阵列声波处理流程共99页文档

合集下载

超声波操作规程

超声波操作规程

超声波探伤规程超声波探伤一、钢板(一)调试机器1、普板(1)20mm以下选用CBI试块,直探头,备耦合剂。

开机。

选参数:按<通道设置>键两次,出现参数设置菜单,将各参数修正,其中声速选距离,声速5900.测声速零点:按<调零/测试>键,选择测零点,将探头放在CBI试块上与被测工件等厚区。

定灵敏度,使B1波高50%,补偿10dB.(2)20mm以上选CB 试块开机初始化参数测声速零点定灵敏度,使5波高50%。

2、不锈钢只有灵敏度与普板不同,无试块。

在钢板完好区使B1波高80%即可。

(二)现场操作1、清理表面,无杂物、氧化皮、铁锈。

2、将耦合剂施进工件表面。

3、探头与工件在接触良好中探伤,探头沿垂直于钢板压延方向向距大于100mm 的平行线扫描。

4、定缺陷。

(1)缺陷的判定,发现下列三种情况之一即作为缺陷。

a缺陷第一次反射波(F1)波高大于或等于满刻度的50%,即大于等于50%。

b当底面第一次反射波(B1)波高未达到满刻度,此时缺陷第一次反射波(F1)波高于底面第一次反射波(B1)波高之比大于或等于50%,即B1<100%,而F1/B1≥50%.C底面第一次反射波(B1)波低于满刻度的50%,即B1<50%.(2)缺陷的边界范围或指示长度的测定a检出缺陷后,应在它的周围继续进行检测,以确定缺陷的范围。

b移动探头使缺陷第一次反射波波高于可限制基准灵敏度,条件可萤光屏满刻度的25%或使缺陷第一次反射波(F1)与底面第一次反射波高之比为50%。

此时,探头中心的移动距离即为缺陷的指示长度,探头中心点即为缺陷的边界点。

5、缺陷的评定。

(1)单个缺陷按其最大的长度为该产品的指示长度。

若单个缺陷的指示长度小于40mm时可不做记录。

Ⅰ级合格单个缺陷长度小于80mm,Ⅱ级单个缺陷小于100mm。

(2)单个缺陷指示面积,Ⅰ级小于25平方米,Ⅱ级小于50平方米。

(3)多个缺陷其间距小于100mm或间距小于相邻较小缺陷的指示长度以各缺陷面积之和作为单个缺陷指示面积。

电成像及阵列声波资料处理流程

电成像及阵列声波资料处理流程

WAVEXDAN( 四 分 量 交 叉 偶 极 各 向 异性处理,包括滤波、开窗、 异性处理,包括滤波、开窗、道平衡 等预处理, 估算慢度,、各向异性参数,、 等预处理 估算慢度 、各向异性参数 、 快慢横波时差) 快慢横波时差
Fracman( 利用弹性参数参数 ( 计算岩石应力预测裂缝发育带.) 计算岩石应力预测裂缝发育带 )
Sonic Fracture(利用斯通 利用斯通 利波透射和反射系数计算 开启裂缝分布) 开启裂缝分布
纵波、快慢横波、斯通利波时差, 纵波、快慢横波、斯通利波时差,快慢横波方 斯通利波能量及差值, 位,纵、横、斯通利波能量及差值,斯通利波 渗透率、裂缝发育程度、各向异性参数。 渗透率、裂缝发育程度、各向异性参数。
Four-component Rotation(计 计 算快慢横波方位) 算快慢横波方位 Sonic Waveform Energy ( 计 算 纵 波 、 BestDT:快慢横波慢度 : 横波、斯通利波波形、 横波、斯通利波波形、 能量及其能量差, 能量及其能量差,可根 Anisotropy PostProcess:利用 据裂缝对声波能量的吸 : 收情况来判定裂缝位置) 快慢横波慢度信息计算各向异性 收情况来判定裂缝位置) 参数(基于慢度、基于时间) 参数(基于慢度、基于时间)
China University of Petroleum
成像及阵列声波资料处理、 预处理 : 加速度校正、 深
度对齐 、 坏电极剔除 、 电 极增益校正 、 电极响应均 衡化、 衡化 、 确定显示颜色阈值 、 纽扣电流刻度等 图像显示 差 图 像 生 产 质量 裂缝交互 拾取 裂缝参数 定量计算
时差结果
纵横时差、反射波形、衰减、快慢横波时差、 纵横时差、反射波形、衰减、快慢横波时差、各向异 性参数, 性参数,裂缝渗透率

阵列声波测井的原理

阵列声波测井的原理

阵列声波测井的原理
阵列声波测井是一种地球物理测井技术,其原理是利用声波在地下岩石中的传播特性来获取地层的物理特征。

下面是阵列声波测井的主要原理:
1.声波传播原理:阵列声波测井利用地下介质中的岩石和流体对声波的传播速度和衰减产生的影响。

当声波传播到不同性质的地层时,会发生反射、折射和散射等现象,可以通过地震学和声学理论研究声波的传播规律。

2.发射与接收系统:阵列声波测井使用一组多个发送和接收器件构成的阵列来发射和接收声波信号。

发送器件通常是振动子,它能够将电信号转换为机械振动,从而发射声波信号。

接收器件通常是压电晶体或振动器,能够将接收到的机械振动转换为电信号。

3.接收信号处理:接收到的声波信号被记录下来并进行信号处理。

通常会通过时域和频域的方法对接收信号进行分析,比较接收到的信号和已知模型的差异,从而推导出地层的波速、衰减、密度等物理参数。

4.解释与应用:通过对地层声波响应的解释,可以获得地层的结构、岩性、饱含流体类型和含量等信息。

阵列声波测井可用于石油勘探、地质调查、地下水资源评价等领域,帮助确定油气储层的分布和性质,评估地下水资源的储量和质量等。

阵列信号处理全.ppt

阵列信号处理全.ppt

▪平面阵
图1.5
▪立体阵
图1.6
b. 参数化数据模型
假设N元阵分布于二维平面上,阵 元位置为:
rl xl , yl ,l 1,2, , N
一平面波与阵面共面,传播方向矢
量为: 1 cos ,sin T
c
y
r
x 图1.7:二维阵列
几何结构
阵元
l 接收信号为:xl
t s rl,t
滤波:增强信噪比 获取信号特征:信号源数目 传输方向(定位)及波形 分辨多个信号源
定义:
➢传感器——能感应空间传播信号并且能以某 种形式传输的功能装置
➢传感器阵列(sensors array)——由一组传感 器分布于空间不同的位置构成
由于空间传播波携带信号是空间位置和时
间的四维函数,所以:
连续:面天线
波动方程的任意解可以分解为无穷多个“单频”
解的迭加(传播方向和频率分量均任意)。
波动方程的单频解可以写成单变量的函数:
sr,t Aexp[ j(t kT r) Aexp[ j t T r ]
式中 k ,其大小等于传播速度的倒数,其方向与 传播方向相同,常称为慢速矢量(slowness vector)。
2. G.Strang,"Linear Algerbra and Its Applications", Academic Press,New York ,1976.(有中译本, 侯自新译,南开大学出版社,1990)
§2.1线性空间和希尔伯特空间
一、符号及定义
1. 符号
以后我们常用字母加低杆表示矢量和矩阵,
实际阵列
空间采样方式 虚拟阵列(合成阵列如SAR)
空时采样示意图如下:

EXCELL2000-阵列声波

EXCELL2000-阵列声波

• 为了能获得优质的测井曲线,该仪器要求测井时
居中良好,所以至少加装了3个橡胶扶正器。橡 胶扶正器应该安装在接收探头的底部和发射探头 的顶部。不要在发射探头和接收探头之间安装任 何扶正器。除非有特殊情况如大 度的小井眼井 (绝 体弯曲可能碰到井壁),否则会影响波形的 特性。与SDDT组合测井时,不要在2只仪器之间 连接柔性短节,也不要在SDDT上加装铁质扶正 器,否则会影响磁力计的读值。如果与中子密度 组合测井,应该考虑加一支柔性短节,以解决居 中与偏心的冲突。
第二章 仪器技术指标
• 仪器总长:10.51米,重470磅,213公斤。 • 仪器外径:3.625 in • 适宜井眼范围: 4.5 in~16 in • 承受压力:20000 psi • 耐温指标:300F/149c • 最大弯曲度和抗拉强度:20度/30米,45
吨。
仪器连接图
第三章 仪器组合
典型阵列声波测井滤波配置在下表中列出:
•硬
中 软
地层 类型
单极时差窗口 30-160µsec/ft 60-190µsec/ft 30-210µsec/ft
DX/DY时差窗口 70-250µsec/ft 10-400µsec/ft 15-550µsec/ft
单极滤波 器
偶极滤波器
5-15kHz 1.2- 4.5kHz 5-15kHz 1.பைடு நூலகம்- 3.2kHz 5-15kHz 0.8- 2.5kHz
• 测井仪由 4 部分组成 : 发射控制部分、发射
器/绝缘体、接收探头部分、主电子线路部 分。它有 3个发射器(单极子, X 偶极子和 Y偶极子),以及按8共面“环”排列的32 个接收器,每个共面“环”上有与仪器轴 线垂直安装的 4 个相差 90 度的接收器。发 射器每发射一次, 8 组接收阵列的 32 个接 收器将记录 32 条波形曲线。也就是说,对 于每1个发射序列或每 1个深度点可获得 96 条波形,其中包括32条单极波形,32条XX偶极波形和32条Y-Y偶极波形。

阵列声波处理流程-eXpress

阵列声波处理流程-eXpress

快速地层中的单极波传播
快速地层:
接收器
纵波
Vs > Vf
横波
发射器
地层
快速地层中的单极波列
Receiver Array
Monopole Transmitter
慢速地层中的单极波传播
纵 首波 波
慢速地层: Vs < Vf
斯通利波 横波
慢速地层中的单极波列
纵波 3.35 斯通利波波
4.42 1000

体积模量(BMOD) 2 2 3t s 4tc 10 K 1.3410 b 3t 2 t 2 s c 剪切模量(SMOD)
1.3410
10

b
t s2

泊松比(POIS)
1 t s2 2tc2 2 2 2 t s tc
DEPTH (feet)
波分离
56
反射系数的计算
DWVTR
DEPTH
REFL
RWVRT
REFL0
RLAG TIME
57
波分离 成果图
包括直达波的中 心频率、斯通利 波慢度、原始反 射系数、处理过 的反射系数、伽 马曲线、下行波 相对直达波的时 间延迟、以及分 离开的直达波、 下行波、上行波
2、求渗
快横波 = XX cos2q + (XY + YX) sinq cosq + YYsin2q 慢横波 = XX sin2q - (XY + YX) sinq cosq + YYcos2q
处理前的质量控制
波形偏移的线性度 波形和和波谱相关性 X&Y波形的匹配程度
波 形
波 谱

阵列信号处理基础教程

阵列信号处理基础教程
阵列信号处理
授课教师:廖桂生
西安电子科技大学雷达信号处理实验室
课程目的
掌握空间传播波携带信号的获取与处理的基 本理论和方法,特别是空间多维信号算法,熟悉 参数估计和自适应波束形成的常用算法。
课程要求
期间:含上机实践 期末:论文、考试
西安电子科技大学雷达信号处理实验室
参考文献
1. Prabhakar S.naidu,Sensor Array Signal Processing 2. 王永良.空间谱估计理论与算法,清华大学出版社 3. Monzingo.R.and Miller T. Introduction to adaptive array.
西安电子科技大学雷达信号处理实验室
代入波动方程:k
2 x
s(r
,
t
)

若约束条件:
k
2 x

k
2 y
k
2 y
s(r,
t
)

kz2s(r
,
t
)

kz2

2
c2

2
c2
s(r,t)

kk
k
2 x

k
2 y
kz2

c
则:(*)式表示的信号是波动方程的解,称为“单色”
或“单频”解。
c
为传播速度,2
频率 f 之外无其它频率分量,那么该信号由其整个
持续期内的时间间隔为1/ 2 f 的信号采样值完全确
定,从而使模拟信号可以由无限个离散的点信号来 表示(拟合)。
空间采样:与时间采样类似,采样频率必须足够高才 不会引起空间模糊(即空间混叠),但由于受到实 际条件的限制,空间采样的点数不可能无限,这相 当于时域加窗,所以会出现旁瓣泄漏。

阵列声波

阵列声波


数量
收 带宽(kHz)
器 间距(ft)
最小源距(ft)
最大源距(ft)
垂向分辨率
(ft)
适用井径范围
(in)
仪器外径(in)
最大承温
(°F)
最大承压(psi)
仪器重量(lb)
仪器长度(ft)
交叉多极阵列声波测井仪 XMAC
2(单极) ,2(偶极)
2.5(单极),1.0(偶极) 8(单极),8(偶极)
X Receiver
Fast
X Source q
Fast
Slow
Y Receiver
交叉偶极测井 记录4组数据:
两组同向数 (XX,YY) 两组垂向数 (XY,YX)
Slow
Y Source
4分量交叉偶极测井资料
XX
XY
YY
YX
Depth (ft)
1060 1110 1160 1210
三 . 阵列声波 测井资料质量控制
行,允许误差范围为57±2微秒/英尺(187± 7微 秒/米)。 记录的首波要清晰,且全波列数据的振幅不能 出现饱和现象。对于单极记录方式,波形的记 录长度一般不应小于4000微秒,特殊情况可按 用户要求选择。 每次测井要记录8组波形,以便更好地进行相 关对比,提取准确的纵波、横波和斯通利波速 度。 仪器保持居中(加合适的扶正器),以免记录到 的信息不能反映真实的地层情况。
4. 5-21
3. 625
400
20000 701 36. 0
单极子、偶极子换能器的形状
单极接收器元件
偶极接收器元件
挠曲波示意
偶 极 声 波 波 列 图
文昌9-1-2井偶极波形图

阵列信号处理的基本知识PPT课件

阵列信号处理的基本知识PPT课件

6
将整个阵列的输出信号写成矩阵形式为:
x (t) A (t) sn (t)
A [a (1) ,,a (P)]为阵列流行矩阵、空间信
号方向矢量、阵列响应矩阵。
a ( ) [ 1 e , ,e ] j2 d si /n
j2( M 1 ) d si /n T
s [s(t) ,,s(t)T]为信号源矢量。
阵列信号处理中的若干问 题与研究
.
1
主要内容
阵列信号处理的基本知识 阵列信号处理的主要内容 当前的一些研究热点和新技术 应用领域的一些实例
• 仿真结果 • 实测数据处理
.
2
一、阵列信号处理的基本知识
阵列信号处理系统构成 阵列系统模型假设
阵列信号数学模型 对阵列及其通道的假设 对信号和噪声的假设
.
11
各通道同步采集假设
阵列接收信号需要进行采样和A/D变换 为数字信号后进入DSP处理器进行算法处 理。
Nyquist采样率
宽频段信号:采用欠采样率(空时欠采 样),需要解模糊算法。
.
12
对信号和噪声的假设
窄带假设
信号带宽远小于信号波前跨越阵列最大口径 所需要的时间的倒数,即有如下假设:
2. 快速算法(子空间跟踪与更新,权系数更新)。
3. 相干信号和宽带信号环境。
4. 低信噪必(弱信号)、短数据环境下的检测与估 计。
5. 新方法(MCMC,SMC(particle filter),SVB, Stochastic Resonance)。
.
18
波束形成:
1. Robust Beamforming(steering vector error, array error, coherent signals, Robust Capon beamforming) . 2. Array Pattern Synthesis. The problem of designing complex weights for individual array elements to achieve properties such as high directive gain or to spatially filter signals by their angle of arrival.

阵列声波测井介绍ppt课件

阵列声波测井介绍ppt课件

接收电子线路 隔声体
发射电子线路
遥传短节 接收声系 发射声系
11
下井仪器结构及参数
单极子最小源距(T2R1): 3654mm 最大源距(T2R8): 4718mm
偶极子最小源距(T3R1): 3120mm 最大源距(T3R8): 4184mm
四极子最小源距(T1R1): 2587mm 最大源距(T1R8): 3651mm
T3、T4:同深度
接收电子线路 R8
8个接收阵列 R1
隔声体 四极子(T1)
四极源 T1
偶极源Y(T4) 偶极源X(T3) 单单极源极子T2(T2)
发射电子线路
12
仪器概况
主要技术经济指标 耐温: 耐压: 可测最小井眼: 可测最大井眼: 单极子发射器: 偶极子发射器: 四极子发射器: 接收器:
150℃ 100MPa 114.3 mm 533.4 mm 1个 2个相互正交 1个 8组,可进行正交偶极子接收
2、首波波至时间曲线变化形态应一致。
3、在12m井段内,相对方位曲线变化不应 大于360°。
4、曲线应反映岩性变化,纵、横波数值在 纯岩性地层中与理论骨架值接近。
19
原始资料质量控制
5、4条到时曲线基本平行。近单级时差基 本正确。
6、测前、测后应分别在无水泥粘附的套管 中测量10m时差曲线,对套管检查的纵波时差数 值应在187μs/m±5 μs/m( 57μs/ft±1.5 μs/ft )以内。
7
偶极子发射器能产生沿井壁传播的挠曲波
挠曲波是一种频散界面波,在低频时,它 以横波速度传播,在高频时,它以低于横 波的速度传播
XMAC通过对挠曲波的测量来计算地层横 波速度的
为确保横波速度的测量精度,偶极发射器 应尽量降低发射频率

基于DSP的阵列声波信号采集与处理系统的设计

基于DSP的阵列声波信号采集与处理系统的设计

基于DSP的阵列声波信号采集与处理系统的设计随着由过去的单个变为阵列结构,仪器要处理的信号也由过去单一的参数信号变为复杂的图像信号,同时,对信号的采集与处理也变得越来越复杂,研制一种阵列声波信号采集与处理系统,并进而开发出一种阵列声波测井仪,成为目前我国石油测井仪器进展的迫切需要。

为此本文设计了一套基于的阵列声波信号采集与处理系统,此系统将作为正在研制的阵列声波测井仪中的一部分,应用于油田勘探中。

系统总体计划设计阵列声波测井仪由声系、线路和钢外壳组成。

声系在最下端,由发出声波的放射晶体和接收声波并把其转换成电信号的传感器阵列组成。

电子线路分为供电模块、主CPU模块和采集模块。

其中,主CPU模块是阵列声波测井仪的控制部分,它一方面把地面部分传给采集模块和声系的参数传给采集模块和声系,另一方面把采集模块传上来的数据传给地面部分。

采集模块即为阵列声波采集与处理系统,它的一端接声系的传感器阵列,另一端接主CPU,主要功能为在主CPU的控制下把前端传感器阵列传过来的信号采样、数字化并举行一系列的处理,然后把处理结果上传给主CPU。

按照阵列声波采集与处理系统的性能要求和牢靠性与低功耗设计原则,本设计打算采纳以DSP芯片为核心的八通道实现计划,1所示。

因为前端传感器阵列送来的数据信号比较微弱,要先由对信号举行放大,同时此放大器也可以有效地削弱或消退后端对前端模拟声波输入信号的影响。

放大器之后是ADC,从放大器到DSP形成一个采集与处理的通道,系统中这样的通道共八个。

而图1中的是系统的控制规律部分。

此外,考虑到系统牢靠性和实时性的要求,本系统设计成每个通道都有一个DSP处理器而不是八个通道共用一个DSP处理器。

图1 阵列声波信号采集与处理系统总体结构暗示图第1页共6页。

阵列声波

阵列声波
气 水
文昌9-1-1井纵波幅度在含气层段明显衰减
文昌9-1-2井在水层段纵波幅度的响应特征
KL2井声波法识别油气
丽水3-6-12井气层上的声波测井效果
5.3 缝洞性储层评价
用斯通利波反射波评价裂缝
具有裂缝和溶洞的碳酸盐地层
GR Delay Stoneley Perm
0 (ms) 1.5
数字阵列声波测井(DAC)质量验收标准
图面清晰,图头数据齐全、准确 要求原图的图面、波形、曲线、字迹清晰可辨;图头数
据填写齐全、准确,备注栏中应注明仪器的测量方式。 原图应标明所回放波列的名称、刻度范围及单位。 设备数据齐全, 原图应附上实测的仪器结构图。 回放纵波时差、测速、张力等曲线,以便检查套管内声波时 差值、测速情况 磁带带头信息 (包括波列个数、发射器号、接收器号,采样 时间间隔、采样点数等)记录齐全、准确。 重复性检查
0.01 (md) 100
0
300 Shift 150 (Hz) 0
NMR Perm
Porosity
0.01 (md) 100
0 (%) 10
Raw Ref Coef
0
0.2
Proc
Ref Coef
Acoustic Image
5750 DEPTH 5700
5.4 超压层的声波响应
用声波时差估算超压层段的流体压力
数字阵列声波测井仪 DAC
2( 单极) 9
1-15
2 12( 单极)
1-20 0. 5 6. 0
13. 5
3. 5 ( Sembl ance 处理) 0. 5 ( 首至检测)
4. 5-21
3. 75
400
20000 612

阵列声波测井仪器研制及应用

阵列声波测井仪器研制及应用

阵列声波资料的应用
文23-24裸 眼井阵列声 波时差(黑 线) 、套管 井阵列声波 时差(红线) 与普通声波 时差(绿线) 的对比
阵列声波资料的应用
2、 岩性识别
利用纵横波速度比可以大致确定地层的 岩性,一般情况下,纵横波速度比(VP/VS或 DTS/DTC):砂岩为1.58-1.8;灰岩为1.9; 白云岩为1.8;泥岩为1.936。
声系的源距
阵列声波测井仪器设计
声系所用换能器的选择:
用换能器检测系 统所挑选的接收 换能器的频谱图
阵列声波测井仪器设计
制作完成的井下仪器:
阵列声波测井仪器设计
仪器的特点 :
•在裸眼井中可测量地层的纵波时差和横波时差以及斯通利波时差。 通过二维谱频散处理,生成时差分布图像。 •在套管井中可测量声幅、声波变密度 。
阵列声波资料处理技术
声波的二维谱处理方法:
原始测井波形
阵列声波资料处理技术
声波的二维谱处理方法:
将原始测井 的8个不同源 距的波形做 FFT得到频 谱和相位谱
计算的频谱
阵列声波资料处理技术
声波的二维谱处理方法:
用相位谱建 模得到二维 谱分布
阵列声波资料处理技术
声波的二维谱处理方法:
二维谱分布 转化为相速 度随频率的 变化得到的 时差(相速 度)分布
阵列声波资料的应用
普通声波
•识别岩性 •孔隙度计算 •定量解释Ⅰ界面固井 质量 •定性解释Ⅱ界面固井 质量
阵列声波
•识别岩性 •孔隙度计算 •定量解释Ⅰ界面固井 质量 •解释Ⅱ界面固井质量 •识别气层 •套后声速测量
阵列声波资料的应用
1、套管井声波孔隙度资料补测
由于套管的声速大于地层的声速, 采用传统的补偿声波在套管井中测量 不到地层的纵、横波时差。而采用阵 列声波技术在胶结好的情况下可以得 到地层的时差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档