水污染控制工程 第九章 活性污泥法8

合集下载

《水污染控制工程》课程设计

《水污染控制工程》课程设计

沈阳化工大学《水污染控制工程》课程设计题目:城镇污水处理厂工艺设计——活性污泥法院系:环境与安全工程学院专业:环境优创班级:0901学生姓名:王希鹏指导教师: 范文玉2012年8月23日目录第一章绪论 (3)第二章常见污水生物处理的工艺 (3)一、活性污泥法 (3)1。

1 SBR法 (3)1。

2 CASS法 (4)1。

3 AO法 (4)1.4 AAO法 (5)1.5 氧化沟法 (6)二、生物膜法 (6)2.1 生物滤池 (6)2.2 生物转盘 (7)2。

3 生物接触氧化法 (7)三、厌氧生物处理法 (8)四、自然条件下的生物处理法 (9)4。

1 稳定塘 (9)4。

2 土地处理法 (9)第三章污水处理流程 (9)一、格栅 (10)二、泵房 (10)三、沉砂池 (10)四、沉淀池 (12)五、曝气池 (13)六、二沉池 (14)七、污泥浓缩池 (14)第四章构筑物的计算 (14)一、设计参数 (14)二、设计计算 (15)第五章设计总结 (17)参考文献 (18)第一章绪论随着工农业生产的迅速发展和人民生活水平的不断提高,用水紧张和污水排放的问题已越来越突出.目前,我国城镇大部分的生活污水采用直接排放的方式,没有采取应有的治理措施,加重了对环境的污染。

在国家可持续发展的新政策下,环境保护已受到各级政府和全国人民的重视,对污水进行彻底的治理以保护人类赖以生存的环境的重要性越来越大,高效节能的城市污水处理技术与工艺已能为国民经济的发展起到较大的推动作用.建立城镇污水处理厂对改善城镇水环境,保障城镇经济发展起着举足轻重的作用。

随着经济的发展,城市化进程的不断加速,人口和经济增长、粗放型发展模式、无组织大面积排施污染物、污水处理率偏低,以及牺牲环境和资源去追求眼前利益等,均是造成水污染日趋严重的原因。

大量未经充分处理的污水被用于灌溉,已经使农田受到重金属和合成有机物的污染。

据农业部在占国土面积85%的流域内,通过372个代表性区域取样调查,发现全国粮食总量的1/10不符合卫生标准。

水污染控制工程第九章活性污泥法

水污染控制工程第九章活性污泥法

目前工程中常用的计算方法为有机物负荷率法,也可按照 劳伦斯(Lawronce)和麦卡蒂(McCarty)法以及麦金尼(McKinney) 法等理论方法计算。
本章主要介绍有机物负荷种表示方法: ① 活性污泥负荷率(简称污泥负荷) ② 曝气区容积负荷率(简称容积负荷)。 (1)基本公式
为计算曝气池有效容积V,必须先确定污泥浓度X和污泥负荷率Ns。
可编辑版
8
(2)污泥负荷率Ns的确定
污泥负荷率具有微生物对有机物代谢方面的含义,并有以下理论公式存
在:
NS
KSe f
(6)
其中:K—与微生物降解有关的系数;
Se— 曝气池出水有机物浓度
f— 活性污泥(MLSS)中挥发性有机物(MLVSS)的含量
— 曝气池BOD去除效率
对于城市污水,K值为0.0168~0.0281。
可编辑版
9
(3) 混合液污泥浓度的确定
a. 回流污泥浓度Xr经验公式
Xr
106 r SVI
(7)
式中:r—考虑污泥在二沉池中停留时间、池深、污泥厚
度等因素的有关系数,一般取1.2左右
可编辑版
10
b. 混合液污泥浓度X与回流比R的关系
第四节 活性污泥法设计计算
可编辑版
1
一、曝气池的设计计算内容 根据已知条件,确定以下内容: 1. 选定工艺流程 2. 曝气区容积的计算及曝气池的工艺设计 3. 计算需氧量、供气量及曝气系统的计算与设计 4. 计算回流污泥量、剩余污泥量与回流系统的设
计 5. 二沉池的设计
可编辑版
2
二、原始资料与数据
可编辑版
7
容积负荷率:是指单位容积曝气区在单位时间内所能承受的BOD5量,即:

水污染控制工程 活性污泥

水污染控制工程 活性污泥

2 渐减曝气和分段进水活性污泥法
在推流式曝气池中,混合液的需氧量在长度方向上是逐步 下降的,因此,等距离均量布置扩散器是不合理的,实际 情况是:前半段水中氧量远远不够,而后半部分则超出了 需要。基于以上分析,有人提出并采用了渐减曝气和分段 进水(SFAS)的工艺。
3 完全混合法
完全混合法(CMAS)出现于20世纪50年代后期,用来处理 高负荷工业废水,尤其是含有抑制性有机物的工业废水。进 水均匀分布于整个反应器中,使反应器内个点的可生物降解 有机物浓度比较低,即使进水中有机物有毒性,其毒性仍然 可以减低,生物降解也会得以进行。
推流 推流
鼓风或机械 鼓风
85-95 85-90
中等浓度,对冲击负荷敏 感
气量逐渐减小
完全混合(CMAS)
完全混合
鼓风或机械 85-90
抗冲击
分步曝气(SFAS)
推流
鼓风
85-95
使用性广
接触稳定(CSAS)
ቤተ መጻሕፍቲ ባይዱ
推流
鼓风或机械 80-90
高悬浮固体废水
延时曝气(EAAS) 完全混合或推流 鼓风或机械 75-95
缺优点点::
1. 1.
曝推气流池式池曝首气端池污应泥用负时荷间率比高较,长好,氧是速一度种快比,较所成以熟设的计运时行不方宜式采;用过高BOD 负荷率;
22.. 耗处氧理速效度果沿好池,长运逐行渐稳降定低;,但是供氧速度恒定,造成浪费;
33.. 抗BO负D荷5去率除冲率击较能高力,不可强达,9对0%水以质上、,水城量市变污化水是处应理性多较采差用。这种方式运行。
增值期
活性污泥微生物各增值期特点比较
F/M 微生物变化情况
活性污泥性能

水污染控制工程(下册)重点知识点汇总

水污染控制工程(下册)重点知识点汇总

水污染控制工程下册重点知识点第九章污水水质和污水出路1、污水类型:生活污水、工业废水、初期雨水、城镇污水2、物理指标:温度、色度、嗅和味(异臭:S和N化合物、挥发性有机物、氯气、总固体(溶解性固体DS、悬浮固体SS)固体残渣根据挥发性能可分为挥发性固体VS、固定性固体FS3、有机物指标:BOD、COD、TOC、TOD (燃烧化学氧化反应)4、无机物指标:PH (6-9)、植物营养元素、重金属、无机性非金属有害物(总砷、含硫化合物、氰化物)5、生物指标:细菌总数、大肠菌数、病毒6、自净作用:物理、化学、生物7、混合过程:竖向混合阶段、横向混合阶段、断面充分混合后阶段(POP下降)8、根据BOD5与DO曲线,可以把该河划分为清洁水区、污染恶化区、恢复区、清洁水区9、污水排放标准:浓度标准、总量控制标准、国家排放标准、行业排放标准、地方排放标准10、一级处理:主要去除 SS 、 COD 、 BOD11、二级处理:去除有机物(90%)12、三级处理:去除 N 、 P ,色度第十章污水的物理处理1、污水的物理处理法去除对象主要是污水中的漂浮物和悬浮物,采用的主要方法有:筛滤截留法、重力分离法、离心分离法2、格栅作用:截留污水中较粗大漂浮物和悬浮物3、格栅设计的主要参数:确定栅条间隙宽度4、按格栅形状,可分为平面格栅、曲面格栅5、曲面格栅:固定曲面格栅、旋转鼓式格栅6、清渣方式:人工清渣(过水面积不小于灌渠有效面积的2倍)机械清渣(1.2倍)7、工业废水根据水质确定是否有沉砂池8、水流适当流速:0.4-0.9 污水通过格栅:0.6-1 最大 1.2-1.49、在典型的污水处理厂中沉淀法可用于下列几个方面:污水处理系统的预处理、污水的初级处理、生物处理后的固液分离、污泥处理阶段的污泥浓缩10、沉淀类型:自由沉淀(水中悬浮固体浓度不高) 、絮凝沉淀(悬浮颗粒浓度不高(活性污泥二沉池中间)、区域沉淀(悬浮颗粒浓度高,二沉池下部、重力浓缩开始) 、压缩沉淀(高浓度悬浮颗粒,污泥浓缩、重力浓缩)11、斯托克斯公式u=(P 固-P gd2/18μ12、水温上升,黏度减小、沉速增大13、理想沉淀池:进口区、沉淀区、出口区、缓冲区、污泥区14、沉淀池工作原理:利用水中悬浮颗粒可沉降性能,在重力作用下产生下沉作用15、假定:沉淀池经过水断面上各点水流速度相同, 悬浮颗粒在沉淀区等速下沉, 在进口区域水流中悬浮颗粒均匀分布在水断面上,颗粒一沉底即可认为被去除16、溢流率q=Q/A (表面水力负荷反应沉淀池性能)17、沉砂池工作原理:以重心分离或离心力分离为基础, 即控制进入沉砂池的污水流速或旋流速度,是相对密度大的无机颗粒下沉,而有机悬浮颗粒则随水流带走18、沉砂池常用形式:平流式沉砂池、曝气沉砂池、旋流沉砂池19、城市废水一定要有沉砂池,工业废水根据废水水质情况确定是否需要沉砂池20、初沉池:一级污水处理系统主要处理构筑物、生物处理中预处理构筑物、去除 %40-50SS, %20-30BOD,降低后续生物处理构筑物有机负荷21、二沉池:生物处理构筑物后,用于分离活性污泥或去除生物膜法中脱落的生物膜22、沉淀池:平流式沉淀池(地下水位高水质差、大中小型污水处理厂)、竖流式沉淀池(小型污水处理厂)、辐流式沉淀池(地下水位高,大中型污水处理厂)23、沉淀池组成:进水区、出水区、沉淀区、缓冲区、污泥区24、沉淀池的运行方式:间歇式、连续式25、间歇式工作过程:进水、静置、排水26、平流式:优点(对冲击负荷和温度变化适应能力强、造价低)缺点(泥斗单独操作、易腐蚀)27、竖流式:优点(排泥方便、占地小)缺点(施工困难、对冲击负荷差、造价高、池径小)28、辐流式:优点(机械排泥、排泥设备有定型产品缺点(水流速不稳、异重流现象、设备复杂)29、沉淀池设计原则:设计流量、沉淀池数量、沉淀池经验设计参数、沉淀池构造尺寸、沉淀池出水部分、贮泥斗的容积、排泥部分30、设计流量:自流时取最大流量、水泵提升时按泵最大组合流量31、构造尺寸:超高不小于0.3、水深2-432、出水部分一般采用堰流,堰口保持水平、多槽出水提高水质33、贮泥斗容积:一般不大于2d ,机械排泥4h、活性污泥后二沉池2h、生物膜后4h34、排泥部分:一般采用静水压力排泥35、斜板沉砂池:效率高占地小、工业废水常用(异向流、同向流、侧向流)36、提高沉淀池沉淀效果:在沉淀区增设斜板、对污水进行曝气搅动、回流部分活性污泥37、隔油池:平流式隔油池、斜板式隔油池38、气浮法:固液和液液分离方法,对颗粒密度接近或小于水的细小颗粒的分离39、气浮法工艺条件:必须向水中提供足够量的细微气泡、必须使废水中的污染物质能形成悬浮状态、必须使气泡与悬浮的物质产生黏附作用40、气浮法类型:电解气浮法(工业废水)、分散空气气浮法(矿物浮选)、溶解空气气浮法(最常用)41、电解气浮法:正负两极通电产生气泡附着悬浮物(优点:效率高、部分可回收、应用广42、分散空气气浮法:微孔曝气气浮法(简单易行、易堵塞、气泡大气浮效果不高)、剪切气泡气浮法(除油)43、溶解空气气浮法:真空气浮法、加压溶气气浮法44、加压溶气气浮法:全加压溶气流程、部分加压溶气、部分回流加压溶气(部分澄清液回流加压、入流废水直接进入气浮池)45、提高气浮效果:混凝剂、浮选机、助凝剂、抑制剂、调节剂46、压力溶气气浮法:压力容器系统(加压水泵考虑溶气压力、水力损失、空气释放系统、气浮分离系统)42、压力溶气罐溶气方式:水泵吸水管吸气溶气式、水泵出水管射流溶气式、空压机供气式第十一章污水生物处理的基本概念和生化反应动力学基础1、污水生物处理过程中有机物的生物降解实际上就是微生物将有机物作为底物进行分解代谢获取能量的过程2、污水生物技术:好氧生物处理、缺氧生物处理、厌氧生物处理3、悬浮生长法(活性污泥法、附着生长法(生物膜法4、微生物代谢:分解代谢(同化、分解有机物 )、合成代谢(异化、增殖)5、营养源(底物、基底):大部分有机物、部分无机物6、分解代谢:发酵(厌氧消化、丙酸型发酵、丁酸型发酵呼吸(好氧呼吸、缺氧呼吸7、区别:电子载体不是将电子直接传递给底物降解的中间产物、而是交给电子传递系统、逐步释放出能量后再交给最终电子受体8、好氧生物处理:利用好氧微生物降解有机物、反应速度快、臭气少9、厌氧生物处理:兼性细菌与厌氧细菌降解有机物、剩余污泥小、反应速度慢、构筑物容积大(有机污泥、高浓度有机污水)10、生物除N:氨化、硝化、反硝化、同化11、生物除P:在厌氧好氧或厌氧缺氧交替运行系统中、厌氧释放P ,好氧吸收P、排除富P的活性污泥排除12、研究微生物生长:分批培养法13、生长过程:延迟期、对数增长期(营养要求高、有机物易超标)、稳定期、衰亡期(活性污泥常用控制时期)14、微生物生长环境影响因素:营养、温度、PH、溶解氧、有毒物质15、厌氧生物处理:低温性、高温性16、好氧生物处理:中温性17、PH :6.5-7.518、溶解氧:2-4mg/l第十二章活性污泥法1、活性污泥组成:有活性的微生物(Ma)、微生物自身氧化残留物(Me)、吸附在活性污泥上不能被微生物降解的有机物(Mi)、无机悬浮固体(Mii)2、污泥性状:茶褐色(曝气池中一般呈黑色(供氧不足或出现厌氧灰)、白色(供养过多,营养不足))3、活性污泥评价方法:生物相观察、MLSS和MLVSS(污泥浓度)、污泥沉降比、污泥体积指数4、混合液悬浮固体浓度(MLSS):单位体积混合液中活性污泥悬浮固体质量5、混合液挥发性悬浮固体浓度(MLVSS):混合液悬浮固体中有机物质量6、污泥沉降比:曝气混合液静止30min后沉淀污泥的体积分数、反映沉降性能7、污泥体积分数(SVI):单位质量干泥形成的湿污泥体积、判断沉降浓缩性能(>200差 20-150良好、过低污泥活性差)8、回流污泥目的:使曝气池内保持一定悬浮固体浓度,也就是保持一定微生物浓度9、污泥降解有机物过程(悬浮和胶体有机物越多吸附效果越好:吸附阶段(活性污泥比表面积大、表面上有糖类黏性物质稳定阶段(利用有机物)10、曝气池:推流式曝气池、完全混合曝气池、封闭环流反应池、序批式反应池(SBR)11、推流式曝气池:去除效率高稳定、抗冲击负荷能力弱、供养需氧矛盾12、完全混合曝气池:去除率低于推流式、抗冲击负荷能力强、节省动力、适宜处理高浓度工业废水、连续出水易形成污泥膨胀13、处理工业:传统推流式、渐减曝气法、高负荷曝气法、延时曝气法、吸附再生法(接触稳定法、吸附-生物降解工艺(AB法、序批式活性污泥法(SBR)、氧化钩(需二沉池、循环活性污泥工艺(CASS) 14、SBR:组成简单、耐冲击负荷、反应推动力大、运行操作灵活、沉降性能好、可计算机、自动控制15、生物除磷过程需设置好氧区厌氧区16、出水有机物浓度S=Ks(1+kd0/0(Yr-kd -117、污泥浓度X=YQ(So-Se0/V(1+Kd018、污泥浓度与进出水水质、污泥泥龄和动力学参数有关19、活性污泥三要素:引起吸附和氧化分解作用的微生物也就是活性污泥、污水中的有机物、溶解氧20、充氧和混合通过曝气设备实现21、气体传递原理:传质过程(扩散过程)、界面两侧物质浓度差为推动力22、提高氧转移速率:提高Kla值(紊流程度、总传质系数(微孔爆气)、增大气、液接触面积、提高Cs值(气相氧分压(纯氧曝气、深井曝气23、氧转移影响因素:污水水质、水温(降低利于氧转移)、氧分压24、曝气设备:鼓风曝气(过滤器、鼓风机、空气输配管系统、扩散器)、机械曝气(竖轴式、卧轴式)25、扩散器:微气泡扩散器(接触面积大氧利用率高、压力损失大多堵塞)、小气泡扩散器、中气泡扩散器、大气泡扩散器、剪切分散空气曝气器26、曝气设备性能指标:氧转移速率、充氧能力、氧利用率27、活性污泥过程设计:曝气池选型、剩余污泥量计算、需氧量计算28、有机物负荷法:活性污泥负荷、曝气池容积负荷29、曝气池实际上是一个反应器主要分为推流式、完全混合式、封闭环流式、序批式30、剩余污泥量计算:按污泥泥龄计算▷ X=VX/0、根据污泥产率系数或表观产率系数计算 (▷X=Y(So-SsQ-KaVX 、▷X=YobsQ(So-Se)31、需氧量设计计算:实际需氧量(O=aQSr-bVXv 、 O=Q(So-Se/0.68-1.42▷Xv32、生物脱氮工艺:三段生物脱氮工艺、前置缺氧好氧生物脱氮工艺、后置缺氧好氧生物脱氮工艺、Bardenpho生物脱氮工艺、同步硝化反硝化(SNdN)过程33、生物除磷工艺:A/O工艺、Phostrip除磷工艺(将生物除磷和化学除磷结合在一起)34、生物除NP工艺:AAO工艺(厌氧区释P)、缺氧区脱N、好氧区吸P去除BOD(沉降性能好)、改良Bardenpho工艺、UTC及改良UTC工艺、SBR工艺(同时脱NP)、耐受水利冲击负荷、操作灵活性好、静置沉淀可获得低SS出水35、生物除NP影响因素:环境因素、工艺因素、污水成分36、硝化只能在泥龄长的低负荷系统中进行37、污泥膨胀:混合液在1000ml量筒中沉淀30min,污泥体积膨胀、上清液减少。

水污染控制工程

水污染控制工程
水污染控制工程
Water Pollution Control Engineering
目录
第一章 绪论 第二章 物理法
第一章 绪论
第三章 废水生物处理概念和生化反应动力学基础第二章 污水的好氧活性污泥法 第四章 好氧生物处理——活性污泥法
第五章 好氧生物处理——生物膜法
第三章 污水的好氧生物膜法
第六章 污水的其他好氧生物处理 第七章 厌氧生物处理
第一章 绪论
1.1 水资源及其循环 1.2 水污染的来源及其危害 1.3 污水水质与水污染控制标准 1.4 水体自净与水环境容量 1.5 水污染控制的原则与方法
1.1 水资源及其循环
1.1.1 水资源
a) 全球水资源
地球上的总水量约为 13.6×108km3
海洋水占97.212%; 淡水占不足3%; 对人类生活和生产活动关系密切
1.3 污水水质与水污染控制标

1.3.2 水污染控制标准
标准编号
标准名称
备注
GB/T14848— 1993
地下水质量标准
CJ/T206—2005
城市供水水质标准
CJ 3020—93
生活饮用水水源水质标准
GB50282—1998
城市给水工程规划规范
GB/T50102— 2003
工业循环冷却水处理设计规范
如采矿和冶炼是重金属的最主要的污染源。
1.3 污水水质与水污染控制标准
➢生物性指标
细菌总数:反映了水体受细菌污染的程度。 大肠杆菌:大肠菌群作为最基本的粪便污染指示菌群。
细菌总数不能说明细菌的来源,必须结合大肠菌群数 来判断水体污染的来源和安全程度。 大肠菌群的值可表明水样被粪便污染的程度,间接反 应有肠道病菌 (伤寒、痢疾、霍乱等)存在的可能性。

水污染控制工程

水污染控制工程

第九章、绪论1、水污染控制工程的定义:应用工程学的方法对水质进行控制以达到消除污染和恢复水的原有状态。

污水的类型:生活污水、工业废水、初期污染雨水、城镇污水2、水的循环:自然循环、社会循环3、污水的化学指标:有机物指标:生化需氧量、化学需氧量、总有机碳、总需氧量无机物指标:重金属:汞、镉、铅、铬、镍、砷、铜、锌、钴、锡4、水体富营养化:水体中过多的氮、磷,使得藻类植物、浮游生物大量繁殖,造成水中溶解氧的急剧变化。

5、水体净化:物理净化、化学净化、生物净化6、氧垂曲线:在污染河流中溶解氧曲线呈下垂状7、污水出路:返回到自然水体、再生利用8、水环境质量标准:地表水环境质量标准、海水水质标准、地下水质量标准9、污水排放标准:国家排放标准、行业排放标准、地方排放标准第十章、污水的物理处理1、格栅的作用:用来截留污水中较粗大的漂浮物和悬浮物,防止堵塞和缠绕水泵机组及管道阀门,减少后续处理产生的浮渣,并保证污水处理设施的正常运行。

2、污水处理的概念:利用物理、化学、生物及物理化学的方法对污水进行处理,以去除污水中的无机和有机物。

3、格栅的设计:包括格栅的形式、尺寸、水力、栅渣量。

4、沉淀法的几个应用★污水处理系统的预处理---沉砂池★污水的初级处理---初沉池★生物处理后的固液分离---二沉池★污泥处理阶段的污泥浓缩---污泥浓缩池·沉砂池:用以去除污水中的无机易沉物。

·初次沉淀池:较经济地去除污水中悬浮固体,同时去除一部分呈悬浮状态的有机物,以减轻后续生物处理构筑物的有机负荷。

·二次沉淀池:用来分离生物处理工艺中产生的生物膜、活性污泥等,使处理后的水得以澄清。

·污泥浓缩池:将来自初沉池及二沉池的污泥进一步浓缩,以减小体积,降低后续构筑物的尺寸及处理费用等。

5、沉淀类型:自由沉淀、絮凝沉淀、区域沉淀或成层沉淀、压缩沉淀6、自由沉淀理论的三点假设①颗粒为球形 ②沉淀过程中颗粒的大小、形状、质量等不变③颗粒只在重力作用下沉淀,不受器壁和其他颗粒影响7、斯托克斯公式8、沉淀池的四个区域分为:进口区域、沉淀区域、出口区域、污泥区域四个部分9、表面水力负荷:Q /A ——反映沉淀池效率的参数, 一般称为沉淀池的表面水力负荷,或称沉淀池的溢流率,常用符号q 表示,它的物理意义是:单位面积的沉淀池在单位时间内通过的流量,单位是m 3/(m 2·h )。

水污染控制工程 活性污泥法

水污染控制工程 活性污泥法
内源代谢产 物残留物 ~20%
分解 CO2, H2O, NH3, SO42-, P43- + 能量

(1/3)
好氧生物处理过程有机物转化示意图 15
共一百九十三页
2.4. 好氧生物(shēngwù)处理过程 (con’d)
(1) 一般情况下,各类微生物细胞物质的成分是相对(xiāngduì)
稳定的:
❖ 反应(fǎnyìng)温度
微生物可分为高温性(嗜热菌)、中温性、常温性 和低温性(嗜冷菌)四类。
最低温度 最适温度 最高温度
低温性 O℃
5~10℃
3O℃
常温性 5℃ 10~30℃
40℃
中温性 10℃ 30~40℃
50℃
高温性 30℃ 50~60℃ 70~80℃ 好氧:中温性微生物为主;
厌氧:中温性和高温性微生物为主。 27
❖ 按微生物对溶解氧的要求
好氧生物处理 厌氧生物处理 缺氧生物处理
6
共一百九十三页
按微生物生长(shēngzhǎng)方式分类
❖ 悬浮生长法(活性污泥法)
通过适当的混合方法使微生物在生物处理构筑物中
保持(bǎochí)悬浮状态,并与污水中的有机物充分接触, 完成对有机物的降解。
❖ 附着生长法(生物膜法)
第八章 活性污泥法
(Activated Sludge)
1
共一百九十三页
本章 内容 (běn zhānɡ)
❖ 第一节:污水生物处理的基本概念和生 化反应动力学基础(jīchǔ)
❖ 第二节:活性污泥法的基本概念
❖ 第三节:活性污泥法的发展
❖ 第四节、氧传递和曝气设备 ❖ 第五节、活性污泥系统工艺设计
❖ 第六节、二次沉淀池 ❖ 第七节、运行和管理

水污染控制工程_09污泥处理

水污染控制工程_09污泥处理
污泥脱水的作用是去除污泥中的毛细水和表面 附着水,从而缩小其体积,减轻其质量。 (二) 污泥的自然干化
1. 污泥干化床的构造
围堤和隔墙 排水系统 支柱和透明顶盖
输泥槽
滤水层
不透水底层 轻便铁轨
污泥干化床
2. 污泥干化床脱水效果的影响因素
气候条件
污泥性质
污泥调理
3. 污泥干化床的设计
决定面积
划分块数
1~3
8~10
0 0.5~1.5
80~90 90~95 90~95
95~97
普通生物滤池污泥
2~3
8~9
9~11
0
0.75~1.5
剩余污泥机械浓缩
二、污泥的稳定
污泥稳定化的处理方法: 厌氧消化法 好氧消化法 氯化氧化法
石灰稳定法
热处理法
常用方法 目 的 过 程
厌氧消化 污泥中的挥发性固体的量降低 40%左右
p——污泥投配率,城市污水厂高负荷率消化池,当消化温 度为30~35℃时,p可取6%~18%; n——消化池的座数; Gs——每日要处理的污泥干固体量, kg VSS/d ;
Ns——单位容积消化池污泥(VSS)负荷率, kg VSS/ (m3/d)。
计算消化池的构造尺寸:
消化池必须附设各种管道:污泥管、上清液排 放管、溢流管、沼气管和取样管。
水解、酸化、产乙酸、产甲烷
优 点
产生能量 使污泥固体总量减少
作土壤调节剂 杀死致病菌
缺 点
投资大 运行易受环境条件的影响 消化反应时间长 消化污泥不易沉淀
(一)厌氧消化的过程
两级高负荷率厌氧消化系统
(二) 影响污泥消化的主要因素
1. pH和碱度 厌氧消化

水污染控制工程计算题归纳

水污染控制工程计算题归纳

解: (1)沉淀区表面积 A:
(2)沉淀部分有效水深 h2:
(3)沉淀区有效容积 V
(4)沉淀池长度 L:
(5)沉淀池总宽度 B:
(6)沉淀池个数 n:设每个沉淀池宽度 b=3.86m,则:
(7)校核尺寸比例:
(8)污泥部分所需容积 Vw: 每人每日产生干污泥量为 25g/人 d,含水率为 97%,取排泥时间间隔为 2 天,换算成 湿污泥量 S:
c w Qw ch Qh Qw Qh 1300 2.83 310 3.83 2.83 3.83 730.68mg/L 500mg/L c
2、 向一条河流稳定排放污水,污水排放量 Qp=0.2 m3/s,BOD5 浓度为 30 mg/L,河流流量 Qh=5.8 m3/s,河水平均流速 v=0.3 m/s,BOD5 本底浓度为 0.5 mg/L,BOD5 降解的速率常数 k1=0.2 d-1,纵向弥散系数 D=10 m2/s,假定下游无支流汇入,也无其他排污口,试求排放点 下游 5 km 处的 BOD5 浓度。 解: (1)污水排入河流后排放口所在河流断面初始浓度可用完全混合模 型计算;
计算排除的以 SS 计的污泥量
计算排放的湿污泥量,污泥含水率按 99%计算
5.计算回流污泥比 R
曝气池中 MLSS 浓度=3500mg/L,回流污泥浓度=8000mg/L
6.计算曝气池所需的空气量 首先计算曝气池所需的氧量 (1)生化反应中含碳有机物全部氧化所需的氧量:
(2)生化反应所需氧量: 所需氧量 O2= 再计算曝气池所需的空气量 =(7744-1.42×1775.2) kg/d =5223.2 kg/d
3、流量 200m3/h,曝气池进水 BOD150mg/L, 出水要求为 15mg/L,采用阶段曝气法, 求曝气池容积。 阶段曝气法经验去除率:85%~90% 污泥负荷:0.2~0.4kgBOD5/kgMLSS· d MLSS:1500~3000mg/L 取污泥负荷为 0.3 kgBOD5/kgMLSS· d,MLSS 为 2400 mg/L,则 曝气池容积: 解:

武理工水污染控制原理案例课件第8案例 活性污泥法的应用

武理工水污染控制原理案例课件第8案例  活性污泥法的应用

第一节 活性污泥法基本概念
水污染控制原理
2、基本的活性污泥法如下图(图1)所示,共有六个组成部分:
图1 活性污泥法基本流程图
第一节 活性污泥法基本概念
水污染控制原理
3、活性污泥性能的控制因素:
(1)底物的代谢速率。底物的代谢速率主要取决于系统的生物动力 学条件。 (2)生物絮体的沉降和浓缩性能。活性污泥系统要求产生沉降和浓 缩性能良好的生物絮体,以便保证有足够高浓度的回流污泥和满足要 求的低悬浮物含量的出水。 (3)传氧的限制。活性污泥系统是利用需氧微生物来处理废水的, 这些微生物需要有机底物、溶解氧和其它一些营养物以维持生命活动, 因此这些成分在微生物絮体中的扩散就显得很重要。

NHNO2
2
0.27mg / L
0.14 60 1
硝化反应器容积VN的公式如下:
VN
YNH
3
cN
Q
iNH 3
XN
NH3
以 YNH3 0.5, X N 1000 mg / L
以及其它数据代入得
VN
0.05 60d
1000m3
/d
50m3 / d 43.4mg / L 0.05mg / L
1 0.33cN
1
NO2
K NO2
Y K NO2 ONO2 cN
1
2 0.02 7.0cN
1
2 0.14cN
1
案例分析
水污染控制原理
式中已用表8-9中的常数值代入。从上式可看出,当θcN≤3d时, NH3 及 NO2均为负 值,说明它们保持了进入反应器的原来浓度,均未发生氧化反应。以=60d代入计算
第三节 硝化
水污染控制原理
2.两级系统

水污染控制工程计算题归纳

水污染控制工程计算题归纳

第九章1、计划在河边建一座工厂,该厂将以2.83m 3/s 的流量排放污水,污水中总溶解固体(总可滤残渣和总不可滤残渣)浓度为1300mg/L ,该河流平均流速v 为0.457m/s ,平均河宽W 为13.73m ,平均水深h 为0.61m ,总溶解固体浓度c h 为310mg/L ,问该工厂的污水排入河流完全混合后,总溶解固体的浓度是否超标(设标准为500mg/L )?解:将河流简化为矩形,则河流横截面积为:S=Wh=13.73×0.61=8.38m 2 Q h =vS=8.38×0.457=3.83m 3/sc h =310mg/L c w =1300mg/L Q w =2.83m 3/s 所以:2、 向一条河流稳定排放污水,污水排放量Q p =0.2 m 3/s ,BOD 5浓度为30 mg/L ,河流流量Q h =5.8 m 3/s ,河水平均流速v =0.3 m/s ,BOD 5本底浓度为0.5 mg/L ,BOD 5降解的速率常数k 1=0.2 d -1,纵向弥散系数D =10 m 2/s ,假定下游无支流汇入,也无其他排污口,试求排放点下游5 km 处的BOD 5浓度。

解:(1)污水排入河流后排放口所在河流断面初始浓度可用完全混合模 型计算;(2)计算考虑纵向弥散条件下的下游5km 处的浓度;(3)计算忽略纵向弥散条件下的下游5km 处的浓度;由本例,在稳态情况下,忽略弥散的结果与考虑弥散的结果十分接近。

3、一个改扩工程拟向河流排放污水,污水量Q h =0.15m 3/s ,苯酚浓度为c h =30mg/L ,河流流量Q p =5.5m 3/s ,流速v x =0.3m/s ,苯酚背景浓度c p =0.5mg/L ,苯酚的降解系数k=0.2d -1,纵向弥散系数D x =10m 2/s 。

求排放点下游10km 处的苯酚浓度。

解:完全混合后的初始浓度为L mg c /28.115.05.55.05.53015.00=+⨯+⨯=500mg/L 730.68mg/L 3.832.83 3.833102.831300hw h h w w >=+⨯+⨯=++=Q Q Q c Q c c考虑纵向弥散条件下,下游10km 处的浓度为:()L mg /19.1100003.010*******.04111023.02=⎥⎥⎦⎤⎢⎢⎣⎡⨯⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯+-⨯忽略纵向弥散时,下游10km 处的浓度为L mg c /19.1864003.0100002.0exp 28.1=⎪⎪⎭⎫⎝⎛⨯⨯-⨯=由此看来,在稳态条件下,忽略弥散系数与考虑纵向弥散系数时,结果差异很小,因此常可以忽略弥散系数.4、某工厂的排污断面上,假设废水与河水瞬间完全混合,此时BOD 5的浓度为65 mg/L ,DO 为7 mg/L ,受纳废水的河流平均流速为1.8 km/d ,河水的耗氧系数K 1=0.18 d -1, 复氧系数K 2=2 d -1,河流饱和溶解氧浓度为7 mg/L 求:排污断面下游1.5 km 处的BOD 5和DO 的浓度;第十章1、格栅的设计计算2、平流式沉砂池的设计计算(7)贮砂斗尺寸计算(9)沉砂室高度计算设池底坡度i=0.06,坡向砂斗,则:ml h h mb b L l 66.106.0232.622.0284.129222'33'22=∙+==-⨯-=--=(10)池总高度:设沉砂池超高h3=0.3m ,则:m h h h H 79.266.183.03.0321=++=++=(11)最小流速核算: 最小流速是只用一格工作,则:满足要求272.0)(31贮砂斗实际容积)8(284.15.05556.02552则贮砂斗上口宽56.0,斗高55斗壁倾角为,5.0设贮砂斗底宽0132121'311'32'31V V m S S S S h V m tg b tg h b m h m b >∴=++==+⨯=+===符合要求/15.0/3.0498.0115.01498.083.06.0min 1min min 122min s m s m A n Q v n m h b A >=⨯====⨯=∙=3、 曝气池沉砂池的设计计算已知某城市污水处理厂平均流量Q=0.5m 3/s,总变化系数K z =1.38。

水污染控制工程知识点

水污染控制工程知识点

第九章污水水质和污水出路1、污水有机物指标:①生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的氧量。

BOD5——五日生化需氧量②化学需氧量(COD或OC):用化学氧化剂氧化水中的有机污染物时所消耗的氧化剂量。

COD Mn或OC——以高锰酸钾作氧化剂时,地下水;COD Cr或COD——以重铬酸钾作氧化剂时,地表水③总有机碳(TOC):包括水样中所有有机污染物的含碳量④总需氧量(TOD):当有机物全部被氧化时,C全部变为二氧化碳,H 、N及S怎被氧化成水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量COD>BOD TOD>TOC2、水体自净:①物理净化:污染物质由于稀释、扩散、沉淀或挥发等作用而使河水污染物质浓度降低的过程②化学净化:氧化、还原、分解③生物净化:水中生物活动,尤其是水中微生物对有机物的氧化分解作用3、水环境质量标准:《地表水环境质量标准》分五类水体Ⅰ类主要适用于源头水、国家自然保护区;Ⅱ类主要适用于集中式生活饮用水地表水源地一级保护区、珍稀水生生物栖息地、鱼虾类产卵场、幼鱼的索饵场等;Ⅲ类主要适用于集中式生活饮用水地表水源地二级保护区、鱼虾类越冬场、洄游通道、水产养殖区等渔业水域及游泳区;Ⅳ类主要适用于一般工业用水区及人体非直接接触的娱乐用水区;Ⅴ类主要适用于农业用水区及一般景观要求水域。

4、污水排放标准:①浓度标准:规定了排出口向水体排放污染物的浓度限值,其单位一般为mg/L②总量控制标准:是以与水环境质量标准相适应的水体环境容量为依据而设定的第十章污水的物理处理5、格栅:①分为人工格栅和机械格栅:人工格栅倾角30°~60°,机械格栅(每日栅渣量>0.2m3)倾角60°~90°②设计参数:渠道宽度适当,过渠道水流速度一般0.4~0.9m/s,过栅流速0.6~1.0m/s;格栅工作平台应高出设计水位0.5m6、沉淀法:利用水中悬浮颗粒和水的密度差,在重力作用下产生下沉运动,达到固液分离的效果,可用于以下几个方面:①污水池里系统的预处理(沉砂池)②污水的初级处理(初沉池)③生物处理后的固液分离(二沉池)④污泥处理阶段的污泥浓缩(污泥浓缩池)7、沉淀类型:①自由沉淀:发生在水中悬浮固体浓度不高时的一种沉淀类型,直线下沉,且颗粒物理性质不变(沉砂池)②絮凝沉淀:悬浮颗粒浓度不高,但沉淀过程中悬浮颗粒之间有互相絮凝作用,曲线下沉,且颗粒物速度质量性状等变(二沉池中间段)③区域沉淀(成层沉淀、拥挤沉淀):高浓度悬浮颗粒的沉降过程(5000mg/L以上)有明显泥水分离(二沉池下部和污泥重力浓缩池开始)④压缩沉淀:高浓度悬浮颗粒的沉降过程中(二沉池污泥斗中、污泥重力浓缩池)8、曝气沉砂池构造及工作原理及特点:①构造(p37图10-21)②特点:(1)沉砂中含有机物的量低于5%(2)由于池中设有曝气设备,,它还具有预曝气、脱臭、除泡作用,以及加速污水中油类和浮渣的分离等作用③工作原理:两种形式的运动,水平的和旋转的,流速中心处最小,池的周边最大,砂旋转碰到池壁就向下滑落,到了槽里就出不来了,旋转时刻碰撞摩擦,使有机物被冲刷掉,使沉砂较为纯净,易于收集利用。

(完整word版)水污染控制工程完整版

(完整word版)水污染控制工程完整版

第九章污水水质和污水出路一、污水分类:生活污水、工业废水、初期污染雨水及城镇污水(综合污水)。

(P1)二、水质指标三、滤膜:反渗透膜(﹤1nm)→纳滤膜(﹤2nm)→超滤膜(﹤2~50nm)→微滤膜(200nm)四、化学指标:BOD5(在规定条件下微生物氧化分解污水或受污染的天然水样中有机物所需要的氧量,以mg/L为单位,(20℃,5d))、BOD Cr、I Mn,TOC。

五、水体的自净作用(河流的自净作用是指河水中的污染物质在河水向下游流动中浓度自然降低的现象。

)的机制:①、物理净化(稀释、扩散、沉淀或挥发);②、化学净化(氧化、还原和分解);③、生物净化(水中微生物对有机物的氧化分解作用)。

六、污染源类型(点源与面源)及其特征/区别七、氧垂曲线定义:水体受到污染后,水体中溶解氧逐渐被消耗,到临界点后又逐步回升的变化过程,称氧垂曲线。

八、天然水体的水质参数(无COD)及其成分九、(选择题/填空题)水循环十、(名词解释/填空题)水污染控制工程的主要内容及其任务十一、城市处理(三阶段)十二、(了解及记忆)地表水水质分类:参考《地表水环境质量标准》(GB 3838—2002)。

分为五类(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ类),记忆相关的项目的指标。

第十章污水的物理处理一、格栅的作用及种类(1)、作用:去除可能堵塞和缠绕水泵机组、曝气器及管道阀门的较粗大悬浮物,并保证后续处理设施能正常运行。

(2)、种类:A.按格栅形状:平面格栅+曲面格栅;B.按栅条净间距:①、粗格栅(50~100mm);②、中格栅(10~40mm);③、细格栅(1.5~10mm);C.按栅条断面形状:圆形、矩形与方形。

(3)、格栅渠道的宽度的选择标准:应使水流保持适当流速→一方面泥沙不至于沉积在沟渠底部,另一方面截留的污泥不至于冲过格栅。

二、格栅、筛网截留的污染物的处置方法:①、填埋;②、焚烧(820℃以上);③、堆肥;④、把栅渣粉碎后再返回废水中,作为可沉固体进入初沉池。

水污染控制工程知识点总结

水污染控制工程知识点总结

第九章污水水质和污水出路1 污水污染指标中,固体物质的分类水中所有残渣的总和称为总固体(TS);总固体=溶解性固体(DS)+悬浮固体(SS);水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS);固体残渣根据挥发性能可分为挥发性固体(VS)+固定性固体(FS);600℃温度下灼烧,挥发掉的量即为挥发性固体(VS),灼烧残渣则是固定性固体(FS)2 BOD COD BOD5TOC TOD生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量(mg/L)5日生化需氧量(BOD5):测定有机物第一阶段的生化需氧量至少需要20天时间,在实际应用中周期太长,故目前以5天作为测定生化需氧量的标准时间(BOD5=70%BOD20)化学需氧量(COD):化学需氧量是用化学氧化剂氧化水中有机污染物时所消耗的氧化剂量(mg/L) (用高锰酸钾作氧化剂测得CODMn/OC,用重铬酸钾作氧化剂测得CODCr/COD)总有机碳(TOC):包括水样中所有有机污染物的含碳量总需氧量(TOD):当有机物被氧化时。

碳被氧化为二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量3 水体自净作用的定义和净化机制定义:是指河水中的污染物质在河水向下流动中浓度自然降低的现象机制:(1)物理净化:稀释、扩散、沉淀或挥发(2)化学净化:氧化、还原、分解(3)生物净化:水中微生物对有机物的氧化分解作用4 受到污水污染的河流,根据水体中BOD5和DO曲线的关系,可以分为哪几个区域(氧垂曲线)污染带:BOD5、DO均下降显著阶段第十章污水的物理处理1 格栅和筛网的作用和去除对象格栅:格栅由一组或数组平行的金属栅条、塑料齿钩或金属筛网、框架及相关装置组成,倾斜安装在污水渠道、泵房集水井的进口处或污水处理厂的前端,用来截留污水中较粗大漂浮物和悬浮物筛网:应用于小型污水处理系统,主要用于短小纤维回收(振动筛网、水力筛网)2 格栅和筛网的分类栅条净间隙分类:粗格栅50~100mm,中格栅10~40mm,细格栅1.5~10mm,超细格栅0.5~1mm格栅形状分类:平面格栅,曲面格栅清渣方式分类:人工清渣、机械清渣3 沉淀法在污水处理厂中,主要用于哪几个方面①污水处理系统的预处理→沉砂池:预处理手段用于去除污水中易沉降的无机性颗粒物②污水的初级处理→初沉池:去除污水中悬浮固体,同时去除一部分呈悬浮状态的有机物③生物处理后的固液分离→二沉池:分离悬浮生长生物处理工艺中的活性污泥,生物膜法工艺中脱落的生物膜④污泥浓缩池→污泥浓缩池:将污泥一起进一步浓缩,以减少体积4 沉淀的类型和各种类型的特点及应用①自由沉淀(悬浮固体浓度不高):沉淀过程中悬浮颗粒互不干扰,各自独立完成沉淀过程,颗粒的沉淀轨迹呈直线。

水污染控制工程废水好氧生物处理工艺——活性污泥法

水污染控制工程废水好氧生物处理工艺——活性污泥法

污泥沉降比是指曝气池混合液在l00mL量筒中, 静置沉降30min后,沉降污泥所占的体积与混合 液总体积之比的百分数。所以也常称为30 min沉 降比。 正常的活性污泥在沉降30min后,可以接近它的 最大密度,故污泥沉降比可以反映曝气池正常运 行时的污泥量。可用于控制剩余污泥的排放。 它还能及时反映出污泥膨胀等异常情况,便于及 早查明原因,采取措施。 正常值20-30%
污泥龄(sludge age)是曝气池中工作着的活性污 泥总量与每日排放的污泥量之比,单位是d。 在运行稳定时,曝气池中活性污泥的量保持常数, 每日排出的污泥量也就是新增长的污泥量。 污泥龄也就是新增长的污泥在曝气池中平均停留时 间,或污泥增长一倍平均所需要的时间。 污泥龄也称固体平均停留时间或细胞平均停留时间 污泥龄是影响活性污泥处理效果的重要参数。 水力停留时间是指水在处理系统中的停留时间,单 位也是d。HRT=V/Q,V是曝气池的体积;Q是 废水的流量。
对于推流式活性污泥法,氧的最大需要量出现在污水与污 泥开始混合的曝气池首端,常供氧不足。供氧不足会出现 厌氧状态,妨碍正常的代谢过程,滋长丝状菌。供氧多少 一般用混合液溶解氧的浓度表示。 活性污泥絮凝体的大小不同,所需要的最小溶解氧浓度也 就不一样。絮凝体越小,与污水的接触面积越大,也越利 于对氧的摄取,所需要的溶解氧浓度就小。反之絮凝体大, 则所需的溶解氧浓度就大。 为了使沉降分离性能良好,较大的絮凝体是所期望的,因 此溶解氧浓度以2mg/L左右为宜。
活性的微生物 微生物自身氧化的残留物 吸附在活性污泥上不能被生物降解的有机物 和无机物组成。
① 曝气池:反应主体 ② 二沉池: 1)进行泥水分离,保证出水水质; 2)保证回流污泥,维持曝气池内的污泥浓度。 ③ 回流系统: 1)维持曝气池的污泥浓度;2) 改变回流比,改变曝气池的运行工况。 ④ 剩余污泥排放系统: 1)是去除有机物的途径 之一;2)维持系统的稳定运行。 ⑤ 供氧系统: 提供足够的溶解氧
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.曝气系统与空气扩散装置
(一).曝气系统与空气扩散装置的作用 曝气系统 空气扩散装置的作用 向曝气池中提供氧气的手段,分鼓风 机械 鼓风和机械 鼓风 机械曝气两大类。 (二)鼓风曝气 鼓风曝气 鼓风曝气系统的组成: 1.鼓风曝气系统的组成:鼓风机、空气管道、空气扩散装置(俗称曝气器)。 空气扩散装置在曝气池中的主要作用: 2.空气扩散装置在曝气池中的主要作用: 充氧: (1)充氧:将空气中的氧转移至曝气池内混合液中,供微生物所需; 搅拌、混合: (2)搅拌、混合:使混合液中活性污泥、氧气、污水充分混合、接触,并防止活性污泥 沉淀。 气泡在水中的过程: 气泡在水中的过程:空气扩散装置→小气泡→混合液→上升、变大→至液面破裂。 表示空气扩散装置技术性能的主要指标: 3.表示空气扩散装置技术性能的主要指标: 动力效率(E (1) 动力效率(Ep):每消耗1kWh电能转移到混合液中的氧量,单位kgO2/kWh。 氧的利用效率(E (2)氧的利用效率(EA):通过鼓风曝气转移到混合液中的氧量占总供氧量的百分比(%)
5). 水下空气扩散装置
• • • • •
(三)机械曝气装置 机械曝气装置在曝气池中的主要作用: 1.机械曝气装置在曝气池中的主要作用: 同鼓风曝气 表示机械曝气装置技术性能的主要指标: 2.表示机械曝气装置技术性能的主要指标: 动力效率(E (1) 动力效率(Ep):每消耗1kWh电能转移到 混合液中的氧量,单位kgO2/kWh。 • (2) 氧的转移效率(ELa):通过机械曝气装置 氧的转移效率(E 的转动,在单位时间内转移到混合液中的氧量, 转移到混合液中的氧量,单位kgO2/h。 • 3.机械曝气装置充氧的途径
(1)泵形叶轮曝气器
转碟曝气机
4.空气扩散装置的分类: 空气扩散装置的分类: 分微气泡、中气泡、大气泡、水力剪切、水力冲击等 1)微气泡空气扩散装置 我国广泛采用的微气泡空气扩散装置类型主要有以下几类: (1)扩散板
ቤተ መጻሕፍቲ ባይዱ2) 扩散管
(3) 平板型微孔空气扩散装置
膜片式微孔空气扩散器(又称微孔盘式曝气器 的工作原理 膜片式微孔空气扩散器 又称微孔盘式曝气器)的工作原理 又称微孔盘式曝气器 的工作原理:
(6)微孔管式曝气器
微孔管式曝气器也属于微孔橡胶膜片曝气器,其工作原理同盘式曝气器。
2)中气泡空气扩散装置
(3) 单孔膜空气扩散器
该曝气器清水充氧效率为22.6%,阻损≤2500Pa。
3).水力剪切式空气扩散装置 ).水力剪切式空气扩散装置
4).水力冲击式空气扩散装置 ).水力冲击式空气扩散装置
相关文档
最新文档