康普顿效应与光电效应的异同
光电效应和康普顿散射
光电效应和康普顿散射光电效应和康普顿散射是两种重要的物理现象,它们在量子力学和相对论物理领域都扮演着重要角色。
本文将分别对光电效应和康普顿散射进行深入探讨,以帮助读者更好地理解这两个现象的本质和影响。
光电效应是指当光束照射到金属表面时,金属材料中的自由电子受到激发而逸出金属表面的现象。
这一现象是由爱因斯坦在1905年在其光量子假说中首次提出的。
根据光电效应的基本原理,光子的能量必须大于金属材料的功函数(即光子的能量必须大于金属中束缚电子所需的最小能量),才能引起电子的逸出。
光电效应的光子能量与逸出电子的动能之间存在正比关系,这一关系被称为光电效应方程,即E=hf-Φ,其中E为电子的动能,h为普朗克常数,f为光子的频率,Φ为金属中的功函数。
康普顿散射是指当X射线束照射到物质表面时,X射线光子与物质中的电子发生散射并改变光子的能量和动量的过程。
这一现象是由美国物理学家康普顿在1923年首次观察到的。
康普顿散射的基本原理是根据光子的波粒二象性,当X射线光子与物质中的电子碰撞后,光子会失去能量并改变方向,而散射后的光子的能量与散射角度之间存在一定关系,这一关系被称为康普顿散射公式。
康普顿散射公式为Δλ=h/mc(1-cosθ),其中Δλ为光子波长的变化量,h为普朗克常数,m为电子的质量,c为光速,θ为散射角。
综上所述,光电效应和康普顿散射是两种重要的物理现象,它们在解释光子-物质相互作用过程中起着至关重要的作用。
通过深入了解光电效应和康普顿散射的基本原理和公式,我们可以更好地理解光子在与物质相互作用时的行为规律,为应用于医学影像学、材料科学等领域提供理论基础和实际指导。
愿本文对读者有所帮助,引起更多关于光电效应和康普顿散射的思考与探讨。
光电效应和康普顿散射效应的关系
光电效应和康普顿散射效应的关系光电效应和康普顿散射效应是现代物理学中两个十分重要的概念,它们在物理学和工程学中都有着广泛的应用。
本文将探讨光电效应和康普顿散射效应之间的关系。
一、光电效应光电效应是指当一个物质中的电子通过吸收光子的能量而跃迁到更高的能级时,它能够从物质中释放出来。
光电效应的物理基础是光电子现象,即光子在相互作用中能够产生、消失或转换为相反方向的光子。
光电效应不仅具有理论位于,而且在实际应用中也有广泛的应用。
例如,光电效应被广泛用于光能转换,如太阳能电池板和光电二极管等。
二、康普顿散射康普顿散射是指当一束X射线与介质中的自由电子碰撞时,X射线的能量留在自由电子中,造成X射线散射,其散射角度与原始射线角度有关。
康普顿散射的基本物理原理是能量守恒和动量守恒。
康普顿散射同样具有非常广泛的应用,如用于测量材料的密度和厚度,以及用于医学影像诊断等。
三、光电效应与康普顿散射的关系光电效应和康普顿散射都是X射线和伽马射线与物质相互作用的两个主要过程。
虽然光电效应和康普顿散射本质上是截然不同的两个物理过程,但它们之间是密不可分的。
当一个光子与原子中的电子相互作用时,如果光子的能量足够高,那么这个光子将充满光电效应的概率,即该光子将吸收并将其所有能量转移到该电子。
而如果光子的能量比电子束缚能量低得多,光子就很可能被散射或透射而不会被吸收。
康普顿散射则是在高能量辐射与物质相互作用时产生的。
这项过程中的散射粒子是电子,并且散射中的光子产生的是康普顿效应,这种效应是利用从X射线中散射相对较小的能量,在医疗和科学中产生重要的应用。
总之,光电效应和康普顿散射都是现代物理学中非常重要的概念,在各种领域都有着广泛的应用。
光电效应和康普顿散射之间的关系可以帮助我们更好地理解这两种现象的本质和特征,也可以为我们在实践中更好地利用它们的特性提供指导。
康普顿效应与光电效应
康普顿效应与光电效应
康普顿效应与光电效应都是光子和物质相互作用的过程,各有其特点。
康普顿效应是指光子与物质发生碰撞并被散射的现象,是物质对入射
光子进行反应的一种表现。
光电效应则是指光子能量足够大时会使金
属内部电子跃迁的现象,使得金属逐渐失去电子而导致金属自身的化
学性质发生改变。
两者都是光子与物质之间能量转移的形式,只是转
移的方式略有不同。
康普顿效应发生时,光子与物质原子进行碰撞,光子以一定能量和方
向进入物质原子内部。
在这个过程中,光子会向物质原子内部传递部
分能量,并在物质原子内部轰击到电子上。
此时,电子会重新发射出
一束经过散射的光子,散射的光子方向与入射的光子方向不一致,而
且能量变小。
这就是康普顿效应的发生,其实质就是一个能量和动量
守恒的过程。
与康普顿效应不同,光电效应是光子相对于金属原子足够大能量时,
使得金属原子的电子跃迁的过程。
当金属受到光子的能量冲击时,金
属内部的电子可以获得光的能量而从原子晶格中逸出。
逸出的电子可
以用于电气、电子学和半导体器件等个领域,使得设备的性能得到提高。
总而言之,康普顿效应和光电效应特点各异,应用广泛。
康普顿效应很重要因为它使科学家们能够进一步理解光与物质交互反应的本质,加深对物质性质的研究;而光电效应则在电气、电子学和半导体器件等行业中起着不可或缺的作用,可以成为许多先进装备的构成部分。
这两个过程已经成为了现代物理学领域的重要内容,未来也需要在这些领域的进一步探索和应用。
康普顿效应与光电效应的异同
固体表面电子束缚较弱,可视为近自由电子.
电子热运动能量 h ,可近似为静止电子.
电子反冲速度很大,需用相对论力学来处理.
(2)理论分析 能量守恒
y h e
h hc0v 0e m 0动0 c量2 hc守 恒h e mm v2chec0 0 e0
ec
j
mv
x
m 2v2h2 0 2h2 22h2 0 co s
(2) 解释实验
爱因斯坦方程 h 1mv2 W
2
逸出功与 材料有关
对同一种金属, W一定, Ek ,与光强无关
几种金属的逸出功
金属 钠 铝 锌 铜 银 铂
W/eV 2.28 4.08 4.31 4.70 4.73 6.35
频率 一定,光强 越大则单位时间打在金属表面的光 子数就越多,产生光电效应时单位时间被激发而逸出的 光电子数也就越多,故饱和电流 与光强 成正比。
光控继电器、自动控制、 自动计数、自动报警等.
光控继电器示意图
光
放大器 接控件机构
光电倍增管
1.实验装置
2. 实验结果
1920年,美国物理学家康普顿在观察X射线被物质散射时, 发现散射线中含有波长发生变化了的成分.
~ j 实验
波长偏移量偏移—散射角实验
射
散射角
线
散射体
源
不同 物质 实验
康普顿公式 h(1co)s2hsi2n
m 0c
m 0c 2
(3)结论
C(1c os)
散射光波长的改变量 仅与有关
0,0
π , ( )ma 2 xCh
散射光子能量减小
0, 0
ec0
0
e0
yehce
j
浅议光电效应和康普顿效应的异同
浅议光电效应和康普顿效应的异同作者:顾家国来源:《中学物理·高中》2014年第02期近代物理证明,光除了具有波动性之外,还具有粒子性.光具有粒子性,最好的例证就是著名的光电效应和康普顿效应.光电效应与康普顿效应研究的都是光子与电子之间的相互作用,都是光具有粒子性的体现,两者具有一些共性,但还存在着重要的不同.1光电效应与康普顿效应不同之处1.1光电效应与康普顿效应实验现象不同光电效应:当光照射到金属或半导体材料表面上时,如果入射光的频率超过某一数值时,金属或半导体材料表面就有明显的电子发射出来,逸出的电子称为光电子,这种现象称为光电效应.1.2光电效应与康普顿效应产生条件不同光电效应:能量较低的光子与物质碰撞时,光子整个地被物质所吸收,光子的全部能量被物质原子中的核外电子吸收,电子把所得到的能量,一部分用于克服原子核对它的约束,剩下的能量就作为电子的动能飞出物质表面,产生光电效应.因此,产生光电效应的条件是入射光子的能量较低,其能量和金属的逸出功在同一数量级上,即几个电子伏特的能量,在可见光和紫外区,就能观察到明显的光电效应.康普顿效应:一个具有足够能量的入射光子打到原子中的一个电子时,可能发生入射光子和电子之间发生的相互作用,好像两个小球之间的弹性碰撞,产生散射,碰撞后散射光子的波长变长,产生康普顿效应.产生康普顿效应的条件是光子的能量较大,一般达到是几千电子伏特到近数万电子伏特.能量较高的X射线和能量较低的γ射线照射到物质上时,可以观察到较为明显的康普顿效应,当然也能观察到光电效应.当光子能量增加到百万电子伏特以上时,它从原子核旁边经过时,在核库仑场作用下,辐射光子可能转化成一个正电子和一个负电子,这种现象称作电子对效应.这种情况下会同时发生光电效应、康普顿效应和电子对效应,电子对效应占主导地位.当然三种效应发生的比重跟元素的原子序数相关很大.1.3光电效应与康普顿效应中,电子对光子能量的吸收程度不同在光电效应中,一个受束缚的电子会完全吸收一个光子的能量,然后克服金属对它的束缚作用,从金属表面逸出,原来的光子消失.在康普顿效应中,X射线被散射后,产生波长变长的射线.光子在和电子发生相互作用时电子吸收了光子的部分能量,表现为电子的动能增加,其余部分的能量表现为新光子的形成,新光子的能量小于入射光子的能量,所以散射光中出现了波长较长的一些光子.这个过程可以看成一个光子与一个原来静止的自由电子发生完全弹性碰撞,从而产生一个新的光子的过程.所以说在康普顿效应中,电子吸收了光子的一部分能量.1.4光电效应与康普顿效应在物理原理解释中的模型不同光电效应的物理模型是较低能量的光子和束缚电子发生相互作用,相当于发生非弹性碰撞,产生光电子.分别由能量守恒定律和动量守恒定律决定的电子运动速度不相同,说明自由电子吸收光子这一过程不能同时满足自然界普遍存在的能量守恒定律和动量守恒定律,表明这一过程是不能发生的.用类似的方法,可以证明处于运动状态的自由电子也不能吸收光子,只有束缚电子才能吸收光子而产生光电效应,因为电子被束缚,故电子要飞出来,必然克服一束缚能量hν=12mv2+W,即逸出功.根据爱因斯坦光电效应方程,能圆满地解释光电效应的所有规律:(1)根据一个电子吸收一个光子能量hν,逸出金属后的动能12mv2≥0,由光电效应方程推理得到必hν≥W,其中hν0=W,ν0=Wh,不同金属逸出功不同,故极限频率不同,这就解释了极限频率的存在和不同金属极限频率不同;(2)对同一种金属,W为一定值,所以,逸出电子的最大初动能随入射光频率的增大而线性地增大;光的强度越大,即单位时间内入射金属表面的光的能量大,而光的能量与光的频率和光子的数目有关,当光的频率一定时,单位时间内入射的光子数目就多,发生光电效应时,从金属中逸出的电子数目也多,形成的饱和光电流就大,而且成正比关系;(3)当光子与金属中的电子相互作用时,电子能够一次性全部吸收掉光子的能量,因而光电效应的产生无需积累能量的时间,几乎是一触即发.康普顿效应的物理模型是较高能量的光子和自由的静止电子相互作用,发生完全弹性碰撞,产生光子和电子的散射现象.由于原子外层的电子的能量(约10 eV)比X射线能量(约104~105 eV)要小得多,这些电子的动量也比光子的动量要小得多,因此作为近似,可以把这些电子看成是自由的并且是静止的.在碰撞过程中,光子与电子作为一个系统,遵守能量守恒定律与动量守恒定律.入射光中的光子与物质中的电子作弹性碰撞,碰撞后光子的能量减少,由E=hν=hcλ,故波长变长,这就是较长波长的散射光.对于原子内层电子,因结合能较大不能忽略,故电子不能看成是自由的,这时光子将与整个原子发生碰撞,由于原子质量远大于光子质量,碰撞结果是光子能量改变甚微,光的波长几乎不变,这就是散射中有原散射光的原因.随着原子序数的增加,原子中外层电子在全部电子中所占比例减小,即可以看成自由电子的电子数减少,而原波长的散射光增加,波长增加的散射光减少,这就是随着原子序数的增加,康普顿效应变得不显著的原因.物理教材中,讨论光电效应时,能量守恒,动量不守恒,因为电子是束缚的;而讨论康普顿效应时,能量和动量都守恒.2光电效应与康普顿效应的相同之处光电效应和康普顿效应在物理本质上是相同的,都是光子与电子之间的相互作用,都是光具有粒子性的体现,它们研究的对象是光束中的光子与散射物质中的特殊电子之间产生相互作用;它们都是光子与原子系统的碰撞,只是由于入射光子的能量不同,才产生不同的结果;两种效应所对应的爱因斯坦光电效应方程和康普顿公式,都是建立在光子假设的基础上的;另外在研究两种效应时都用到了能量守恒定律.总之,光电效应或康普顿效应的发生,只是光子与电子在不同条件作用下的一种宏观统计结果.按照量子理论,我们无法确切地预言这些现象中,到底哪一种会发生,只能给出各种现象可能出现的几率,而对于任何单个的光子,我们永远不能确切地预言它在与电子碰撞时究竟会产生那种现象.。
光电效应、康普顿效应
h
h 为普朗克常数 h=6.626176 × 10-34 J · s
(2)光量子具有“整体性”,一个光子只能整个地被电子吸 收或放出。
3 、对光电效应的解释
从金属表面逸出的最大初动能,随入射光的频率 v 呈线性增加。
(3)只有当入射光频率大于一定的红限频率0 时,才会产生 光电效应。
1 2 mv m eU a 2
U a k U 0
U0 k
1 2 mv m ek eU 0 2
1 2 mv m 0 2
U0 0 称为红限频率 k
GD K A
光
G V
2 、光电效应的实验规律 (1)饱和光电流强度 I m 与入射光强成正比(ν不 变)。说明单位时间内从 阴极逸出的光电子数和光 强成正比。
光电效应伏安特性曲线 饱 I s2 和 电 截 I 流 s1 止 电 压
I
光 强 较 强 光 强 较 弱
当光电流达到饱和时, 阴极 K 上逸出的光电子全部 飞到了阳极上。
h 0 m0c h mc
2
2
光子在碰撞后所损失的动量便是电子所获得的动量,由动 量守恒定律 m0
0
n0
h h n 0 n mv
m
和 n 为碰撞前后光子运动方向上的单位矢量
v 1 2 c
2
0 为入射光波长, 为散射光波长
解出的波长偏移:
h 1 cos 0 m0 c
光电效应和爱因斯坦的光量子论
一、光电效应
19世纪末,人们已发现,当光照射某些金属表面上时,电子会 从金属表面逸出。这种现象称为光电效应。产生的电子称为光 电子,光电子在电场加速下形成光电流。
浅议光电效应和康普顿效应的异同
浅议光电效应和康普顿效应的异同作者:顾家国来源:《中学物理·高中》2014年第02期近代物理证明,光除了具有波动性之外,还具有粒子性.光具有粒子性,最好的例证就是著名的光电效应和康普顿效应.光电效应与康普顿效应研究的都是光子与电子之间的相互作用,都是光具有粒子性的体现,两者具有一些共性,但还存在着重要的不同.1光电效应与康普顿效应不同之处1.1光电效应与康普顿效应实验现象不同光电效应:当光照射到金属或半导体材料表面上时,如果入射光的频率超过某一数值时,金属或半导体材料表面就有明显的电子发射出来,逸出的电子称为光电子,这种现象称为光电效应.1.2光电效应与康普顿效应产生条件不同光电效应:能量较低的光子与物质碰撞时,光子整个地被物质所吸收,光子的全部能量被物质原子中的核外电子吸收,电子把所得到的能量,一部分用于克服原子核对它的约束,剩下的能量就作为电子的动能飞出物质表面,产生光电效应.因此,产生光电效应的条件是入射光子的能量较低,其能量和金属的逸出功在同一数量级上,即几个电子伏特的能量,在可见光和紫外区,就能观察到明显的光电效应.康普顿效应:一个具有足够能量的入射光子打到原子中的一个电子时,可能发生入射光子和电子之间发生的相互作用,好像两个小球之间的弹性碰撞,产生散射,碰撞后散射光子的波长变长,产生康普顿效应.产生康普顿效应的条件是光子的能量较大,一般达到是几千电子伏特到近数万电子伏特.能量较高的X射线和能量较低的γ射线照射到物质上时,可以观察到较为明显的康普顿效应,当然也能观察到光电效应.当光子能量增加到百万电子伏特以上时,它从原子核旁边经过时,在核库仑场作用下,辐射光子可能转化成一个正电子和一个负电子,这种现象称作电子对效应.这种情况下会同时发生光电效应、康普顿效应和电子对效应,电子对效应占主导地位.当然三种效应发生的比重跟元素的原子序数相关很大.1.3光电效应与康普顿效应中,电子对光子能量的吸收程度不同在光电效应中,一个受束缚的电子会完全吸收一个光子的能量,然后克服金属对它的束缚作用,从金属表面逸出,原来的光子消失.在康普顿效应中,X射线被散射后,产生波长变长的射线.光子在和电子发生相互作用时电子吸收了光子的部分能量,表现为电子的动能增加,其余部分的能量表现为新光子的形成,新光子的能量小于入射光子的能量,所以散射光中出现了波长较长的一些光子.这个过程可以看成一个光子与一个原来静止的自由电子发生完全弹性碰撞,从而产生一个新的光子的过程.所以说在康普顿效应中,电子吸收了光子的一部分能量.1.4光电效应与康普顿效应在物理原理解释中的模型不同光电效应的物理模型是较低能量的光子和束缚电子发生相互作用,相当于发生非弹性碰撞,产生光电子.分别由能量守恒定律和动量守恒定律决定的电子运动速度不相同,说明自由电子吸收光子这一过程不能同时满足自然界普遍存在的能量守恒定律和动量守恒定律,表明这一过程是不能发生的.用类似的方法,可以证明处于运动状态的自由电子也不能吸收光子,只有束缚电子才能吸收光子而产生光电效应,因为电子被束缚,故电子要飞出来,必然克服一束缚能量hν=12mv2+W,即逸出功.根据爱因斯坦光电效应方程,能圆满地解释光电效应的所有规律:(1)根据一个电子吸收一个光子能量hν,逸出金属后的动能12mv2≥0,由光电效应方程推理得到必hν≥W,其中hν0=W,ν0=Wh,不同金属逸出功不同,故极限频率不同,这就解释了极限频率的存在和不同金属极限频率不同;(2)对同一种金属,W为一定值,所以,逸出电子的最大初动能随入射光频率的增大而线性地增大;光的强度越大,即单位时间内入射金属表面的光的能量大,而光的能量与光的频率和光子的数目有关,当光的频率一定时,单位时间内入射的光子数目就多,发生光电效应时,从金属中逸出的电子数目也多,形成的饱和光电流就大,而且成正比关系;(3)当光子与金属中的电子相互作用时,电子能够一次性全部吸收掉光子的能量,因而光电效应的产生无需积累能量的时间,几乎是一触即发.康普顿效应的物理模型是较高能量的光子和自由的静止电子相互作用,发生完全弹性碰撞,产生光子和电子的散射现象.由于原子外层的电子的能量(约10 eV)比X射线能量(约104~105 eV)要小得多,这些电子的动量也比光子的动量要小得多,因此作为近似,可以把这些电子看成是自由的并且是静止的.在碰撞过程中,光子与电子作为一个系统,遵守能量守恒定律与动量守恒定律.入射光中的光子与物质中的电子作弹性碰撞,碰撞后光子的能量减少,由E=hν=hcλ,故波长变长,这就是较长波长的散射光.对于原子内层电子,因结合能较大不能忽略,故电子不能看成是自由的,这时光子将与整个原子发生碰撞,由于原子质量远大于光子质量,碰撞结果是光子能量改变甚微,光的波长几乎不变,这就是散射中有原散射光的原因.随着原子序数的增加,原子中外层电子在全部电子中所占比例减小,即可以看成自由电子的电子数减少,而原波长的散射光增加,波长增加的散射光减少,这就是随着原子序数的增加,康普顿效应变得不显著的原因.物理教材中,讨论光电效应时,能量守恒,动量不守恒,因为电子是束缚的;而讨论康普顿效应时,能量和动量都守恒.2光电效应与康普顿效应的相同之处光电效应和康普顿效应在物理本质上是相同的,都是光子与电子之间的相互作用,都是光具有粒子性的体现,它们研究的对象是光束中的光子与散射物质中的特殊电子之间产生相互作用;它们都是光子与原子系统的碰撞,只是由于入射光子的能量不同,才产生不同的结果;两种效应所对应的爱因斯坦光电效应方程和康普顿公式,都是建立在光子假设的基础上的;另外在研究两种效应时都用到了能量守恒定律.总之,光电效应或康普顿效应的发生,只是光子与电子在不同条件作用下的一种宏观统计结果.按照量子理论,我们无法确切地预言这些现象中,到底哪一种会发生,只能给出各种现象可能出现的几率,而对于任何单个的光子,我们永远不能确切地预言它在与电子碰撞时究竟会产生那种现象.。
光电效应与康普顿效应的区别
光电效应与康普顿效应的区别光电效应与康普顿效应是物理学领域两种重要的现象,它们都涉及到光与物质的相互作用。
本文将详细讨论光电效应与康普顿效应的区别,并解释它们的原理、实验结果以及在实际应用中的重要性。
光电效应是指当一束光照射到金属表面时,如果光的频率大于或等于金属的功函数,即从金属表面将有电子被逸出。
这一效应在1905年由爱因斯坦提出,并为他赢得了诺贝尔物理学奖。
光电效应表明了光可以作为粒子(光子)来描述,且每个光子具有确定的能量。
根据经典电磁理论,当光照射到金属表面时,光的能量应该被均匀地传递给金属晶格中的电子,然后电子通过热激励被逸出。
然而实验观察到,只有当光的频率大于某个临界频率时,才会发生电流的流动。
这与光的频率无关,而与光的强度有关。
根据经典电磁理论,这是无法解释的。
为了解释光电效应,爱因斯坦提出了光的粒子性理论,即光的能量以离散的方式传递给金属表面的电子,而不是以连续的方式。
当光子的能量大于金属的功函数时,能量差将被转化为电子的运动能量,电子被逸出。
由此可见,光电效应是一种粒子-物质相互作用的过程。
与之相比,康普顿效应是光与物质中的自由电子相互作用的现象。
康普顿效应通过散射光子研究了光的波粒二象性。
当X射线或伽马射线与物质中的电子碰撞时,光子的能量部分被电子吸收,并导致电子获得动能。
根据经典波动理论,散射光子的波长应与入射光子的波长相等,而不应该发生波长的移动。
然而实验观察到,入射光子的波长会发生变化,并且变化的波长与散射角度有关,而与入射光子的能量无关。
这一现象表明光也具有粒子性的特征,光的粒子被称为光子。
康普顿效应的理论解释是基于相对论和量子力学的。
根据康普顿散射定律,入射光子与电子的相互作用结果是光子被散射,其动量和能量发生变化。
根据相对论关系式和能量守恒定律,可以推导出康普顿散射公式,即散射光子的波长变化与散射角度和光子的初始波长有关。
康普顿效应表明光是以粒子的形式通过物质传播的,且光子具有动量和能量。
康普顿效应和光电效应
康普顿效应和光电效应康普顿效应和光电效应,这俩东西听起来有点高大上,但其实挺有意思的。
先说说康普顿效应吧。
想象一下你在海滩上,阳光照在你身上,感觉暖洋洋的。
光其实是由小小的光子组成的,就像海浪一样一波一波地向你涌来。
康普顿效应就像一场海洋派对,光子撞上了电子,结果就发生了一些疯狂的事情。
光子的能量被转移到电子上,电子像喝了兴奋剂一样,被撞飞出去。
原本光子的波长也发生了变化,变得更长了。
这个过程有点像你和朋友们在海边玩沙子,沙子被你们一推,就飞到了四处,形成了新的景象。
科学家们通过这个现象,发现了光不仅仅是光,它还有颗粒的特性。
哇,这可是打破了很多人的想法,让大家都觉得光的世界真是奇妙无比。
接下来咱们聊聊光电效应。
说到光电效应,就像是在做一道魔法实验。
阳光照射到某些材料上,特别是金属,这时候那些小电子们就像受到了一种神秘的召唤,突然之间,它们从金属表面跳了出来,简直就像小孩在放风筝,兴奋得飞起来了。
这种现象可不是随随便便就能看到的。
科学家们发现,光的强度不是关键,反而是光的频率,也就是颜色,才是决定电子能否跳出来的因素。
低频的光就像给孩子的零花钱少得可怜,怎么也无法激励他们。
而高频的光就像一大笔奖金,立刻就能让他们跃跃欲试。
爱因斯坦对此可是真心喜欢,他还因此获得了诺贝尔奖呢!这个效应就像让大家领悟到光的另一面,光不仅仅是亮的,它也是一种强大的能量源。
这两种效应让我们对光的理解更深入了,光不再是我们以为的简单现象,而是有着复杂内涵的东西。
康普顿效应和光电效应就像是两位科学界的明星,各自闪烁着不同的光芒。
它们的发现真是给科学界带来了巨大的冲击,仿佛是打开了一扇全新的窗,让我们看到更广阔的世界。
而这些现象不仅仅是理论上的东西,实际上它们对我们的日常生活影响深远。
比如,光电效应在太阳能电池上可是起了大作用。
阳光照射在太阳能板上,光子们像小精灵一样,唤醒了电子,产生电流。
这就是为什么我们可以利用太阳能,既环保又节能。
光电效应和康普顿效应
光电效应和康普顿效应光电效应和康普顿效应,听上去好像是高深的科学理论,但其实它们跟我们生活息息相关。
想象一下,阳光洒在你脸上的那一瞬间,你的心情是不是立刻变得美滋滋?这就是光电效应在作祟。
简单来说,光电效应就是当光线照射到金属表面时,金属里的电子会获得能量,像打了鸡血一样飞出去。
这就像太阳给我们加油,让我们充满活力。
科学家爱因斯坦就是因为这个发现,获得了诺贝尔奖,真是名副其实的天才!他用这个效应,解释了光的粒子性,大家都说他简直是个光学魔法师。
而康普顿效应就更有趣了,听上去有点拗口,但其实就是光子和电子的“对打”。
想象一下,光子就像个小拳手,碰上了电子这个小家伙。
拳头一挥,电子被打得飞了出去,而光子的能量也发生了变化。
简而言之,光子在和电子“交手”的时候,自己也变得不一样了。
这就好比你和朋友玩投篮,投完了球,自己也可能会有点喘气,没那么兴奋了。
康普顿效应告诉我们,光子不只是照亮我们的世界,它还可以“互动”,在这个互动中,能量在不停地交换。
科学家康普顿因此也获得了诺贝尔奖,真是风光无限。
想象一下,如果没有这两个效应,我们的生活会多么不同。
比如,光电效应让我们可以利用太阳能发电,随便走到哪儿都有可能用上阳光来充电,真是省钱省心。
而康普顿效应则让我们理解了光的本质,开创了很多新技术,比如医学成像、核物理等,真的是开辟了新天地。
说到这里,大家可能会问,这些听上去高大上的科学,跟我们平常生活有什么关系?咱们日常生活中有很多东西都离不开这些效应。
比如,手机、相机、甚至是电视,背后都是光电效应在默默支持。
想想看,拍照的时候,阳光照射在你脸上,光电效应就帮助了你的相机捕捉那一瞬间的美好。
而康普顿效应在医疗领域的应用,更是让我们体会到科技带来的温暖。
CT、X光等检查,都是通过对光和物质的深入理解而来的,简直是救命稻草!科学虽好,但也不是说我们要把生活完全变成实验室。
咱们也要知道,科学家们的研究背后其实是无数个日日夜夜的努力和坚持。
光电效应和康普顿效应
例:求波长为20 nm 紫外线光子的能量、动量及质量。
解:
能量
动量
质量
二、康普顿效应
1.光的散射
光束通过光学性质不均匀的介质时,从侧面可以看到光的现象称为光的散射。
光在各个方向上散射光强的分布与光的波长有关,光的偏振状态也不同。
2.康普顿效应
在 X 射线通过物质散射时,散射线中除有与入射线波长相同的射线外,还有比入射线波长更大的射线,其波长的改变量与散射角有关,而与入射线波长0和散射物质都无关。
可对微弱光线进行放大,可使光电流放大105~108 倍,灵敏度高,用在工程、天文、科研、军事等方面。
2.光电倍增管
由相对论光子的质能关系
光子的质量
5.光子的质量、能量和动量
由相对论质速关系
有
所以,光子的静止质量为零。
光子的能量就是动能。
由狭义相对论能量和动量的关系式
光子的能量和动量的关系式为:
光子的动量:
三、光的波粒二象性
光具有波动性,又有粒子性,即波粒二象性。
光在传播过程中表现出波动性,如干涉、衍射、偏振现象。
光在与物质发生作用时表现出粒子性,如光电效应,康普顿效应。
光子能量和动量为
上两式左边是描写粒子性的 E、P;右边是描写波动性的 、。 h 将光的粒子性与波动性联系起来。
一、光电效应
由于半导体表面的电子吸收外界的光子, 使其导电性能增强的现象。
外光电效应
内光电效应
阳极
阴极
石英窗
光线经石英窗照在阴极上,便有电子逸出----光电子。
光电子在电场作用下形成光电流。
将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。
2.光电效应的实验规律
光电效应与康普顿散射
光电效应与康普顿散射光电效应和康普顿散射是量子物理学中的两个重要现象,对于理解光的特性和粒子的行为具有重要意义。
本文将分别介绍光电效应和康普顿散射的原理和应用,并探讨它们在现代科技中的应用。
一、光电效应光电效应是指当光照射在某些物质表面时,如果光的能量足够高,光子与物质内的电子相互作用,电子可能会被光子激发出来,从而产生电流。
这一现象的发现为量子论的形成做出了重要贡献,同时也为后来量子力学的发展提供了理论依据。
光电效应的原理可以用经典物理学和量子物理学两个模型解释。
在经典物理学中,光被看作是电磁波,当光的频率高到一定程度时,光子的能量足够大,可以克服物质对电子的束缚力,从而使电子逸出。
而在量子物理学中,光子被看作是粒子,其能量与频率成正比,光子的能量可以被吸收并转化为电子的动能,当能量足够高时,电子可以脱离原子表面。
光电效应在现代科技中有着广泛的应用。
例如,光电效应在太阳能电池中的应用就是将光的能量转化为电能的一种方式。
通过合适的材料选择和结构设计,太阳能电池可以将光子的能量转化为电子的动能,实现光能向电能的转换。
二、康普顿散射康普顿散射是指当高能X射线或伽马射线照射在物质上时,光子与物质内的电子发生碰撞,导致光子改变能量和方向的过程。
康普顿散射的发现证实了光的粒子性,并为粒子与波动性质之间的相互转化提供了实验证据。
康普顿散射的原理是,当高能光子与物质内的电子碰撞时,一部分光子的能量和方向发生改变。
根据能量守恒和动量守恒定律,我们可以推导出康普顿散射的数学表达式。
根据这个表达式,我们可以准确计算出光子散射后的能量和方向,从而得到散射角度与入射光波长的关系。
康普顿散射在医学影像学中有着重要应用。
通过探测散射光子的能量和方向变化,我们可以获得组织和器官的结构信息。
这种技术被广泛应用于X射线成像和伽马射线断层扫描等医学影像技术中,为医生提供了诊断和治疗上的重要依据。
三、光电效应与康普顿散射的联系与差异尽管光电效应和康普顿散射都涉及光子与物质内电子的相互作用,但两者的原理和过程有一些显著差别。
对光电效应和康普顿效应发生条件的探讨
对光电效应和康普顿效应发生条件的探讨
光电效应和康普顿效应是两种有机光电效应,即物体仪表中发出信号的效应。
它们都是由
自由电子对光的反应引起的物理现象,而且经常被用在光电仪器里。
为了了解这两种效应发生的条件,本文将重点介绍它们的相关特性。
首先,关于光电效应,当被照射的电子能量达到一定的能量门槛时就会发生光电效应。
当
它面临到足够高的电离辐射时,自由电子可以获得足够能量,从而触发光电效应,改变仪
器中原有的电荷状态,从而发出信号。
此外,只有极少量的电子内能变化(称为介电饱和度)可以触发光电效应,因此,光电效应更容易发生。
其次,关于康普顿效应,除了被照射的电子外,原子的内部电子结构也会受到照射的辐射
的影响,从而使原子的内部能级发生变化,最终导致电荷的变化,从而发生康普顿效应。
但是,在某些情况下,原子的内能级可能不能立即发生变化,可能要经过一个过程,而这
种情况被称为中间复合态,能量的改变必须达到一定门槛才能实现,因此,相比光电效应,康普顿效应更不容易发生。
综上所述,光电效应和康普顿效应发生的条件有很多共同特点,但也有明显的区别。
关于光电效应,它发生的条件是被照射的电子能量达到一定的能量门槛,而对于康普顿效应,
它发生的条件是原子内部电子结构发生变化,使其内能级变化到可以达到足够的能量门槛,才能触发此效应。
光的粒子性光电效应与康普顿效应
光的粒子性光电效应与康普顿效应光的粒子性:光电效应与康普顿效应光电效应和康普顿效应是在微观层面上证实光的粒子性的实验现象。
本文将详细介绍这两种现象并探讨它们对物理学的重要性。
一、光电效应光电效应是指当一束光照射到金属表面时,如果光的频率大于某个临界值,金属表面便会发射出电子。
这一现象首先由德国物理学家海兹·朗得提出,并因此获得了诺贝尔物理学奖。
在光电效应的实验中,光的波动理论不能很好地解释电子的发射现象。
相反,爱因斯坦提出了光的粒子性理论,即光是由微观单位粒子组成的。
根据爱因斯坦的理论,光的能量被单位粒子,即光子,承载。
当光子与金属表面相互作用时,金属表面的电子会吸收光子的能量,势能增加,从而足以克服表面束缚力,使电子脱离金属表面。
光电效应的重要性不仅在于验证了光的粒子性,还在于其在现代技术中的广泛应用。
例如,光电池利用光电效应将光能转化为电能,广泛应用于太阳能电池板、自动门感应器等设备中。
二、康普顿散射效应康普顿效应是指当X射线入射到物质上时,会与物质中的自由电子碰撞,导致X射线的波长发生变化,即发生散射。
这一效应由美国物理学家阿瑟·康普顿发现,并因其贡献获得了诺贝尔物理学奖。
根据康普顿效应,光也具有粒子性,即光子也会与物质中的电子发生碰撞并发生散射现象。
康普顿效应通过实验证明了光的粒子性,并为光的散射提供了解释。
康普顿效应不仅对光的粒子性理论的证实起到重要作用,还在核物理学中具有广泛的应用。
通常情况下,康普顿效应被用来测定物质中的电子密度和X射线的波长偏移,为核反应、射线治疗和医学成像等领域提供了重要的理论依据。
结论光电效应和康普顿效应的实验结果证实了光的粒子性,对光学和物理学研究产生了深远的影响。
光的粒子性理论的发现对于量子力学的发展和应用具有重要意义,并为现代技术和医学提供了许多有益的应用。
通过研究光的粒子性,我们不仅深入了解了光的本质,还拓宽了我们对物质和能量相互作用的认知。
光电效应与康普顿效应的异同性
光电效应与康普顿效应的异同性摘要:光电效应和康普顿效应是光的粒子性的最好证明,因此是大学物理教学中的重要课程。
本文将从实验事实出发,对光电效应和康普顿效应规律和本质作出比较,总结两种效应的物理本质及规律,区别和联系。
关键词:光电效应;康普顿效应;光子能量光电效应和康普顿效应作为光的粒子性的两个有力证据,说明光不仅具有分立的能量hv ,而且还具有一定的动量c hv 。
用爱因斯坦的光子理论可以圆满解释光电效应和康普顿效应的实验结果。
但是在现现行光学教材中,均没有深入讨论两种效应的本质上差异[1,2,3]。
为什么它们同是光子与电子的碰撞过程,却引起了截然不同的两种效应?本文从实验事实出发,对光电效应和康普顿效应规律和本质作了比较。
1 光电效应与康普顿效应发现的历史背景光电效应是赫兹在证实电磁波的存在和光的麦克斯韦电磁理论的实验中偶然发现的[2,4]。
1887年,赫兹用两套放电电极做实验,一套产生振荡,发出电磁波;另一套作为接收器。
他意外发现,如果接收电磁波的电极受到紫外线的照射,火花放电就变得容易产生。
1888年,德国物理学家霍尔瓦克斯证实,这是由于在放电间隙内出现了荷电体的缘故。
1899年,汤姆孙用巧妙的方法测得产生的光电流的荷质比,获得的值与阴极射线粒子的荷质比相近,这就说明产生的光电流和阴极射线一样是电子流。
这样,物理学家就认识到,这一现象的实质是由于光(特别是紫外光)照射到金属表面使金属内部的自由电子获得更大的动能,因而从金属表面逃逸出来的一种现象。
1899—1902年,勒纳德对光电效应进行了系统的研究,并首先将这一现象称为“光电效应”。
1905年爱因斯坦提出了光量子理论和光电效应方程,但这个理论没有及时得到人们的理解和支持,直到1916年密立根作出全面的实验验证,光量子理论才开始得到人们的承认。
其实验规律为:(1)要产生光电效应,入射光的频率必须0νν≥ (或0λλ≤),0ν叫极限频率,对不同金属0ν的值不同,与0ν相应的波长值0λ叫极限波长。
光电效应与康普顿散射的区别
2.康普顿效应的实验事实与公式推导
• 2.1实验事实 • 当频率的光场入射时,其振动的电场分量将迫使电子在电场
振荡方向发生振荡,电子的受迫振荡将辐射出频率的辐射, 其中。经典理论预言,散射电磁波的频率与电子入射频率的 作用时间,以及辐射强度有关。 然而康普顿的实验结果表明,散射电磁波的频率与入射X射 线的强度及曝光时间完全相关,仅与散射角度无关。经典图 像失效! • 用量子物理来解释:光子的粒子特性使康普顿效应的解释变 得非常直接。X射线光子的部分能量通过碰撞给予了电子, 因此,散射的光子频率降低。
间没有外加电场,有光电子具有足够的动能从阴极飞到阳极,从而形
成光电流;只有当加一个反向电压,并且足够大以至于等于-时,就
是那些具有最大初动能的光电子,也必须将其初动能全部用于克服外
电场力做功,从而在外电场的作用下刚刚到达阳极,就返回阴极,使
其在回路中不形成光电流。
2020/11/29
历史意义
康
普 顿
光电效应康普顿效应两者区别现代应用1爱因斯坦对光电效应的理论解释2光电效应的实验验证11经典理论的困难12爱因斯坦光量子假说21光电效应的实验原理22光电效应的实验规律应效电光2018101411经典理论的困难?经典物理学认为光强越大饱和电流应该越大光电子的初动能也越大
光电效应与康普顿散射的区别
康普顿效应:康普顿效应是美国物理学家康普顿在 研究x射线通过实物物质发生散射的实验时,发现了 一个新的现象,即散射光中除了有原波长λ0的x光外, 还产生了波长λ>λ0的x光,其波长的增量随散射角的 不同而变化。这种现象称为康普顿效应。
康普顿效应:目前没 有大规模的工业应用, 主要运用于电子显微镜、 CT等实验设备,还有无 损探伤,在不便布设传 感器时测量物体厚度等; 亦可被应用于放射疗法, 探测物质中的电子波函 数等。
光电效应和康普顿效应的区别和联系
光电效应和康普顿效应的区别和联系
曲成宽
( 北京印刷学院基础课部 )
光电效应和康普顿效应都是光子和电子相撞产生的现象, 作为光的粒子性的证明, 爱因斯坦和 康普顿分别作出了很好的解释。但是, 一个光子和一个电子相撞究竟产生哪种效应 , 是否两种效应 兼而有之, 却常常使初学者感到迷惑不解。本文运用经典的能量守恒理论和相对论理论分析与这 两种效应相联系的有关因素, 明确指出了两种效应产生的条件以及它们之间的区别和联系, 希望有 助于深刻理解这两种效应的机制和本质。为叙述简便 , 下面将分别用 G 效应和 K 效应表示光电效 应和康普顿效应。
m0v hc + m0c
2 4
( 11 ) 。
所得两个速率并不相等, 说明真空中的自由电子吸收光子的过程并非同时遵守两个守恒定律 , 因此 该过程是不会发生的。 同样, 也可以证明真空中运动的自由电子不能吸收光子。 只有处于束缚态的 电子 ! ! ! 束缚在原子中需电离而损失一定能量, 束缚在金属中需克服逸出功而损失一定能量 , 才 能满足能量守恒定律 h + m 0 c2 - W = m 0 c2 ( 12 ) 即具有一定束缚能(- W ) 的电子才能吸收光子而产生 G 效应。 当 v < < c 时, 式 ( 12 ) 则可过渡为 1 mv 2 + W 。 前面提到 , G 效应容易产生在钠、 钾、 铷和锶、 钡等拥有大量自 2 由电子的碱金属和碱土金属中。 以上各种金属的 W 不同 , 对电子束缚的程度也不同。 因此 , G 效应 爱因斯坦方程形式 h = 和作为靶的物质元素紧密相关。 紫外线有一定的穿透能力 , 金属深处的电子, 在离开金属表面以前 和晶格碰撞要失去一部分能量。 此外, 金属的温度、 金属内的杂质、 光子的偏振态和入射角都对 G 效 应产生影响。 爱因斯坦方程中的电子动能是等于 eV 的最大动能 , 它摒弃了上述因素的影响 , 只考 虑金属表面静止的仅受逸出电势束缚的自由电子。 爱因斯坦在解释 G 效应时 , 仅考虑到能量守恒 , 而没有考虑动量守恒。 按能量守恒方程 h = 1 2 能量守恒仅考虑光子、 电子和金属体, 而动量守恒就不能 2 m v + A 是无法得出动量守恒结果的。 h = m v 这一和能量守恒方程相悖的动量守恒方程。 前面以相 c & h 0 h 对论理论分析得到的和能量守恒方程相容的动量守恒方程 [ 式( 6) ] P e = n^ n 中 , 与 W 相关 ^ c c 0 h 0 的等效 动量 ^n 0 , 则通过电子传递给束缚它的金属晶格。 所以, 碰撞应以动量守恒的观点去加以 c 考虑, 看作是在光子与包括电子在内的金属之间进行。 这再次说明电子是被束缚的 , 并且可以定量 仅把光子和电子作为系统 , 去得到 地了解束缚程度。 K 效应是以动量和能量均守恒作为假设前提的。 康普顿认为光子和一静止的电子相撞 , 由于动 88
光电效应与康普顿效应
关于光电效应与康普顿效应中电子与光子组成的系统是否都服从动量守恒定律和能量守恒定律的问题众所周知,光电效应与康普顿效应的物理本质是相同的,都是个别光子与个别电子的相互用。
但二者有明显差别。
其一,入射光的波长不同。
入射光若为可见光或紫外光,表现为光电效应;若入射光是X光,则表现为康普顿效应。
其二,光子和电子相互作用的微观机制不同。
在光电效应中,电子吸收光了的全部能量,从金属中射出,在这个过程中只满意能量守恒定律;而康普顿散射是光子与电子作弹性碰撞,遵循相对论能量——动量守恒定律。
若对问题进行深究就会发现,同是用光子去打击电子,为什么用可见光照射表现为光电效应,而用X射线照射就表为表普顿效应呢?为什么用可见光照射时有些电子可以吸收光子,而用X 射线照射电子就不吸收光子,却表现为光子与电子的碰撞呢?对于这个问题很多人感到困惑。
为了解决以上困惑,我们先提出一个结论,然后加以证实。
结论:从能量守恒定律和动量守恒定律可以断定,自由电子不可能吸收光子,只有原子、分子、离子中的束缚电子以及固态晶体中的电子才能吸收光子。
若自由电子能够吸收光子,假如满意了能量守恒定律,就不可能同时满足动量守恒定律,由此断定,自由电子不可能吸收光子。
假如光子打在束缚电子上,原了核带走一部分能量、动量,电子吸收光子的过程可以实现,这个过程同时满足能量守恒定律和动量守恒定律。
上述道理犹如正负电子对的光生过程一样。
在自由空间,正负电子对的光生过程不能实现,只有当光通过物质时,有其他粒子带走一部分能量、动量,正负电子对的光生过程才能实现。
在光电效应中,入射光是可见光和紫外光,这些光子的能量不过是几个电子伏特,这和金属中电子的束缚能量有相同的数量级,不能把金属中的电子看作是自由的。
电子可以吸收光子,产生光电效应。
考虑光子、电子和原子核三者的能量和动量的变化,遵循非相对论能量守恒定律和动量守恒定律(电子获得速度V不大,满足非相对论条件V<<C)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个电子同时吸收两个或两个以上光子的概率几乎为零, 因此,若金属中电子吸收光子的能量 即入射光频率 时,电子不能逸出,不产生光电效应。
光子与电子发生作用时,光子一次性将能量 交给电子, 不需要持续的时间积累,故光电效应瞬时即可产生。 爱因斯坦因此而获得了1921年诺贝尔物理学奖
第一章 质点运动学
简明物理学 教程
接控件机构
第一章 质点运动学
光电倍增管
简明物理学 教程
8-5 光电效应与康普顿效应
1.实验装置
2. 实验结果
1920年,美国物理学家康普顿在观察X射线被物质散射时, 发现散射线中含有波长发生变化了的成分.
第一章 质点运动学
简明物理学 教程
~
j 实验
8-5 光电效应与康普顿效应
波长偏移量 偏移—散射角实验
简明物理学 教程
8-5 光电效应与康普顿效应
波长为450nm的单色光射到纯钠的表面上. 求(1)这种光的光子能量和动量; (2)光电子逸出钠表面时的动能; (3)若光子的能量为2.40eV,其波长为多少?
hc 19 解 (1) E h 4.42 10 J 2.76eV h E p 1.47 10 27 kg m s 1 2.76eV / c c
简明物理学 教程爱因斯坦源自康普顿8-5 光电效应与康普顿效应
1905年提出光量子(光子) 理论,成功解释光电效应。
1923年用X射线通过石墨的散射实验
进一步证明光的粒子性。光子与电子 碰撞服从能量及动量守恒定律。 第一章 质点运动学
简明物理学 教程
8-5 光电效应与康普顿效应
1920年,美国物理学家康普顿 在观察X 射线被物质散射时,发现:
v0 0
x
j
x
电子 入射光子( X 射线或 射线)能量大 . E h 范围为: 104 ~ 105 eV 固体表面电子束缚较弱,可视为近自由电子. 电子热运动能量 h ,可近似为静止电子. 电子反冲速度很大,需用相对论力学来处理.
(2)Ek
E W (2.76 2.28)eV 0.48eV
hc 7 5.18 10 m 518 nm ( 3) E
第一章 质点运动学
简明物理学 教程
8-5 光电效应与康普顿效应
* 光电效应在近代技术中的应用
光控继电器、自动控制、
自动计数、自动报警等.
光控继电器示意图 光 放大器
遏止电压 U 0
U0
Cs K Cu
0
电流饱和值
im I(光强)
遏止电压
im
im1
U0
im2
i
I2 I1
I 2 I1
U
U 0 与光强无关
o
第一章 质点运动学
简明物理学 教程
8-5 光电效应与康普顿效应
(3)经典理论遇到的困难 红限问题
按经典理论,无论何种频率的入射光,只要其强度
足够大,就能使电子具有足够的能量逸出金属 .与实 验结果不符. 瞬时性问题
射 线 源
散射体
散射角
第一章 质点运动学
简明物理学 教程
8-5 光电效应与康普顿效应
不同物质实验
※我国物理学家吴有训在与康普顿共同研究中还发现:
第一章 质点运动学
简明物理学 教程
8-5 光电效应与康普顿效应
3. 经典理论的困难 经典电磁理论预言,散射辐射具有 和入射辐射一样的频率 . 经典理论 4. 量子解释 无法解释波长变化 . (1)物理模型 光子 y y 光子 0 电子
三
光的波粒二象性
(1)波动性: 光的干涉和衍射 (2)粒子性: 光子能量
E0 0 , E mc pc
2
E h(光电效应等)
E h h p c c
2 E 2 p2c 2 E0
相对论能量和动量关系 描述光的
粒子性
E h
p
h
描述光的 波动性
第一章 质点运动学
散射线中含有波长发生了变化的成分—— 散射束中除了有与入射束波长 0 相同的 射线,还有波长 > 0 的射线.
第一章 质点运动学
简明物理学 教程
8-5 光电效应与康普顿效应
一、光电效应实验的规律
(1)实验装置 光照射至金属表面, 电子从金 属表面逸出, 称其为光电子. (2)实验规律 截止频率(红限) 0 0 才发生光电效应, 仅当 截止频率与材料有关与光强无关 .
1 2 逸出功与 爱因斯坦方程 h mv W 材料有关 2 对同一种金属, W一定, Ek ,与光强无关
几种金属的逸出功 金属 钠 铝 锌 铜 银 铂
W / eV
2.28 4.08
4.31
4.70 4.73
6.35
第一章 质点运动学
简明物理学 教程
8-5 光电效应与康普顿效应
频率 一定,光强 越大则单位时间打在金属表面的光 子数就越多,产生光电效应时单位时间被激发而逸出的 光电子数也就越多,故饱和电流 与光强 成正比。 (iS ∝光电子数∝入射光强) 每一个电子所得到的能量只与单个光子的能量 有关, 即只与光的频率 成正比,故光电子的初动能与入射光的 频率 成线性关系,与光强 无关。
V
A
几种纯 金属的截 止频率
金属 铯 钠 锌 铱 铂 截止频率 0 / 1014 Hz 4.545 5.50 8.065 11.53 19.29
第一章 质点运动学
简明物理学 教程
8-5 光电效应与康普顿效应
eU0 Ek max
遏止电势差与入射光频率 具有线性关系.
◆瞬时性(不超过10-9s) 当光照射到金属表面上时, 几乎立即就有光电子逸出
8-5 光电效应与康普顿效应
(3) h 的测定
爱因斯坦方程: 遏止电势差和入 射光频率的关系
U0
1 h m v 2 W 2
h eU0 W
h W U0 e e
0
U 0 h e
U0 h e
第一章 质点运动学
简明物理学 教程
8-5 光电效应与康普顿效应
按经典理论,电子逸出金属所需的能量,需要有
一定的时间来积累,一直积累到足以使电子逸出金属
表面为止.与实验结果不符 .
第一章 质点运动学
简明物理学 教程
8-5 光电效应与康普顿效应
二、爱因斯坦的光量子(光子)理论
第一章 质点运动学
简明物理学 教程
8-5 光电效应与康普顿效应
爱因斯坦光电效应方程 (1) “光量子”能量: h (2) 解释实验