最强最全数学解析
数学分析知识点最全
数学分析知识点最全数学分析是数学的一个重要分支,它主要研究实数空间上的函数与序列的性质、极限、连续性、可微性等。
以下是数学分析的一些重要知识点:1.实数与复数的性质:包括实数和复数的定义、有理数和无理数的性质、实数的完备性、复数的代数和几何性质等。
2.数列的极限与收敛性:数列极限的定义、极限存在的判定、序列的比较、夹逼定理等。
3.函数的极限与连续性:函数极限的定义、函数极限存在的判定、函数的连续性与间断点、无穷点的连续性等。
4.导数与微分:导数的定义、导数存在的判定、导函数的计算法则、高阶导数与泰勒展开、凸凹性与拐点等。
5.不定积分与定积分:不定积分的定义与计算、变量替换法、分部积分法、定积分的定义与计算、定积分的应用(面积、弧长、体积等)等。
6.级数与幂级数:级数的定义与性质、级数的收敛性判定、常见级数的收敛性、幂级数的收敛半径与求和等。
7.解析几何与曲线的性质:平面曲线的方程、曲线的切线与法线、曲线的弧长与曲率等。
8.参数方程与极坐标系:参数方程与平面曲线的参数方程表示、平面曲线的切线与法线等。
9.函数项级数与傅立叶级数:函数项级数的收敛性判定、幂级数与傅立叶级数的展开等。
10.偏导数与多元函数的微分:偏导数的定义与计算、高阶偏导数、多元函数的全微分与偏微分、隐函数与显函数等。
11.多重积分与曲面积分:二重积分的定义与计算、三重积分的定义与计算、曲面积分的定义与计算等。
12.向量值函数与向量场:向量值函数的极限与连续性、向量场的散度与旋度等。
以上只是数学分析的一部分重要知识点,数学分析还包括很多其他内容,如场论、数学分析在物理学和工程中的应用等。
对于数学分析的学习,需要掌握一定的数学基础和逻辑思维能力,并进行大量的练习与实际应用。
求三角函数解析式方法总结超全面
求三角函数解析式)sin(ϕω+=x A y 常用的方法全面总结三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。
A (振幅):A=2-最小值最大值φ+wx :相位,其中Tw π2=(T 为最小正周期) ϕ:初相,求φ常有代入法、五点法、特殊值法等一、利用五点法,逆求函数解析式三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点第一点,即图像上升时与x 轴的交点,为φ+wx =0 第二点,即图像曲线的最高点,为φ+wx =2π 第三点,即图像下降时与x 轴的交点,为φ+wx =π第四点,即图像曲线的最低点,为φ+wx =23π 第五点,即图像最后一个端点,为φ+wx =π2例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式.例2.是函数π2sin()2y x ωϕϕ⎛⎫=+< ⎪⎝⎭的图象上的一段,则( ) A.10π116ωϕ==,B.10π116ωϕ==-, C.π26ωϕ==,D.π26ωϕ==-,例3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==例4、函数()ϕω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。
(其中 πϕπω<<->>,0,0A )变式练习1、已知函数)sin(ϕω+=x A y (A >0,ω>0,|ϕ|<π)2、已知函数)sin(ϕω+=x Ay (A >0,ω>0,|ϕ|<π)的图象如图,求函数的解析式。
高等数学教材题目大全及解析
高等数学教材题目大全及解析第一部分:微积分1. 极限与连续题目:计算极限 $$\lim_{x\to 2}\frac{x^2-4}{x-2}$$ 并给出解析。
解析:首先观察分式的形式,可以看出分子是一个二次函数,分母是线性函数,而且在极限的点$x=2$处,分母为零。
这暗示我们可能要利用因式分解来化简分式。
$$\lim_{x\to 2}\frac{x^2-4}{x-2} = \lim_{x\to 2}\frac{(x+2)(x-2)}{x-2}$$当$x$接近2时,分子和分母都接近于0,因此我们可以将$(x+2)$和$(x-2)$都约去,最终得到:$$\lim_{x\to 2}\frac{x^2-4}{x-2} = \lim_{x\to 2}(x+2) = 4$$因此,该极限的解析为4。
2. 导数与微分题目:求函数$f(x) = x^3 + 2x^2 - 3x + 1$的导函数,并给出其解析。
解析:要求函数的导函数,我们需要对函数进行求导。
根据求导法则,我们可以逐项求导得到:$$\frac{d}{dx}(x^3 + 2x^2 - 3x + 1) = 3x^2 + 4x - 3$$因此,函数$f(x)$的导函数为$3x^2 + 4x - 3$。
3. 积分与定积分题目:计算定积分 $$\int_{0}^{2}\left(2xe^{x^2}+3\right)dx$$ 并给出解析。
解析:对于定积分,我们可以先求原函数,然后再代入上限和下限进行计算。
首先对被积函数的每一项进行积分得到:$$\int 2xe^{x^2}dx = e^{x^2} + C_1$$$$\int 3dx = 3x + C_2$$将两个结果相加得到原函数:$$F(x) = e^{x^2} + 3x + C$$根据上限和下限进行代入:$$\int_{0}^{2}\left(2xe^{x^2}+3\right)dx = F(2) - F(0) = (e^{4} + 6) - (e^{0} + 0) = e^{4} + 6$$因此,定积分的解析为$e^{4} + 6$。
数学分析知识点最全汇总
数学分析知识点最全汇总本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第一章实数集与函数§1实数授课章节:第一章实数集与函数——§1实数教学目的:使学生掌握实数的基本性质.教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性;(2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.教学方法:讲授.(部分内容自学)教学程序:引言上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始.[问题]为什么从“实数”开始.答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质.一、实数及其性质1、实数(,q p q p ⎧≠⎪⎪⎨⎪⎪⎩有理数:任何有理数都可以用分数形式为整数且q 0)表示,也可以用有限十进小数或无限十进小数来表示.无理数:用无限十进不循环小数表示.{}|R x x =为实数--全体实数的集合.[问题]有理数与无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定:例: 2.001 2.0009999→;利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小?2、两实数大小的比较1)定义1给定两个非负实数01.n x a a a =,01.n y b b b =. 其中00,a b 为非负整数,,k k a b (1,2,)k =为整数,09,09k k a b ≤≤≤≤.若有3 2.99992.001 2.0099993 2.9999→-→--→-;;,0,1,2,k k a b k ==,则称x 与y 相等,记为x y =;若00a b >或存在非负整数l ,使得,0,1,2,,k k a b k l ==,而11l l a b ++>,则称x 大于y 或y 小于x ,分别记为x y >或y x <.对于负实数x 、y ,若按上述规定分别有x y -=-或x y ->-,则分别称为x y =与x y <(或y x >).规定:任何非负实数大于任何负实数.2) 实数比较大小的等价条件(通过有限小数来比较).定义2(不足近似与过剩近似):01.n x a a a =为非负实数,称有理数01.n n x a a a =为实数x 的n 位不足近似;110n n n x x =+称为实数x 的n 位过剩近似,0,1,2,n =.对于负实数01.nx a a a =-,其n 位不足近似011.10n n n x a a a =--;n 位过剩近似01.n n x a a a =-.注:实数x 的不足近似n x 当n 增大时不减,即有012x x x ≤≤≤; 过剩近似n x 当n 增大时不增,即有012x x x ≥≥≥. 命题:记01.n x a a a =,01.n y b b b =为两个实数,则x y >的等价条件是:存在非负整数n ,使n n x y >(其中n x 为x 的n 位不足近似,n y 为y 的n 位过剩近似).命题应用例1.设,x y 为实数,x y <,证明存在有理数r ,满足x r y <<.证明:由x y <,知:存在非负整数n ,使得n n x y <.令()12n n r x y =+,则r 为有理数,且 n n x x r y y ≤<<≤.即x r y <<.3、实数常用性质(详见附录Ⅱ.289302P P -).1)封闭性(实数集R 对,,,+-⨯÷)四则运算是封闭的.即任意两个实数的和、差、积、商(除数不为0)仍是实数.2)有序性:,a b R ∀∈,关系,,a b a b a b <>=,三者必居其一,也只居其一.3)传递性:a b c R ∀∈,,,,a b b c a c >>>若,则.4)阿基米德性:,,0a b R b a n N ∀∈>>⇒∃∈使得na b >.5)稠密性:两个不等的实数之间总有另一个实数.6)一一对应关系:实数集R 与数轴上的点有着一一对应关系. 例2.设,a b R ∀∈,证明:若对任何正数ε,有a b ε<+,则a b ≤.(提示:反证法.利用“有序性”,取a b ε=-)二、绝对值与不等式1、绝对值的定义实数a 的绝对值的定义为,0||0a a a a a ≥⎧=⎨-<⎩. 2、几何意义从数轴看,数a 的绝对值||a 就是点a 到原点的距离.||x a -表示就是数轴上点x 与a 之间的距离.3、性质1)||||0;||00a a a a =-≥=⇔=(非负性);2)||||a a a -≤≤;3)||a h h a h <⇔-<<,||.(0)a h h a h h ≤⇔-≤≤>;4)对任何,a b R ∈有||||||||||a b a b a b -≤±≤+(三角不等式); 5)||||||ab a b =⋅;6)||||a ab b =(0b ≠). 三、几个重要不等式1、,222ab b a ≥+ .1 sin ≤x . sin x x ≤2、均值不等式:对,,,,21+∈∀R n a a a 记 ,1 )(121∑==+++=ni i n i a n n a a a a M (算术平均值) ,)(1121nn i i n n i a a a a a G ⎪⎪⎭⎫ ⎝⎛==∏= (几何平均值) .1111111)(1121∑∑====+++=n i i n i i n i a n a n a a a na H (调和平均值)有平均值不等式:),( )( )(i i i a M a G a H ≤≤即: 1212111n n n a a a nn a a a +++≤≤+++等号当且仅当n a a a === 21时成立.3、Bernoulli 不等式:(在中学已用数学归纳法证明过),1->∀x 有不等式(1)1, .n x nx n +≥+∈N当1->x 且0≠x ,N ∈n 且2≥n 时,有严格不等式.1)1(nx x n +>+ 证:由01>+x 且>+++++=-++⇒≠+111)1(1)1( ,01 n n x n x x ).1( )1( x n x n n n +=+>.1)1( nx x n +>+⇒4、利用二项展开式得到的不等式:对,0>∀h 由二项展开式,!3)2)(1(!2)1(1)1(32n n h h n n n h n n nh h ++--+-++=+ 有 >+n h )1( 上式右端任何一项.[练习]P4.5[课堂小结]:实数:⎧⎨⎩一 实数及其性质二 绝对值与不等式. [作业]P4.1.(1),2.(2)、(3),3§2数集和确界原理授课章节:第一章实数集与函数——§2数集和确界原理教学目的:使学生掌握确界原理,建立起实数确界的清晰概念. 教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用.教学重点:确界的概念及其有关性质(确界原理).教学难点:确界的定义及其应用.教学方法:讲授为主.教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课.引 言上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章§1实数的相关内容.下面,我们先来检验一下自学的效果如何!1、证明:对任何x R ∈有:(1)|1||2|1x x -+-≥;(2)|1||2||3|2x x x -+-+-≥. (111(2)12,121x x x x x -=+-≥--∴-+-≥())(2121,231,23 2.x x x x x x -+-≥-+-≥-+-≥()三式相加化简即可)2、证明:||||||x y x y -≤-.3、设,a b R ∈,证明:若对任何正数ε有a b ε+<,则a b ≤.4、设,,x y R x y ∈>,证明:存在有理数r 满足y r x <<.[引申]:①由题1可联想到什么样的结论呢这样思考是做科研时的经常的思路之一.而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用.提请注意这种差别,尽快掌握本门课程的术语和工具.本节主要内容:1、先定义实数集R 中的两类主要的数集——区间与邻域;2、讨论有界集与无界集;3、由有界集的界引出确界定义及确界存在性定理(确界原理).一、区间与邻域1、 区间(用来表示变量的变化范围)设,a b R ∈且a b <.⎧⎨⎩有限区间区间无限区间,其中 {}{}{}{}|(,)|[,]|[,)|(,]x R a x b a b x R a x b a b x R a x b a b x R a x b a b ⎧∈<<=⎪⎪⎪∈≤≤=⎪⎨⎪⎪∈≤<=⎧⎪⎪⎨⎪∈<≤=⎪⎩⎩开区间: 闭区间: 有限区间闭开区间:半开半闭区间开闭区间:{}{}{}{}{}|[,).|(,].|(,).|(,).|.x R x a a x R x a a x R x a a x R x a a x R x R ⎧∈≥=+∞⎪∈≤=-∞⎪⎪∈>=+∞⎨⎪∈<=-∞⎪⎪∈-∞<<+∞=⎩无限区间2、邻域联想:“邻居”.字面意思:“邻近的区域”.与a 邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何用数学语言来表达呢?(1)a 的δ邻域:设,0a R δ∈>,满足不等式||x a δ-<的全体实数x 的集合称为点a 的δ邻域,记作(;)U a δ,或简记为()U a ,即 {}(;)||(,)U a x x a a a δδδδ=-<=-+.其中a δ称为该邻域的中心,称为该邻域的半径.(2)点a 的空心δ邻域{}(;)0||(,)(,)()o o U a x x a a a a a U a δδδδ=<-<=-⋃+.(3)a 的δ右邻域和点a 的空心δ右邻域{}{}00(;)[,)();(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ++++=+=≤<+=+=<<+(4)点a 的δ左邻域和点a 的空心δ左邻域{}{}00(;)(,]();(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ+---=-=-<≤=-=-<<(5)∞邻域,+∞邻域,-∞邻域{}()||,U x x M ∞=>(其中M 为充分大的正数);{}(),U x x M +∞=>{}()U x x M -∞=<-二 、有界集与无界集1、 定义1(上、下界):设S 为R 中的一个数集.若存在数()M L ,使得一切x S ∈都有()x M x L ≤≥,则称S 为有上(下)界的数集.数()M L 称为S 的上界(下界);若数集S 既有上界,又有下界,则称S 为有界集.闭区间[],a b 、开区间b a b a ,( ),(为有限数)、邻域等都是有界数集,集合 {}) , ( ,sin ∞+∞-∈==x x y y E 也是有界数集.若数集S 不是有界集,则称S 为无界集.) , 0 ( , ) 0 , ( , ) , (∞+∞-∞+∞-等都是无界数集,集合 ⎭⎬⎫⎩⎨⎧∈==) 1 , 0 ( ,1 x xy y E 也是无界数集. 注:1)上(下)界若存在,不唯一;2)上(下)界与S 的关系如何?看下例:例1 讨论数集{}|N n n +=为正整数的有界性.解:任取0n N +∈,显然有01n ≥,所以N +有下界1;但N +无上界.因为假设N +有上界M,则M>0,按定义,对任意0n N +∈,都有0n M ≤,这是不可能的,如取[]0[]1n M M M =+(符号表示不超过的最大整数),则0n N +∈,且0n M >. 综上所述知:N +是有下界无上界的数集,因而是无界集.例2证明:(1)任何有限区间都是有界集;(2)无限区间都是无界集;(3)由有限个数组成的数集是有界集.[问题]:若数集S 有上界,上界是唯一的吗对下界呢(答:不唯一 ,有无穷多个).三 、确界与确界原理1、定义定义2(上确界) 设S 是R 中的一个数集,若数η满足:(1) 对一切,x S ∈有x η≤(即η是S 的上界); (2) 对任何αη<,存在0x S ∈,使得0x α>(即η是S 的上界中最小的一个),则称数η为数集S 的上确界,记作sup .S η=从定义中可以得出:上确界就是上界中的最小者.命题1sup M E = 充要条件1),x E x M ∀∈≤;2)00,,o x S x M εε∀>∃∈>-使得.证明:必要性,用反证法.设2)不成立,则00,,o x E x M εε∃>∀∈≤-使得均有,与M 是上界中最小的一个矛盾.充分性(用反证法),设M 不是E 的上确界,即0M ∃是上界,但0M M >.令00M M ε=->,由2),0x E ∃∈,使得00x M M ε>-=,与0M 是E 的上界矛盾.定义3(下确界)设S 是R 中的一个数集,若数ξ满足:(1)对一切,x S ∈有x ξ≥(即ξ是S 的下界);(2)对任何βξ>,存在0x S ∈,使得0x β<(即ξ是S 的下界中最大的一个),则称数ξ为数集S 的下确界,记作inf S ξ=.从定义中可以得出:下确界就是下界中的最大者.命题2 inf S ξ=的充要条件:1),x E x ξ∀∈≥;2)ε∀>0,00,x S x ∈有<.ξε+上确界与下确界统称为确界.例3(1),) 1(1⎭⎬⎫⎩⎨⎧-+=n S n 则sup S = 1 ;inf S = 0 . (2){}.),0( ,sin π∈==x x y y E 则sup S = 1 ;inf S = 0 . 注:非空有界数集的上(或下)确界是唯一的.命题3:设数集A 有上(下)确界,则这上(下)确界必是唯一的.证明:设sup A η=,sup A η'=且ηη'≠,则不妨设ηη'<A sup =η⇒A x ∈∀有η≤xsup A η'=⇒对ηη'<,0x A ∃∈使0x η<,矛盾.例:sup 0R -= ,sup 11n Z n n +∈⎛⎫= ⎪+⎝⎭ ,1inf 12n Z n n +∈⎛⎫= ⎪+⎝⎭ {}5,0,3,9,11E =-则有inf 5E =-.开区间(),a b与闭区间[],a b有相同的上确界b与下确界a例4设S 和A 是非空数集,且有.A S ⊃则有.inf inf ,sup sup A S A S ≤≥.例5设A 和B 是非空数集.若对A x ∈∀和,B y ∈∀都有,y x ≤则有.inf sup B A ≤证明:,B y ∈∀y 是A 的上界,.sup y A ≤⇒A sup ⇒是B 的下界,.inf sup B A ≤⇒例6A 和B 为非空数集,.B A S =试证明:{}. inf , inf m in inf B A S = 证明:,S x ∈∀有A x ∈或,B x ∈由A inf 和B inf 分别是A 和B 的下界,有A x inf ≥或{}. inf , inf m in .infB A x B x ≥⇒≥即{} inf , inf m in B A 是数集S 的下界,{}. inf , inf m in inf B A S ≥⇒又S A S ,⇒⊃的下界就是A 的下界,S inf 是S 的下界,S inf ⇒是A 的下界,;inf inf A S ≤⇒同理有.inf inf B S ≤于是有{} inf , inf m in inf B A S ≤.综上,有{} inf , inf m in inf B A S =.1. 数集与确界的关系:确界不一定属于原集合.以例3⑵为例做解释.2. 确界与最值的关系:设 E 为数集.(1)E 的最值必属于E ,但确界未必,确界是一种临界点.(2)非空有界数集必有确界(见下面的确界原理),但未必有最值.(3)若E max 存在,必有.sup max E E =对下确界有类似的结论.4. 确界原理:Th1.1(确界原理).设S 非空的数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.这里我们给一个可以接受的说明 ,E R E ⊂非空,E x ∈∃,我们可以找到一个整数p ,使得p 不是E 上界,而1p +是E 的上界.然后我们遍查9.,,2.,1.p p p 和1+p ,我们可以找到一个0q ,900≤≤q ,使得0.q p 不是E 上界,)1.(0+q p 是E 上界,如果再找第二位小数1q ,, 如此下去,最后得到 210.q q q p ,它是一个实数,即为E 的上确界. 证明:(书上对上确界的情况给出证明,下面讲对下确界的证明)不妨设S 中的元素都为非负数,则存在非负整数n ,使得1)S x ∈∀,有n x >;2)存在S x ∈1,有1+≤n x ;把区间]1,(+n n 10等分,分点为n.1,n.2,...,n.9, 存在1n ,使得1)S ∈∀,有;1.n n x >;2)存在S x ∈2,使得10112.+≤n n x . 再对开区间111(.,.]10n n n n +10等分,同理存在2n ,使得1)对任何S x ∈,有21.n n n x >;2)存在2x ,使2101212.+≤n n n x 继续重复此步骤,知对任何 ,2,1=k ,存在k n 使得1)对任何S x ∈,k k n n n n x 10121.-> ;2)存在S x k ∈,k k n n n n x 21.≤.因此得到 k n n n n 21.=η.以下证明S inf =η.(ⅰ)对任意S x ∈,η>x ;(ⅱ)对任何ηα>,存在S x ∈'使x '>α.[作业]:P9 1(1),(2); 2; 4(2)、(4);7§3函数概念授课章节:第一章实数集与函数——§3 函数概念教学目的:使学生深刻理解函数概念.教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示法;(2)牢记基本初等函数的定义、性质及其图象.会求初等函数的存在域,会分析初等函数的复合关系.教学重点:函数的概念.教学难点:初等函数复合关系的分析.教学方法:课堂讲授,辅以提问、练习、部分内容可自学.教学程序:引言关于函数概念,在中学数学中已有了初步的了解.为便于今后的学习,本节将对此作进一步讨论.一、函数的定义1.定义1设,D M R∀∈,⊂,如果存在对应法则f,使对x D存在唯一的一个数y M∈与之对应,则称f是定义在数集D上的函数,记作:f D M→→ .|x y数集D称为函数f的定义域,x所对应的y,称为f在点x的函数值,记为()f x.全体函数值的集合称为函数f的值域,记作f D.()即{}==∈.()|(),f D y y f x x D2.几点说明(1)函数定义的记号中“:f D M →”表示按法则f 建立D 到M 的函数关系,|x y →表示这两个数集中元素之间的对应关系,也记作|()x f x →.习惯上称x 自变量,y 为因变量.(2) 函数有三个要素,即定义域、对应法则和值域.当对应法则和定义域确定后,值域便自然确定下来.因此,函数的基本要素为两个:定义域和对应法则.所以函数也常表示为:(),y f x x D =∈. 由此,我们说两个函数相同,是指它们有相同的定义域和对应法则.例如:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同)2)()||,,x x x R ϕ=∈ ().x x R ψ=∈(相同,只是对应法则的表达形式不同).(3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域).此时,函数的记号中的定义域可省略不写,而只用对应法则f 来表示一个函数.即“函数()y f x =”或“函数f ”.(4)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象.a 称为()f a 的原象.(5)函数定义中,x D ∀∈,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x值,可以对应多于一个y 值,则称这种函数为多值函数.本书中只讨论单值函数(简称函数).二 、函数的表示方法1 主要方法:解析法(公式法)、列表法(表格法)和图象法(图示法).2 可用“特殊方法”来表示的函数.1)分段函数:在定义域的不同部分用不同的公式来表示.例如 1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,(符号函数) (借助于sgnx 可表示()||,f x x =即()||sgn f x x x x ==).2)用语言叙述的函数.(注意;以下函数不是分段函数)例 1)[]y x =(取整函数)比如: [3.5]=3, [3]=3, [-3.5]=-4.常有 [][]1x x x ≤<+, 即[]01x x ≤-<.与此有关一个的函数[]{}y x x x =-(非负小数函数)图形是一条大锯,画出图看一看.2)狄利克雷(Dirichlet )函数1,()0,x D x x ⎧=⎨⎩当为有理数,当为无理数, 这是一个病态函数,很有用处,却无法画出它的图形.它是周期函数,但却没有最小周期,事实上任一有理数都是它的周期.3)黎曼(Riemman )函数 1,(,,()0,0,1(0,1)p p x p q N qq q R x x +⎧=∈⎪=⎨⎪=⎩当为既约分数),当和内的无理数.三 函数的四则运算给定两个函数12,,,f x D g x D ∈∈,记12D D D =,并设D φ≠,定义f 与g 在D 上的和、差、积运算如下:若在D 中除去使()0g x =的值,即令{}2\()0,D D x g x x D φ=≠∈≠,可在D 上定义f 与g 的商运算如下;()(),()f x L x x Dg x =∈. 注:1)若12D D D φ==,则f 与g 不能进行四则运算.2)为叙述方便,函数f 与g 的和、差、积、商常分别写为:,,,f f g f g fg g+-. 四、复合运算1.引言在有些实际问题中函数的自变量与因变量通过另外一些变量才建立起它们之间的对应关系.例:质量为m 的物体自由下落,速度为v ,则功率E 为2221122E mv E mg t v gt ⎫=⎪⇒=⎬⎪=⎭. 抽去该问题的实际意义,我们得到两个函数21(),2f v mv v gt ==,把()v t 代入f ,即得221(())2f v t mg t =.这样得到函数的过程称为“函数复合”,所得到的函数称为“复合函数”.[问题] 任给两个函数都可以复合吗?考虑下例;2()arcsin ,[1,1],()2,y f u u u D u g x x x E R ==∈=-==+∈=.就不能复合,结合上例可见,复合的前提条件是“内函数”的值域与“外函数”的定义域的交集不空(从而引出下面定义).2.定义(复合函数) 设有两个函数(),,(),y f u u D u g x x E =∈=∈,{}()E x f x D E =∈,若E φ≠,则对每一个x E ∈,通过g 对应D 内唯一一个值u ,而u 又通过f 对应唯一一个值y ,这就确定了一个定义在E 上的函数,它以x 为自变量,y 因变量,记作(()),y f g x x E =∈或()(),y f g x x E =∈.简记为f g .称为函数f 和g 的复合函数,并称f 为外函数,g 为内函数,u 为中间变量.3. 例子例 .1)( ,)(2x x g u u u f y -==== 求 ()[]).()(x g f x g f = 并求定义域.例 ⑴._______________)( ,1)1(2=++=-x f x x x f⑵ .1122xx x x f +=⎪⎭⎫ ⎝⎛+ 则)( )(=x fA. ,2xB. ,12+xC. ,22-xD. .22+x例 讨论函数()[0,)y f u u ==∈+∞与函数()u g x x R ==∈能否进行复合,求复合函数.4 说明1)复合函数可由多个函数相继复合而成.每次复合,都要验证能否进行在哪个数集上进行复合函数的最终定义域是什么例如:2sin ,1y u u v x ===-,复合成:[1,1]y x =∈-.2)不仅要会复合,更要会分解.把一个函数分解成若干个简单函数,在分解时也要注意定义域的变化. ①2log (0,1)log ,1.a a y x y u u z x =∈→===-②2arcsin , 1.y y u u v x =→===+③2sin 222,,sin .x u y y u v v x =→===五、反函数1.引言在函数()y f x =中把x 叫做自变量,y 叫做因变量.但需要指出的是,自变量与因变量的地位并不是绝对的,而是相对的,例如:2()1,f u u t ==+ 那么u 对于f 来讲是自变量,但对t 来讲,u 是因变量.习惯上说函数()y f x =中x 是自变量,y 是因变量,是基于y 随x 的变化现时变化.但有时我们不仅要研究y 随x 的变化状况,也要研究x 随y 的变化的状况.对此,我们引入反函数的概念.2.反函数概念定义设→X f :R 是一函数,如果∀1x ,X x ∈2, 由)()(2121x f x f x x ≠⇒≠(或由2121)()(x x x f x f =⇒=),则称f 在X 上是 1-1 的.若Y X f →:,)(X f Y =,称f 为满的.若 Y X f →:是满的 1-1 的,则称f 为1-1对应.→X f :R 是1-1 的意味着)(x f y =对固定y 至多有一个解x ,Y X f →:是1-1 的意味着对Y y ∈,)(x f y =有且仅有一个解x .定义 设Y X f →:是1-1对应.Y y ∈∀, 由)(x f y =唯一确定一个X x ∈, 由这种对应法则所确定的函数称为)(x f y =的反函数,记为)(1y f x -=.反函数的定义域和值域恰为原函数的值域和定义域Y X f →:X Y f →-:1显然有X X I f f →=-:1 (恒等变换)Y Y I f f →=-:1 (恒等变换)Y X f f →=--:)(11.从方程角度看,函数和反函数没什么区别,作为函数,习惯上我们还是把反函数记为 )(1x f y -=, 这样它的图形与 )(x f y =的图形是关于对角线x y =对称的.严格单调函数是1-1对应的,所以严格单调函数有反函数. 但 1-1 对应的函数(有反函数)不一定是严格单调的,看下面例子⎩⎨⎧≤≤-<≤=21,310,)(x x x x x f它的反函数即为它自己.实际求反函数问题可分为二步进行:1. 确定 Y X f →:的定义域X 和值域Y ,考虑 1-1对应条件.固定 Y y ∈,解方程 y x f =)( 得出 )(1y f x -=.2. 按习惯,自变量x 、因变量y 互换,得)(1x f y -=. 例 求 2)(x x e e x sh y --== :R → R 的反函数. 解 固定y ,为解 2x x e e y --=,令 z e x =,方程变为 122-=z zy0122=--zy z12+±=y y z ( 舍去12+-y y )得)1ln(2++=y y x ,即)()1ln(12x sh x x y -=++=,称为反双曲正弦. 定理 给定函数)(x f y =,其定义域和值域分别记为X 和Y , 若在Y 上存在函数)(y g ,使得 x x f g =))((, 则有)()(1y f y g -=. 分析:要证两层结论:一是)(x f y =的反函数存在,我们只要证它是 1-1 对应就行了;二是要证1()()g y f y -=. 证 要证)(x f y =的反函数存在,只要证)(x f 是X 到Y 的 1-1 对应.∀1x ,X x ∈2,若)()(21x f x f =, 则由定理条件,我们有对应.再证1()()g y f y -=.∀Y y ∈,∃X x ∈,使得)(x f y =.由反函数定义 )(1y f x -=,再由定理条件()(())g y g f x x ==.1()()g y f y -⇒=例 :f R R →,若))((x f f 存在唯一(|∃)不动点,则)(x f 也|∃不动点.证 存在性,设)]([* * x f f x =,)]([)(* * x f f f x f =,即)(* x f 是f f 的不动点,由唯一性* * )(x x f =,即存在)(x f 的不动点* x .唯一性: 设)(x f x =,))(()(x f f x f x ==,说明 x 是f f 的不动点,由唯一性,x =*x .从映射的观点看函数. 设函数(),y f x x D =∈.满足:对于值域()f D 中的每一个值y ,D中有且只有一个值x ,使得()f x y =,则按此对应法则得到一个定义在()f D 上的函数,称这个函数为f 的反函数,记作 1:(),(|)f f D D y x -→→或1(),()x f y y f D -=∈.3、注释a) 并不是任何函数都有反函数,从映射的观点看,函数f 有反函数,意味着f 是D与()f D 之间的一个一一映射,称1f -为映射f 的逆映射,它把()f D D →;b) 函数f 与1f -互为反函数,并有:1(()),,f f x x x D -≡∈1(()),().f f x y y f D -≡∈c) 在反函数的表示1(),()x f y y f D -=∈中,是以y 为自变量,x 为因变量.若按习惯做法用x 做为自变量的记号,y 作为因变量的记号,则函数f 的反函数1f -可以改写为1(),().y f x x f D -=∈应该注意,尽管这样做了,但它们的表示同一个函数,因为其定义域和对应法则相同,仅是所用变量的记号不同而已.但它们的图形在同一坐标系中画出时有所差别.六 、初等函数1.基本初等函数(6类)常量函数 y C =(C为常数);幂函数 ()y x R αα=∈;指数函数(0,1)x y a a a =>≠;对数函数 log (0,1)a y x a a =>≠;三角函数 sin ,cos ,,c y x y x y tgx y tgx ====;反三角函数 arcsin ,arccos ,,y x y x y arctgx y arcctgx ====.注:幂函数()y x R αα=∈和指数函数(0,1)x y a a a =>≠都涉及乘幂,而在中学数学课程中只给了有理指数乘幂的定义.下面我们借助于确界来定义无理指数幂,便它与有理指数幂一起构成实指数乘幂,并保持有理批数幂的基本性质.定义2.给定实数0,1a a >≠,设x 为无理数,我们规定:{}{}sup |,1|,01r x r xr a r a a a r a <⎧>⎪=⎨<<⎪⎩r<x为有理数当时,inf 为有理数当时. 这样解决了中学数学仅对有理数x定义xa 的缺陷.[问题]:这样的定义有意义否更明确一点相应的“确界是否存在呢”2.初等函数定义3.由基本初等函数经过在有限次四则运算与复合运算所得到的函数,统称为初等函数如:22112sin cos ,sin(),l g ,||.a e y x x y y o x y x x x -=+==+= 不是初等函数的函数,称为非初等函数.如Dirichlet 函数、Riemann 函数、取整函数等都是非初等函数.注:初等函数是本课程研究的主要对象.为此,除对基本初等函数的图象与性质应熟练掌握外,还应常握确定初等函数的定义域.确定定义域时应注意两点.例2.求下列函数的定义域.(1) y = (2) ln |sin |.y x =3.初等函数的几个特例: 设函数)(x f 和)(x g 都是初等函数, 则(1) )( x f 是初等函数, 因为 ().)( )( 2x f x f =(2){})( , )(m ax )(x g x f x =Φ 和 {})( , )(m in )(x g x f x =φ都是初等函数,因为 {})( , )(m ax )(x g x f x =Φ[])()()()(21x g x f x g x f -++=, {})( , )(m in )(x g x f x =φ [])()()()(21x g x f x g x f --+= . (3)幂指函数 ()()0)( )()(>x f x f x g 是初等函数,因为()(). )()(ln )()(ln )()(x f x g x f x g e e x f x g ==[作业] 15P : 3;4:(2)、(3); 5:(2); 7:(3);11§4具有某些特性的函数授课章节:第一章实数集与函数——§4具有某些特性的函数教学目的:熟悉与初等函数性态有关的一些常见术语.教学目的:深刻理解有界函数、单调函数的定义;理解奇偶函数、周期函数的定义;会求一些简单周期函数的周期.教学重点:函数的有界性、单调性.教学难点:周期函数周期的计算、验证.教学方法:有界函数讲授,其余的列出自学题纲,供学生自学完成. 教学程序:引言在本节中,我们将介绍以后常用的几类具有某些特性的函数,如有界函数、单调函数、奇偶函数与周期函数.其中,有些概念在中学里已经叙述过,因此,这里只是简单地提一下.与“有界集”的定义类似,先谈谈有上界函数和有下界函数.一、有界函数1、有上界函数、有下界函数的定义定义1设f为定义在D上的函数,若存在数()M L,使得对每一个x D∈有()(())≤≥,则称f为D上的有上(下)界函数,f x M f x L()M L称为f在D上的一个上(下)界.注:(1)f在D上有上(下)界,意味着值域()f D是一个有上(下)界的数集;(2)又若()M L为f在D上的一个上(下)界,则任何大于M(小于L)的数也是f在D上的上(下)界.所以,函数的上(下)界若存在,则不是唯一的,例如:sin=,1是其一个上y x界,下界为-1,则易见任何小于-1的数都可作为其下界;任何大于1的数都可作为其上界;(3)任给一个函数,不一定有上(下)界;(4)由(1)及“有界集”定义,可类比给出“有界函数”定义:f在D上有界⇔()f D是一个有界集⇔f在D上既有上界又有下界⇔f在D上的有上界函数,也为D上的有下界函数.2、有界函数定义定义2设f为定义在D上的函数.若存在正数M,使得对每一个∈有|()|x D≤,则称f为D上的有界函数.f x M注:(1)几何意义:f 为D 上的有界函数,则f 的图象完全落在y M =和y M =-之间;(2)f 在D 上有界⇔f 在D 上既有上界又有下界;例子:sin ,cos y x y x ==;(3)关于函数f 在D 上无上界、无下界或无界的定义. 3、 例题例 1 证明:f X R →有界的充要条件为:∃M ,m ,使得对X x ∈∀,M x f m ≤≤)(.证明 如果:f X R →有界,按定义∃M >0,X x ∈∀有()f x M ≤,即()M f x M -≤≤,取M m -=,M M =即可.反之如果∃M ,m 使得,()x X m f x M ∀∈≤≤,令{}0max 1,M M m =+,则0()f x M ≤,即∃00M >,使得对x X ∀∈有0()f x M ≤,即:f X R →有界.例2.证明1()f x x=为(0,1]上的无上界函数. 例3.设,f g 为D 上的有界函数.证明:(1){}inf ()inf ()inf ()()x D x D x D f x g x f x g x ∈∈∈+≤+; (2){}sup ()()sup ()sup ()x Dx Dx Df xg x f x g x ∈∈∈+≤+.例4验证函数 325)(2+=x xx f 在R 内有界. 解法一 由,62322)3()2(32222x x x x =⋅≥+=+当0≠x 时,有.3625625325325 )( 22≤=≤+=+=x x x x x x x f 30 )0( ≤=f ,∴ 对 ,R ∈∀x 总有 ,3 )( ≤x f 即)(x f 在R 内有界. 解法二 令 ,3252⇒+=x x y 关于x 的二次方程 03522=+-y x yx 有实数根.22245 y -=∆∴.2 ,42425,02≤⇒≤≤⇒≥y y 解法三 令 ⎪⎭⎫⎝⎛-∈=2,2 ,23ππt tgt x 对应). , (∞+∞-∈x 于是 ==+=+⎪⎪⎭⎫⎝⎛=+=t t t t tg tgt tgt tgt x x x f 2222sec 1cos sin 65123353232235325)(.6252sin 625 )( ,2sin 625 ≤=⇒=t x f t二、单调函数定义3设f 为定义在D 上的函数,1212,,,x x D x x ∀∈< (1)若12()()f x f x ≤,则称f 为D 上的增函数;若12()()f x f x <,则称f 为D 上的严格增函数.(2)若12()()f x f x ≥,则称f 为D 上的减函数;若12()()f x f x >,则称f 为D 上的严格减函数.例5.证明:3y x =在(,)-∞+∞上是严格增函数.证明:设21x x <,))((222121213231x x x x x x x x ++-=- 如021<x x ,则3231120x x x x <⇒>> 如120x x >,则22331122120,x x x x x x ++>⇒<故03231<-x x 即得证. 例6.讨论函数[]y x =在R 上的单调性.12,x x R ∀∈,当12x x <时,有[][]12x x ≤,但此函数在R 上的不是严格增函数.注:1)单调性与所讨论的区间有关.在定义域的某些部分,f 可能单调,也可能不单调.所以要会求出给定函数的单调区间;2)严格单调函数的几何意义:其图象无自交点或无平行于x 轴的部分.更准确地讲:严格单调函数的图象与任一平行于x 轴的直线至多有一个交点.这一特征保证了它必有反函数.总结得下面的结论:定理1.设(),y f x x D =∈为严格增(减)函数,则f 必有反函数1f -,且1f -在其定义域()f D 上也是严格增(减)函数.证明:设f 在D 上严格增函数.对(),,()y f D x D f x y ∀∈∈=有使.下面证明这样的x 只有一个.事实上,对于D 内任一1,x x ≠由于f 在D 上严格增函数,当1x x <时1()f x y <,当1x x >时1()f x y >,总之1()f x y ≠.即(),,()y f D x D f x y ∀∈∈=都只存在唯一的一使得,从而例7 讨论函数2y x =在(,)-∞+∞上反函数的存在性;如果2y x =在(,)-∞+∞上不存在反函数,在(,)-∞+∞的子区间上存在反函数否?结论:函数的反函数与讨论的自变量的变化范围有关.例8 证明:x y a =当1a >时在R上严格增,当01a <<时在R 上严格递减.三、奇函数和偶函数定义4. 设D 为对称于原点的数集,f 为定义在D 上的函数.若对每一个x D ∈有(1)()()f x f x -=-,则称f 为D 上的奇函数;(2)()()f x f x -=,则称f 为D 上的偶函数.注:(1)从函数图形上看,奇函数的图象关于原点对称(中心对称),偶函数的图象关于y 轴对称;(2)奇偶性的前提是定义域对称,因此(),[0,1]f x x x =∈没有必要讨论奇偶性.(3)从奇偶性角度对函数分类:⎧⎪⎪⎨⎪⎪≡⎩奇函数:y=sinx 偶函数:y=sgnx非奇非偶函数:y=sinx+cosx 既奇又偶函数:y 0; (4)由于奇偶函数对称性的特点,研究奇偶函数性质时,只须讨论原点的左边或右边即可四、周期函数 1、定义设f 为定义在数集D 上的函数,若存在0σ>,使得对一切x D ∈有()()f x f x σ±=,则称f 为周期函数,σ称为f 的一个周期. 2、几点说明:(1)若σ是f 的周期,则()n n N σ+∈也是f 的周期,所以周期若存在,则不唯一.如sin ,2,4,y x σππ==.因此有如下“基本周期”的说法,即若在周期函数f 的所有周期中有一个最小的周期,则称此最小周期为f 的“基本周期”,简称“周期”.如sin y x =,周期为2π;(2)任给一个函数不一定存在周期,既使存在周期也不一定有基本周期,如:1)1y x =+,不是周期函数;2)y C =(C为常数),任何正数都是它的周期.第二章数列极限引 言为了掌握变量的变化规律,往往需要从它的变化过程来判断它的变化趋势.例如有这么一个变量,它开始是1,然后为1111,,,,,234n如此,一直无尽地变下去,虽然无尽止,但它的变化有一个趋势,这个趋势就是在它的变化过程中越来越接近于零.我们就说,这个变量的极限为0.。
大学数学经典求极限方法及解析(最全)
求极限的各种方法及解析1.约去零因子求极限例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x 【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim )13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限30sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x【注】本题除了使用分子有理化方法外,及时分离极限式中的非........零因子...是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim0=→xxx 和e x nx x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
高考数学最全知识点
高考数学最全知识点一、代数与函数1. 整式与分式- 整式的定义与性质- 分式的定义与性质- 分式的化简与运算法则2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 二元一次方程与不等式- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数的性质与图像- 复合函数与反函数- 二次函数与它的图像特征4. 一次、二次函数和分式函数- 一次函数的图像与性质- 二次函数的图像与性质- 分式函数的图像与性质二、解析几何1. 点、直线与圆- 坐标平面、点的坐标与点的表示- 直线的方程与性质- 圆的方程与性质2. 平面与空间图形- 不共面点的坐标与距离- 空间图形的投影与投影性质- 空间几何体的体积计算3. 向量与坐标变换- 向量的定义与性质- 向量的线性运算与数量积- 坐标变换与平移、旋转、对称三、概率与统计1. 排列与组合- 排列的概念与计算- 组合的概念与计算- 排列组合在实际问题中的应用2. 概率与事件- 概率的定义与性质- 事件的概念与运算- 事件的概率计算与应用3. 统计与数据分析- 统计数据的收集与整理- 统计量与频数分布表- 统计图表与数据分析四、数学思维与方法1. 数学思想方法与证明- 数学思维的培养与发展- 数学证明的基本方法与思路2. 推理与逻辑- 数学推理的基本规律与方法- 逻辑关系的分析与判断3. 分析与解决问题- 数学问题的分析与解决思路- 解决问题的数学模型与方法五、高考数学应试技巧1. 命题特点与解题技巧- 高考数学命题特点的认识- 解题技巧与策略的训练2. 考前复习与应试心态- 高考数学的复习计划与安排- 应试心态与考场策略3. 高考数学备考注意事项- 考试要点与考纲的掌握- 考前注意事项与常见错误的避免以上是高考数学的最全知识点,通过系统地学习和掌握这些知识点,相信你能在高考中取得优异的成绩。
祝你成功!。
高一上册数学知识点全面总结及详细解析2024版
高一上册数学知识点全面总结及详细解析2024版引言高一上册数学是高中数学学习的基础阶段,涵盖了代数、几何、函数等多个方面的知识点。
本文将对这些知识点进行详细总结,帮助学生更好地掌握和应用这些知识。
第一章:集合与函数1. 集合的概念集合的定义与表示方法:集合是指某些确定的、不同的对象的全体。
常用大写字母表示集合,小写字母表示集合中的元素。
集合的表示方法有列举法和描述法。
集合的基本运算(并集、交集、补集):并集是指两个集合中所有元素的集合,交集是指两个集合中共有元素的集合,补集是指全集中不属于某集合的元素的集合。
子集与全集:如果集合A的所有元素都是集合B的元素,则A是B的子集。
全集是指包含所有讨论对象的集合。
2. 函数的概念函数的定义与表示方法:函数是指两个集合之间的一种对应关系,其中每个元素在第一个集合中都有唯一的元素与之对应。
常用符号f(x)表示函数。
函数的性质(单调性、奇偶性、周期性):单调性指函数在某区间内是否保持递增或递减,奇偶性指函数是否关于原点对称或关于y轴对称,周期性指函数是否存在一个周期使得函数值重复出现。
反函数与复合函数:反函数是指将原函数的自变量与因变量互换得到的新函数,复合函数是指两个函数的组合。
第二章:基本初等函数1. 一次函数一次函数的定义与图像:一次函数是指形如y=ax+b的函数,其图像是一条直线。
一次函数的性质与应用:一次函数的斜率a决定了直线的倾斜程度,截距b 决定了直线与y轴的交点。
一次函数广泛应用于实际问题的建模与求解。
2. 二次函数二次函数的定义与图像:二次函数是指形如y=ax^2+bx+c的函数,其图像是一条抛物线。
二次函数的性质(顶点、对称轴、开口方向):二次函数的顶点是抛物线的最高或最低点,对称轴是通过顶点的垂直线,开口方向由系数a的正负决定。
二次函数的应用:二次函数在物理、经济等领域有广泛应用,如抛物运动、利润最大化等问题。
3. 指数函数与对数函数指数函数的定义与性质:指数函数是指形如y=a^x的函数,其图像呈指数增长或衰减。
16高中数学:圆的标准方程全解析
高中数学:圆的标准方程全解析一、引言圆是平面几何中最基本、最重要的图形之一。
在数学中,我们常用圆的标准方程来描述一个圆。
掌握圆的标准方程及其性质,对于解决与圆相关的问题具有重要意义。
本文将详细解析高中数学中圆的标准方程的知识点,帮助学生更好地掌握这一内容。
二、基本概念与性质1.圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,r为半径的圆的标准方程为(x−a)2+(y−b)2=r2。
这个方程反映了圆上任意一点到圆心的距离等于半径的几何性质。
2.圆心与半径:在圆的标准方程中,点O(a,b)称为圆心,r称为半径。
圆心是圆的中心,半径是从圆心到圆上任意一点的距离。
3.圆的性质:圆具有许多重要的性质,如圆的任意两点间的距离小于等于直径、圆的切线垂直于半径等。
这些性质在解决与圆相关的问题时非常有用。
三、求解与圆相关的问题1.求解圆的方程:给定圆的圆心坐标和半径,可以直接写出圆的标准方程。
例如,以(2,3)为圆心,4为半径的圆的方程为(x−2)2+(y−3)2=16。
2.判断点与圆的位置关系:通过比较点到圆心的距离与半径的大小关系,可以判断点是否在圆内、圆上或圆外。
若点到圆心的距离小于半径,则点在圆内;若等于半径,则点在圆上;若大于半径,则点在圆外。
3.求解与圆相关的最值问题:利用圆的性质,可以求解一些与圆相关的最值问题。
例如,求解点到圆的最近距离、最远距离等。
4.求解与圆相交的直线方程:当直线与圆相交时,可以通过联立直线和圆的方程求解交点坐标。
若直线方程为Ax+By+C=0,则联立方程组{Ax+By+C=0(x−a)2+(y−b)2=r2可求得交点坐标。
四、应用举例1.几何问题中的应用:在解决一些几何问题时,需要利用圆的标准方程及其性质。
例如,在求解两圆的公切线、内切圆等问题时,可以通过分析两个圆的方程和性质找到解决方法。
2.实际问题中的应用:在实际生活中,圆的标准方程也有广泛的应用。
例如,在建筑设计中,可以利用圆的标准方程来确定建筑物的圆形结构的尺寸和位置;在物理学中,可以利用圆的标准方程来描述物体的运动轨迹等。
高等数学教材答案解析完整版下册
高等数学教材答案解析完整版下册第一章:极限与连续1.1 极限的定义和性质对于极限的理解,我们首先需要明确极限的概念以及相关的性质。
在数学上,我们将极限定义为:若数列{an}满足当n趋近于无穷时,an 趋近于某个常数A,则称A为数列{an}的极限,记作lim(n→∞)an= A。
根据极限的性质,我们可以推导得到一系列有用的定理,如极限的唯一性定理、有界性定理等。
1.2 函数连续性函数的连续性在高等数学中占据着重要地位。
我们知道,一个函数若在某点x=a处连续,则在该点的左极限等于函数值等于右极限,即lim(x→a^-)f(x) = f(a) = lim(x→a^+)f(x)。
根据函数连续性相关的定理,如函数四则运算的连续性、复合函数的连续性等,我们可以更加深入地理解和运用连续函数的性质。
1.3 导数与微分导数的概念是微积分中的核心概念之一,其本质是对函数在某一点的变化率进行描述。
函数f(x)在点x=a处的导数定义为:lim(h→0)[f(a+h) - f(a)] / h。
导数的求解涉及到一系列的求导法则,如基本导数法则、高阶导数的计算等。
微分是导数的几何意义,可以描述函数曲线在某一点的切线斜率。
第二章:导数的应用2.1 最值与最值问题在求解最值问题时,我们需要使用导数和极值的概念。
根据导数的性质,我们可以得到一系列求解函数最大值和最小值的定理,如费马定理和辅助函数法。
2.2 函数的凹凸性与拐点函数的凹凸性和拐点是函数图像的重要特征之一。
我们可以通过导数和二阶导数的方法来判断函数的凹凸性和拐点。
根据函数的凹凸性和拐点的性质,我们可以更好地理解和分析函数的变化趋势。
2.3 泰勒展开与函数逼近泰勒展开是将一个函数在某点附近展开成幂级数的形式。
利用泰勒展开,我们可以对函数进行逼近和求解近似值。
泰勒展开在工程和科学计算中具有广泛的应用,如求解方程和优化问题等。
第三章:定积分与不定积分3.1 定积分的定义和性质定积分是对函数在一定区间上的积分运算。
数学名题解析
数学名题解析1.鸡兔同笼。
今有鸡兔同笼,上有35个头,下有94只脚。
鸡兔各几只?想:假设把35只全看作鸡,每只鸡2只脚,共有70只脚。
比已知的总脚数94只少了24只,少的原因是把每只兔的脚少算了2只。
看看24只里面少算了多少个2只,便可求出兔的只数,进而求出鸡的只数。
解决这样的问题,我国古代有人想出更特殊的假设方法。
假设一声令下,笼子里的鸡都表演“金鸡独立”,兔子都表演“双腿拱月”。
那么鸡和兔着地的脚数就是总脚数的一半,而头数仍是35。
这时鸡着地的脚数与头数相等,每只兔着地的脚数比头数多1,那么鸡兔着地的脚数与总头数的差等于兔的头数。
我国古代名著《孙子算经》对这种解法就有记载:“上署头,下置足。
半其足,以头除足,以足除头,即得。
”具体解法:兔的只数是94÷2-35=12(只),鸡的只数是35-12= 23(只)。
2.物不知数。
今有物,不知其数。
三三数之剩二,五五数之剩三,七七数之剩二。
问物几何。
这是我国古代名著《孙子算经》中的一道题。
意思是:一个数除以3余2,除以5余3,除以7余2。
求适合这些条件的最小自然数。
想:此题可用枚举法进行推算。
先顺序排出适合其中两个条件的数,再在其中选择适合另一个条件的数。
3.三阶幻方。
把1—9这九个自然数填在九空格里,使横、竖和对角在线三个数的和都等于15。
想:1+9=10,2+8=10,3+7=10,4+6=10。
这每对数的和再加上5都等于15,可确定中心格应填5,这四组数应分别填在横、竖和对角线的位置上。
先填四个角,若填两对奇数,那么因三个奇数的和才可能得奇数,四边上的格里已不可再填奇数,不行。
若四个角分别填一对偶数,一对奇数,也行不通。
因此,判定四个角上必须填两对偶数。
对角在线的数填好后,其余格里再填奇数就很容易了。
4.兔子问题。
十三世纪,意大利数学家伦纳德提出下面一道有趣的问题:如果每对大兔每月生一对小兔,而每对小兔生长一个月就成为大兔,并且所有的兔子全部存活,那么有人养了初生的一对小兔,一年后共有多少对兔子?想:第一个月初,有1对兔子;第二个月初,仍有一对兔子;第三个月初,有2对兔子;第四个月初,有3对兔子;第五个月初,有5对兔子;第六个月初,有8对兔子……。
最厉害的数学公式(一)
在数学领域中,有许多公式被认为是最厉害的,它们被广泛应用于各种领域,包括科学、工程、经济和金融等。
下面将列举一些最厉害的数学公式,并举例解释说明它们的应用。
1. 费马大定理费马大定理是数论领域中的一个重要定理,它断言不存在满足n>2的整数解的n次幂a^n + b^n = c^n。
这个定理由皮埃尔·德·费马在17世纪提出,直到1994年才由安德鲁·怀尔斯证明。
费马大定理在密码学和计算机科学中有重要应用,特别是在设计和分析加密算法时。
2. 黎曼假设黎曼假设是数论中一个未解决的问题,它涉及到黎曼 zeta 函数的非平凡零点的分布。
这个假设在数论和分析中扮演着重要角色,它对整数的分布和素数的性质有深远的影响。
黎曼假设在密码学和计算机科学中也有重要应用,特别是在设计和分析密码算法时。
3. 泰勒级数泰勒级数是一个非常重要的数学工具,它可以用来表示函数在某一点附近的近似值。
泰勒级数在物理学、工程学和计算机科学中有广泛应用,特别是在数值分析和近似计算中。
4. 高斯-狄拉克方程高斯-狄拉克方程是量子力学中描述费米子的一个重要方程,它用来描述自旋为1/2的粒子的运动和性质。
高斯-狄拉克方程在粒子物理学和凝聚态物理学中有广泛应用,特别是在描述电子、质子和中子等基本粒子的行为时。
5. 黑-斯科尔定理黑-斯科尔定理是微分几何中的一个重要定理,它断言了一种曲率与拓扑性质的联系。
这个定理在通用相对论和引力理论中有重要应用,特别是在描述时空的性质和结构时。
以上列举的数学公式和定理在各个领域都有重要的应用,它们不仅在理论研究中发挥作用,还在实际问题的求解和应用中发挥重要作用。
随着科学技术的不断发展,这些数学公式和定理的应用范围将会进一步扩大,成为人类认识和改造世界的重要工具。
中考数学压轴题全解析
中考数学压轴题全解析中考数学压轴题,那可真是数学试卷里的“大魔王”啊。
咱就说这压轴题,那难度就像是让你去爬一座特别陡峭还云雾缭绕的高山,看着就有点吓人,但一旦征服了,那成就感也是满满的。
先说说这压轴题都有啥类型吧。
一种是函数综合题,这函数就像一个调皮的小精灵,一会儿是一次函数,一会儿是二次函数,它们还会和几何图形凑到一块儿玩。
比如说,给你个抛物线,再在旁边画个三角形,然后问你各种奇奇怪怪的问题,像这个点到那个点的距离最短是多少呀,这个三角形的面积什么时候最大之类的。
还有一种是几何探究题,那几何图形就像一个个小迷宫。
什么三角形旋转啦,四边形变形啦,让你去找出里面隐藏的规律。
就好比一个魔术师在变戏法,你得看穿他的把戏才行。
对于函数综合题的解法呢,你得先把函数的基本性质搞清楚。
一次函数的直线斜率,二次函数的对称轴、顶点坐标,这些都是你的武器。
当遇到和几何图形结合的题时,要善于把几何条件转化成数学表达式。
比如说,看到垂直,就想到斜率相乘等于 - 1;看到线段相等,就可以用两点间距离公式。
再看几何探究题,你得学会动手画草图。
很多时候,你画着画着就发现规律了。
而且要从特殊情况入手,比如先看看等边三角形、正方形这些特殊图形的情况,再慢慢推广到一般情况。
那这压轴题为啥这么难呢?一方面是它知识点涵盖得多,函数、几何、方程啥的都可能混在一起。
另一方面,它还考验你的思维能力,逻辑思维、空间想象思维都得跟上。
我还记得我初中的时候,看到压轴题也是头皮发麻。
但是我就不信邪,我一道一道地做,一道一道地研究。
我把做过的压轴题整理成一个小本子,没事就拿出来看看,看看自己当时是怎么想的,做错的地方是为啥错的。
慢慢地,我就发现这压轴题也不是那么可怕了。
所以啊,对于中考数学压轴题,大家不要害怕。
只要平时多下功夫,把基础打牢,再掌握一些解题的小技巧,就一定能战胜这个“大魔王”。
说不定还能在考试的时候,把压轴题当成是一个展示自己数学才华的舞台呢。
经典数学试题解析
经典数学试题解析导言:数学是一门古老而又深奥的学科,它的发展与人类文明的进步息息相关。
数学试题作为数学学习的重要组成部分,既检验了学生的数学水平,又培养了学生的逻辑思维能力。
本文将对一些经典数学试题进行解析,帮助读者更好地理解数学的精髓。
一、平面几何题1. 题目:已知直角三角形ABC,AC=5cm,BC=12cm,求AB的长度。
解析:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
所以,AB的平方等于AC的平方加上BC的平方。
代入数值计算即可得出答案。
2. 题目:已知四边形ABCD是一个平行四边形,且AB=CD=6cm,AD=BC=8cm,求四边形的面积。
解析:平行四边形的面积可以通过底边乘以高得到。
在这个问题中,底边为6cm,高可以通过利用平行四边形的性质得到。
由于AB和CD平行,AD和BC平行,所以可以得出AD与BC的高度相等。
因此,可以利用直角三角形的性质,计算出高度的数值。
将底边和高代入公式计算,即可得到答案。
二、代数题1. 题目:已知a+b=5,a-b=3,求a和b的值。
解析:这是一个二元一次方程组,可以通过联立方程求解。
将两个方程相加可以消去b的项,得到2a=8,从而得到a=4。
将a的值代入其中一个方程,可以求得b的值为1。
因此,a=4,b=1。
2. 题目:已知x^2-5x+6=0,求方程的根。
解析:这是一个二次方程,可以通过因式分解或者求根公式来求解。
将方程进行因式分解,得到(x-2)(x-3)=0。
因此,方程的根为x=2和x=3。
三、概率题1. 题目:有一枚均匀的硬币,抛掷两次,求至少出现一次正面的概率。
解析:求至少出现一次正面的概率,可以通过求出出现两次反面的概率,然后用1减去这个概率。
因为每次抛掷硬币的结果是独立的,所以两次抛掷都出现反面的概率为1/2乘以1/2,即1/4。
所以至少出现一次正面的概率为1-1/4=3/4。
2. 题目:有一副扑克牌,从中随机抽取一张牌,求抽到红心的概率。
数学高中试题讲解大全及答案
数学高中试题讲解大全及答案一、选择题1. 函数f(x) = x^2 - 4x + 4的顶点坐标是:A. (-1, 5)B. (2, -4)C. (2, 0)D. (0, 4)【解析】首先,我们可以将函数f(x) = x^2 - 4x + 4写成顶点式的形式。
通过完成平方,我们有f(x) = (x - 2)^2。
因此,顶点坐标为(2, 0)。
【答案】C2. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B:A. {1, 2}B. {1, 2, 3}C. {2, 3, 4}D. {1, 2, 3, 4}【解析】集合A和B的并集是指包含A和B中所有元素的集合,不重复计算相同的元素。
因此,A∪B = {1, 2, 3, 4}。
【答案】D二、填空题1. 若直线y = 3x + 5与x轴相交,则交点的横坐标为______。
【解析】当直线与x轴相交时,y的值为0。
将y = 0代入直线方程,解得x = -5/3。
【答案】-5/32. 已知等差数列的首项a1 = 2,公差d = 3,求第10项a10。
【解析】等差数列的通项公式为an = a1 + (n - 1)d。
将n = 10,a1 = 2,d = 3代入公式,得到a10 = 2 + 9 * 3 = 29。
【答案】29三、解答题1. 已知函数f(x) = 2x^3 - 3x^2 + 5,求导数f'(x)。
【解析】根据导数的定义,我们可以分别对x的幂次项求导。
对于2x^3,导数是6x^2;对于-3x^2,导数是-6x;常数项5的导数是0。
因此,f'(x) = 6x^2 - 6x。
【答案】f'(x) = 6x^2 - 6x2. 解不等式:|x - 1| + |x + 2| ≥ 5。
【解析】首先,我们需要考虑绝对值不等式的不同情况。
我们可以将x分为三个区间:x ≤ -2,-2 < x ≤ 1,x > 1。
对于每个区间,去掉绝对值符号,然后解不等式。
史上最经典最牛的奥数题解法附数学历年考试
史上最经典最牛的奥数题解法附数学历年考试奥数,全称奥林匹克数学竞赛,是指国际数学奥林匹克竞赛(IMO)以及各国的奥林匹克数学竞赛。
作为一项具备挑战性和创造性的数学竞赛,奥数一直吸引着无数热爱数学的学子们。
历经几十年的发展,人们创造了多种解题方法和技巧。
在本文中,我们将探讨一道史上最经典、最牛的奥数题解法,并附上数学历年考试的相关内容。
题目:解析史上最经典最牛的奥数题这道题来自1995年国际数学奥林匹克竞赛,是一道经典的几何问题。
我们来看一下题目:题目描述:在直角三角形ABC中,角C是直角,点M是AC边上的一个动点。
以CM为直径绘制一个半圆,交BC边于点N,交AB边于点P。
证明:当且仅当AM为AB的三分之一时,有三角形PBM的面积与三角形ABC的面积之和最大。
解题思路:这道题目涉及到了几何知识以及一些基本的数学推理。
我们可以通过以下的步骤来解决这道题目。
1. 假设AM=AB的三分之一,将三角形ABC分成两个等腰直角三角形,记为AMC和CMB。
- 由于AM=AB的三分之一,那么AM等于对边MC的三分之一,即AM=MC/3。
- 又由于MC是半圆的直径,故三角形CMC'是一个直角等腰三角形。
- 根据勾股定理,我们可以得到AC=MC'。
- 同理,由于CM=CB的三分之一,我们可以得到BM=MC'/3。
- 由此可见,三角形PBM也是一个直角等腰三角形。
2. 接下来,我们需要证明三角形PBM的面积与三角形ABC的面积之和最大。
- 首先,我们可以使用面积公式计算三角形ABC的面积,记为S1。
- 然后,我们计算三角形PBM的面积,记为S2。
由于三角形PBM是一个直角等腰三角形,所以我们可以使用公式S2=1/2 * BM^2来计算。
- 接下来,我们计算两个面积之和S=S1+S2,然后将S表示为AM 的函数。
- 通过对S求导,并令导数等于零,我们可以得到AM等于AB的三分之一时,S取得最大值。
数学试题答案详解
数学试题答案详解数学是一门既有逻辑性又有美感的学科,它的试题常常需要我们动脑筋去解答。
当我们在考试或者练习中遇到难题时,答案的详解就成了我们的救命稻草。
本文将为大家详细解析一些数学试题的答案,帮助大家更好地理解数学知识。
一、代数题1. 某数的一半加上20等于这个数的三分之一,求这个数是多少?解析:设这个数为x,根据题意可以得到方程:1/2x + 20 = 1/3x。
将方程两边同乘以6,得到3x + 120 = 2x,再将2x移到等号左边,得到x = -120。
所以这个数是-120。
2. 如果a + b = 5,a - b = 3,求a和b的值。
解析:将两个方程相加,得到2a = 8,所以a = 4。
将a的值代入第一个方程,得到4 + b = 5,所以b = 1。
所以a的值是4,b的值是1。
二、几何题1. 已知三角形ABC中,AB = AC,角BAC = 40°,角ABC = 70°,求角BCA的度数。
解析:由已知条件可知,角ABC = 70°,角BAC = 40°,所以角BCA = 180° - 70° - 40° = 70°。
所以角BCA的度数是70°。
2. 在正方形ABCD中,E是边BC的中点,F是边CD上的一点,且EF与AD垂直相交于点G,若AB = 6cm,求EF的长度。
解析:由题意可知,正方形ABCD的边长为6cm,边BC的中点为E,所以BE = EC = 3cm。
又因为EF与AD垂直相交于点G,所以AG = GD = 3cm。
根据勾股定理可得,EF的长度为√(AG² + GE²) = √(3² + 3²) = √(18) = 3√2 cm。
所以EF的长度为3√2 cm。
三、概率题1. 一枚硬币抛掷3次,求至少出现一次正面的概率。
解析:设事件A为至少出现一次正面的情况,事件B为出现3次反面的情况。
高级数学题解析
高级数学题解析数学作为一门精深的学科,其内涵十分丰富。
其中,高级数学更是让人望而生畏的存在。
高级数学所涉及的各种题型,其解析往往需要结合多种技巧和理论知识才能得出正确答案。
今天我们就来对几个高级数学题进行深度解析,希望给大家带来一些启发和帮助。
一、微分方程题解析微分方程是高级数学中的重要内容之一,其应用广泛而深远。
解微分方程的过程中,需要用到积分、导数等基本概念和理论。
以求解一阶线性常微分方程为例,假设给定的微分方程为dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数。
我们可以采用积分因子法进行求解。
首先,我们求出微分方程的积分因子μ(x)。
积分因子的定义为μ(x) =e^(∫p(x)dx)。
将积分因子乘以原方程两边,然后利用乘积法则和恰当导数的定义,可以将原方程两边化为d(μ(x)y)/dx = μ(x)q(x)。
再次对等式两边进行积分,即可得到μ(x)y = ∫μ(x)q(x)dx + C,其中C为常数。
最后,将积分得到的表达式除以μ(x),即可求得y的解。
二、矩阵题解析矩阵是高级数学中另一个重要的概念,其在线性代数、微积分等领域都有广泛的应用。
解矩阵题涉及到对矩阵的各种运算和性质的理解和应用。
以求解线性方程组为例,我们可以利用矩阵的逆矩阵来求解。
设线性方程组为AX = B,其中A是一个已知的n阶方阵,X和B是未知向量。
首先,我们求出系数矩阵A的逆矩阵A^-1。
然后,将方程组两边都左乘A^-1,得到X = A^-1B,即可求得方程组的解。
需要注意的是,矩阵A必须满足可逆的条件,即其行列式不为0。
三、级数题解析级数是高级数学中的重要概念,其在数学和物理等领域都有着广泛的应用。
解级数题需要用到级数的概念、性质和收敛判定等理论知识。
以求解无穷级数为例,我们可以采用判别法来判断级数的收敛性和求和。
设给定的级数为∑(n=1,∞)an,其中an是给定的数列。
我们可以根据其通项an 的性质和收敛判定定理来判断级数的收敛性。
数学题目解读与答案分析
数学题目解读与答案分析数学是一门抽象而又具有逻辑性的学科,它在我们的生活中扮演着重要的角色。
无论是在学校还是在社会中,我们都会遇到各种各样的数学题目。
有些题目可能看起来很简单,但实际上却需要一定的思考和分析。
在本文中,我们将解读一些常见的数学题目,并分析它们的答案。
一、解一元一次方程解一元一次方程是数学中最基本的操作之一。
一元一次方程是指只有一个未知数,并且该未知数的最高次数为一的方程。
例如,2x + 3 = 7就是一个一元一次方程。
解这类方程的方法有很多种,最常见的方法是移项和合并同类项。
通过逐步化简方程,我们可以得到未知数的值。
在解题过程中,我们要注意检查答案是否符合原方程的要求。
二、计算几何体的体积和表面积计算几何体的体积和表面积是我们在学习几何学时经常遇到的问题。
体积是指三维物体所占据的空间大小,而表面积是指三维物体外部的总面积。
计算几何体的体积和表面积需要根据不同的几何体使用不同的公式。
例如,计算长方体的体积可以使用公式V = lwh,其中l、w和h分别表示长方体的长、宽和高。
计算球体的表面积可以使用公式A = 4πr^2,其中r表示球体的半径。
掌握这些公式可以帮助我们快速计算几何体的体积和表面积。
三、解二次方程解二次方程是数学中较为复杂的操作之一。
二次方程是指最高次数为二的方程。
例如,x^2 + 3x - 4 = 0就是一个二次方程。
解二次方程的方法有很多种,最常见的方法是配方法和求根公式。
通过配方法,我们可以将二次方程转化为完全平方的形式,从而求得未知数的值。
求根公式是指通过一系列的运算得到二次方程的根。
在解题过程中,我们要注意判断二次方程的解的个数和性质。
四、概率与统计概率与统计是数学中的一个重要分支,它研究随机事件的发生概率以及对数据进行分析和解释。
在概率方面,我们经常会遇到计算事件发生的概率的问题。
例如,从一副扑克牌中随机抽取一张牌,求抽到红心的概率。
在统计方面,我们经常会遇到收集数据、计算平均数、中位数和众数等问题。
数学题目解析
数学题目解析数学题目一直是学生们在学习过程中面临的挑战之一。
解决数学题目需要一定的思维能力和方法,本文将对一些常见的数学题目进行解析,帮助读者更好地理解和解决数学题目。
一、代数题目解析代数题目是数学中的基础部分,也是考试中常见的题型。
解决代数题目需要掌握一些基本的代数知识和运算法则。
下面我们来解析一个代数题目。
题目:已知方程2x + 3 = 7,求解x的值。
解析:首先,我们可以将方程转化为2x = 7 - 3,即2x = 4。
然后,我们再将方程两边都除以2,得到x = 2。
因此,方程的解为x = 2。
二、几何题目解析几何题目是数学中的另一个重要部分,也是考试中常见的题型。
解决几何题目需要掌握一些基本的几何知识和几何定理。
下面我们来解析一个几何题目。
题目:已知直角三角形的两条直角边分别为3cm和4cm,求解斜边的长度。
解析:根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和。
所以,斜边的长度等于√(3^2 + 4^2) = √(9 + 16) = √25 = 5。
因此,斜边的长度为5cm。
三、概率题目解析概率题目是数学中的另一个重要部分,也是考试中常见的题型。
解决概率题目需要掌握一些基本的概率知识和计算方法。
下面我们来解析一个概率题目。
题目:有一只盒子里面有4个红球和6个蓝球,从盒子中随机抽取一个球,求解抽到红球的概率。
解析:首先,我们计算出总共抽取球的可能性,即10个球中选择一个的可能性为C(10, 1) = 10。
然后,我们计算出抽到红球的可能性,即从4个红球中选择一个的可能性为C(4, 1) = 4。
因此,抽到红球的概率为4/10 = 2/5。
综上所述,数学题目解析是解决数学题目的关键。
通过掌握基本的数学知识和运算法则,我们可以更好地解决各种类型的数学题目。
希望本文的解析可以帮助读者提高解决数学题目的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题典型解法--“假设法”例1有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只). 说明设想中的“鸡”,有34只是兔子,也可以列出公式:兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数)上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有:蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×(11+19)=240.比280少40.40÷(19-11)=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数19×10+11×6=256.比280少24.24÷(19-11)=3,就知道设想6只“鸡”,要少3只.要使设想的数,能给计算带来方便,常常取决于你的心算本领.下面再举四个稍有难度的例子.例3一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡”头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.根据前面的公式“兔”数=(30-3×7)÷(5-3)=4.5,“鸡”数=7-4.5=2.5,也就是甲打字用了4.5小时,乙打字用了2.5小时.答:甲打字用了4小时30分.例4 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是:(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)×4-4=40(岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)÷(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.例5蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成“8条腿”与“6条腿”两种.利用公式就可以算出8条腿的蜘蛛数=(118-6×18)÷(8-6)=5(只).因此就知道6条腿的小虫共18-5=13(只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式蝉数=(13×2-20)÷(2-1)=6(只).因此蜻蜓数是13-6=7(只).答:有5只蜘蛛,7只蜻蜓,6只蝉.例6某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?解:对2道、3道、4道题的人共有52-7-6=39(人).他们共做对181-1×7-5×6=144(道).由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39.对4道题的有(144-2.5×39)÷(4-1.5)=31(人).答:做对4道题的有31人.习题一1.龟鹤共有100个头,350只脚.龟、鹤各多少只?2.学校有象棋、跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副?3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个?4.某人领得工资240元,有2元、5元、10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元、5元、10元各有多少张?5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天.甲先做了多少天?6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米)、一段平路(4千米)、一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米)、一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段?7.用1元钱买4分、8分、1角的邮票共15张,问最多可以买1角的邮票多少张?二、“两数之差”的问题鸡兔同笼中的总头数是“两数之和”,如果把条件换成“两数之差”,又应该怎样去解呢?例7 买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.(680-8×40)÷(8+4)=30(张),这就知道,余下的邮票中,8分和4分的各有30张.因此8分邮票有40+30=70(张).答:买了8分的邮票70张,4分的邮票30张.也可以用任意假设一个数的办法.解二:譬如,假设有20张4分,根据条件“8分比4分多40张”,那么应有60张8分.以“分”作为计算单位,此时邮票总值是4×20+8×60=560.比680少,因此还要增加邮票.为了保持“差”是40,每增加1张4分,就要增加1张8分,每种要增加的张数是:(680-4×20-8×60)÷(4+8)=10(张).因此4分有20+10=30(张),8分有60+10=70(张).例8 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有(150-8×3)÷(10+8)= 7(天).雨天是7+3=10天,总共7+10=17(天).答:这项工程17天完成.请注意,如果把“雨天比晴天多3天”去掉,而换成已知工程是17天完成,由此又回到上一节的问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7、例8与上一节基本问题之间的关系.总脚数是“两数之和”,如果把条件换成“两数之差”,又应该怎样去解呢?例9 鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是:(100+28÷2)÷(2+1)=38(只).鸡是:100-38=62(只).答:鸡62只,兔38只.当然也可以去掉兔28÷4=7(只).兔的只数是(100-28÷4)÷(2+1)+7=38(只).也可以用任意假设一个数的办法.解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是:4×50-2×50=100,比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是:(100-28)÷(4+2)=12(只).兔只数是:50-12=38(只).另外,还存在下面这样的问题:总头数换成“两数之差”,总脚数也换成“两数之差”.例10 古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首.解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差13×5×4+20=280(字).每首字数相差:7×4-5×4=8(字).因此,七言绝句有:28÷(28-20)=35(首).五言绝句有:35+13=48(首).答:五言绝句48首,七言绝句35首.解二:假设五言绝句是23首,那么根据相差13首,七言绝句是10首.字数分别是20×23=460(字),28×10=280(字),五言绝句的字数,反而多了:460-280=180(字).与题目中“少20字”相差:180+20=200(字).说明假设诗的首数少了.为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句的首数要比假设增加200÷8=25(首).五言绝句有23+25=48(首).七言绝句有10+25=35(首).在写出“鸡兔同笼”公式的时候,我们假设都是兔,或者都是鸡,对于例7、例9和例10三个问题,当然也可以这样假设.现在来具体做一下,把列出的计算式子与“鸡兔同笼”公式对照一下,就会发现非常有趣的事.例7,假设都是8分邮票,4分邮票张数是(680-8×40)÷(8+4)=30(张).例9,假设都是兔,鸡的只数是(100×4-28)÷(4+2)=62(只).例10,假设都是五言绝句,七言绝句的首数是(20×13+20)÷(28-20)=35(首).首先,请读者先弄明白上面三个算式的由来,然后与“鸡兔同笼”公式比较,这三个算式只是有一处“-”成了“+”.其奥妙何在呢?当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事.例11有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?解:如果没有破损,运费应是400元.但破损一只要减少1+0.2=1.2(元).因此破损只数是(400-379.6)÷(1+0.2)=17(只).答:这次搬运中破损了17只玻璃瓶.请你想一想,这是“鸡兔同笼”同一类型的问题吗?例12 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?解一:如果小明第一次测验24题全对,得5×24=120(分).那么第二次只做对30-24=6(题)得分是:8×6-2×(15-6)=30(分). 两次相差:120-30=90(分).比题目中条件相差10分,多了80分.说明假设的第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分.两者两差数就可减少6+10=16(分).(90-10)÷(6+10)=5(题).因此,第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对:30-19=11(题).第一次得分:5×19-1×(24- 9)=90.第二次得分:8×11-2×(15-11)=80.答:第一次得90分,第二次得80分.解二:答对30题,也就是两次共答错24+15-30=9(题).第一次答错一题,要从满分中扣去5+1=6(分),第二次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分).如果答错9题都是第一次,要从满分中扣去6×9.但两次满分都是120分.比题目中条件“第一次得分多10分”,要少了6×9+10.因此,第二次答错题数是:(6×9+10)÷(6+10)=4(题)•第一次答错 9-4=5(题).第一次得分 5×(24-5)-1×5=90(分).第二次得分 8×(15-4)-2×4=80(分).习题二1.买语文书30本,数学书24本共花83.4元.每本语文书比每本数学书贵0.44元.每本语文书和数学书的价格各是多少?2.甲茶叶每千克132元,乙茶叶每千克96元,共买这两种茶叶12千克.甲茶叶所花的钱比乙茶叶所花钱少354元.问每种茶叶各买多少千克?3.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次.一连运了若干天,有晴天,也有雨天.其中雨天比晴天多3天,但运的次数却比晴天运的次数少27次.问一连运了多少天?4.某次数学测验共20道题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分.问小华做对了几道题?5.甲、乙二人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分.每人各射10发,共命中14发.结算分数时,甲比乙多10分.问甲、乙各中几发?6.甲、乙两地相距12千米.小张从甲地到乙地,在停留半小时后,又从乙地返回甲地,小王从乙地到甲地,在甲地停留40分钟后,又从甲地返回乙地.已知两人同时分别从甲、乙两地出发,经过4小时后,他们在返回的途中相遇.如果小张速度比小王速度每小时多走1.5千米,求两人的速度.巧算和与差一天,小明对一些小朋友说:“请你们随意说出2个数来,我会一下子算出它们的和减去它们的差的结果来!”“真的吗?”小光惊奇地问。