电流密度(垂直于电流的单位长度截线上的电流)为i (如上图),则管轴线磁感强度的大小是__________________.三、计算题13. 半径为R 的无限长圆柱形导体和内半径为R 0,外半径也为R 的无限长圆筒形导体,都通有沿轴向的,在横截面上均匀分布的电流I ,导体的磁导率都为μ0.今取长为l 、宽为2 R 的矩形平面ABCD 和A ′B ′C ′D ′,AD 及A ′D ′正好在导体的轴线上,如图所示.(1) 通过ABCD 的磁通量大小为多少?(2) 通过A ′B ′C ′D ′的磁通量为多少? (3) 若电流I 不变,外半径R 不变,圆筒壁变薄,直至壁厚趋于零,再求(2) .10.l′ ′l16 14. 一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.15. 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系.16. 如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为σ.该筒以角速度ω绕其轴线匀速旋转.试求圆筒内部的磁感强度.R 1 R 2 OI17作业题五(电流在磁场中受力)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 按玻尔的氢原子理论,电子在以质子为中心、半径为r 的圆形轨道上运动.如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与B垂直,如图所示,则在r 不变的情况下,电子轨道运动的角速度将:[ ](A) 增加. (B) 减小. (C)不变. (D)改变方向. 2. 如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v-从磁场中某一点出来,这点坐标是x = 0 和 [ ](A) qB m y v +=. (B) qB m y v2+=. (C) qB m y v 2-=. (D) qBm y v-=.3. 一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速. 4. 如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 [ ] (A) 向着长直导线平移. (B) 离开长直导线平移. (C) 转动. (D) 不动.5. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将 (A) 绕I 2旋转. (B) 向左运动. (C) 向右运动. (D) 向上运动.(E) 不动. [ ]I 11×××18 6. 如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: [ ](A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动. (D) 离开大平板向外运动.7. 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 [ ] (A)RrI I 22210πμ. (B)RrI I 22210μ.(C)rRI I 22210πμ. (D)0.8. 两根载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势是 [ ](A) 沿x 方向平动. (B) 绕x 轴转动. (C) 绕y 轴转动. (D) 无法判断. 二、填空题9. 如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环 以角速度ω 转动时,圆环受到的磁力矩为_________________, 其方向__________________________.10. 有一半径为a ,流过稳恒电流为I 的1/4圆弧形载流导线bc ,按图示方式置于均匀外磁场B中,则该载流导线所受的安培力大小为_______________________.11. 如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I ,导线置于均匀外磁场B 中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为_________________.12. 如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为_______________,方向_________________.6.I 1I 2O r RI 1 I 2y zxI 1 I 2c aIIlI d19三、计算题13. 在一顶点为45°的扇形区域,有磁感强度为B方向垂直指向纸面内的均匀磁场,如图.今有一电子(质量为m ,电荷为-e )在底边距顶点O 为l 的地方,以垂直底边的速度 v射入该磁场区域,若要使电子不从上面边界跑出,电子的速度最大不应超过多少?14. 一圆线圈的半径为R ,载有电流I ,置于均匀外磁场B 中(如图示).在不考虑载流圆线圈本身所激发的磁场的情况下,求线圈导线上的张力.(载流线圈的法线方向规定与B的方向相同.)l 45° vBO2015. 一矩形线圈边长分别为a =10 cm 和b =5 cm ,导线中电流为I = 2 A ,此线圈可绕它的一边OO '转动,如图.当加上正y 方向的B =0.5T 均匀外磁场B,且与线圈平面成30°角时,线圈的角加速度为β = 2rad/s 2,求∶(1) 线圈对OO '轴的转动惯量J =?(2) 线圈平面由初始位置转到与B 垂直时磁力所做的功?16. 一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.O xyz I30° BO ′ ab作业题六(电磁感应)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大. (D) 两环中感应电动势相等. [ ]2. 如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势?[ ]3. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向. [ ]4. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高.(B) A 点与B 点电势相等.(B) A 点比B 点电势低.(D)有稳恒电流从A 点流向B 点. [ ]☜t O (A)☜t O(C)☜ t O (B)☜ t O(D)5. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为 [ ](A) =0,U a – U c =221l B ω. (B) =0,U a – U c =221l B ω-. (C) =2l B ω,U a – U c =221l B ω.(D) =2l B ω,U a – U c =221l B ω-.6. 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是[ ](A) 4.(B) 2. (C) 1. (D) 21.7. 在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明:(A) 闭合曲线L 上K E处处相等.(B) 感应电场是保守力场. (C) 感应电场的电场强度线不是闭合曲线. (D) 在感应电场中不能像对静电场那样引入电势的概念. [ ] 8. 对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场. (B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律. (D) 位移电流的磁效应不服从安培环路定理. [ ]二、填空题9. 如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中,磁感强度为 B的匀强磁场垂直于xy 平面.当aOc 以速度v沿x 轴正向运动时,导线上a 、c 两点间电势差U ac =____________;当aOc 以速度v沿y 轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.Bab clωx ×××××10. 一导线被弯成如图所示形状,acb 为半径为R 的四分之三圆弧,直线段Oa 长为R .若此导线放在匀强磁场B 中,B的方向垂直图面向内.导线以角速度ω在图面内绕O 点匀速转动,则此导线中的动生电动势 i =___________ , 电势最高的点是________________________.11. 一长直导线旁有一长为b ,宽为a 的矩形线圈,线圈与导线共面,长度为b 的边与导线平行且与直导线相距为d ,如图.线圈与导线的互感系数为 ______________________.12. 一无铁芯的长直螺线管,在保持其半径和总匝数不变的情况下,把螺线管拉长一些,则它的自感系数将____________________.三、计算题13. 均匀磁场 B被限制在半径R =10 cm 的无限长圆柱空间内,方向垂直纸面向里.取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如图所示.设磁感强度以d B /d t =1 T/s 的匀速率增加,已知 π=31θ,cm 6==Ob Oa ,求等腰梯形回路中感生电动势的大小和方向.14.如图所示,有一半径为r =10 cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B中(B = 0.5 T ).圆形线圈可绕通过圆心的轴O 1O 2转动,转速 n =600 rev/min .求圆线圈自图示的初始位置转过π21时,(1) 线圈中的瞬时电流值(线圈的电阻R 为 100 Ω,不计自感);(2) 圆心处的磁感强度.(μ0 =4π×10-7 H/m)c15. 两个半径分别为R和r的同轴圆形线圈相距x,且R>>r,x >>R.若大线圈通有电流I而小线圈沿x轴方向以速率v运动,试求x =NR时(N为正数)小线圈回路中产生的感应电动势的大小.16. 载有电流的I长直导线附近,放一导体半圆环MeN与长直导线共面,且端点MN的连线与长直导线垂直.半圆环的半径为b,环心O与导线相距a.设半圆环以速度v 平行导线平移,求半圆环内感应电动势的大小和方向以及MN两端的电压UMU N .。
大学物理(二)答案[1]
大学物理(二)练习册参考解答第12章真空中的静电场一、选择题1(A),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1).电场强度和电势,0/q F E=,l E q W U aa⎰⋅==00d /(U 0=0).(2).()042ε/q q +,q 1、q 2、q 3、q 4; (3).0,λ/(2ε0);(4).σR /(2ε0); (5).0;(6).⎪⎪⎭⎫ ⎝⎛-π00114r r q ε;(7).-2×103V ;(8).⎪⎪⎭⎫ ⎝⎛-πb ar r q q 11400ε(9).0,pE sin α;(10).()()j y x i xy40122482+-+--(SI);三、计算题1.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示. 半无限长直线A ∞在O 点产生的场强:()j i RE -π=014ελ半无限长直线B ∞在O 点产生的场强:()j i RE +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i RE +π=034ελ由场强叠加原理,O 点合场强为:()j i RE E E E +π=++=03214ελ2.实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100N/C ;在离地面1.5km 高的地方,E也是垂直于地面向下的,大小约为25N/C .(1)假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2)假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85×10-12C 2·N -1·m -2)解:(1)设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S 平行地面)上下底面处的O BA∞∞yx3E 2E 1EOBA ∞∞SE 2∆SE 1(1)h场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E·S d =E 2∆S -E 1∆S =(E 2-E 1)∆S高斯面S 包围的电荷∑q i =h ∆S ρ 由高斯定理(E 2-E 1)∆S =h ∆S ρ /ε0∴() E E h1201-=ερ=4.43×10-13C/m 3 (2)设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2)由高斯定理⎰⎰E·S d =∑i1qε-E ∆S =S ∆σε01∴σ=-ε0E =-8.9×10-10C/m 3 3.带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.解:在φ处取电荷元,其电荷为d q =λd l =λ0R sin φ d φ它在O 点产生的场强为R R q E 00204d sin 4d d εφφλεπ=π=在x 、y 轴上的二个分量d E x =-d E cos φ, d E y =-d E sin φ 对各分量分别求和⎰ππ=000d cos sin 4φφφελR E x =0 RR E y 0002008d sin 4ελφφελ-=π=⎰π∴j Rj E i E E y x 008ελ-=+=4.一“无限长”圆柱面,其电荷面密度为: σ =σ0cos φ ,式中φ 为半径R 与x 轴所夹的角, 试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ=σ0cos φR d φ,它在O 点产生的场强为:φφεσελd s co 22d 000π=π=R E 它沿x 、y 轴上的二个分量为:d E x =-d E cos φ=φφεσd s co 2200π-d E y =-d E sin φ=φφφεσd s co sin 20π E(2)y RxφOy Rxφ d φd E xd E yφO d Ed qORzyxφOxRyφd φd E x d E yd E积分:⎰ππ-=2020d s co 2φφεσx E =002εσ 0)d(sin sin 2200=π-=⎰πφφεσy E∴i i E E x02εσ-== 5.一半径为R 的带电球体,其电荷体密度分布为4πR qr=ρ(r ≤R )(q 为一正的常量) ρ =0(r >R )试求:(1)带电球体的总电荷;(2)球内、外各点的电场强度;(3)球内、外各点的电势. 解:(1)在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 d q =ρd V =qr 4πr 2d r /(πR 4)=4qr 3d r/R 4 则球体所带的总电荷为()q r r R q V Q r V===⎰⎰34d /4d ρ(2)在球内作一半径为r 1的高斯球面,按高斯定理有404102401211d 414R qr r r R qr E r r εε=π⋅π=π⎰ 得402114Rqr E επ=(r 1≤R),1E 方向沿半径向外. 在球体外作半径为r 2的高斯球面,按高斯定理有0222/4εq E r =π得22024r q E επ=(r 2>R ),2E方向沿半径向外.(3)球内电势⎰⎰∞⋅+⋅=RRr r E r E Ud d 2111⎰⎰∞π+π=R R r r r q r R qr d 4d 4204021εε 40310123Rqr R qεεπ-π=⎪⎪⎭⎫ ⎝⎛-π=3310412R r R q ε()R r ≤1 球外电势2020224d 4d 22r q r rq r E U r Rr εεπ=π=⋅=⎰⎰∞()R r >26.如图所示,一厚为b 的“无限大”带电平板,其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1)平板外两侧任一点P 1和P 2处的电场强度大小;(2)平板内任一点P 处的电场强度;(3)场强为零的点在何处?解:(1)由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.xbP 1P 2P x O按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到E =kb 2/(4ε0)(板外两侧)(2)过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεkSbxdx kSS E E x==+'⎰得到⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε(0≤x ≤b ) (3)E '=0,必须是0222=-b x ,可得2/b x = 7.一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零). 解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴i xR x E E E 220212+=+=εσ该点电势为()220222d 2x R R xR x x U x+-=+=⎰εσεσ 8.一真空二极管,其主要构件是一个半径R 1=5×10-4m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5×10-3m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300V ,忽略边缘效应.求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19C) 解:与阴极同轴作半径为r (R 1<r <R 2)的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有2πrE =λ/ε0 得到E =λ/(2πε0r )(R 1<r <R 2)方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B A B A rrr E U U ελ120ln 2R R ελπ-=得到()120/ln 2R R U U A B -=πελ,所以()rR R U U E A B 1/ln 12⋅-= xSP SEESSE d x b E 'σO ROxPA BR 2 R 1在阴极表面处电子受电场力的大小为()()11211/c R R R U U eR eE F A B ⋅-===4.37×10-14N方向沿半径指向阳极. 四研讨题1.真空中点电荷q 的静电场场强大小为2041r q E πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释? 参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2.用静电场的环路定理证明电场线如图分布的电场不可能是静电场. 参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰c b a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3.如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么? 参考解答:由电势的定义:⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
大连理工大物2作业答案_40-44
a (2)在− a 5 < x < 5 范围内,粒子出现的概率 2
1 3π cos( ) a 4
2
=
1 2a
p(−
a a <x< )= 5 5
a/5 −a/5
|ψ (x)| dx =
2
1 a
a/5
cos2
−a/5
3πx 1 dx = 2a a
a/5
1 + cos
0
3πx 1 a a 1 1 3 dx = + sin(3π/5) = + sin( a a 5 3π 5 3π
∞
1=
−∞
|ψ (x)| dx = |A|
2
2 0
∞
e−2ax dx =
1 |A|2 24、在宽度为a的一维无限深方势阱中运动的粒子定态波函数为ψ (x) =
2a 求:(1)基态粒子出现在 a 3 < x < 3 范围内的概率; (2)主量子数n = 2的粒子出现概率最大的位置。 解:可知定态波函数已归一化 2a (1)基态粒子出现在 a 3 < x < 3 范围内的概率
2、 粒 子 在 一 维 无 限 深 势 方 阱 中 运 动 , 图42-1 为 粒 子 处 于 某 一 能 态 的 波 函 数ψ (x)的 曲 线 ,(1)写出 粒 子 的 波 函 数;(2)用数学的方法求出粒子出现概率最大的位置。 解:(1)粒子的波函数: ψ (x) = 0,
大连工大静电场习题
静电场一.选择题(每题3分)1.一电场强度为E的均匀电场,E的方向与X轴正向平行如图所示,则通过图中一半径为R的半球面的电场强度通量为[ ]。
(A)πR2E (B) 1/2πR2E (C)2πR2E (D) 0X2.真空中有一均匀带电球体和一均匀带电球面,如果它们的半径和所带的电量都相等,则它们的静电能之间的关系是[ ]。
(A)球体的静电能等于球面的静电能。
(B)球体的静电能大于球面的静电能。
(C)球体的静电能小于球面的静电能。
(D)球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能。
3.已知一高斯面所包围的体积内的电量的代数和∑q=0,则可肯定[ ](A)高斯面上各点的场强均为零。
(B)穿过高斯面上每一面元的电通量均为零。
(C)穿过整个高斯面的电通量为零。
(D)以上说法都不对。
4.如图所示,各图中所有电荷均与原点等距,且电量相等。
设无穷远为零电势,则各图中电势和场强均为零的是[ ]。
+q +q +q +q+q -q –q -q –q -q +q +q-q -q +q +q (A)图1 (B)图2 (C)图3 (D)图45.一均匀带电球面,若球内电场强度处处为零,则球面上带电量为σds的面元在球面内产生的电场强度是[ ] 。
(A)处处为零(B)不一定为零(C)一定不为零(D)是常数6.在一个点电荷+Q的电场中,一个检验电荷+q,从A点分别移到B,C,D 点,B,C,D点在+Q为圆心的圆周上,如图所示,则电场力做功是[ ]。
(A ) 从A 到B 电场力做功最大。
(B ) 从A 到C 电场力做功最大。
(C ) 从A 到D 电场力做功最大。
B (D ) 电场力做功一样大。
7.空心导体球壳,外半径为R 2,内半径为R 1,中心有点电荷q ,球壳上总电荷q ,以无穷远处为电势零点,则导体壳的电势为[ ]。
(A )0114q R πε(B )0214q R πε (C )01124q R πε (D )02124qR πε8.平行板电容器极板上每单位面积受到的静电力F 与加在电容器两极板间的电压V 的关系是 [ ]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图所示,把点电荷q +从高斯面外P 移到R 处()OP OR =,
O 为S 上一点,则[ ]
.A 穿过S 的电通量e φ发生改变,O 处E
变
.B e φ不变,E 变。
.C e φ变,E 不变。
.D e φ不变,E
不变。
答案:【B 】
[解]闭合面外的电荷对穿过闭合面的电通量无贡献,或者说,
闭合面外的电荷产生的电场,穿过闭合面的电通量的代数和为零;移动点电荷,会使电荷重新分布,或者说改变电荷的分布,因此改变了O 点的场强。
2.半径为R 的均匀带电球面上,电荷面密度为σ,在球面上取小面元S ∆,则S ∆上的电荷受到的电场力为[ ]。
.A 0 .B 2
2S
σε∆ .C
2
S σε∆ .D
2
2
04S
R
σπε∆
答案:【B 】
解:应用高斯定理和叠加原理求解。
如图所示。
面元S ∆上的电荷受到的库仑力是其他电荷
在面元S ∆处产生的总电场强度1E
与面元S ∆上
的电荷量S Q ∆=∆σ的乘积:
111E S E Q F
∆=∆=σ。
面元S ∆处电场强度E
是面元S ∆电荷在此产生的电场强度2E 与其他电荷在面元S
∆处产生的总电场强度1E 的矢量和,21E E E
+=。
首先,由高斯定理求得全部球面分布电荷在面元S ∆处产生的总电场强度 R E ˆ0
εσ=
其次,面元S ∆上的电荷量S Q ∆=∆σ对于面元S ∆来说,相当于无限大带电平面,因此,面元S ∆上的电荷量S Q ∆=∆σ在面元S ∆处产生的电场强度为
R E ˆ20
2εσ=
由叠加原理,其他电荷在面元S ∆处产生的总电场强度为 R E E E ˆ2021εσ=-=
面元S ∆上的电荷量S Q ∆=∆σ受到的库仑力为
R
S R S E S E Q F ˆ2ˆ20
2
0111εσεσσσ∆=∆=∆=∆= 注:本题可以用叠加原理直接进行计算,太麻烦。
3.如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于[ ]。
.A
06q ε .B 0
12q ε .C
24q
ε .D
48q ε
答案:【C 】
[解] :如果以A 为中心,再补充上7个相同大小的立方体,则组成一个边长为小立方体边长2倍大立方体,点电荷q 位于大立方体的中心。
由高斯定理,穿过大立方体表面的电通量为0/εq ,大立方体的6个正方形表面相对于点电荷q 是对称的,所以,穿过大立方体一个侧面的电通量是总电通量的6
1,即穿过大立
方体一个侧面(可以考虑abcd 所在的侧面)的电通量为
6εq 。
大立方体一个侧面,是由4个小立方体一个侧面组成的,而这4个小立方体侧面对于点电荷q 也是对称的,所以,穿过小立方体一个侧面的电通量是穿过大立方体一个侧面的电通量的4
1,即穿过小立方体一个侧面的电通量为
24εq 。
4.一半径为R 长为L 的均匀带电圆柱面,其单位长度带电量为λ,在带电圆柱的中垂面上有一点P ,它到轴线距离为()r r R >,则P 点的电场强度的大小= ,当r L <<时,
E = ,当r L >>时,E = 。
解:当L r <<时,在柱体中垂面附近,带电柱体可以被看作无限长。
以带电柱体的轴为对称轴,过P 点作一个高为l (L l <<)的柱面为高斯面,
如图所示。
则由对称性,柱面高斯面的上下底面处电场强度处处与高斯面的法线垂直,电通量为零;柱面高斯面的侧面上,电场强度近似处处相等,并与高斯面的法线方向平行。
则穿过高斯面的总电通量为
rlE
S d E S
d E S d E S d E S d E S S S S S
π22
3
2
1
=⋅=
⋅+
⋅+
⋅=
⋅⎰⎰
⎰⎰
⎰⎰
⎰⎰
⎰⎰
而高斯面包围的电荷量为
l Q λ= 由高斯定理,得到
02λπl rlE =,r
E 02πελ
=
如果L r >>,则带电柱面体可以被看作点电荷,则
2
04r
L
E πελ= 注:本题可以使用电场强度叠加原理求解。
即将柱面电荷分布微分成线电荷分布。
5.半径为R 的不均匀带电球体,电荷体密度分布为
Ar ρ=,式中r 为离球心的距离()r R ≤,A 为常数,则球体上的总电量Q = 。
[解] 取半径为r 、厚度为dr 的球壳。
认为球壳内电荷分布是均匀的
dr r A r dr r dQ 3
2
4)(4πρπ==
A
R dr r A dr
r r Q R
R 4
3
2
4 )(4ππρπ===
⎰⎰
6.如图所示,一质量6
1.610m kg -=⨯的小球,带电量11
210
q C -=⨯,悬于一丝线下端,
丝线与一块很大的带电平面成30︒
角。
若带电平面上电荷分布均匀,q 很小,不影响带电平面上的电荷分布,求带电平面上的电荷面密度。
解:受力分析:小球在重力g m G
=(垂直方向),绳中张力T (与带电平面成30度角)及
静电E q f
=(水平方向)的共同作用下而处于受力平衡状态。
其中E 为无限大均匀带电平面(电荷面密度为σ)产生的均匀电场,)2/(0εσ=E ,方向应水平向左
0cos =-mg T θ 0sin =-θT qE
∴ 11
6
12
010
233
8.9106.11085.822---⨯⨯
⨯⨯⨯⨯⨯=
=
q
mgtg θ
εσ 6100.8-⨯=(c/m 2)
7.大小两个同心球面,半径分别为()1221,R R R R >,小球上带有电荷()0q q >,大球上带有电荷()0Q Q >。
试分别求出1212,,r R r R R r R <><<时,离球心O 为r 处的电场强度。
解:由于电荷、电场分布具有球对称性,可利用高斯定理求场强。
取高斯面321,,S S S 如图所示。
01
1=⋅⎰
S d E S
(r <1R )
,0421=r E π
01=→
E (r 〈1R )
22
εq S d E S =
⋅⎰
224επq
r E = r
r
r q
E
2
024πε= (2R >r >1R )
2
34επQ
q r
E +=
r
r
r Q q E 2
034πε+= (r >3R ) 8.两个无限长同轴圆柱面,半径分别为1R 和2R ()21R R >,带有等值异号电荷,每单位长度的电量为λ(即电荷线密度)。
试分别求出1212,,r R r R R r R <><<时,离轴线为r 处的电场强度。
解:由于电荷、电场分布具有轴对称性,可利用高斯定理求场强,取长为L 的同轴柱面加上、下底面为高斯面。
当高斯柱面的半径r 满足: r <1R 时:01
1=⋅⎰
S d E S
,
021=⋅l r E π ,
01=E
2R >r >1R 时:0
22
ελ
=⋅⎰S d E S ,
022ελπ =
⋅rl E ,
r r
r E 022πελ
=
r >2R 时: 00
33
=-=⋅⎰
ελλS d E S
,03=E。