《医学假设检验》PPT课件

合集下载

医学统计学课件:假设检验

医学统计学课件:假设检验

统计推断基础
参数估计
用样本数据估计总体参数的方法。
显著性检验
理解显著性检验的基本原理和方法。
假设检验
根据样本数据对总体参数进行检验的方法。
置信区间
掌握置信区间的概念和计算方法。
03
参数假设检验
单参数假设检验
定义
单参数假设检验是当我们只有一个总 体参数需要检验时的假设检验。例如 ,我们可能需要确定一个药物是否对 一组患者的平均血压有降低作用。
应用场景:例如,检验某种新药的疗效是否显著优于安 慰剂。
案例二:两样本t检验
总结词:两样本t检验是一种常用的假设检验方 法,适用于比较两个独立样本的平均数是否存在 显著差异。
详细描述
1. 定义假设:通常包括零假设(H0,即两个样本的 平均数无差异)和对立假设(H1,即两个样本的平 均数存在差异)。
02
假设检验的数学基础
概率基础
概率定义
表示随机事件发生的可能性程度。
概率运算
掌握加法、乘法和条件概率等运算方法。
独立性和互斥性
理解事件之间的独立性和互斥性。
分布基础
分布定义
描述随机变量取值的概率规律。
连续型和离散型分布
理解连续型和离散型分布的概念和特点。
常用分布
掌握常用的分布及其性质,如正态分布、二项分布等。
假设检验步骤
根据符号分布,计算临界值和p值,判断假设是 否成立。
05
假设检验的注意事项与误用
假设检验的注意事项
明确研究目的和背 景
在假设检验前,需要明确研究目 的和背景,以便确定合适的假设 和检验方法。
合理选择样本量和 样本类型
样本量和样本类型的选择对假设 检验的结果具有重要影响。在确 定样本量时,需要考虑研究目的 、研究设计、误差概率等因素。

医学假设检验课件

医学假设检验课件
例:比较来自中国广东省与河北省的一年级 男大学生身高。以在武汉大学和华中科技大 学的两省男生为样本,得出样本均值分别为 168.2cm与169.9cm,推测总体均值是否相 等
3
例 根据大量调查,已知健康成年男子脉搏 的均数为72次/分,某医生在一山区随机调查 了30名健康成年男子,求得其脉搏数为74.2 次/分,标准差为6.0次/分,能否据此认为该山 区成年男子的脉搏数与一般成年男子的脉搏 数相同?
假设两种处理的效应相同,即µ1= µ2 ,理论上
差值的总体均数应为0,即可看成是差值的样本均
数所代表的未知总体均数µd 与已知总体均数µ0=0 的比较,可套用前述t检验的公式。
td0 d0
Sd
Sd n
d:差值的均数 Sd:;差值的标准差; Sd :差值均数的标准n:误 对; 子数
29
例 应用某药治疗8例高胆固醇患者,观察治疗前 后血浆胆固醇变化情况,如下表,问该药是否对 患者治疗前后血浆胆固醇变化有影响?
2、配对设计的差值均数与总体均数0比 较的t检验
常见的配对设计主要有以下情形: ①自身比较:同一受试对象处理前后或不同部位测
定值的比较。 ②同一受试对象(或样品)分别接受两种不同的处理。 ③成对设计:将条件近似的观察对象两两配成对子,
对子中的两个个体分别给予不同的处理。
28
配对t检验的基本原理:
现|x -μ0|≥k,从而导致错误的推断结论
故 为把犯这种错误的概率控制在一定的范 围内(可接受的范围),指定一个常数 α(0<α<1),使得在H0成立的条件下,
p{| x -μ0|≥k}≤α,一般取α=0.05或0.01
7
本假均设数H0成应立服,从如从正已态知分总布体(μ如0总中体抽标样准,则差得为到未的知样时

医学统计学假设检验

医学统计学假设检验

❖ 例如,根据大量调查,已知正常成年男性 平均脉搏数为72次/分,现随机抽查了20名 肝阳上亢成年男性病人,其平均脉搏为84 次/分,标准差为6.4次/分。问肝阳上亢男 病人的平均脉搏数是否较正常人快?
❖ 以上两个均数不等有两种可能:
第一,由于抽样误差所致;
第二,由于肝阳上亢的影响。
例如
已知正常成年男子脉搏平均为72 次/分,现随机检查20名慢性胃炎所致 脾虚男病人,其脉搏均数为75次/分, 标准差为6.4次/分,问此类脾虚男病人 的脉搏快于健康成年男子的脉搏?
2、假设检验的目的
判断是由于何种原因造成的不同,以做出决策。
3、假设检验的原理
反证法:当一件事情的发生只有两种可能A和B,为了肯
定其中的一种情况A,但又不能直接证实A,这时否定另一 种可能B,则间接的肯定了A。
概率论(小概率) :如果一件事情发生的概率很小,那
么在进行一次试验时,我们说这个事件是“不会发生的”。 从一般的常识可知,这句话在大多数情况下是正确的,但是 它一定有犯错误的时候,因为概率再小也是有可能发生的。
α是在统计推断时,预先设定的一个小概率值,是当H0 为真时,允许错误地拒绝H0的概率。
双侧与单侧检验界值比较
(2) 选定适当的检验方法,计算检验
统计量值 t 检验 Z 检验
❖ 设计类型 ❖ 资料的类型和分布 ❖ 统计推断的目的 ❖ n的大小 ❖ 如完全随机设计实验中,已知样本均数
与总体均数比较,n又不大,可用t检验, 计算统计量t值。
(1)建立假设,选定检验水准:
假设两种:一种是检验假设,假设差异完全由抽样误差造 成,常称无效假设,用H0表示。另一种是和H0相对立的备 择假设,用H1表示。假设检验是针对H0进行的。

假设检验PPT课件

假设检验PPT课件
假设检验
【学习目标】通过对本章的学习,掌握假设检验的概念和 类型、假设检验的两类错误和假设检验的一般步骤;重点掌握 单个总体均值的检验和比率的检验。
第一节 假设检验的基本问题 第二节 △ 假设检验的应用
假设检验
第一节 假设检验的基本问题
一、假设检验的概念 二、假设检验的两类错误 三、假设检验的类型 四、假设检验的类型一般步骤
假设检验
第一节 假设检验的基本问题
什么小概率?
1.在一次试验中,一个几乎不可能发生的事件发生的概率; 2.在一次试验中小概率事件一旦发生,我们就有理由拒绝原假 设; 3.小概率由研究者事先确定。
假设检验
第一节 假设检验的基本问题
二、假设检验的两类错误(决策风险)
(一) 第一类错误 第一类错误,亦称拒真(弃真)错误。是指当原假设为 真时,但由于样本的随机性使样本统计量的具体值落入 了拒绝区域,这时所作的判断是拒绝原假设。 犯第一类错误的概率亦称拒真概率,它实质上就是前面
t
986 1000 24
2.333>
t n 1 2.1315
16
2
所以接受 H1,即这天包装机工作不正常。
假设检验
第二节 假设检验的应用
二、单个总体比率(成数)的假设检验
比率P是平均数的一种特殊形式,因而前面讲的平均 数检验理论都适用于总体比率P的假设检验,只是估计量 的形式略有不同。
【例4】我国出口的参茸药酒畅销于某国市场。据以往调查, 购买此种酒的顾客中40岁以上的男子占50%。经营该药酒 的进出口公司经理关心这个比率是否发生了变化,于是, 委托一个咨询机构进行调查,这个咨询机构从众多购买该 药酒的顾客中随机抽取了400名进行调查,结果有210名为 40岁以上的男子。试问在0.05的显著水平上,能否认为购 买此种药酒的顾客中40岁以上男子所占比率变化了?

医学统计学-假设检验

医学统计学-假设检验
差别有统计学意义,可以认为病毒性肝炎患者的转 铁蛋白含量较低。
3.4 两组资料比较的u检验
➢当随机抽样的样本例数足够大时,t检验统计 量的自由度逐渐增大,t分布逐渐逼近于标准 正态分布,可以利用近似正态分布的原理进 行u检验。
u XA XB sX A X B
XA XB sA2 nA sB2 nB
1 假设检验的基本思想
➢提出一个假设 ➢如果假设成立,得到现有样本的可能性
➢可能性很小(小概率事件),在一次试验中本不 该得到,居然得到了,说明我们的假设有问题, 拒绝之。
➢有可能得到手头的结果,故根据现有的样本无法 拒绝事先的假设(没理由)
例1
样本:随机抽查25名男炊事员的血清总胆固 醇 , 求 得 其 均 数 为 5.1mmol/L , 标 准 差为0.88mmol/L。
假设检验的基本思想:女士和奶
➢ 女士说她可以辨认出加奶和水的顺序 ➢ 事先假设:她在耍我们,每次她都在瞎猜 ➢ 现在给她对十杯牛奶做出判断 ➢ 如果她是瞎猜的,却全部正确,几率为0.510≈0.001 ➢ 0.001是小概率,认为不会发生(即10次全猜对是
不可能的) ➢ 现在试验的结果是十杯全部说对了 ➢ 故断定假设不成立

F
s12 (大) s22 (小)
~ F( ,1 , 2 )
方差齐性检验
男性组
12=?
➢除抽样误差外,该单位食堂炊事员与健康男性存 在本质上的差异:偷东西吃?。(必然的、大于 随机误差)
➢两种情况只有一个是正确的,且二者必居其 一,需要我们作出推断。
假设检验的一般步骤
➢步骤1:建立假设 ➢在假设的前提下有规律可寻
➢零假设(null hypothesis),记为H0,表示目前的 差异是由于抽样误差引起的。

医学统计学——假设检验

医学统计学——假设检验

样本均数 x = 65次/分;
x 代表经常参加体育锻炼的男生总体,其总体
均数是未知的,用 表示 。
2020/9/23
8
当所比较的两个或几个样本指标(均数或率)、或样本指 标(均数或率)与已知总体指标(均数或率)有差异时,应考虑到
造成这种差别的原因只有以下两种可能:
⑴这两个或几个样本均数(或率)是来自同一总体的, 其差别仅仅由于抽样误差(即偶然性所造成);
H0
0
0
H1
≠ 0 > 0 (或< 0 )
❖ 样本均数与样本均数的比较
双侧检验 单侧检验
H0
1 2
1 2
H1
1 ≠ 2
1 > 2(或<2 )
2020/9/23
13
2、计算统计量 ➢ 由样本变量值按相应的公式计算统计量, 如 u 值、 t值、χ2 值等。
本例是计量资料、样本与总体比较、 n为大 样本,选均数的U检验,则计算 U统计量。
假设检验的目的:就在于排除抽样误差的影 响,区分差别在统计上是否成立。
2020/9/23
4
三、假设检验的原理/思想
❖ 根据小概率事件在一次实验中不可能出现。
即:某事件发生的可能性:P ≤ 0.05及以下,则该事件
在实验100次才出现5次,那么在一次实验时是不可能出现的。
如假设(H0)所导致差异的概率(P)很小、 即 P ≤ 0.05,据以上的原理则认为不可能由假设 (H0)导致所比较资料之间的差异。
2020/9/23
1
第一节 假设检验的概念与原理
假设检验是抽样研究的主要目的之二。
一、概念:
亦称差异的显著性检验。 首先对总体的特征(参数、分布)作出某种
假设(H0),然后根据样本资料对所作的假设(H0) 进行检验,通过抽样研究的统计推理,对此假设应 该被拒绝还是接受作出结论。

医学统计学PPT(南医大)04-4-假设检验课件

医学统计学PPT(南医大)04-4-假设检验课件

假设检验的思想 女士品茶的故事
陈峰 教授
第二届全国高校微课教学比赛 一等奖
/play.asp?vodid=179409&e=3
11
假设检验的思想 女士品茶的故事
★★★ 女士品茶
假设检验
建立假设 H :0 检验假设(hypothesis to be tested),原假设/无效假设(null hypothesis) H :1 备择假设(alternative hypothesis),当H0被拒绝时采用,表示差异是由
本质上的差别引起的
H0:女士没有这个本事,是碰巧猜对的
12
假设检验的思想 女士品茶的故事
★★★ 女士品茶
假设检验
建立假设 计算概率
如果假设成立,得到现在结果的可能性有多大
0.58=0.0039
13
假设检验的思想 女士品茶的故事
★★★ 女士品茶
假设检验
建立假设 计算概率 推断结论
得到现有结果的可能性很小(小概率事件)
1
主要内容
假设检验的目的 血红蛋白的故事
假设检验的思想 女士品茶的故事
假设检验的步骤 炊事员的故事
2
主要内容
假设检验的目的 血红蛋白的故事
假设检验的思想 女士品茶的故事
假设检验的步骤 炊事员的故事
3
假设检验的目的 血红蛋白的故事
总体Α是100例正常成年男子的血红蛋白实测值,从中随机抽取样本a1 和样本a2; 总体B是另外100例正常成年男子的血红蛋白实测值,从中随机抽取样本b; 三个样本的含量均为10例。
★★★ 标准t离差:在标准误的尺度下,样本均数与总体均数的偏离
t X 0
sn

假设检验基础 ppt

假设检验基础 ppt

1、推断目的:差值d的总体均数是否为0。
使用条件:要求差值d服从正态分布。
t d 0 Sd / n
n-1
例6-2 某儿科采用静脉注射丙种球蛋白治疗 小儿急性毛细支气管炎。用药前后患儿血清 中免疫球蛋白IgG(mg/dl)含量如表6-1所示。 试问用药前后IgG有无变化?
见p88表6-1
H0 : d 0, H1 : d 0 0.05
若两95%的CI无重叠,则P≤0.05,认为有 意义。
如例6-4
①95%的CI:
x t0.05,19sx 17.15 2.0931.59/ 20 16.41 ~ 17.89
② 95%的CI:
x t0.05,33sx 16.92 2.0351.42/ 34 16.42 ~ 17.42
20 11.592 34 11.422
20 34 2
2.20
t X1 X2 17.15-16.92 0.550
Sc2
1 n1
1 n2
2.20( 1 1 ) 20 34
n1 n2 2 20 34 2 52
查附表2(t界值表),t0.5,50==0.679,知P>0.50, 在α=0.05水准上尚不能拒绝H0。即不能认为 该市13-16岁居民腭弓深度有性别差异。 表1 长春市13-16岁男女居民恒牙期腭弓深度mm)
36
二、假设检验的功效
1- b为假设检验的功效,又称检验效能 (power of a test)/把握度: 其意义是:当两总体确有差别,按规定的检
验水准 能发现该差别的能力(概率)。
例如1- β=0.90,即说明H0不成立,则理论上 每100次检验中,在α的水准上,平均有90 次能拒绝H0(能认为有统计学意义)。

第五章 假设检验ppt课件

第五章  假设检验ppt课件

第三节
t检验(t test)
t检验,亦称student t检验(Student’s t
test),主要用于样本含量较小(例如n<30), 总体标准差σ未知的正态分布资料。 一、样本均数与总体均数的比较 二、配对资料的比较 三、两样本均数的比较 四、大样本均数比较的u检验 五、正态性检验与两方差齐性检验
H0成立 H0不成立
(1-b)即把握度(power of a test):两总 体确有差别,被检出有差别的能力 (1-a)即可信度(confidence level):重复 抽样时,样本区间包含总体参数(m)的百分数 2018年11月7日
通常情况下Ⅱ型错误未知
对于一般的假设检验, a 定为 0.05 (或 0.01 ), b 的大小 取决于H1。通常情况下,比较总体间有 无差异并不知道,即H1不明确, b值的 大小无法确定,也就是说,对于一般的 假设检验,我们并不知道犯Ⅱ型错误的 概率b有多大。
2018年11月7日
第二节 假设检验的基本步骤
总体间差异: 1. 个体差异,抽样误差所致; 2. 总体间固有差异 判断差别属于哪一种情况的统计学检验, 就是假设检验(test of hypothesis)。 t检验是最常用的一种假设检验之一。
小概率思想: P<0.05(或P<0.01)是小概率事件。在 一次试验中基本上不会发生。 P≤α(0.05) 样本差 别有统计学意义;P >α(0.05) 样本差别无统计学意 义
2018年11月7日根据专 Nhomakorabea知识确定单、双侧检验
È û ç ¹ Ó Ð À í Ó É È Ï Î ª Ä Ñ ² ú ¶ ù ³ ö É ú Ì å Ö Ø µ Ä × Ü Ì å ¾ ù Ê ý Ò » ¶ ¨ ´ ó Ó Ú Ò » ° ã ¤¶ Ó ù Ô ò ¿ É Ã Ó µ ¥ ² à ¼ ì Ñ é £ ¨one-sided £ ©£ ¬ ¼ ´ £ º H0 £ º m 3.30 £ ¨Ä Ñ ² ú ¶ ù ³ ö É ú Ì å Ö Ø µ Ä × Ü Ì å ¾ ù Ê ý Ó ë Ò » ° ã Ó ¤¶ ù Ï à µ È £ © H1 £ º m 3.30 £ ¨Ä Ñ ² ú ¶ ù ³ ö É ú Ì å Ö Ø µ Ä × Ü Ì å ¾ ù Ê ý ´ ó Ó Ú Ò » ° ã Ó ¤¶ ù £ © ¥ ² µ à ¼ ì Ñ é £ ¬ ì Ñ ¼ é Ë ® × ¼ :¦ Á =0.05 é ¸ ² ½ ± í 2µ ¥ ² à t½ ç Ö µ t 0.05,34 1.691£ ¬ t 1.77 t 0.05,34 £ ¬ P < 0.05 £ ¬ ´ ¦ ° Á =0.05 Ë ® × ¼ £ ¬ ¾ Ü ¾ ø H0 £ ¬ ½ Ó Ê Ü H1 £ ¬ Á ½ Õ ß µ Ä ² î ± ð Ó Ð Í ³ ¼ Æ Ñ § Ò â Ò å £ ¬ Ñ ² Ä ú ¶ ù Æ ½ ¾ ù ³ ö É ú Ì å Ö Ø ´ ó Ó Ú Ò » ° ã Ó ¤¶ ù ¡ £ Ô É Ò Ï Ë « ² à ¼ ì Ñ é º Í µ ¥ ² à ¼ ì Ñ é µ Ä ½ á Â Û ½ Ø È » ² » Í ¬ ¡ £ Ë ù Ò Ô Ñ ¡ Ô ñ µ ¥ ² à ¼ ì Ñ é » ¶ Ò ¨Ò ª Ó Ð ¹ ý Ó ² µ Ä × ¨Ò µ Ò À ¾ Ý £ ¬ ¶ ø Ç Ò Ô Ú · ¢ ± í Â Û Î Ä Ê ±Ò ª Ì Ø ± ð × ¢ à ÷¡ £ Ò » ° ã Ç é ö ¶ ¿ ¼ Ò » Â É ² É Ó Ã Ë « ² à ¼ ì Ñ é £ ¨two-sided £ ©¡ £

医学课件第七讲假设检验

医学课件第七讲假设检验
一、 基本概念
在自然科学和社会科学等中,常常要对某 些重要问题做出回答:是或否。如月球比地球 早形成吗? 一种新药对某种病有效吗? 某种 股票会涨吗? 新推出的电视节目收视率高吗?
等等。为了回答这些问题,我们需要对感兴趣 的问题进行试验或观察获得相关数据,根据这
些数据决定是或否的过程称为假设检验。
(Hypothesis Testing)
检验的显著性水平
当样本容量 n 固定时,要减少犯第一类错 误的概率,就会增大犯第二类错误的概率;反 之,若要减少犯第二类错误的概率,就会增大 犯第一类错误的概率。即就是说当样本容量固
定时,不可能同时减少犯两类错误的概率,这
是一对不可调和的矛盾。
Neyman-Pearson检验原理就是控制犯第一 类错误的概率在给定的范围内,寻找检验使得 犯第二类错误的概率尽可能的小,即就是使检 验的功效尽可能的大。这样就是在给定一个较
H0 : 0 , H1 : 1 (1 0 )
似然比为
(x)
p( x1 ,, xn , 1 ) p( x1 ,, x, 0 )
1
2
n exp
1
2 2
n
( xi
i 1
1
)2
1
2
n exp
1
2 2
n
( xi
i 1
0
)2
exp
1
2 2
n
[(xi
i 1
1 )2 ( xi
H0为简单假设(Simple Hypothesis), 否则称为复 合假设(Composite Hypothesis), 对备择假设也有 简单假设和复合假设。
拒绝域、接受域、检验统计量
检验一个假设,就是根据某一法则在原 假设和备择假设之间做出选择,而基于样本x

假设检验 PPT课件

假设检验 PPT课件

一、假设检验的概念 (Hypothesis test)
概念:假设检验是先对总体做出某种假定 (检验假设),然后根据样本信息来推 断其是否成立的一类统计方法的总称。 即我们要通过假设检验来判断样本与总 体、样本与样本之间的差异是由抽样误 差引起的,还是有本质的区别。
二、假设检验的基本思想
小概率思想
假设检验
Hypothesis Test


假设检验的概念与原理 假设检验的基本步骤 t检验 u检验或称Z检验 应用假设检验的注意事项
根据大量调查,一般健康成年男子的平均血红蛋 白含量为140.00g/L,现某医生在山区随机测定 了25名健康成年男子,其血红蛋白均数为 153.64g/L,标准差为24.82g/L,故认为该山区 成年男子的血红蛋白均数高于一般健康成年男子 血红蛋白均数。
0.005 0.01 63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 2.831 2.819 2.807 2.797 2.787
0.0025 0.001 0.005 0.002 127.321 318.309 14.089 22.327 7.453 10.215 5.598 7.173 4.773 5.893 4.317 4.029 3.833 3.690 3.581 3.135 3.119 3.104 3.091 3.078 5.208 4.785 4.501 4.297 4.144 3.527 3.505 3.485 3.467 3.450
H0时的最大允许误差。医学研究中一般 取=0.05 。 检验水准实际上确定了小概率事件的判 断标准。
单双侧的选择
已知条件 A和B 不知谁好谁坏 A不会比B差 A不会比B好 H0 A=B A=B A=B H1 A≠B A>B A<B

《医学假设检验》PPT课件

《医学假设检验》PPT课件

算得的统计量u值与P值 和统计推断结论
α=0.05 双侧检验 单侧检验 u值 p值 统计推断结论 <1.96 >0.05 不拒绝H0 , <1.645 差异无统计 学意义 ≥1.96 ≤0.05 拒绝H0 ,接受 ≥1.645 H1 ,差异有统 计学意义 ≥2.58 ≤0.01 拒绝H0 ,接受 ≥2.33 H1 ,差异有高 度统计学意义
9
10
12.0
12.3
12.7
13.3
例7-18 手术前后舒张压变化情况
(1)建立假设、确定检验水准α H0: d 0 即假设手术前后舒张压无变化,样本是从差值均数为 0 的总体中抽得。 H1: d 0 即假设手术前后舒张压有变化 α =0.05 (2)计算检验统计量 t 值
n=10,
(二)均数的t检验
1、样本均数与总体均数的比较 (t检验或u检验) 2、配对资料的比较(t检验) 3、两个样本均数的比较 (t检验或u检验)
1、样本均数与总体均数的比较
样本均数与已知总体均数 ( 理 论值、标准值或经过大量观察所得 的稳定值 ) 的比较,其目的是推断 样本所代表的未知总体均数 与已 知总体均数 0 有无差别。
两个样本均数比较的计算公式
(1). t检验 适用条件:两个小样本比较,且两样本方差齐同。 计算公式:x1 x 2 1 1 2
t
Sx
,
1

x2
1
Sx
1

x2
2 2

S
c
(
n n
1
Байду номын сангаас

)
2
(2). u检验 适用条件:两个大样本(n1和n2均>50)比较。 2 2 计算公式: x 1 x2 u , S S 2 S 2 S1 S 2 x x x1 x2 S x x n1 n2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
10
12.0
12.3
12.7
13.3
例7-18 手术前后舒张压变化情况
(1)建立假设、确定检验水准α H0: d 0 即假设手术前后舒张压无变化,样本是从差值均数为 0 的总体中抽得。 H1: d 0 即假设手术前后舒张压有变化 α =0.05 (2)计算检验统计量 t 值
2、配对设计资料的比较
配对设计的类型
1、异源配对:两个受试对象配成对子,接受不 同处理,目的是推断两种处理效果有无差别; 2、同源配对(自身配对) ⑴、同一受试对象处理前后的比较,目的是推 断这种处理有无作用; ⑵、同一受试对象两个部位,接受相同处理, 目的是推断该项处理在两个部位有无差别; ⑶、采自同一受试对象的一个样品分为两份, 接受不同处理,目的是推断两种处理效果有无 差别。
双侧检验,检验水准:α =0.05 2.计算检验统计量 t 值
t
X S n

74.2 72 6.5 / 25
1.692 , n 1 25 1 24
3.查相应界值表,确定 P 值, 查 t 界值表, t 0.05 , 24 2.064, (t 0.1, 24 1.711) , t<t0.05,24 , P >0.05, 4.推断结论 在α =0.05 的检验水准上,不拒绝 H0 ,差异无统计学意义,即本资料还不能 认为此山区健康成年男子脉搏数与一般健康成年男子不同。
例题
例7-17
一般认为:健康成年男子 的脉搏为72次/分钟。现调查某山 区25名健康成年男子的脉搏,得 均数74.2次/分钟,标准差为6.5 次/分钟,是否说明某山区健康成 年男子的脉搏高于一般人?
样本均数与总体均数的比较(计算公式)
(1). t检验 适用条件:σ未知,且n较小 计算公式:
(2). u检验 x 适用条件:σ已知或σ未知,但n足够大 (n>100) 计算公式: x x
算得的统计量u值与P值 和统计推断结论
α=0.05 双侧检验 单侧检验 u值 p值 统计推断结论 <1.96 >0.05 不拒绝H0 , <1.645 差异无统计 学意义 ≥1.96 ≤0.05 拒绝H0 ,接受 ≥1.645 H1 ,差异有统 计学意义 ≥2.58 ≤0.01 拒绝H0 ,接受 ≥2.33 H1 ,差异有高 度统计学意义
配对资料的比较(t检验)
t
d

d d
d
S
d
S S
n
, n 1
例7-18 手术前后舒张压变化情况
表7-7 手术前后舒张压变化情况
患者编号 1 2 3 4 5 6 7 8 舒张压((kPa) 手术前 16.0 12.0 14.6 13.3 12.0 12.0 14.6 14.6 手术后 12.0 13.3 10.6 12.0 12.0 10.6 10.6 14.6
(二)均数的t检验
1、样本均数与总体均数的比较 (t检验或u检验) 2、配对资料的比较(t检验) 3、两个样本均数的比较 (t检验或u检验)
1、样本均数与总体均数的比较
样本均数与已知总体均数 ( 理 论值、标准值或经过大量观察所得 的稳定值 ) 的比较,其目的是推断 样本所代表的未知总体均数 与已 知总体均数 0 有无差别。
双侧检验 单侧检验 双侧检验 单侧检验
α=0.05 t值 p值 统计推断结论 双侧检验 <t0.05,ν >0.05 不拒绝H0 , 单侧检验 <t0.05,ν (单) 差异无统计学 意义 双侧检验 ≥t0.05,ν ≤0.05 拒绝H0 ,接受 单侧检验 ≥t0.05,ν (单) H1 ,差异有统 计学意义 双侧检验 ≥t0.01,ν ≤0.01 拒绝H0 , 接受 单侧检验 ≥t0.01,ν (单) H1 ,差异有高 度统计学意 义
t
x
S
u
若 n 较大,则 t . t . ,可按算得 的t值用v=∞查t界值表(t即为u)得P值。

或者u

x
x
u
S


0 =72(大规模调查获得)
例 7-17 n=25, X =74.2, S =6.5, 解:1.建立假设、确定检验水准α
H0 : 0 (无效假设,null hypothesis) H1 : 0 (备择假设,alternative hypothesis, )
均数的假设检验
例题
一般认为:健康成年男 子的脉搏为72次/分钟。现调查 某山区25名健康成年男子的脉 搏,得均数74.2次/分钟,是否 说明某山区健康成年男子的脉 搏高于一般人?
thesis test of mean)
判断样本均数与总体均数之间 或样本均数与样本均数之间的差别 在统计上有无显著性意义,即这种 差别是来自于抽样误差还是本质上 存在的方法称为均数的假设检验。 常用的检验方法有:t检验、u检验 和F检验等。
算得的统计量t值与P值 和统计推断结论
推断结论包括统计结论与专业结论
统计学意义(统计结论),可认为……不同或 不等(专业结论)。
学意义,尚不能认为……不同或不等。
P≤α,按α水准,拒绝H0,接受H1,有
P >α,按α水准,不拒绝H0,无统计
统计结论只说明有统计学意义或无统计 学意义,而不能说明专业上的差异大小。应 注意统计学意义与专业意义的区别。
妈妈:小明,去买些火柴来,要好 用的! 小明:好的! 小明到了小卖部,买了火柴, 并一一试验,然后回家了。 妈妈:小明你买的火柴怎么样啊! 小明:挺好用的,我一根一根都试 过了,都能着!
(一)假设检验的意义假设检验的 基本步骤
产生差异的原因: 1. 抽样误差 2. 来自不同的总体
假设检验的基本步骤
1、建立假设,确定单侧检验或是双侧检验 H0:无效假设(零假设),差别由抽样误差引起。
H1:备择假设,差别是本质上存在的。
2、确定检验水准(显著性水准)α,指进行假设检 验发生假阳性的概率,多取α=0.05。
3、根据资料性质及类型,计算样本检验统计量,如 计算t、u、x2等统计量。
4、根据样本检验统计量,确定概率P。 5、做出推断结论:以检验水准α判断H0是否成立, 结合专业知识做出结论。
相关文档
最新文档