stanford大学-大数据挖掘-web mining overview2
大数据分析与挖掘教学大纲
大数据分析与挖掘教学大纲I.课程简介本课程是针对大数据分析与挖掘领域的学生开设的一门基础课程。
通过本课程的学习,学生将掌握大数据分析与挖掘的基本概念、数据采集与清洗技术、数据预处理与特征选择方法、常用的大数据挖掘算法等。
II.课程目标1.掌握大数据分析与挖掘的基本概念,理解大数据的特点和挖掘过程;2.熟悉数据采集与清洗的方法,理解数据预处理的重要性;3.熟练掌握常用的大数据挖掘算法,包括聚类算法、分类算法、关联规则挖掘算法等;4.能够使用机器学习工具或编程语言实现大数据挖掘项目,包括数据预处理、特征选择、模型建立和评价等。
III.教学内容1.大数据分析与挖掘概述A.大数据的定义和特点B.大数据挖掘的基本概念和过程C.大数据分析与挖掘的应用领域2.数据采集与清洗A.数据采集方法和工具B.数据清洗的目的和方法C.数据去重、缺失值处理和异常值检测3.数据预处理与特征选择A.数据预处理的目的和方法B.数据变换和规范化技术C.特征选择的概念和方法D.特征提取和降维技术4.大数据挖掘算法A. 聚类算法(如K-means算法、DBSCAN算法)B.分类算法(如决策树、支持向量机)C.关联规则挖掘算法D.时间序列分析算法(如ARIMA模型)5.大数据挖掘实践A. 机器学习工具的使用(如Python的Scikit-learn库)B. 基于编程语言(如Python或R)的大数据挖掘案例分析C.数据预处理、特征选择、模型建立和评价的实现IV.教学方式1.理论讲授:通过课堂讲解,介绍大数据分析与挖掘的基本概念和方法。
2.案例分析:通过实际案例分析,展示大数据挖掘算法在实际问题中的应用。
3.实践操作:组织学生实践操作,使用机器学习工具或编程语言实现大数据挖掘项目。
V.考核方式1.平时成绩:包括课堂表现、参与讨论和课堂练习等。
2.课程项目:根据实际问题,组织学生完成一次大数据挖掘项目。
3.期末考试:考查学生对课程知识的理解和应用能力。
《大数据分析与挖掘》-课程教学大纲
《大数据分析与挖掘》课程教学大纲一、课程基本信息课程代码:16054103课程名称:大数据分析与挖掘英文名称:Big data analysis and mining课程类别:专业课学时:48学分:3适用对象: 软件工程,计算机科学与技术,大数据管理考核方式:考核先修课程:数理统计与概率论,算法设计,JA V A/Python程序设计二、课程简介大数据分析与挖掘是软件工程,计算机科学与技术,大数据管理专业必修课,它集理论,技术和应用性一身,不仅是当前计算机,软件工程领域最热门高级前沿应用技术,并且涉及跨学科领域知识和概率论,数学及算法理论知识,是计算机,软件工程的重要课程模块,同时是大数据管理专业的核心理论课程。
当前在新基建和数字化革命大潮下,各行各业都在应用大数据分析与挖掘技术,并紧密结合机器学习深度学习算法,可为行业带来巨大价值。
数据分析与挖掘是当前最热的技术与职业方向,在未来几年都将获得飞速发展,前景非常广阔,是学生未来进入社会成才求职的重要核心技能,可以说学好大数据分析与挖掘原理,概念与技术,必将使得学生未来计算机专业发展和职业生涯获得高起点和巨大发展潜力与竞争力。
本课程从实战出发,学习大数据分析与挖掘理论算法与编程工具,围绕真实案例学习并掌握数据分析与挖掘的关键任务和方法。
包括主要的数据分析全流程任务:数据探索,数据预处理,数据可视化展示,数据建模,模型验证与评估,分析结果展示与应用;同时针对不同的数据分析阶段任务在讲解原理同时,介绍大量当前最新的学术界,业界研究方法,技术与模型。
课程在讲解数据分类,数据预测模型,及复杂数据分析场景时,引入了华为网络产品线产品数据部多个经典数据分析与挖掘案例,并且引入阿里数据中台架构,天池AI实训平台,及应用典型案例。
让学生学以致用,紧跟行业最领先技术水平,同时,面对我国民族企业,头部公司在大数据分析与挖掘领域取得的巨大商业成功与前沿技术成果应用产生强烈民族自豪感,为国家数字化经济与技术发展努力奋斗,勇攀知识高峰立下志向。
数据挖掘导论英文版
数据挖掘导论英文版Data Mining IntroductionData mining is the process of extracting valuable insights and patterns from large datasets. It involves the application of various techniques and algorithms to uncover hidden relationships, trends, and anomalies that can be used to inform decision-making and drive business success. In today's data-driven world, the ability to effectively harness the power of data has become a critical competitive advantage for organizations across a wide range of industries.One of the key strengths of data mining is its versatility. It can be applied to a wide range of domains, from marketing and finance to healthcare and scientific research. In the marketing realm, for example, data mining can be used to analyze customer behavior, identify target segments, and develop personalized marketing strategies. In the financial sector, data mining can be leveraged to detect fraud, assess credit risk, and optimize investment portfolios.At the heart of data mining lies a diverse set of techniques and algorithms. These include supervised learning methods, such asregression and classification, which can be used to predict outcomes based on known patterns in the data. Unsupervised learning techniques, such as clustering and association rule mining, can be employed to uncover hidden structures and relationships within datasets. Additionally, advanced algorithms like neural networks and decision trees have proven to be highly effective in tackling complex, non-linear problems.The process of data mining typically involves several key steps, each of which plays a crucial role in extracting meaningful insights from the data. The first step is data preparation, which involves cleaning, transforming, and integrating the raw data into a format that can be effectively analyzed. This step is particularly important, as the quality and accuracy of the input data can significantly impact the reliability of the final results.Once the data is prepared, the next step is to select the appropriate data mining techniques and algorithms to apply. This requires a deep understanding of the problem at hand, as well as the strengths and limitations of the available tools. Depending on the specific goals of the analysis, the data mining practitioner may choose to employ a combination of techniques, each of which can provide unique insights and perspectives.The next phase is the actual data mining process, where the selectedalgorithms are applied to the prepared data. This can involve complex mathematical and statistical calculations, as well as the use of specialized software and computing resources. The results of this process may include the identification of patterns, trends, and relationships within the data, as well as the development of predictive models and other data-driven insights.Once the data mining process is complete, the final step is to interpret and communicate the findings. This involves translating the technical results into actionable insights that can be easily understood by stakeholders, such as business leaders, policymakers, or scientific researchers. Effective communication of data mining results is crucial, as it enables decision-makers to make informed choices and take appropriate actions based on the insights gained.One of the most exciting aspects of data mining is its continuous evolution and the emergence of new techniques and technologies. As the volume and complexity of data continue to grow, the need for more sophisticated and powerful data mining tools and algorithms has become increasingly pressing. Advances in areas such as machine learning, deep learning, and big data processing have opened up new frontiers in data mining, enabling practitioners to tackle increasingly complex problems and extract even more valuable insights from the data.In conclusion, data mining is a powerful and versatile tool that has the potential to transform the way we approach a wide range of challenges and opportunities. By leveraging the power of data and the latest analytical techniques, organizations can gain a deeper understanding of their operations, customers, and markets, and make more informed, data-driven decisions that drive sustainable growth and success. As the field of data mining continues to evolve, it is clear that it will play an increasingly crucial role in shaping the future of business, science, and society as a whole.。
数据挖掘简介
数据挖掘简介数据挖掘简介2010-04-28 20:47数据挖掘数据挖掘(Data Mining)是采用数学、统计、人工智能和神经网络等领域的科学方法,从大量数据中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,为商业智能系统服务的各业务领域提供预测性决策支持的方法、工具和过程。
数据挖掘前身是知识发现(KDD),属于机器学习的范畴,所用技术和工具主要有统计分析(或数据分析)和知识发现。
知识发现与数据挖掘是人工智能、机器学习与数据库技术相结合的产物,是从数据中发现有用知识的整个过程。
机器学习(Machine Learning)是用计算机模拟人类学习的一门科学,由于在专家系统开发中存在知识获取的瓶颈现象,所以采用机器学习来完成知识的自动获取。
数据挖掘是KDD过程中的一个特定步骤,它用专门算法从数据中抽取模式(Patterns)。
1996年,Fayyad、Piatetsky-Shapiror和Smyth将KDD过程定义为:从数据中鉴别出有效模式的非平凡过程,该模式是新的、可能有用的和最终可理解的;KDD是从大量数据中提取出可信的、新颖的、有效的,并能被人理解的模式的处理过程,这种处理过程是一种高级的处理过程。
数据挖掘则是按照既定的业务目标,对大量的企业数据进行探索,揭示隐藏其中的规律性,并进一步将其设计为先进的模型和有效的操作。
在日常的数据库操作中,经常使用的是从数据库中抽取数据以生成一定格式的报表。
KDD与数据库报表工具的区别是:数据库报表制作工具是将数据库中的某些数据抽取出来,经过一些数学运算,最终以特定的格式呈现给用户;而KDD则是对数据背后隐藏的特征和趋势进行分析,最终给出关于数据的总体特征和发展趋势。
报表工具能制作出形如"上学期考试未通过及成绩优秀的学生的有关情况"的表格;但它不能回答"考试未通过及成绩优秀的学生在某些方面有些什么不同的特征"的问题,而KDD就可以回答。
大数据挖掘——数据挖掘的方法
大数据挖掘——数据挖掘的方法数据挖掘是一种通过分析大量数据,发现其中隐藏的模式、关联和趋势的过程。
它是从大数据中提取有价值信息的一种技术手段,广泛应用于商业、科学研究、社会分析等领域。
本文将介绍数据挖掘的方法,并详细解释每种方法的原理和应用。
1. 关联规则挖掘关联规则挖掘是一种用于发现数据集中项之间的关联关系的方法。
它通过分析数据集中的频繁项集,找出这些项集之间的关联规则。
常用的关联规则挖掘算法有Apriori算法和FP-Growth算法。
Apriori算法通过逐层增加项集的长度,从而找到频繁项集和关联规则。
FP-Growth算法通过构建FP树,减少了搜索频繁项集的次数,提高了挖掘效率。
关联规则挖掘在市场篮子分析、推荐系统和生物信息学等领域有着广泛的应用。
2. 分类分类是一种通过构建模型来预测数据的类别的方法。
它通过学习已有的标记数据集,构建分类器,并将未标记数据集中的样本分类到相应的类别中。
常用的分类算法有决策树、朴素贝叶斯、支持向量机和神经网络等。
决策树通过树结构表示分类规则,简单易懂,适合于处理具有离散属性的数据。
朴素贝叶斯算法基于贝叶斯定理,假设属性之间相互独立,适合于文本分类等领域。
支持向量机通过构建超平面将数据分为不同的类别,适合于处理线性可分和非线性可分的数据。
神经网络摹拟人脑神经元的工作原理,可以处理复杂的非线性问题。
分类在垃圾邮件过滤、疾病诊断和信用评估等方面有着广泛的应用。
3. 聚类聚类是一种将数据集中的样本划分为若干个类别的方法。
与分类不同,聚类是无监督学习的一种形式,不需要预先标记数据集。
常用的聚类算法有K均值聚类、层次聚类和密度聚类等。
K均值聚类通过迭代优化样本与聚类中心之间的距离,将样本划分到距离最近的聚类中心所代表的类别中。
层次聚类通过计算样本间的相似度,将相似度高的样本划分到同一个类别中。
密度聚类通过计算样本的密度,将样本划分到高密度区域所代表的类别中。
聚类在市场细分、社交网络分析和图象分析等方面有着广泛的应用。
数据挖掘教学大纲
数据挖掘教学大纲一、引言1.1 课程背景和目的1.2 数据挖掘的定义和应用领域1.3 数据挖掘的重要性和挑战二、数据预处理2.1 数据清洗2.1.1 缺失值处理2.1.2 异常值处理2.1.3 噪声处理2.2 数据集成2.2.1 数据源选择2.2.2 数据集成方法2.3 数据变换2.3.1 数据规范化2.3.2 数据离散化2.3.3 数据降维三、数据挖掘算法3.1 分类算法3.1.1 决策树算法3.1.2 朴素贝叶斯算法3.1.3 支持向量机算法3.2 聚类算法3.2.1 K-means算法3.2.2 层次聚类算法3.2.3 密度聚类算法3.3 关联规则挖掘算法3.3.1 Apriori算法3.3.2 FP-growth算法3.4 序列模式挖掘算法3.4.1 GSP算法3.4.2 PrefixSpan算法四、模型评估和选择4.1 训练集与测试集划分4.2 交叉验证方法4.2.1 K折交叉验证4.2.2 留一法交叉验证4.3 模型评价指标4.3.1 准确率4.3.2 召回率4.3.3 F1值五、数据挖掘应用案例5.1 电子商务领域的用户购买行为分析5.2 医疗领域的疾病预测5.3 金融领域的信用评估5.4 社交媒体领域的情感分析六、实践项目6.1 学生根据所学知识,选择一个真实场景的数据集进行数据挖掘分析6.2 学生需要完成数据预处理、选择合适的算法进行挖掘、评估模型效果等步骤6.3 学生需要撰写实践报告,详细描述数据挖掘的过程和结果七、教学方法7.1 理论讲授:通过课堂讲解,介绍数据挖掘的基本概念、算法原理和应用案例7.2 实践操作:通过实验课程,引导学生使用数据挖掘工具进行实际操作和分析7.3 讨论与互动:组织学生进行小组讨论和案例分析,加深对数据挖掘的理解7.4 案例分析:通过真实案例的分析,引起学生对数据挖掘的思量和创新八、教材和参考资料8.1 教材:《数据挖掘导论》8.2 参考资料:[参考书目1]、[参考书目2]、[参考网站1]、[参考网站2]九、考核方式9.1 平时成绩:包括课堂表现、实验报告、小组讨论等9.2 期末考试:考察学生对数据挖掘理论和实践的掌握程度9.3 实践项目成绩:考察学生在实际项目中的数据挖掘能力和报告撰写能力十、教学团队10.1 主讲教师:XXX10.2 助教:XXX十一、课程总结11.1 回顾课程内容和学习目标11.2 总结学生在课程中所取得的成果和收获11.3 展望数据挖掘在未来的应用和发展趋势以上为数据挖掘教学大纲的详细内容,包括课程背景和目的、数据预处理、数据挖掘算法、模型评估和选择、数据挖掘应用案例、实践项目、教学方法、教材和参考资料、考核方式、教学团队以及课程总结等方面的内容。
大数据分析与挖掘教学大纲
《大数据分析与挖掘》课程教学大纲一,课程基本信息课程编号:课程名称:大数据分析与挖掘英文名称:课程学时: 四八课程学分:三开课单位:计算机科学与技术学院授课对象:计算机科学与技术专业,计算机大类专业开课学期:先修课程:二,课程目地数据挖掘是一门新兴地叉学科,涵盖了数据库,机器学,统计学,模式识别,工智能以及高能计算等技术。
开设本课程地目地,是使学生全面而深入地掌握数据挖掘地基本概念与原理,掌握常用地数据挖掘算法,了解数据挖掘地最新发展,前沿地数据挖掘研究领域,以及数据挖掘技术在不同学科地应用。
课程具体目地如下:课程目标1:能够设计并实现大数据台下地数据挖掘系统。
了解由工程问题,到建模,再到数据挖掘算法设计地问题求解思维模式。
具有将数据挖掘算法应用于具体工程地能力;课程目标2:掌握大数据预处理,关联规则,分类以及聚类技术,并能够在主流大数据台上实现;课程目标3:具备较强地学最新数据挖掘领域研究成果地能力;能够分析与评价现有研究成果地问题与不足,并能够提出自己独立见解地能力;课程目标4:能够撰写系统设计方案与阶段技术报告,能够组织与协调项目组地工作,与成员行流与沟通。
三,课程目地与毕业要求对应关系毕业要求毕业要求具体描述课程目地工程素质(一)具有工程意识与系统观;(二)具有运用工程基础与专业知识解决复杂工程问题地能力课程目地一个素质(1)具有自主学,终身学与跟踪前沿地意识与惯。
(2)具有批判精神,对待事物有独立见解。
课程目地三,四系统设计与实现能力(1)针对计算有关地复杂工程问题,能够综合运用所掌握地计算机类有关知识,方法与技术,行问题分析与模型表达。
课程目地一,二毕业要求毕业要求具体描述课程目地(2)能够领导或独立设计解决方案或满足特定需求地计算机硬件,软件或网络系统,并能够实现有关系统或组件。
系统分析与评价能力针对计算有关地复杂工程问题解决方案或系统,能够综合运用所掌握地计算机类有关知识,方法与技术,设计实验,行分析与评价,包含其对社会,健康,安全,法律以及文化地影响分析与评价,并能够提出持续改地意见与建议。
数据挖掘顶级期刊简介
顶级会议第一KDD 第二SIAM ICDM中国计算机学会推荐国际学术刊物(数据库、数据挖掘与内容检索)序号刊物简称刊物全称出版社网址1 TODS ACM Transactions on Database Systems ACM /tods/2 TOIS ACM Transactions on Information andSystems ACM /pubs/tois/3 TKDE IEEE Transactions on Knowledge and Data Engineering IEEE Computer Society /tkde/4 VLDBJ VLDB Journal S pringer-Verlag/dblp/db/journals/vldb/index.html二、B类序号刊物简称刊物全称出版社网址1 TKDD ACM Transactions on Knowledge Discovery from Data ACM/pubs/tkdd/2 AEI Advanced Engineering Informatics Elsevier/wps/find/journaldescription.cws_home/622240/3 DKE Data and Knowledge Engineering Elsevier/science/journal/0169023X4 DMKD Data Mining and Knowledge DiscoverySpringer/content/100254/5 EJIS European Journal of Information Systems The OR Society/ejis/6 GeoInformatica Springer /content/1573-7624/7 IPM Information Processing and Management Elsevier/locate/infoproman8 Information Sciences Elsevier /locate/issn/002002559 IS Information Systems Elsevier/information-systems/10 JASIST Journal of the American Society for Information Science and TechnologyAmerican Society for Information Science and Technology /Publications/JASIS/jasis.html11 JWS Journal of Web Semantics Elsevier /locate/inca/67132212 KIS Knowledge and Information Systems Springer /journal/1011513 TWEB ACM Transactions on the Web ACM /三、C类序号刊物简称刊物全称出版社网址1 DPD Distributed and Parallel Databases Springer/content/1573-7578/2 I&M Information and Management E lsevier /locate/im/3 IPL Information Processing Letters Elsevier /locate/ipl4 Information Retrieval Springer /issn/1386-45645 IJCIS International Journal of Cooperative Information Systems World Scientific/ijcis6 IJGIS International Journal of Geographical Information Science Taylor & Francis/journals/tf/13658816.html7 IJIS International Journal of Intelligent Systems Wiley/jpages/0884-8173/8 IJKM International Journal of Knowledge Management IGI/journals/details.asp?id=42889 IJSWIS International Journal on Semantic Web and Information Systems IGI/10 JCIS J ournal of Computer Information Systems IACIS/web/journal.htm11 JDM Journal of Database Management IGI-Global/journals/details.asp?id=19812 JGITM Journal of Global Information Technology Management Ivy League Publishing/bae/jgitm/13 JIIS Journal of Intelligent Information Systems Springer/content/1573-7675/14 JSIS Journal of Strategic Information Systems Elsevier/locate/jsis中国计算机学会推荐国际学术刊物(数据库、数据挖掘与内容检索)一、A类序号刊物简称刊物全称出版社网址1 TODS ACM Transactions on Database Systems ACM /tods/2 TOIS ACM Transactions on Information andSystems ACM /pubs/tois/3 TKDE IEEE Transactions on Knowledge and Data Engineering IEEE Computer Society /tkde/4 VLDBJ VLDB Journal S pringer-Verlag/dblp/db/journals/vldb/index.html二、B类序号刊物简称刊物全称出版社网址1 TKDD ACM Transactions on Knowledge Discovery from Data ACM/pubs/tkdd/2 AEI Advanced Engineering Informatics Elsevier/wps/find/journaldescription.cws_home/622240/3 DKE Data and Knowledge Engineering Elsevier/science/journal/0169023X4 DMKD Data Mining and Knowledge DiscoverySpringer/content/100254/5 EJIS European Journal of Information Systems The OR Society/ejis/6 GeoInformatica Springer /content/1573-7624/7 IPM Information Processing and Management Elsevier/locate/infoproman8 Information Sciences Elsevier /locate/issn/002002559 IS Information Systems Elsevier/information-systems/10 JASIST Journal of the American Society for Information Science and TechnologyAmerican Society for Information Science and Technology /Publications/JASIS/jasis.html11 JWS Journal of Web Semantics Elsevier /locate/inca/67132212 KIS Knowledge and Information Systems Springer /journal/1011513 TWEB ACM Transactions on the Web ACM /三、C类序号刊物简称刊物全称出版社网址1 DPD Distributed and Parallel Databases Springer/content/1573-7578/2 I&M Information and Management E lsevier /locate/im/3 IPL Information Processing Letters Elsevier /locate/ipl4 Information Retrieval Springer /issn/1386-45645 IJCIS International Journal of Cooperative Information Systems World Scientific/ijcis6 IJGIS International Journal of Geographical Information Science Taylor & Francis/journals/tf/13658816.html7 IJIS International Journal of Intelligent Systems Wiley/jpages/0884-8173/8 IJKM International Journal of Knowledge Management IGI/journals/details.asp?id=42889 IJSWIS International Journal on Semantic Web and Information Systems IGI/10 JCIS J ournal of Computer Information Systems IACIS/web/journal.htm11 JDM Journal of Database Management IGI-Global/journals/details.asp?id=19812 JGITM Journal of Global Information Technology Management Ivy League Publishing/bae/jgitm/13 JIIS Journal of Intelligent Information Systems Springer/content/1573-7675/14 JSIS Journal of Strategic Information Systems Elsevier/locate/jsis一、以下是一些数据挖掘领域专家牛人的网站,有很多精华,能开阔研究者的思路,在此共享:1.Rakesh Agrawal主页:/en-us/people/rakesha/ 数据挖掘领域唯一独有的关联规则研究的创始人,其主要的Apriori算法开启了这一伟大的领域。
数据挖掘教学大纲
数据挖掘教学大纲一、引言1.1 课程背景数据挖掘是一门综合性学科,结合了统计学、机器学习、数据库技术等多个领域的知识和技术,旨在从大规模数据集中发现有价值的信息和模式。
1.2 课程目标本课程旨在培养学生对数据挖掘的基本概念、方法和技术的理解和应用能力,使其能够运用数据挖掘技术解决实际问题。
二、课程内容2.1 数据挖掘概述2.1.1 数据挖掘定义和基本任务2.1.2 数据挖掘过程和流程2.1.3 数据挖掘应用领域和案例介绍2.2 数据预处理2.2.1 数据清洗和去噪2.2.2 数据集成和转换2.2.3 数据规范化和归一化2.3 数据挖掘算法2.3.1 分类算法2.3.1.1 决策树算法2.3.1.2 朴素贝叶斯算法2.3.1.3 支持向量机算法2.3.2 聚类算法2.3.2.1 K均值算法2.3.2.2 层次聚类算法2.3.2.3 密度聚类算法2.3.3 关联规则挖掘算法2.3.3.1 Apriori算法2.3.3.2 FP-Growth算法2.4 模型评估和选择2.4.1 训练集和测试集划分2.4.2 交叉验证2.4.3 模型评估指标2.5 数据可视化2.5.1 数据可视化基本原理2.5.2 常用数据可视化工具和技术三、教学方法3.1 理论讲授通过课堂讲解,介绍数据挖掘的基本概念、方法和技术,以及相关的应用案例。
3.2 实践操作通过实验和案例分析,让学生实际操作数据挖掘工具和算法,加深对理论知识的理解和应用能力。
3.3 课堂讨论鼓励学生参预课堂讨论,分享自己的观点和经验,提高学生的思维能力和问题解决能力。
四、教学评价4.1 课堂表现考察学生课堂参预度、提问和回答问题的能力,以及对理论知识的理解程度。
4.2 实验报告要求学生完成一定数量的实验,并撰写实验报告,评估学生对数据挖掘算法和工具的实际应用能力。
4.3 期末考试考察学生对课程内容的整体掌握程度,包括理论知识和实际应用能力。
五、参考教材1. Han, J., Kamber, M., & Pei, J. (2022). Data mining: concepts and techniques. Morgan Kaufmann.2. Tan, P. N., Steinbach, M., & Kumar, V. (2022). Introduction to data mining. Pearson Education.六、教学资源1. 数据挖掘软件:如RapidMiner、Weka等2. 数据集:包括公开数据集和自行采集的数据集七、课程进度安排本课程共分为16周,每周2学时,具体进度安排如下:1. 第1-2周:引言和数据挖掘概述2. 第3-4周:数据预处理3. 第5-6周:分类算法4. 第7-8周:聚类算法5. 第9-10周:关联规则挖掘算法6. 第11-12周:模型评估和选择7. 第13-14周:数据可视化8. 第15-16周:复习和总结以上是关于数据挖掘教学大纲的详细内容。
斯坦福大学关于海量数据的挖掘的免费教材《MiningofMassiveDatasets》
MiningofMassiveDatasetsAnand RajaramanKosmix,Inc.Jeffrey D.UllmanStanford Univ.Copyright c 2010,2011Anand Rajaraman and Jeffrey D.UllmaniiPrefaceThis book evolved from material developed over several years by Anand Raja-raman and JeffUllman for a one-quarter course at Stanford.The course CS345A,titled“Web Mining,”was designed as an advanced graduate course, although it has become accessible and interesting to advanced undergraduates. What the Book Is AboutAt the highest level of description,this book is about data mining.However, it focuses on data mining of very large amounts of data,that is,data so large it does notfit in main memory.Because of the emphasis on size,many of our examples are about the Web or data derived from the Web.Further,the book takes an algorithmic point of view:data mining is about applying algorithms to data,rather than using data to“train”a machine-learning engine of some sort.The principal topics covered are:1.Distributedfile systems and map-reduce as a tool for creating parallelalgorithms that succeed on very large amounts of data.2.Similarity search,including the key techniques of minhashing and locality-sensitive hashing.3.Data-stream processing and specialized algorithms for dealing with datathat arrives so fast it must be processed immediately or lost.4.The technology of search engines,including Google’s PageRank,link-spamdetection,and the hubs-and-authorities approach.5.Frequent-itemset mining,including association rules,market-baskets,theA-Priori Algorithm and its improvements.6.Algorithms for clustering very large,high-dimensional datasets.7.Two key problems for Web applications:managing advertising and rec-ommendation systems.iiiiv PREFACE PrerequisitesCS345A,although its number indicates an advanced graduate course,has been found accessible by advanced undergraduates and beginning masters students. In the future,it is likely that the course will be given a mezzanine-level number. The prerequisites for CS345A are:1.Thefirst course in database systems,covering application programmingin SQL and other database-related languages such as XQuery.2.A sophomore-level course in data structures,algorithms,and discretemath.3.A sophomore-level course in software systems,software engineering,andprogramming languages.ExercisesThe book contains extensive exercises,with some for almost every section.We indicate harder exercises or parts of exercises with an exclamation point.The hardest exercises have a double exclamation point.Support on the WebYou canfind materials from past offerings of CS345A at:/~ullman/mining/mining.html There,you willfind slides,homework assignments,project requirements,and in some cases,exams.AcknowledgementsCover art is by Scott Ullman.We would like to thank Foto Afrati and Arun Marathe for critical readings of the draft of this manuscript.Errors were also re-ported by Apoorv Agarwal,Susan Biancani,Leland Chen,Shrey Gupta,Xie Ke, Haewoon Kwak,Ellis Lau,Ethan Lozano,Justin Meyer,Brad Penoff,Philips Kokoh Prasetyo,Angad Singh,Sandeep Sripada,Dennis Sidharta,Mark Storus, Roshan Sumbaly,and Tim Triche Jr.The remaining errors are ours,of course.A.R.J.D.U.Palo Alto,CAJune,2011Contents1Data Mining11.1What is Data Mining? (1)1.1.1Statistical Modeling (1)1.1.2Machine Learning (2)1.1.3Computational Approaches to Modeling (2)1.1.4Summarization (3)1.1.5Feature Extraction (4)1.2Statistical Limits on Data Mining (4)1.2.1Total Information Awareness (5)1.2.2Bonferroni’s Principle (5)1.2.3An Example of Bonferroni’s Principle (6)1.2.4Exercises for Section1.2 (7)1.3Things Useful to Know (7)1.3.1Importance of Words in Documents (7)1.3.2Hash Functions (9)1.3.3Indexes (10)1.3.4Secondary Storage (11)1.3.5The Base of Natural Logarithms (12)1.3.6Power Laws (13)1.3.7Exercises for Section1.3 (15)1.4Outline of the Book (15)1.5Summary of Chapter1 (17)1.6References for Chapter1 (17)2Large-Scale File Systems and Map-Reduce192.1Distributed File Systems (20)2.1.1Physical Organization of Compute Nodes (20)2.1.2Large-Scale File-System Organization (21)2.2Map-Reduce (22)2.2.1The Map Tasks (23)2.2.2Grouping and Aggregation (24)2.2.3The Reduce Tasks (24)2.2.4Combiners (25)vvi CONTENTS2.2.5Details of Map-Reduce Execution (25)2.2.6Coping With Node Failures (26)2.3Algorithms Using Map-Reduce (27)2.3.1Matrix-Vector Multiplication by Map-Reduce (27)2.3.2If the Vector v Cannot Fit in Main Memory (28)2.3.3Relational-Algebra Operations (29)2.3.4Computing Selections by Map-Reduce (32)2.3.5Computing Projections by Map-Reduce (32)2.3.6Union,Intersection,and Difference by Map-Reduce (33)2.3.7Computing Natural Join by Map-Reduce (34)2.3.8Generalizing the Join Algorithm (34)2.3.9Grouping and Aggregation by Map-Reduce (35)2.3.10Matrix Multiplication (35)2.3.11Matrix Multiplication with One Map-Reduce Step (36)2.3.12Exercises for Section2.3 (37)2.4Extensions to Map-Reduce (38)2.4.1Workflow Systems (38)2.4.2Recursive Extensions to Map-Reduce (40)2.4.3Pregel (42)2.4.4Exercises for Section2.4 (43)2.5Efficiency of Cluster-Computing Algorithms (43)2.5.1The Communication-Cost Model for ClusterComputing (44)2.5.2Elapsed Communication Cost (46)2.5.3Multiway Joins (46)2.5.4Exercises for Section2.5 (49)2.6Summary of Chapter2 (51)2.7References for Chapter2 (52)3Finding Similar Items553.1Applications of Near-Neighbor Search (55)3.1.1Jaccard Similarity of Sets (56)3.1.2Similarity of Documents (56)3.1.3Collaborative Filtering as a Similar-Sets Problem (57)3.1.4Exercises for Section3.1 (59)3.2Shingling of Documents (59)3.2.1k-Shingles (59)3.2.2Choosing the Shingle Size (60)3.2.3Hashing Shingles (60)3.2.4Shingles Built from Words (61)3.2.5Exercises for Section3.2 (62)3.3Similarity-Preserving Summaries of Sets (62)3.3.1Matrix Representation of Sets (62)3.3.2Minhashing (63)3.3.3Minhashing and Jaccard Similarity (64)CONTENTS vii3.3.4Minhash Signatures (65)3.3.5Computing Minhash Signatures (65)3.3.6Exercises for Section3.3 (67)3.4Locality-Sensitive Hashing for Documents (69)3.4.1LSH for Minhash Signatures (69)3.4.2Analysis of the Banding Technique (71)3.4.3Combining the Techniques (72)3.4.4Exercises for Section3.4 (73)3.5Distance Measures (74)3.5.1Definition of a Distance Measure (74)3.5.2Euclidean Distances (74)3.5.3Jaccard Distance (75)3.5.4Cosine Distance (76)3.5.5Edit Distance (77)3.5.6Hamming Distance (78)3.5.7Exercises for Section3.5 (79)3.6The Theory of Locality-Sensitive Functions (80)3.6.1Locality-Sensitive Functions (81)3.6.2Locality-Sensitive Families for Jaccard Distance (82)3.6.3Amplifying a Locality-Sensitive Family (83)3.6.4Exercises for Section3.6 (85)3.7LSH Families for Other Distance Measures (86)3.7.1LSH Families for Hamming Distance (86)3.7.2Random Hyperplanes and the Cosine Distance (86)3.7.3Sketches (88)3.7.4LSH Families for Euclidean Distance (89)3.7.5More LSH Families for Euclidean Spaces (90)3.7.6Exercises for Section3.7 (90)3.8Applications of Locality-Sensitive Hashing (91)3.8.1Entity Resolution (92)3.8.2An Entity-Resolution Example (92)3.8.3Validating Record Matches (93)3.8.4Matching Fingerprints (94)3.8.5A LSH Family for Fingerprint Matching (95)3.8.6Similar News Articles (97)3.8.7Exercises for Section3.8 (98)3.9Methods for High Degrees of Similarity (99)3.9.1Finding Identical Items (99)3.9.2Representing Sets as Strings (100)3.9.3Length-Based Filtering (100)3.9.4Prefix Indexing (101)3.9.5Using Position Information (102)3.9.6Using Position and Length in Indexes (104)3.9.7Exercises for Section3.9 (106)3.10Summary of Chapter3 (107)viii CONTENTS3.11References for Chapter3 (110)4Mining Data Streams1134.1The Stream Data Model (113)4.1.1A Data-Stream-Management System (114)4.1.2Examples of Stream Sources (115)4.1.3Stream Queries (116)4.1.4Issues in Stream Processing (117)4.2Sampling Data in a Stream (118)4.2.1A Motivating Example (118)4.2.2Obtaining a Representative Sample (119)4.2.3The General Sampling Problem (119)4.2.4Varying the Sample Size (120)4.2.5Exercises for Section4.2 (120)4.3Filtering Streams (121)4.3.1A Motivating Example (121)4.3.2The Bloom Filter (122)4.3.3Analysis of Bloom Filtering (122)4.3.4Exercises for Section4.3 (123)4.4Counting Distinct Elements in a Stream (124)4.4.1The Count-Distinct Problem (124)4.4.2The Flajolet-Martin Algorithm (125)4.4.3Combining Estimates (126)4.4.4Space Requirements (126)4.4.5Exercises for Section4.4 (127)4.5Estimating Moments (127)4.5.1Definition of Moments (127)4.5.2The Alon-Matias-Szegedy Algorithm for SecondMoments (128)4.5.3Why the Alon-Matias-Szegedy Algorithm Works (129)4.5.4Higher-Order Moments (130)4.5.5Dealing With Infinite Streams (130)4.5.6Exercises for Section4.5 (131)4.6Counting Ones in a Window (132)4.6.1The Cost of Exact Counts (133)4.6.2The Datar-Gionis-Indyk-Motwani Algorithm (133)4.6.3Storage Requirements for the DGIM Algorithm (135)4.6.4Query Answering in the DGIM Algorithm (135)4.6.5Maintaining the DGIM Conditions (136)4.6.6Reducing the Error (137)4.6.7Extensions to the Counting of Ones (138)4.6.8Exercises for Section4.6 (139)4.7Decaying Windows (139)4.7.1The Problem of Most-Common Elements (139)4.7.2Definition of the Decaying Window (140)4.7.3Finding the Most Popular Elements (141)4.8Summary of Chapter4 (142)4.9References for Chapter4 (143)5Link Analysis1455.1PageRank (145)5.1.1Early Search Engines and Term Spam (146)5.1.2Definition of PageRank (147)5.1.3Structure of the Web (151)5.1.4Avoiding Dead Ends (152)5.1.5Spider Traps and Taxation (155)5.1.6Using PageRank in a Search Engine (157)5.1.7Exercises for Section5.1 (157)5.2Efficient Computation of PageRank (159)5.2.1Representing Transition Matrices (160)5.2.2PageRank Iteration Using Map-Reduce (161)5.2.3Use of Combiners to Consolidate the Result Vector (161)5.2.4Representing Blocks of the Transition Matrix (162)5.2.5Other Efficient Approaches to PageRank Iteration (163)5.2.6Exercises for Section5.2 (165)5.3Topic-Sensitive PageRank (165)5.3.1Motivation for Topic-Sensitive Page Rank (165)5.3.2Biased Random Walks (166)5.3.3Using Topic-Sensitive PageRank (167)5.3.4Inferring Topics from Words (168)5.3.5Exercises for Section5.3 (169)5.4Link Spam (169)5.4.1Architecture of a Spam Farm (169)5.4.2Analysis of a Spam Farm (171)5.4.3Combating Link Spam (172)5.4.4TrustRank (172)5.4.5Spam Mass (173)5.4.6Exercises for Section5.4 (173)5.5Hubs and Authorities (174)5.5.1The Intuition Behind HITS (174)5.5.2Formalizing Hubbiness and Authority (175)5.5.3Exercises for Section5.5 (178)5.6Summary of Chapter5 (179)5.7References for Chapter5 (182)6Frequent Itemsets1836.1The Market-Basket Model (184)6.1.1Definition of Frequent Itemsets (184)6.1.2Applications of Frequent Itemsets (185)6.1.3Association Rules (187)6.1.4Finding Association Rules with High Confidence (189)6.1.5Exercises for Section6.1 (189)6.2Market Baskets and the A-Priori Algorithm (190)6.2.1Representation of Market-Basket Data (191)6.2.2Use of Main Memory for Itemset Counting (192)6.2.3Monotonicity of Itemsets (194)6.2.4Tyranny of Counting Pairs (194)6.2.5The A-Priori Algorithm (195)6.2.6A-Priori for All Frequent Itemsets (197)6.2.7Exercises for Section6.2 (198)6.3Handling Larger Datasets in Main Memory (200)6.3.1The Algorithm of Park,Chen,and Yu (200)6.3.2The Multistage Algorithm (202)6.3.3The Multihash Algorithm (204)6.3.4Exercises for Section6.3 (206)6.4Limited-Pass Algorithms (208)6.4.1The Simple,Randomized Algorithm (208)6.4.2Avoiding Errors in Sampling Algorithms (209)6.4.3The Algorithm of Savasere,Omiecinski,andNavathe (210)6.4.4The SON Algorithm and Map-Reduce (210)6.4.5Toivonen’s Algorithm (211)6.4.6Why Toivonen’s Algorithm Works (213)6.4.7Exercises for Section6.4 (213)6.5Counting Frequent Items in a Stream (214)6.5.1Sampling Methods for Streams (214)6.5.2Frequent Itemsets in Decaying Windows (215)6.5.3Hybrid Methods (216)6.5.4Exercises for Section6.5 (217)6.6Summary of Chapter6 (217)6.7References for Chapter6 (220)7Clustering2217.1Introduction to Clustering Techniques (221)7.1.1Points,Spaces,and Distances (221)7.1.2Clustering Strategies (223)7.1.3The Curse of Dimensionality (224)7.1.4Exercises for Section7.1 (225)7.2Hierarchical Clustering (225)7.2.1Hierarchical Clustering in a Euclidean Space (226)7.2.2Efficiency of Hierarchical Clustering (228)7.2.3Alternative Rules for Controlling HierarchicalClustering (229)7.2.4Hierarchical Clustering in Non-Euclidean Spaces (232)7.2.5Exercises for Section7.2 (233)CONTENTS xi7.3K-means Algorithms (234)7.3.1K-Means Basics (235)7.3.2Initializing Clusters for K-Means (235)7.3.3Picking the Right Value of k (236)7.3.4The Algorithm of Bradley,Fayyad,and Reina (237)7.3.5Processing Data in the BFR Algorithm (239)7.3.6Exercises for Section7.3 (242)7.4The CURE Algorithm (242)7.4.1Initialization in CURE (243)7.4.2Completion of the CURE Algorithm (244)7.4.3Exercises for Section7.4 (245)7.5Clustering in Non-Euclidean Spaces (246)7.5.1Representing Clusters in the GRGPF Algorithm (246)7.5.2Initializing the Cluster Tree (247)7.5.3Adding Points in the GRGPF Algorithm (248)7.5.4Splitting and Merging Clusters (249)7.5.5Exercises for Section7.5 (250)7.6Clustering for Streams and Parallelism (250)7.6.1The Stream-Computing Model (251)7.6.2A Stream-Clustering Algorithm (251)7.6.3Initializing Buckets (252)7.6.4Merging Buckets (252)7.6.5Answering Queries (255)7.6.6Clustering in a Parallel Environment (255)7.6.7Exercises for Section7.6 (256)7.7Summary of Chapter7 (256)7.8References for Chapter7 (260)8Advertising on the Web2618.1Issues in On-Line Advertising (261)8.1.1Advertising Opportunities (261)8.1.2Direct Placement of Ads (262)8.1.3Issues for Display Ads (263)8.2On-Line Algorithms (264)8.2.1On-Line and Off-Line Algorithms (264)8.2.2Greedy Algorithms (265)8.2.3The Competitive Ratio (266)8.2.4Exercises for Section8.2 (266)8.3The Matching Problem (267)8.3.1Matches and Perfect Matches (267)8.3.2The Greedy Algorithm for Maximal Matching (268)8.3.3Competitive Ratio for Greedy Matching (269)8.3.4Exercises for Section8.3 (270)8.4The Adwords Problem (270)8.4.1History of Search Advertising (271)xii CONTENTS8.4.2Definition of the Adwords Problem (271)8.4.3The Greedy Approach to the Adwords Problem (272)8.4.4The Balance Algorithm (273)8.4.5A Lower Bound on Competitive Ratio for Balance (274)8.4.6The Balance Algorithm with Many Bidders (276)8.4.7The Generalized Balance Algorithm (277)8.4.8Final Observations About the Adwords Problem (278)8.4.9Exercises for Section8.4 (279)8.5Adwords Implementation (279)8.5.1Matching Bids and Search Queries (280)8.5.2More Complex Matching Problems (280)8.5.3A Matching Algorithm for Documents and Bids (281)8.6Summary of Chapter8 (283)8.7References for Chapter8 (285)9Recommendation Systems2879.1A Model for Recommendation Systems (287)9.1.1The Utility Matrix (288)9.1.2The Long Tail (289)9.1.3Applications of Recommendation Systems (289)9.1.4Populating the Utility Matrix (291)9.2Content-Based Recommendations (292)9.2.1Item Profiles (292)9.2.2Discovering Features of Documents (293)9.2.3Obtaining Item Features From Tags (294)9.2.4Representing Item Profiles (295)9.2.5User Profiles (296)9.2.6Recommending Items to Users Based on Content (297)9.2.7Classification Algorithms (298)9.2.8Exercises for Section9.2 (300)9.3Collaborative Filtering (301)9.3.1Measuring Similarity (301)9.3.2The Duality of Similarity (304)9.3.3Clustering Users and Items (305)9.3.4Exercises for Section9.3 (307)9.4Dimensionality Reduction (308)9.4.1UV-Decomposition (308)9.4.2Root-Mean-Square Error (309)9.4.3Incremental Computation of a UV-Decomposition (310)9.4.4Optimizing an Arbitrary Element (312)9.4.5Building a Complete UV-Decomposition Algorithm (314)9.4.6Exercises for Section9.4 (316)9.5The NetFlix Challenge (317)9.6Summary of Chapter9 (318)9.7References for Chapter9 (320)。
数据挖掘课程大纲
数据挖掘课程大纲课程名称:数据挖掘/ Data Mining课程编号:242023授课对象:信息管理与信息系统专业本科生开课学期:第7学期先修课程:C语言程序设计、数据库应用课程属性:专业教育必修课总学时/学分:48 (含16实验学时)/3执笔人:编写日期:一、课程概述数据挖掘是信息管理与信息系统专业的专业基础课。
课程通过介绍数据仓库和数据挖掘的相关概念和理论,要求学生掌握数据仓库的建立、联机分析以及分类、关联规那么、聚类等数据挖掘方法。
从而了解数据收集、分析的方式,理解知识发现的过程,掌握不同问题的分析和建模方法。
通过本课程的教学我们希望能够使学生在理解数据仓库和数据挖掘的基本理论基础上,能在SQL Server 2005平台上,初步具备针对具体的问题,选择合适的数据仓库和数据挖掘方法解决现实世界中较复杂问题的能力。
Data mining is a professional basic course of information management and information system. Through introducing the related concepts and theories of data warehouse and data mining, it requests students to understand the approaches for the establishment of data warehouse, on-line analysis, classification, association rules, clustering etc. So as to get familiar with the methods of data collection and analysis, understand the process of knowledge discovery, and master the analysis and modeling method of different problems. Through the teaching of this course, students are expected to be equipped with the basic theory of data warehouse and data mining, and the ability to solve complex real life problems on the platform of SQL Server 2005 by selecting the appropriate data warehouse and data mining approaches.二、课程目标1. 了解数据仓库的特点和建立方法;2.学会联机分析;3.掌握分类、关联规那么、聚类等数据挖掘方法;4.理解知识发现的过程。
《大数据挖掘及应用》课程教学大纲 (2022版)
《大数据挖掘及应用》课程教学大纲一、课程基本情况表1 课程基本情况表二、课程简介(中英文版)《大数据挖掘及应用》是计算机科学与技术院智能科学技术的必修课,是掌握数据分析能力的一门重要基础课程。
本课程首先讲授了数据分析的基本知识概念、数据分析预处理的手段,接着从数据分析方法的角度,介绍了数据挖掘关联分析、分类以及聚类三大类算法的基本知识、必要理论基础以及一些经典的数据挖掘算法。
通过对本门课程的学习,学生能够系统地获得数据分析方法的基本概念和理论技术,掌握关联规则分析、分类和聚类等数据挖掘算法,从而使学生学会利用数据预处理和数据挖掘的技术去分析和解决不同行业应用领域中对数据进行处理和获取知识的问题,对培养学生形成良好的计算机科学技术和人工智能领域知识的运用能力有很大的帮助。
《大数据挖掘及应用》是计算机科学与技术学院智能科学与技术专业的必修课,是培养学生具备数据分析能力的重要专业课程。
本课程教学内容涵盖了数据分析从特征提取,特征工程直至模型构建和可视化的全流程。
具体包括数据分析的基本知识概念,各种不同数据分析预处理的手段,以及不同类型的经典数据分析方法,如数据分析的关联分析、无标签分析以及有标签分析三大类算法的基本知识和理论原理。
和实际工程应用中的数据仓库基础知识介绍。
三、课程目标通过本课程的学习,使学生系统地获得数据挖掘基本知识和基本理论;本课程重点学习关联规则挖掘算法、分类和聚类算法,并注重培养学生熟练的编程能力和较强的抽象思维能力﹑逻辑推理能力﹑以及从海量数据中挖掘知识的能力,有助于学生能够利用相关算法去分析法和解决一些实际问题,为学习后续课程和进一步增强计算机编程能力奠定必要的算法基础.课程目标对应的学生知识和能力要求如下:课程目标1: 掌握数据挖掘基本概念和数据预处理知识(支撑毕业要求2.2)课程目标2:掌握关联规则分析、分类分析、聚类分析、深度学习中的经典算法,熟悉算法原理和理论基础(支撑毕业要求3.2)课程目标3: 掌握关联规则分析、分类分析、聚类分析、深度学习中的实验评价指标(支撑毕业要求4.2)课程目标4:熟悉分布式与并行计算基本概念及技术知识,能够对各类数据分析算法进行综合运用,具备分析和解决复杂工程实际问题的能力(支撑毕业要求5.3)课程目标5:通过撰写报告和口头表达,具有良好的沟通交流能力(支撑毕业要求10.1)四、“立德树人”育人内涵结合数据挖掘课程的相关教学内容,通过对数据分析算法与应用技术的讲授、课程大作业、前沿技术探讨等教学组织形式,在培养学生的创新意识和复杂工程问题解决能力的同时,培养学生的辩证思维、人工智能伦理和法律意识,以及求真务实精益求精的专业精神,踏实严谨的科学素养和理论联系实际的学习与创新方法,引导学生认识到新一代人工智能技术变革带来的机遇与挑战,爱党爱国,自觉践行社会主义核心价值观,坚定理想信念,勇担时代使命。
大数据相关书籍
1、数据挖掘导论(完整版)作者:(美)陈封能,(美)斯坦巴赫,(美)库玛尔著,范明等译出版社:人民邮电出版社2、大数据:技术与应用实践指南赵刚3、O'Reilly:Hadoop权威指南(第2版)清华大学出版社4、数据挖掘:概念与技术(原书第3版)机械工业出版社 [美] Jiawei Han,等著范明,孟小峰译5、大数据:互联网大规模数据挖掘与分布式处理 [美]Anand Rajaraman,[美]Jeffrey David Ullman著王斌译人民邮电出版社6、Hadoop实战(第2版)陆嘉恒著7、数据时代 [英]维克托·迈尔-舍恩伯格,[英]肯尼思·库克耶著盛杨燕,周涛译8、Hadoop技术内幕:深入解析Hadoop Common和HDFS架构设计与实现原理蔡斌,陈湘萍著9、Hadoop技术内幕:深入解析MapReduce架构设计与实现原理董西成著10、数据挖掘与数据化运营实战:思路、方法、技巧与应用卢辉著11、分布式云数据中心的建设与管理郑叶来,陈世峻编12、大规模分布式存储系统:原理解析与架构实战杨传辉著13、数据挖掘技术:应用于市场营销、销售与客户关系管理(第3版) [美] 林那夫(Gordon S. Linoff),[美] 贝里(Michael J.A.Berry)著巢文涵,张小明,王芳译清华大学出版社14、驾驭大数据 [美] Bill Franks著15、企业级数据仓库原理、设计与实践16、移动的帝国,作者: 曾航 / 刘羽 / 陶旭骏出版社: 浙江大学出版社副标题: 日本移动互联网兴衰启示录出版年: 2014-1-117、用户体验的要素,作者: Jesse James Garrett 出版社: 机械工业出版社副标题: 以用户为中心的Web设计译者: 范晓燕18、大数据云图作者: 大卫•芬雷布 (David Feinleib) 出版社: 浙江人民出版社副标题: 如何在大数据时代寻找下一个大机遇原作名: BIG DATA DEMYSTIFIED:How Big Data Is Changing The Way We Live, Love and Learn 译者: 盛杨燕出版年: 2013-12-1。
《数据挖掘导论》课件
详细描述
KNIME是一款基于可视化编程的数据挖掘工具,用户 可以通过拖拽和连接不同的数据流模块来构建数据挖掘 流程。它提供了丰富的数据挖掘和分析功能,包括分类 、聚类、关联规则挖掘、时间序列分析等,并支持多种 数据源和输出格式。
Microsoft Azure ML
总结词
云端的数据挖掘工具
详细描述
Microsoft Azure ML是微软Azure云平台上的数据挖掘工具,它提供了全面的数据挖掘和分析功能, 包括分类、聚类、关联规则挖掘、预测建模等。它支持多种数据源和输出格式,并提供了强大的可扩 展性和灵活性,方便用户在云端进行大规模的数据挖掘任务。
03
数据挖掘过程
数据准备
01
数据清洗
去除重复、错误或不完整的数据, 确保数据质量。
数据集成
将多个来源的数据整合到一个统一 的数据集。
03
02
数据转换
将数据从一种格式或结构转换为另 一种,以便于分析。
数据归一化
将数据缩放到特定范围,以消除规 模差异。
04
数据探索
数据可视化
通过图表、图形等展示数据的分布和关系。
序列模式挖掘
总结词
序列模式挖掘是一种无监督学习方法,用于 发现数据集中项之间具有时间顺序关系的有 趣模式。
详细描述
序列模式挖掘广泛应用于股票市场分析、气 候变化研究等领域。常见的序列模式挖掘算 法包括GSP、PrefixSpan等。这些算法通过 扫描数据集并找出项之间具有时间顺序关系 的模式,如“股票价格在某段时间内持续上
高维数据挖掘
高维数据的降维
高维数据的聚类和分类
利用降维技术如主成分分析、线性判 别分析等,将高维数据降维到低维空 间,以便更好地理解和分析数据。
Web数据挖掘现状分析(一)
Web 数据挖掘现状分析(一)摘要:随着Internet/Web 技术的快速普及和迅猛发展,使各种信息可以以非常低的成本在网络上获得,如何在这个全球最大的数据集合中发现有用信息成为数据挖掘研究的热点。
Web 数据挖掘是目前数据挖掘领域中的一个很重要的研究领域,文章介绍了Web 数据挖掘研究领域的现状及发展。
状及发展。
关键词:数据挖掘;Web 挖掘挖掘Abstract:Withtherapiddevelopmentandpopulariza onofInternet/Webtech nology,awiderangeofinforma oncanbeaccessedinthenetworkatverylowcos t.ThefocusofdataminingisHowtofindusefulinforma onintheworld'slargestd atacollec on.Webminingisaveryimportantresearchinthefieldofdatamining.T hispaperoutlinestheareasofWebdataminingresearchanditsstatusquoandde velopment.Keywords:datamining;webmining 数据挖掘(DataMining,DM)是指从大量数据中提取或“挖掘”知识,即从存放在数据库、数据仓库或其他信息库中的大量数据中挖掘知识的过程。
随着以数据库、数据仓库等数据仓储技术为基础的信息系统在各行各业的应用,海量数据不断产生,随之而来的问题,便是如此多的数据让人难以消化,无法从表面上看出他们所蕴涵的有用信息。
如何从大量的数据中找到真正有用的信息成为人们关注的焦点,数据挖掘技术也正是伴随着这种需求从研究走向应用。
各种类似Google 、百度等的搜索引擎也层出不穷,Web 数据挖掘的应用在现实中不断体现。
斯坦福数据挖掘Introduction
斯坦福数据挖掘Introduction 感谢敖⼭、薛霄⽼师把我引进了统计学和现代服务业的⼤门.......⾄少是长见识了。
查相似项检索时发现的。
中间⼀部分资料来⾃厦门⼤学数据库实验室,感谢⼤⽜们的传道授业,爱你们。
查资料时发现很多计算机相关(⽐如分布式、数据库)的研究⽣都曾经是数学系的学⽣。
ppt是英⽂的,笔者做了简单翻译。
⼀.英语单词 subsidiary :附带的 Standard Deviation:标准差 outline:梗概,⼤纲 spam:垃圾邮件 extrac:提取 crap:废物,排泄物 objection:反对 vague:模糊的 violate:违反,妨碍,亵渎 suspicious:可疑的 at length:详细地 moral:道德上的,寓意,教训⼆.课程⼤纲 测虚假(bogus)数据。
可视化(visualization):⽤图代替兆字节(Megabyte)的输出。
Databases: concentrate on large-scale (non-main-memory) data. AI (machine-learning): concentrate on complex methods, small data. Statistics: concentrate on models. 模型和过程分析:对数据库⼈员说,数据挖掘是过程分析的极端表现形式;对于统计学⼈员,数据挖掘是模型的推断(inference),结果是模型的参数。
Given a billion numbers, a DB person would compute their average and standard deviation.A statistician might fit the billion points to the best Gaussian distribution and report the mean and standard deviation of that distribution.2.1 课程⼤纲(⼀)课程⼤纲(⼀) Map-Reduce and Hadoop. Association rules, frequent itemsets. PageRank and related measures of importance on the Web (link analysis ). Spam detection. Topic-specific search. Recommendation systems. Collaborative filtering.2.2 课程⼤纲(⼆) Finding similar sets.Minhashing, Locality-Sensitive hashing. Extracting structured data (relations) from the Web. Clustering data. Managing Web advertisements. Mining data streams. 充满意义的回答。
Web数据的挖掘方法研究.doc
Web数据的挖掘方法研究
数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。
数据挖掘(Data Mining),是指从大型数据库或数据仓库中提取隐含的、未知的及有潜在应用价值的信息或模式。
它是数据库研究中的一个很有应用价值的新领域,融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术。
Web挖掘为人工智能领域中数据挖掘技术的一个热点,它实现对Web存取模式、Web结构和规则,以及动态的Web内容的查找功能,是一个更具挑战性的课题。
本文研究的主要内容是Web内容(文本)挖掘。
文中首先对数据挖掘及Web挖掘技术进行了概述,对Web数据的特点作了分析和研究,比较了XML与传统数据库的区别,然后选择XML文档来保存数据。
其次,根据Web挖掘的任务,给出了本课题的实现方法:神经网络与Boosting 算法相结合进行文本分类。
本课题的实现方法与单纯基于神经网络的方法相比,在样本的识别率和分类的准确率上都有所提高。
目前,该系统已经能试验性运行,效果良好,达到了预期的学习和实践的目的,为进一步研究Web挖掘奠定了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Introduction to Web Mining
What is Web Mining?
Discovering useful information from the World-Wide Web and its usage patterns
How to organize hardware/software to mine multi-terabye data sets
Without breaking the bank!
Web Mining topics
Web graph analysis Power Laws and The Long Tail Structured data extraction Web advertising Systems Issues
Ads vs. search results
Ads vs. search results
Search advertising is the revenue model
Multi-billion-dollar industry Advertisers pay for clicks on their ads
Web graph analysis Power Laws and The Long Tail Structured data extraction Web advertising Systems Issues
Two Approaches to Analyzing Data
Machine Learning approach
How to explain the discrepancy?
The web as a graph
Pages = nodes, hyperlinks = edges
Ignore content Directed graph
High linkage
10-20 links/page on average Power-law degree distribution
Also: TV networks, movie theaters,…
The web enables near-zero-cost dissemination of information about products More choice necessitates better filters
Cluster of commodity nodes
Systems Issues
Web data sets can be very large
Tens to hundreds of terabytes
Cannot mine on a single server!
Need large farms of servers
Web Mining v. Data Mining
Structure (or lack of it)
Textual information and linkage structure
Scale
Data generated per day is comparable to largest conventional data warehouses
Interesting problems
What ads to show for a search? If I’m an advertiser, which search terms should I bid on and how much to bid?
Web Mining topics
Speed
Often need to react to evolving usage patterns in real-time (e.g., merchandising)
Web Mining topics
Web graph analysis Power Laws and The Long Tail Structured data extraction Web advertising Systems Issues
Project
Lots of interesting project ideas
If you can’t think of one please come discuss with us
Infrastructure
Aster Data cluster on Amazon EC2 Supports both MapReduce and SQL
Power-law degree distribution
Source: Broder et al, 2000
Power-laws galore
Structure
In-degrees Out-degrees Number of pages per site
Usage patterns
Data
Netflix ShareThis Google WebBase TREC
Emphasizes sophisticated algorithms e.g., Support Vector Machines Data sets tend to be small, fit in memory
Data Mining approach
Emphasizes big data sets (e.g., in the terabytes) Data cannot even fit on a single disk! Necessarily leads to simpler algorithms
Extracting Structured Data
Extracting structured data
Web Mining topics
Web graph analysis Power Laws and The Long Tail Structured data extraction Web advertising Systems Issues
Web Mining topics
Web graph analysis Power Laws and The Long Tail Structured data extraction Web advertising Systems Issues
Size of the Web
Number of pages
Philosophy
In many cases, adding more data leads to better results that improving algorithms
Netflix Google search Google ads
More on my blog: Datawocky ()
Technically, infinite Much duplication (30-40%) Best estimate of “unique” static HTML pages comes from search engine claims
Until last year, Google claimed 8 billion(?), Yahoo claimed 20 billion Google recently announced that their index contains 1 trillion pages
Discover communities of related pages
Hubs and Authorities
Detect web spam
Trust rank
Web Mining topics
Web graph analysis Power Laws and The Long Tail Structured data extraction Web advertising Systems Issues
Number of visitors Popularity e.g., products, movies, music
The Long Tail
Source: Chris Anderson (2004)
The Long Tail
Shelf space is a scarce commodity for traditional retailers
Structure of Web graph
Let’s take a closer look at structure
Broder et al (2000) studied a crawl of 200M pages and other smaller crawls Bow-tie structure
Systems architecture
CPU Machine Learning, Statistics Memory “Classical” Data Mining Disk
Very Large-Scale Data Mining
CPU Mem Disk
CPU Mem Disk
…
CPU Mem Disk
Recommendation engines (e.g., Amazon) How Into Thin Air made Touching the Void ning topics
Web graph analysis Power Laws and The Long Tail Structured data extraction Web advertising Systems Issues