第07章 压电式传感器
第七章__压电式传感器
+ + X 当晶体受到沿X方向的压力(FX<0)作用时, - 正、负离子相对位置随之发生变化,如图 - P1 P3 + X + (b)所示。此时正、负电荷中心不再重合, - + P2 电偶极矩在X方向的分量为(P1+P2+P3)X>0
-
-
+ +
在Y、Z方向上的电偶极矩分量为0
(b) FX<0
7.1.1 压电效应
7.1.2 压电常数和表面电荷的计算
从式(7.1)中可以看出切片上产生的电荷多少与 切片的尺寸无关,即qx与Fx成正比。电荷qx的符号由晶 体受压还是受拉而决定,如图 (a)、(b)。 从(7.2)可看出y轴方向受力后,切片上产生的电 荷与切片的尺寸有关,qy与Fy成正比,电荷qy的符号由 晶体受压还是受拉而决定,如图 (c)、(d)。
(a)电压等效电路 (b)电荷等效电路
压电传感器等效原理
7.3 压电式传感器的等效电路
压电传感器在实际使用时总要与测量仪器或测量 电路相连接,因此还须考虑连接电缆的等效电容Cc, 放大器的输入电Ri,输入电容Ci以及压电传感器的泄 漏电阻Ra,这样压电传感器在测量系统中的实际等效 电路如图所示。
7.3 压电式传感器的等效电路
石英晶体
压电效应
石英晶体切片受力图
按特定方向切片
图7.3
(a)
(b)
(c)
(d)
7.3
压电式传感器的等效电路
1、等效电路 当压电传感器中的压电晶体承受被测机械应力的作用 时,在它的两个极面上出现极性相反但电量相等的电荷。 可把压电传感器看成一个静电发生器,如图(a)。也可把 电极 它视为两极板上聚集异性电荷,中间为绝缘体的电容器, 如图(b)。 其电容量为ε ε S εS r 0
《压电式传感器》课件
汽车领域
压电式传感器在汽车中用于测量和 控制关键系统的压力,如制动系统、 供油系统和排放系统,提高车辆的 性能和安全性。
与其他传感器的比较
1 压力传感器 vs. 光传感器
压力传感器可以检测和测量物体的压力,而光传感器可以用于检测光线的强度和频率。
2 压力传感器 vs. 温度传感器
压力传感器可以测量物体的压力变化,而温度传感器可以测量环境的温度变化。
续的信号处理和分析。
3
输出信号
经过处理和转换,压电式传感器将输出电压 信号转化为可读取的压力数值或其他形式的 信号。
应用领域
工业领域
压电式传感器在工业生产过程中用 于检测和测量压力、压力变化,广 泛应用于制造业、自动化系统和控 制系统。
医疗领域
压电式传感器在医学设备中用于监 测生命体征、药物输送系统、手术 器械等,确保医疗过程的安全和有 效性。
压电式传感器
欢迎来到《压电式传感器》的PPT课件!本课程将深入探讨压电式传感器的定 义、原理、种类、工作原理、应用领域、与其他传感器的比较,以及未来发 展方向。
定义
什么是压电式传感器?
压电式传感器是一种根据压电 效应原理制作的传感器,能够 将压力转化为电信号,实现压 力的检测和测量。
压电效应的原理
压电效应是指某些晶体材料在 受到压力或振动作用下,会产 生电荷分离和极化现象,从而 产生电压。
压电材料的种类
常用的压电材料包括石英、陶 瓷、聚合物等,每种压电材料 都具有不同的特性和应用领域。
工作ห้องสมุดไป่ตู้理
1
压电效应
当压电材料受到压力时,产生电荷分离和极
信号放大
2
化,从而产生电压信号。
传感器将微弱的电压信号放大,以便进行后
压电式传感器的原理及应用
压电式传感器的原理及应用压电式传感器是一种应用了压电效应的传感器,通过将压电材料置于受力区域,当被测物体发生变形或受力时,压电材料发生形变,从而产生电荷信号,利用该信号来测量被测量的变化情况。
一、压电效应的原理压电效应是一种物理现象,指在压力或拉伸下,某些晶体(通常是晶体的极性方向)会产生电位差。
这种效应被广泛应用于各种传感器中,特别是在加速度计、其它惯性传感器、压力传感器和液位传感器等方面。
二、压电式传感器的原理压电式传感器通常由压电晶体和测量电路组成。
当被测物体发生形变或受力时,压电材料中的极性方向的晶体产生压电效应,导致产生电荷的位移,并与电荷电容匹配的放大器或其他电路连接。
由于被测量的变化(压力,成形,位移等)与电荷位移之间存在特定关系,所以可以根据电荷电荷读数来确定被测物体发生变化的精确程度。
三、压电式传感器的应用由于压电效应具有高灵敏度、高频响应、耐腐蚀、抗干扰等优点,压电式传感器在各种领域得到广泛应用。
1.压力测量:压电式传感器常用于压力传感器的制造,用于测量汽车轮胎、气缸、油压和空气压力等。
2.振动测量:压电式传感器还可以用于测量机器和车辆的振动水平,以便定位有问题的部件。
3.流量测量:压电式传感器在流量测量中应用广泛,例如在医疗方面测量血流,工业方面可以应用于计算液体的流量。
4.力学测试:压电式传感器的高灵敏度和高频响应特性,在体育、自然科学和工程学中用于测量冲击、震动和变形等量。
5.地震观测:压电式传感器还可以用于地震观测,以便在监测过程中测量地震的振动率。
压电式传感器在上述应用领域中具有重要作用,并与其他类型的传感器如压阻式传感器、光电式传感器、磁性传感器等合作,实现了各种领域的数据测量工作,体现了良好的应用前景。
第7章---压电式传感器
直流电场E
剩余极化强度
电场作用下的伸长
(b)极化处理中
剩余伸长
(c)极化处理后
图6-6 压电陶瓷中的电畴变化示意图
2.压电效应分析 极化处理后的压电陶瓷材料,在其极化方向上施加外 力时将会产生压电效应,但其过程不同于石英晶体的 压电过程。
(1)在未受外力作用下,整个压电片如图6-7所示。
不呈现极性而呈现中性。
1、压电效应过程分析 石英晶体压电片如图6-1(c)所示,在其X轴或Y 轴上加外力F时,均在X轴的两个截面上产生符号 相反的电荷。而在Z轴方向上加外力时,不会产生 任何压电效应。
(1)石英晶体 Si4O22 的结构 如图所示,硅氧离子结构排列,图6-2中(a)
Y
Y
-
+
X+
-X
-
+
(a)硅氧离子在Z平面上的投影
第二节 压电效应的分析 一、石英晶体的压电效应的分析 石英晶体:SiO2又称石英晶体(单晶体)。天然结 构的石英晶体呈现一个正六面体的形状。如图6-1 (a)所示:
图6-1 石英晶体
其中: X轴----电轴,经过六面体棱线 Y轴----机械轴,垂直于六面体棱面 Z轴---光轴,垂直于晶体截面且与X、Y轴垂直
+
P2
P3
+
X
-
-
Fx
-
-
-
-
-
-
-
-
-
-
-
-
(c)Fx>0
图6-5 石英晶体的压电示意图
(5)在Y轴方向施加力Fy(横向压电效应)
1. 当受拉力时,Fy>0,则其效果与图6-4 Fx<0情况相同。 2.当受压力时,Fy<0,则其效果与图6-5 Fx>0情况相同。
12第七章 压电式传感器7-2解析
q d 33 F d 33 ma
与加速度a成正比。因此,测得加速度传感
q=d11F=d11ma 器输出的电荷便可知加速度的大小。
压电式压力传感器
引线
壳体 基座
导电片 受压膜片 p
压电晶片
图7-19 压电式测压传感器
当膜片受到压力F作用后,在压电晶片表面
上产生电荷。在一个压电片上所产生的电荷 q为
管道上A、B两点放两只压电传感器,由从两个传
感器接收到的由O点传来的t0时刻发出的振动信号
所用时间差可计算出LA或LB。
地 L 面
LA
A O点
LB
B
两者时间差为
Δt= tA-tB=(LA - LB )/v
又L=LA +LB ,所以
L t v LA 2 L t v LB 2
故可把压电传感器看成一个电荷源与一个
电容并联的电荷发生器。 其电容量为:
Ca q (a)
S r 0 S Ca
当两极板聚集异性电荷时,板间就呈现出
一定的电压,其大小为
q Ua Ca
因此,压电传感器还可以等效为电压源Ua 和一个电容器Ca的
Ca
串联电路,如图 (b)。
Ua (b)
( ω=0 )时,前置放大器的输出电压等于
零,因为电荷会通过放大器输入电阻和传 感器本身漏电阻漏掉,所以压电传感器不 能用于静态力的测量。
当 ω(Ca+Cc+Ci)R>>1 时,放大器输入 电压 Uim 如式( 7-10 )所示,式中 Cc 为连 接电缆电容,当电缆长度改变时,Cc也将 改变,因而 Uim 也随之变化。因此,压电
100~104pF。
压电式传感器原理
压电式传感器原理压电式传感器是一种常用的传感器类型,它利用压电效应来将机械应力转换为电信号。
压电效应是指某些晶体或陶瓷材料在受到机械应力作用时,会产生电荷分布不均匀的现象。
这种现象被称为压电效应,而利用这种效应制成的传感器就是压电式传感器。
压电式传感器的工作原理非常简单直观。
当传感器受到外部力或压力作用时,传感器内部的压电材料会发生形变,导致电荷分布不均匀。
这些不均匀的电荷会产生一个电势差,从而产生一个电信号。
这个电信号可以被放大和处理,最终转换成我们可以理解的物理量,如力、压力、加速度等。
压电式传感器的工作原理可以用一个简单的例子来解释。
想象一个压电陶瓷材料制成的传感器,当这个传感器受到外部力作用时,陶瓷材料会产生微小的形变。
这种形变会导致陶瓷材料内部的电荷分布不均匀,从而产生一个微弱的电信号。
通过放大和处理这个电信号,我们就可以获得关于外部力的信息。
压电式传感器具有许多优点,其中最显著的是灵敏度高、响应速度快、结构简单、体积小等。
这些优点使得压电式传感器在各种工业和科学领域得到广泛应用。
比如在汽车制造业中,压电式传感器可以用来检测引擎的振动情况;在医疗领域,压电式传感器可以用来监测心脏的跳动情况。
除了上述应用外,压电式传感器还可以用于声波传感、压力传感、加速度传感等领域。
由于其工作原理简单、性能优越,压电式传感器在现代科技领域有着广阔的应用前景。
总的来说,压电式传感器是一种利用压电效应将机械应力转换为电信号的传感器。
它的工作原理简单直观,具有高灵敏度、快响应速度等优点,因此在各种领域得到广泛应用。
随着科技的不断发展,压电式传感器的应用范围将会更加广泛,为人类的生活和工作带来更多便利。
压电式传感器原理与应用
压电式传感器原理与应用压电式传感器是一种利用压电效应进行测量的传感器。
压电效应是指在压力作用下,一些晶体会产生电荷分布的改变,从而产生电势差。
压电式传感器利用这种原理,将压力或力的变化转化为电信号输出,从而实现对压力或力的测量。
1.传感器中的压电材料受到外力作用产生变形,从而引起内部电荷分布的改变。
2.内部电荷分布的改变使得传感器的两个电极上产生电势差。
3.传感器将电势差转化为与外力大小成正比的电信号输出。
1.工业自动化:压电式传感器可以用于测量各种物体的压力,如流体管道中的压力、机械设备的挤压力等,从而实现对工业过程的自动控制。
2.汽车工业:压电式传感器可以用于测量汽车发动机的油压、气压等参数,从而实现对发动机的控制和保护。
3.医疗器械:压电式传感器可以用于测量人体体内的压力,如心脏的血压、呼吸的压力等,从而实现对人体生理状态的监测。
4.空气质量监测:压电式传感器可以用于测量空气中的压力、气体浓度等参数,从而实现对空气质量的监测。
5.智能手机:压电式传感器可以用于智能手机屏幕上的触摸功能,可以感知用户的触摸力度和位置,从而实现对屏幕的操作。
1.灵敏度高:压电材料对压力或力的变化非常敏感,可以实现对微小压力的测量。
2.响应速度快:压电材料的压电效应响应速度非常快,可以实现对快速变化的压力的测量。
3.耐用性好:由于压电材料的特殊性质,压电式传感器具有较好的耐用性,可以经受较大的压力和力的作用。
4.体积小:压电材料的尺寸可以做得非常小,因此压电式传感器可以设计成小型化的产品。
5.易于集成:压电材料和传感器电路可以进行集成设计,从而降低了传感器的制造成本,提高了其可靠性。
总之,压电式传感器是一种利用压电效应进行测量的传感器,在工业、汽车、医疗、环境监测等领域有着广泛的应用。
它具有高灵敏度、快速响应、良好的耐用性、小体积和易集成等优点,可以满足各种应用场景的需求。
第7章 压电式传感器习题
3、已知某压电式传感器测量最低信号频率f=1Hz,现要求 、已知某压电式传感器测量最低信号频率 现要求 信号频率时其灵敏度下降不超过5%, 在1Hz信号频率时其灵敏度下降不超过 ,若采用电压 信号频率时其灵敏度下降不超过 前置放大器输入回路总电容C 前置放大器输入回路总电容 i=50pF。求该前置放大器 。 输入总电阻R 是多少? 输入总电阻 i是多少? 根据电压前置放大器实际输入与理想输入电压幅 值比公式及题意得: 值比公式及题意得:
q并 = 2q x = 2d11 Fx = 2d11πr p x
2
= 2 × 2.31×10 = 145 ×10
−12
−12
× π ×1 × 0.1×10
2
2
C = 145 pC
并联总电容为单电容的2倍 并联总电容为单电容的 倍
C并 = 2C = 2
ε 0ε r S
t
8.85 ×10 −12 × 4.5 × π ×12 = 2× = 125 pF 0.02 电极间电压
C=
ε 0ε r S
= 3.98 ×10
−11
F
q 6.93 ×10 U= = = 174V −11 C 3.98 × 10
2、某压电式压力传感器为两片石英晶片并联,每片厚度 某压电式压力传感器为两片石英晶片并联, 圆片半径r=1cm,ε=4.5, x切型纵向石英晶体压 t=0.2mm,圆片半径 切型纵向石英晶体压 电系数d 电系数 11=2.31×10-12C/N 。当0.1MPa压力垂直作用于 压力垂直作用于 px平面时,求传感器输出电荷 及电极间电压 a的值。 平面时,求传感器输出电荷q及电极间电压 的值。 及电极间电压U 当两片石英晶片并联,输出电荷q并为单片的2倍 当两片石英晶片并联,输出电荷 为单片的 倍
《压电式传感器》课件
压电式传感器结构简单,易于加工和 集成。
压电式传感器的优缺点
响应速度快
由于压电效应的快速响应特性,压电式传感器具有较快的响 应速度。
无热干扰
由于压电式传感器不需要加热元件,因此不会受到热干扰的 影响。
压电式传感器的优缺点
易受环境影响
压电式传感器容易受到环境温度、湿度等因素的影响,需要进行温度补偿和湿 度补偿。
水声探测
在水下环境中,压电式传感器可用于水声探测和声呐系统,实现 水下目标的定位和识别。
05
压电式传感器的校准与维护
压电式传感器的校准方法
压电式传感器的校准是确保测量准确性的重要步骤,通常包括零点校准和灵敏度校 准。
零点校准是将传感器的输出读数调整到零或一个已知的基准值,以消除任何偏差。
灵敏度校准是测试传感器在不同激励电压下的输出响应,以验证其线性度和准确性。
和处理。
特点
高输入阻抗、低输出阻抗、稳定 性好。
04
压电式传感器的应用实例
压力测量
压力传感器
压电式传感器在压力测量中应用广泛,如气瓶压力监测、管道压 力检测等。
压电式压力计
用于测量液体或气体的压力,具有高精度、高稳定性的特点。
压电薄膜压力传感器
利用压电薄膜作为敏感元件,可测量微小压力变化,常用于生物医 学和环境监测领域。
电压放大器
概述
电压放大器用于放大压电传感器 输出的电压信号。
工作原理
电压放大器通过直接耦合方式,将 压电传感器的电压信号进行放大。
特点
低输入阻抗、高输出阻抗、线性度 高。
阻抗变换号
的电路。
工作原理
阻抗变换器通过电阻、电容等元 件,将高阻抗的输出信号转换为 低阻抗的输出信号,以便于传输
压电式传感器ppt课件
图5.3.1石英晶体
Y轴: 机械轴或2轴,
该轴加力变形最大;
Z轴: 光轴或3轴,光线沿该轴通过晶体时不产生双折(X轴)方向的力作用下产生电荷;
“横向压电效应”:
沿机械轴(Y轴)方向的力作用下产生电荷;
在光轴(Z轴)方向的力作用下不产生压电效应。
晶体切片
图5.3.4 石英晶体的压电效应
(a)正负电荷是互相平衡的,外部没有带电现象;
(b)在X轴方向压缩,A面呈现负电荷、B面呈现正电荷; (c)沿Y轴方向压缩,在A面和B面分别呈现正、负电荷 。
石英晶体
一种天然晶体,压电系数d11=2.31×10-12C/N; 莫氏硬度为7、熔点为1750℃、膨胀系数仅为钢的1/30。 优点:
当压力撤消后,陶瓷片恢复原状,片内的正、 负电荷之间的距离变大,极化强度也变大,因此电 极上又吸附部分自由电荷而出现充电现象。 放电电荷的多少与外力的大小成比例关系
Q d33 F (5.3.3)
Q——电荷量;d33——压电陶瓷的压电系数; F——作用力
对于压电陶瓷,通常取它的极化方向为z轴,垂直
两个压电片的联接方式
图5.3.9 两个压电片的联接方式
(a) “并联”,Q’=2Q,U’=U,C’=2C 并联接法输出电荷大,本身电容大,时间常数大,
适宜用在测量慢变信号并且以电荷作为输出量的地方。
(b) “串联” Q’=Q,U’=2U,C’=C/2 而串联接法输出电压大,本身电容小。适宜
用于以电压作输出信号,且测量电路输入阻抗很 高的地方。
压电系数较高,各项机电参数随温度、时间等外 界条件的变化小,在锆钛酸铅的基方中添加一两种微 量元素,可以 获得不同性能的PZT材料。
( 3 ) 铌 镁 酸 铅 Pb(MgNb)O3-PbTiO3-PbZrO3 压 电 陶 瓷 (PMN)
压电式传感器资料
目录
CONTENTS
• 压电式传感器概述 • 压电效应及材料特性 • 传感器结构与工作原理 • 性能评价与测试方法 • 选型、安装与使用注意事项 • 典型应用案例分析
01 压电式传感器概述
CHAPTER
定义与工作原理
定义
压电式传感器是一种利用压电效应将机械能转换为电能的装置。其核心部件是压 电材料,当受到外力作用时,压电材料内部会产生极化现象,从而在材料表面产 生电荷,实现机械能到电能的转换。
01
03
机械品质因数
反映压电材料在振动过程中的能量损 耗,影响传感器的频率响应和稳定性。
选用依据
根据具体应用场景和需求,综合考虑 压电材料的性能参数、成本、加工难 度等因素进行选择。
05
04
居里温度
压电材料失去压电性的温度点,选用 时需考虑传感器的工作温度范围。
03 传感器结构与工作原理
CHAPTER
航空航天
在航空航天领域,压电式传感器可用于测量飞行 器的加速度、振动、压力等参数,确保飞行器的 安全和稳定。
军事领域
压电式传感器在军事领域也有广泛应用,如用于 测量枪炮射击时的后坐力、导弹发射时的冲击力 等。
谢谢
THANKS
压电力传感器
压电压力传感器
利用压电元件在压力作用下产生电荷 的原理来测量压力。广泛应用于气压、 液压等压力测量领域。
通过测量受力物体对压电元件的作用 力来测量力的大小。常用于工业控制、 机器人等领域中的力反馈控制。
04 性能评价与测试方法
CHAPTER
性能评价指标体系建立
重复性
线性度
描述传感器输出信号与被测量之 间线性关系的程度,用线性误差 表示。
第7章 压电式传感器
第7章压电式传感器(2学时)本章主要内容7.1 压电式传感器的基本原理7.2 压电式传感器的测量转换电路7.3 压电式传感器的应用教学要求及重点、难点一. 教学要求1. 了解压电式传感器基本原理,2. 熟悉压电式传感器的测量转换电路3. 了解压电式传感器的应用二. 重点、难点压电式传感器的测量转换电路概述压电式传感器是利用某些电介质材料(如石英晶体)具有压电效应现象制成的。
有些电介质材料在一定方向上受到外力(压力或拉力)作用而变形时,在其表面上产生电荷从而可以实现对非电量的检测。
压电式传感器具有体积小、重量轻、频带宽等特点,适用于对各种动态力、机械冲击与振动的测量,广泛应用在力学、声学、医学、宇航等方面。
压电式传感器是一种无源传感器,大多数是利用正向压电效应制成的。
外力去掉后,又回到不带电状态,这种将机械能转换成电能的现象,称为正向压电效应,简称压电效应。
当然这种电介质材料也具有逆压电效应,即在相应表面上施加电压后,电介质材料会发生机械变形;去掉电压后,变形立即消失,它将电能转换成机械能。
逆压电效应也称电致伸缩效应。
7.1 压电式传感器的基本原理一. 压电效应与压电材料1. 压电效应某些电介质在沿一定方向上受到外力的作用产生变形时,内部会产生极化现象,同时在其表面产生电荷。
当外力去掉后,又重新回到不带电状态,这种现象称为压电效应。
压电效应分为正向压电效应和逆向压电效应。
某些电介质,当沿着一定方向对其施加外力而使它变形时,内部就产生极化现象,相应地会在它的两个表面上产生符号相反的电荷,当外力去掉后,又重新恢复到不带电状态,这种现象称压电效应。
当外力方向改变时,电荷的极性也随之改变,这种将机械能转换为电能的现象,称为正压电效应。
相反,当在电介质极化方向施加电场,这些电介质也会产生一定的机械变形或机械应力,这种现象称为逆向压电效应,也称为电致伸缩效应。
图6.1所示压电元件受力变形后的几种基本形式。
2. 压电材料:具有压电效应的材料称为压电材料,压电材料能实现机-电能量的相互转换,具有一定的可逆性,如图4.71 所示。
压电式传感器原理及应用
压电式传感器原理及应用压电效应是指一些晶体材料在受到外力作用时,会产生电势差和电荷分布不均,即产生电荷偶极矩,从而在外加电场作用下发生形变。
常见的压电材料有石英、陶瓷和聚偏氟乙烯等。
当压电材料受到外力作用时,材料内部的电荷分布会出现改变,从而产生电势差。
此时,可以通过测量电荷或电势差的变化来间接测量外力的大小。
压电式传感器一般由压电材料、电极、保护壳等组成。
当外力作用于传感器的压电材料上时,压电材料会产生电荷偶极矩,从而产生电势差。
电极用来收集这些电荷,并将信号输出到外部电路中进行处理。
为了提高传感器的灵敏度和稳定性,常常在压电材料上覆盖一层薄膜电极以增加电荷的收集效果。
1.声波传感器:压电式传感器可以用来探测声波的压力和振动。
在市场上常见的麦克风和扬声器就是基于压电效应工作的传感器。
2.加速度计:压电式传感器可以用来测量物体的加速度和振动,常用于汽车、飞机等交通工具中,以及机械设备中对振动进行监测和控制。
3.压力传感器:压电式压力传感器可以用来测量液体和气体的压力,广泛应用于工业自动化控制、航空航天、汽车工业等领域。
4.应变计:压电应变计可以用来测量物体的形变和变形,广泛应用于材料力学测试、结构工程、土木工程、航空航天等领域。
5.流量计:压电式传感器可以用于测量液体和气体的流量,广泛应用于水务系统、天然气供应系统、石油化工等领域。
在这些应用中,压电式传感器具有灵敏度高、响应速度快、能够直接转换物理量为电信号等优点。
然而,也有一些局限性,比如温度对其工作性能的敏感性较高,需要进行温度补偿以提高精度和稳定性。
总结起来,压电式传感器是一种基于压电效应工作的传感器,适用于多个领域,如声波传感、加速度计、压力传感、应变计和流量计等。
通过测量压电材料产生的电势差和电荷分布,可以间接测量外力的大小和形变情况。
压电式传感器具有灵敏度高、响应速度快等优点,但同时也有温度敏感性高的限制。
压电式传感器介绍课件
压电陶瓷:具有高灵敏度、 高稳定性和长寿命的特点
A
压电复合材料:结合多种材料 的优点,提高传感器的性能
C
B
压电薄膜:具有轻量化、柔 性化Fra bibliotek可弯曲的特点D
压电纳米材料:具有高灵敏度、 低功耗和快速响应的特点
集成化、微型化
01
集成化:将多个传 感器集成到一个芯 片上,实现多功能、
高精度的测量
02
微型化:减小传感 器的体积和重量, 提高便携性和可穿
压电材料:具有压电效应的材料,如石英、锆 钛酸铅等 传感器结构:由压电材料和电极组成,当受到 压力时,压电材料产生电荷,通过电极输出
信号处理:将输出的电荷信号进行放大、滤 波等处理,得到所需的测量信号
2
压电式传感器分 类
压电陶瓷传感器
工作原理:利用压电效应,将机械 能转化为电能
特点:体积小、重量轻、灵敏度高、 响应速度快
微型化:压电式传感器将向微型化方向发展,体积更小, 重量更轻,便于携带和安装。
集成化:压电式传感器将实现多种功能集成,如压力、温 度、加速度等,提高测量精度和效率。
谢谢
和补偿
应用领域:汽车 安全气囊、地震
2 监测、航空航天
等领域
3
优点:高灵敏度、 宽频率响应、低 功耗、体积小
流量测量
压电式传感 器可用于测 量液体和气
体的流量
通过检测压 力变化来测
量流量
适用于各种 管道和设备, 如泵、阀门、
管道等
具有高精度、 高可靠性和 长寿命的特
点
4
压电式传感器发 展趋势
新型压电材料
应用领域:广泛应用于压力、加速 度、流量、位移等物理量的测量
压电式力传感器
直流电场E
剩余极化强度
电场作用下旳伸长
剩余伸长
(a)极化处理前
(b)极化处理中 (c)极化处理后
16
但是,当把电压表接到陶瓷片旳两个电极上进行测量时,却无 法测出陶瓷片内部存在旳极化强度。这是因为陶瓷片内旳极化强 度总是以电偶极矩旳形式体现出来,即在陶瓷旳一端出现正束缚 电荷,另一端出现负束缚电荷。因为束缚电荷旳作用,在陶瓷片 旳电极面上吸附了一层来自外界旳自由电荷。这些自由电荷与陶 瓷片内旳束缚电荷符号相反而数量相等,它起着屏蔽和抵消陶瓷 片内极化强度对外界旳作用。所以电压表不能测出陶瓷片内旳极 化程度,如图。
➢ 也能够将电能——转化成机械能。
正压电效应
电能 机械能
压电元件
逆压电效应
6
7
超声波传感器
8
1、石英晶体旳压电效应
石英晶体旳理想外形是 一种正六面体,在晶体 学中它可用三根相互垂 直旳轴来表达,其中纵
向轴Z-Z称为光轴;经
过正六面体棱线,并垂
直于光轴旳X-X轴称为 电轴;与X-X轴和Z-Z 轴同步垂直旳Y-Y轴
(垂直于正六面体旳棱 面)称为机械轴。
Z
Z
Y
Y
X
X
(a)
(b)
石英晶体
(a)理想石英晶体旳外形 (b)坐标系
9
Y
Y
-
+
X
X
+
-
-
+
(a)
(b)
硅氧离子旳排列示意图
(a) 硅氧离子在Z平面上旳投影 (b)等效为正六边形排列旳投影
石英晶体具有压电效应,是由其内部构造决定旳。
构成石英晶体旳硅离子Si4+和氧离子O2-在Z平面投影,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胥 永 刚
胥永刚制
§7.4 压电传感器等效电路
胥 永 刚
北京工业大学机电学院
Ca
s
h
r 0 s
h
Q U Ca
胥 永 刚
胥永刚制
§7.4 压电传感器等效电路
胥 永 刚
北京工业大学机电学院
(a) 等效为一个电荷源Q与一个电容Ca的并联电路 (b) 等效成一个电源U = Q/Ca 和一个电容Ca的串联电路
胥 永 刚
胥永刚制
§7.1 压电效应
胥 永 刚
北京工业大学机电学院
逆压电效应
电能
正压电效应
机械能
石英晶体的压电效应演示
胥 永 刚
胥永刚制
§7.1 压电效应
胥 永 刚
北京工业大学机电学院
用极化强度矢量表示材料的压电效应:
P Pxx Pyy Pzz
Pxx d 11 xx d 12 yy d 13 zz d 14 yz d 15 zx d 16 xy Pyy d 21 xx d 22 yy d 23 zz d 24 yz d 25 zx d 26 xy P d d d d d d 31 xx 32 yy 33 zz 34 yz 35 zx 36 xy zz
胥 永 刚
胥永刚制
§7.2 压电材料的分类及特性
胥 永 刚
北京工业大学机电学院
压电陶瓷外形
胥 永 刚
胥永刚制
§7.2 压电材料的分类及特性
胥 永 刚
北京工业大学机电学院
无铅压电陶瓷及其换能器外形
(上海硅酸盐研究所研制)
胥 永 刚
胥永刚制
§7.2 压电材料的分类及特性
胥 永 刚
北京工业大学机电学院
胥永刚制
§7.2 压电材料的分类及特性
胥 永 刚
北京工业大学机电学院
3. 新型压电材料
(2) 高分子压电材料
典型的高分子压电材料有聚偏二氟乙烯(PVF2或 PVDF)、聚氟乙烯(PVF)、改性聚氯乙烯(PVC)等。它 是一种柔软的压电材料,可根据需要制成薄膜或电缆 套管等形状。它不易破碎,具有防水性,可以大量连 续拉制,制成较大面积或较长的尺度,价格便宜,频 率响应范围较宽,测量动态范围可达80dB。
胥 永 刚
胥永刚制
§7.5 压电传感器的测量电路
胥 永 刚
北京工业大学机电学院
前置放大器输入电压
i U i
R 1 jRC
压电元件上作用力 F=Fmsinωt 压电元件的压电系数为d11,产生的电荷为 Q = d11· F。
dQ i d11 Fm cos t dt
U i d11 F
胥 永 刚
胥永刚制
§7.5 压电传感器的测量电路
胥 永 刚
北京工业大学机电学院
压电式传感器要求负载电阻RL必须有很大的数值, 才能使测量误差小到一定数值以内。因此常先接入一
个高输入阻抗的前置放大器,然后再接一般的放大电
路及其它电路。 测量电路关键在于高输入阻抗的前置放大器。 前置放大器两个作用: 把压电式传感器的微弱信号放大;
电压放大器与电荷放大器相比,电路简单, 元件少价格便宜,工作可靠,但是电缆长度对传 感器测量精度的影响较大,在一定程度上限制了 压电式传感器在某些场合的应用。
胥 永 刚
胥永刚制
§7.5 压电传感器的测量电路
胥 永 刚
北京工业大学机电学院
解决电缆问题的办法 将放大器装入传感器中,组成一体化传感器。 压电式加速度传感器的 压电元件是二片并联连接的 石英晶片,放大器是一个超 小型静电放大器。由于引线 非常短,引线电容几乎等于 零,就避免了长电缆对传感 器灵敏度的影响。放大器的 输入端可以得到较大的电压 信号,这样弥补了石英晶体 灵敏度低的缺陷。
(6) 居里点
压电材料开始丧失压电特性的温度称为居里点。
胥 永 刚
胥永刚制
§7.2 压电材料的分类及特性
胥 永 刚
北京工业大学机电学院
压电元件材料一般有三类: (1) 单晶压电晶体(如上述的石英晶体) (2) 多晶压电陶瓷
(3) 新型压电材料
--- 压电半导体 --- 高分子压电材料
胥 永 刚
胥永刚制
胥 永 刚
胥永刚制
§7.2 压电材料的分类及特性
胥 永 刚
北京工业大学机电学院
高分子压电薄膜制作的压电喇叭
(逆压电效应)
胥 永 刚
胥永刚制
§7.3 压电元件常用结构形式
胥 永 刚
北京工业大学机电学院
双晶片结构形式 实际使用中,采用单片压电片工作的话要产生足够 表面电荷就需很大作用力但测量粗糙度和微压差时所提 供的力很小,因此为了提高其灵敏度,通常是把两片或 两片以上同型号的压电元件粘贴在一起。由于压电晶片 有电荷极性,因此连接方式有并联和串联两种形式。
j d F I 11
jR 1 jRC
输入电压的幅值 uim
1 R Ca Cc Ci
2
d11 FmR
2
胥 永 刚
胥永刚制
§7.5 压电传感器的测量电路
胥 永 刚
北京工业大学机电学院
输入电压的幅值
uim 1 R Ca Cc Ci
压电式加速度传感器
胥 永 刚
胥永刚制
§7.5 压电传感器的测量电路
胥 永 刚
北京工业大学机电学院
2、电荷放大器
电荷放大器是压电式传感器另一种专用的前置放
大器。能将高内阻的电荷源转换为低内阻的电压源,
胥 永 刚
胥永刚制
§7.2 压电材料的分类及特性
胥 永 刚
北京工业大学机电学院
x轴:电轴或1轴; y轴:机械轴或2轴; z轴:光轴或3轴。
“纵向压电效应”:沿电轴(x轴)方向的力作用下产生电荷 “横向压电效应”:沿机械轴(y轴)方向的力作用下产生电荷 在光轴(z轴)方向有作用力时,不会产生压电效应。
胥 永 刚
测试技术基础
胥 永 刚
北京工业大学机电学院
胥永刚制
第七章 压电式传感器 本章内容:
○ 压电效应
○ 压电材料
○ 压电元件常用结构形式 ○ 等效电路 ○ 测量电路 ○ 压电式传感器应用举例
胥 永 刚
胥永刚制
§7.1 压电效应
胥 永 刚
北京工业大学机电学院
压电效应 ( piezoelectric effect )
胥 永 刚
胥永刚制
§7.2 压电材料的分类及特性
胥 永 刚
北京工业大学机电学院
1. 石英晶体
天然石英晶体外形
胥 永 刚
胥永刚制
§7.2 压电材料的分类及特性
胥 永 刚
北京工业大学机电学院
石英晶体切片及封装
石英晶体薄片
双面镀银并封装
胥 永 刚
胥永刚制
§7.2 压电材料的分类及特性
胥 永 刚
北京工业大学机电学院
正压电效应 某些物质在一定方向受到压力或拉力作用而发生改 变时,其表面上会产生电荷;若将外力去掉后,它们又 重新回到不带电的状态,这种现象称为正压电效应
逆压电效应 在压电材料的两个电极上加以交流电压,压电片会 产生机械振动,即压电片在电极方向上有伸缩的现象, 压电材料的这种现象称为“电致伸缩效应”,也称“逆 压电效应”。
并联
串联
胥 永 刚
胥永刚制
§7.3 压电元件常用结构形式
胥 永 刚
北京工业大学机电学院
两个压电片的联结方式
(a) “并联”,Q’=2Q,U’=U,C’=2C 并联接法输出电荷大,本身电容大,时间常数大, 适宜用在测量慢变信号并且以电荷作为输出量的地方。 (b) “串联” Q’=Q,U’=2U,C’=C/2 而串联接法输出电压大,本身电容小。 适宜用于以电压作输出信号,且测量电路输入阻抗 很高的地方。
对于一定形状、尺寸的压电元件,其固有电容 与介电常数有关;而固有电容又影响着压电传感器 的频率下限;
胥 永 刚
胥永刚制
§7.1 压电效应
胥 永 刚
北京工业大学机电学院
压电材料的主要特性参数
(4) 机电耦合系数 在压电效应中,其值等于转换输出能量 (如电 能 ) 与输入能量 ( 如机械能 ) 之比的平方根。它是衡 量压电材料机电能量转换效率的一个重要参数; (5) 电阻 压电材料的绝缘电阻将减少电荷泄漏,从而 改善压电传感器的低频特性;
§7.2 压电材料的分类及特性
胥 永 刚
北京工业大学机电学院
1. 石英晶体 一种天然晶体,压电系数d11=2.31×10-12C/N; 优点:
转换效率和转换精度高、线性范围宽、重复性好、 固有频率高、动态特性好、工作温度高达550℃(压电 系数不随温度而改变)、工作湿度高达100%、稳定性 好。
莫氏硬度为7、熔点为1750℃、膨胀系数仅为钢的1/30。
2
d11 FmR
2
结论:
当作用力为静态力(ω=0)时,前置放大器的输入电压 为零。原理上决定了压电式传感器不能用于静态量的 测量。 压电式传感器突出优点:高频响应相当好。
胥 永 刚
胥永刚制
§7.5 压电传感器的测量电路
胥 永 刚
北京工业大学机电学院
电压放大器应用限制
压电式传感器在与电压放大器配合使用时, 连接电缆不能太长。电缆长,电缆电容Cc就大, 电缆电容增大必然使传感器的电压灵敏度降低。
q xy d 11
ly lx
Fy
结论:当沿着机轴y-y方向施加压力时,产生的电荷 量与晶片几何尺寸有关,而该电荷的极性则与沿电 轴x-x方向加压力时产生的电荷极性相反(式中负号)。