信号与线性系统公式
信号与线性系统第一章
单位冲激信号(t)与一个在t=0点连续(且处处有界)的
信号f(t)相乘,则其乘积仅在t=0处得到f(0)(t),其余各点之
乘积均为零。
f (t)
(t)f(t)dt (t)f(0)dt
f (0)
f(0) (t)dt f(0)
R (t)
o
t
6.单位阶跃信号
图1.7单位阶跃信号 单位阶跃函数是对某些物理对象从一个状态瞬间突变到
另一个状态的描述。如图1.7(a)所示,在t=0时刻对 某一电路接入1V的直流电压源,并且无限持续下去。
这个电路获得电压信号的过程就可以用单位阶跃函数
来描述。如果接入电源的时间推迟到t=t0 时刻(t0>0), 如图1.8(a)所示,其波形如图1.8(b)所示。
2正弦信号: f(t)K siw n (t)
(对时间的微、积分仍是同频率正弦)
f (t)
K
正弦信号是周期信号,其周期T与角 频率w 和频率f满足下列关系式:
1 0 1
t T 2 1
T
w f f (t)
e e 欧拉公式sin(t)
1 2j
jt
jt
K
e e cos(t)12
jt
jt
0
K
衰减的正弦信号 t
(E)
特点:
0
t0
t
1 对称性:冲激函数是偶函数
2 时域压扩性: (at) 1 (t) (a0)
a
3 ☆抽样特性:
f(t)(tt0)d tf(t0)
❖ 冲激函数可有不同的定义方式: ❖ (1)由矩形脉冲演变为冲激函数。 ❖ (2)由三角形脉冲演变为冲激函数。 ❖ (3)还可利用指数函数、钟形函数、抽样
信号与系统重点概念公式总结
信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
《信号与线性系统分析》重要公式
《信号与线性系统分析》重要公式信号与线性系统分析是电子信息专业重要的基础课程之一,具有重要的理论和实际应用价值。
随着信息技术的快速发展,信号与线性系统的研究在通信、图像处理、音频处理、控制系统等各个领域都扮演着重要的角色。
本文将介绍信号与线性系统分析中的一些重要公式,帮助读者更好地理解和应用信号与线性系统分析。
1.线性系统的定义:-叠加定理:线性系统对两个输入信号的线性组合作用后的响应等于对每个输入信号分别进行线性系统的响应再进行线性组合,即y(t)=a1*x1(t)+a2*x2(t)=>H[a1*x1(t)+a2*x2(t)]=a1*H[x1(t)]+a2*H[x2 (t)]-时间因果性:线性系统的输出,必须要随着输入的改变而改变,即输出仅依赖于当前和过去的输入值,而与未来的输入无关。
-线性系统的时不变性:线性系统的性质和特性在不同时刻都是不变的,即系统的输出只依赖于当前的输入和系统的当前状态。
-线性系统的稳定性:当输入系统后,输出会逐渐趋于有限值的性质。
2.常见信号的基本性质:-单位冲激函数δ(t):在t=0时刻取值为无穷大,其他时刻取值为0,可以表示信号的零值以外的非零值。
-单位阶跃函数u(t):在t=0时刻取值为0,t>0取值为1,可以表示信号的跃迁性质。
-正弦信号:具有周期性的函数,可表示信号的频率和相位。
-矩形信号:具有有限宽度和平坦的值,可表示信号的持续时间。
3.傅里叶级数与傅里叶变换:-傅里叶级数:将周期性信号分解为一系列正弦和余弦函数,以求得信号频谱的方法。
-傅里叶变换:将非周期性信号分解为连续频谱的方法,常用于信号的频谱分析和滤波等应用。
-时域与频域的转换关系:傅里叶变换可以将信号从时域转换到频域,反之,傅里叶逆变换可以将信号从频域转换到时域。
4.系统的频率响应:- 时域脉冲响应h(t)与频域频率响应H(f)的关系:频域频率响应等于时域脉冲响应与复指数e^(-j2πft)的卷积。
《信号与系统》重要公式
《信号与系统》重要公式信号与系统是电子信息类专业的一门重要课程,其中涉及到许多重要的公式。
下面是《信号与系统》中的一些重要公式。
1.线性系统的叠加性质:对于系统的输入信号x(t)和输出信号y(t),以及系统的响应函数h(t),有如下关系:h(a*x(t)+b*y(t))=a*h(x(t))+b*h(y(t))2.线性时不变系统的冲击响应函数:线性时不变系统的输出可以由输入和系统的冲击响应函数进行卷积运算得到:y(t)=x(t)*h(t)3.冲击函数的性质:冲击函数的面积等于单位冲击高度,即:∫h(t)dt = 14.线性卷积的性质:对于两个信号x(t)和y(t)进行卷积运算,然后再对结果进行线性组合,等于先对每个信号进行线性组合,再进行卷积运算:a*(x(t)*y(t))+b*(z(t)*y(t))=(a*x(t)+b*z(t))*y(t)5.单位冲击响应函数的性质:线性时不变系统的冲击响应函数和移位后的冲击函数进行卷积运算等于移位后的输出:h(t)*δ(t-t0)=h(t-t0)6.单位冲击响应函数和冲击响应函数的性质:系统的输出信号可以由冲击响应函数与输入信号通过卷积运算得到:y(t)=x(t)*h(t)7.卷积和频率域的乘积:信号的卷积运算可以转化为信号的频率域乘积运算,即傅里叶变换的频率域乘积等于两个信号的傅里叶变换之间的乘积:F{x(t)*y(t)}=F{x(t)}*F{y(t)}8.线性相位系统的频率响应函数:对于一个线性相位系统,其频率响应函数H(f)满足以下公式:H(f) = ,H(f), * exp(j*ϕ(f))9.系统的频率响应函数与冲击响应函数的关系:系统的频率响应函数是冲击响应函数的傅里叶变换,即:H(f)=F{h(t)}10.系统的幅频特性:系统的幅频特性是指系统对不同频率的输入信号的幅度变化情况。
幅频特性可以通过频率响应函数的模进行描述,即:H(f)以上是《信号与系统》中的一些重要公式,它们是理解和分析信号与系统的重要工具。
总复习(信号与线性系统必过知识点)
( t0,t0 +T )
2)指数函数集 ejnt n 0,1,2, ,
( t0,t0 +T )
3.2 周期信号的傅里叶级数展开
(1) f(t)为奇函数 正弦分量
(2) f(t)为偶函数 (3) f(t)为奇谐函数 (4) f(t)为偶谐函数
余弦分量+直流分量 奇次谐波 偶次谐波+直流分量
rzi (0 ), r 'zi (0 ), rz(in1) (0 )
4) 将初值带入rzi(t)的通解表达式,求出待定系数。
例1:已知某系统激励为零,初始值r(0)=2, r’(0)=1,r”(0)=0,描述系统的传
输算子为 解:
H(
p)
2p2 8p 3 ( p 1)( p 3)2
当激励e(t)=3 ε(t) ,初始状态保持不变时,响应 r2(t)=(8e-2t -7e-3t) ε(t)。
求:(1)激励e(t)=0,初始状态x1(0-)=1, x2(0-)=2时的响应 r3(t)=? (2)激励e(t)=2 ε(t),初始状态为零时的响应r4(t)=?
解:
当激励e(t)= ε(t) ,初始状态x1(0-)=1, x2(0-)=2时, 响应
2
2
2
例2:计算
4
(2 4t)(t 2)dt
1
解:4 (2 4t)(t 2)dt 1
4 1 (t 1)(t 2)dt 0
14
2
注意积 分区间
1. 2 信号的运算
1)折叠:y(t)=f (-t) 2)时移:y(t)=f (t-to) 3)倒相:y(t)=-f (t) 4)展缩:y(t)=f (at) 其中:a>0
信号与系统概念公式总结
信号与系统概念,公式集:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f ji dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
信号与线性系统分析公式总结
4 周期信号 f ( t ) 作用于系统
f ( t ) = e jω0t → H ( jω ) → y ( t ) = H ( jω 0 ) e jω0t
∞
f (t ) =
∑ n
Fne jnΩt → H ( j ω ) → y (t ) =
=−∞
F nH ( jn Ω )e jn ∑ n
=−∞
∞
Ωt
2 f ( t ) cos ( nΩ t ) dt (a) T ∫<T > 2 bn = ∫ f (t ) sin ( nΩt ) dt T <T >
A0 ∞ f (t ) = + ∑ An cos ( nΩt + ϕ n ) 2 n=1
(b)
2 2 An = an + bn
n = 0,1,L n = 1,2,L
第一章 信号与系统 1 冲激函数的各种性质 1 定义 ⎧0 t < 0 ε (t ) = ⎨ ⎩1 t > 0 ⎧ t≠0 ⎪ δ (t ) = 0 ∞ ⎨ δ t dt = 1 ⎪ ⎩ ∫−∞ ( ) 2 δ ( t ) 与ε ( t ) 关系
δ ' ( t ) → δ ( t ) → ε ( t ) → tε ( t )
2 单位冲激响应 h ( t ) 和单位阶跃响应 g (t )
h ( t ) = y zs ( t ) g ( t ) = y zs ( t )
f ( t ) =δ ( t ) f ( t ) =ε ( t )
P70,例 2.4.2,2.4.3/P79,2.17 2.22,30
第三章 离散系统的时域分析 1 卷积和 单位序列 卷积和定义
sin β t ↔
-7-
信号与线性系统分析总结
•两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其 和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
总结
➢ 能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
-2 -1 0 1 2 3 ki
总结
例2 f1(k) ={0, 2 , 1 , 5,0} ↑k=1
f2(k) ={0, 3 , 4,0,6,0} ↑k=0
解:
3 , 4, 0, 6
×—————2 ,——1 ,—5 15 ,20, 0, 30
3 , 4, 0, 6 6 ,8, 0, 12 + ———————————— 6 ,11,19,32,6,30
总结
第二章 连续系统的时域分析
➢系统的时域求解,冲激响应,阶跃响应。
➢时域卷积: f1 (t) * f2 (t) f1 ( ) f2 (t )d
图解法一般比较繁琐,但若只求某一时刻卷积 值时还是比较方便的。确定积分的上下限是关
f1(-τ)
键。
f 1( τt )
2
f1(2-τ)
f1(t)、 f2(t)如图所示,已知f(t) = f2(t)* f1(t),求f(2) =?
*
d
n f 2 (t dtn
)
t
t
t
[
f1
(
)
*
f 2 ( )]d
[
f1 ( ) d ] *
f 2 (t)
f1 (t) *[
信号与系统公式汇总分类
信号与系统公式汇总分类信号与系统是电子信息工程、自动化、计算机科学等学科的重要基础课程,是研究和分析信号在系统中的变换、传递及其对系统特性的影响的一门学科。
信号与系统涉及到的知识点较多,包括信号的表示与描述、连续与离散信号、线性时不变系统、傅里叶变换与频谱分析等方面。
以下是信号与系统中常用的公式汇总分类:一、信号的表示与描述1.单位阶跃函数:u(t)=1,当t>=0;u(t)=0,当t<0。
2.单位冲激函数:δ(t) = du(t)/dt。
3.周期信号的傅里叶级数:x(t) = A0/2 + ∑(An*cos(nωt) + Bn*sin(nωt))。
4.脉冲信号:δ(t) = lim_{n→∞} [rect(t/T)/T],其中rect(t/T)为矩形函数。
二、连续信号与离散信号1.连续时间冲激响应h(t)与输入信号x(t)之卷积:y(t)=∫[x(τ)*h(t-τ)]dτ。
2.离散时间冲激响应h[n]与输入信号x[n]之卷积:y[n]=∑[x[k]*h[n-k]]。
三、线性时不变系统1.线性时不变系统输入输出关系的微分方程表示:a0*y(t) + a1*(dy(t)/dt) + a2*(d^2y(t)/dt^2) + ... = b0*x(t) + b1*(dx(t)/dt) + b2*(d^2x(t)/dt^2) + ...2.线性时不变系统频域表达式:Y(ω)=H(ω)*X(ω),其中H(ω)为系统的频率响应函数。
四、傅里叶变换与频谱分析1.连续时间傅里叶变换:X(ω) = ∫[x(t)*e^(-jωt)]dt。
2.连续时间频谱密度:S(ω)=,X(ω),^23.离散时间傅里叶变换:X(e^(jω))=∑[x[n]*e^(-jωn)],其中n为离散取值。
4.离散时间频谱密度:S(e^(jω))=,X(e^(jω)),^2以上仅是信号与系统中的部分公式,覆盖了信号表示与描述、系统分析与描述以及信号的频谱分析等方面的内容。
《信号与线性系统分析》重要公式汇总
《信号与线性系统分析》重要公式汇总信号与线性系统分析是电子信息工程及相关学科中的重要课程,对于学习者来说,熟悉和掌握相关公式是非常重要的。
下面是《信号与线性系统分析》中一些重要的公式汇总。
一、信号的基本概念与性质:1.单位冲激函数:δ(t)2.单位阶跃函数:u(t)3.奇偶性质:f(-t)=-f(t),f(t)是偶函数;f(-t)=f(t),f(t)是奇函数4.时域的线性性质:y(t)=a1f1(t)+a2f2(t)5.周期函数的性质:f(t+T)=f(t),T为周期6. 时域尺度变换:y(at) = f(bt)7.时域平移变换:y(t-t0)=f(t)8.频域的线性性质:y(t)=a1f1(t)+a2f2(t)9. 延迟性质:F(s) = e^(-st0)F(s)10. 尺度变换:F(as) = (1/a)F(s/a)11.卷积定理:F[f*g]=F[f]×F[g]12.等式性质:F[e^(-at)f(t)] = F[s + a]二、线性时不变系统与系统概念:1.连续时间系统输出的表达:y(t)=∫[h(t-τ)x(τ)]dτ2.离散时间系统输出的表达:y[n]=∑[h[n-k]x[k]],k取值范围∈(-∞,+∞)3.时不变系统输出与输入的傅里叶变换关系:Y(s)=H(s)X(s)4.线性系统的性质:系统的输出是输入的线性组合;系统对信号的平移不敏感;系统对信号幅度的线性变化三、连续时间系统的传递函数与频率响应:1.传递函数的定义:H(s)=Y(s)/X(s)2.传递函数与输出信号的拉氏变换关系:Y(s)=H(s)X(s)3.传递函数与等效电路:H(s)=Y(s)/X(s)=R(s)/S(s)4.系统的无穷大增益:,H(jω),→∞5.零极点:分子多项式中令H(s)=0的根和分母多项式中令H(s)=∞的根6.频率响应:H(jω)=,H(jω),e^(jθ),θ为相位四、离散时间系统的传递函数与频率响应:1.离散时间线性时不变系统的传递函数:H(z)=Y(z)/X(z)2.离散时间线性时不变系统的单位脉冲响应:h[n]=Z[x[n]]3.离散时间线性时不变系统的输出:y[n]=∑[h[n-k]x[k]],k取值范围∈(-∞,+∞)4.离散时间线性时不变系统的传递函数与频率响应的关系:H(z)=X(z)e(z)/Y(z)5.频率响应:H(e^(jω))=,H(e^(jω)),e^(jθ),θ为相位五、线性系统的稳定性与有限长度冲激响应(LTI)系统:1.有限长度冲激响应(LTI)系统的定义:输出的响应是输入信号与冲激响应的线性组合2.LTI系统的单位脉冲响应:h[n]={1,n=0;0,n≠0}3.稳定性的定义:输入有界时,输出也有界4.必要稳定性条件:系统的传递函数的所有极点都在单位圆内以上是《信号与线性系统分析》中的一些重要公式的汇总。
信号与系统公式总结
信号与系统公式总结在信号与系统的学习过程中,公式总结是非常重要的,它可以帮助我们更好地理解和掌握知识。
下面将对信号与系统中常见的公式进行总结,希望能够对大家的学习有所帮助。
一、基本概念公式总结。
1. 信号的分类:连续时间信号,x(t)。
离散时间信号,x[n]2. 基本信号:单位冲激函数,δ(t)或δ[n]阶跃函数,u(t)或u[n]3. 基本性质:奇偶性,x(t) = x(-t),x[n] = x[-n]周期性,x(t) = x(t+T),x[n] = x[n+N]二、时域分析公式总结。
1. 基本运算:时移性质,x(t-t0)或x[n-n0]反褶性质,x(-t)或x[-n]放大缩小,Ax(t)或Ax[n]2. 基本运算公式:加法,x1(t) + x2(t)或x1[n] + x2[n]乘法,x1(t)x2(t)或x1[n]x2[n]三、频域分析公式总结。
1. 傅里叶变换:连续时间信号,X(ω) = ∫x(t)e^(-jωt)dt。
离散时间信号,X(e^jω) = Σx[n]e^(-jωn)。
2. 傅里叶变换性质:线性性质,aX1(ω) + bX2(ω)。
时移性质,x(t-t0)对应X(ω)e^(-jωt0)。
频移性质,x(t)e^(jω0t)对应X(ω-ω0)。
四、系统分析公式总结。
1. 系统性质:线性性,y(t) = ax1(t) + bx2(t)。
时不变性,y(t) = x(t-t0)对应h(t-t0)。
2. 系统时域分析:离散卷积,y[n] = Σx[k]h[n-k]连续卷积,y(t) = ∫x(τ)h(t-τ)dτ。
3. 系统频域分析:系统函数,H(ω) = Y(ω)/X(ω)。
五、采样定理公式总结。
1. 采样定理:连续信号采样,x(t)对应x[n],x[n] = x(nT)。
重建滤波器,h(t) = Tsinc(πt/T)。
六、傅里叶级数公式总结。
1. 傅里叶级数:周期信号的傅里叶级数展开。
信号与系统常用公式
信号与系统常用公式信号与系统是现代电子信息工程学科中的重要基础课程,它涉及到了信号的产生、传输和处理等方面的知识。
在学习和应用信号与系统的过程中,我们经常会使用到一些公式和定理。
本文将为大家介绍一些信号与系统中常用的公式和定理,希望能对大家的学习和工作有所帮助。
一、信号的基本性质:1.基本信号及其性质:矩形信号:rect(t/T) =1,-T/2≤t≤T/20,其他三角信号:tri(t/T) =1-,t/T,-T≤t≤T0,其他正弦信号:sin(ωt) = (e^jωt - e^(-jωt))/(2j)余弦信号:cos(ωt) = (e^jωt + e^(-jωt))/22.对称性:奇对称信号:如果s(t)=-s(-t),则s(t)是奇对称信号。
偶对称信号:如果s(t)=s(-t),则s(t)是偶对称信号。
3.平均功率:平均功率:P = lim(T→∞)1/T ∫_(T/2)^(T/2) ,s(t),^2 dt4.交流分量:交流分量:s_AC=1/2*[s(t)-s_DC]二、线性时不变系统的基本性质:1.线性时不变系统的定义:线性性:s_1(t)+s_2(t)—>LTI—>s_1(t)+s_2(t)时不变性:s(t-t_0)—>LTI—>s(t-t_0)2.系统的冲激响应:系统的冲激响应:h(t) = d(s(t))/dt,其中d是微分算子。
3.系统的单位阶跃响应:系统的单位阶跃响应:H(t)=∫_(-∞)^th(τ)dτ4.线性卷积定理:线性卷积定理:s_1(t)*s_2(t)—>LTI—>S_1(ω)*S_2(ω)三、频域分析:1.傅里叶级数:傅里叶级数:s(t)=∑_(n=-∞)^∞C_n*e^(jω_nt),其中C_n是频谱系数,ω_n是频率。
2.傅里叶变换:傅里叶变换:S(ω) = ∫_(-∞)^∞ s(t) * e^(-jωt) dt3.周期信号的频谱:周期性信号的频谱:S(ω)=∑_(k=-∞)^∞(1/T)*S(kω_0)*δ(ω-kω_0),其中S(kω_0)是周期频谱系数。
信号与系统常用公式集
2)(10}Re{),(jw a a t u te at+↔>-natn jw a a t u e n t )(10}Re{),()!1(1+↔>---0,21)],()([sin 11000==-=+--↔-k a ja a w w w w t w δδπkk k t jkw k k akw w a e a ),(200-↔∑∑∞-∞=∞-∞=δπ其余k a a kw w e k tjkw ,0,1),(2100==-↔πδ0,21)],()([cos 11000===++-↔-k a a a w w w w t w δδπ0,1),(21)(0==↔=k a a w t x πδπππk T kw kw c T w k T kw T t T T t t x k 1010101011sin )T (sin sin 22||,0||,1)(=↔⎪⎩⎪⎨⎧≤<<=∑∞-∞=级:k ,1),2(2)(对全部T a T k w T nT t k k n =-↔-∑∑∞-∞=∞-∞=πδπδw wT T t T t t x 111sin 2||,0||,1)(↔⎩⎨⎧><⎩⎨⎧><=↔W w Ww jw X tWt ||,0||,1)(sin π1)(↔t δ)(1)(w jw t u πδ+↔0)(0jwte t t -↔-δjw a a a t u e at+↔>-1}Re{),(连续时间傅里叶变换 ∑∑∞-∞==-↔k k n N jk N k k a Nkw e a ),2(2)/2()(πδππ⎩⎨⎧±±==--↔∑∞-∞=kNm N m m k a l w w e k l n jw 其余级数,02,,,1:)2(200πδπ⎩⎨⎧±±±±±==-++--↔∑∞-∞=其余级数,02,,,1:)}2()2({cos 000Nm N m m k a l w w l w w n w k l πδπδπ⎪⎪⎪⎩⎪⎪⎪⎨⎧±--=-±±==-----↔∑∞-∞=k ,0,,212,,,21:)}2()2({s 000其余级数Nr r k j N r N r r k j a l w w l ww jn inw k l πδπδπ⎩⎨⎧±±==-↔=∑∞-∞=k,02,,0,1)2(21][其余NN k a l w n x k l πδπNN k NN a Nk k N k N N N k a N k w a N n N N n n x k kk k 2,,0,12,0,]2/2sin[)]2/1)(/2sin[()2(22/||,0||,1][1111±±=+=±=≠+-↔⎩⎨⎧≤<≤=∑∞-∞=πππδπk 1:)2(2][对于全部级数Na N kw N kN n k k k k =-↔-∑∑∞-∞=∞-∞=πδπδ0][0jwn en n -↔-δ2)1(11||],[)1(jw n ae a n u a n --↔<+离散时间傅里叶变换jwn ae a n u a --↔<111||],[)2/sin()]2/1(sin[||,0||,1][11w N w N n N n n x +↔⎩⎨⎧>≤ππππππ2,||,0||0,1)(0),(sin sin =⎩⎨⎧≤<≤≤=↔<<=T w W Ww w X W Wc W n W n n 1][↔n δ∑∞-∞=--+-↔k jw k w e n u )2(11][ππδrjw n ae n u a r n r n )1(11][)!1(!)!1(--↔<--+)()()()(jw bY jw aX t by t ax +↔+线性:)()(00jw X e t t x jw t -↔-时移:)(()(00w w j X t x e t jw -↔频移:)()(**jw X t x -↔共轭:)()(jw X t x -↔-时间反转:)(||1)(a jw X a at x ↔尺度变换:)()()(*)(jw Y jw X t y t x ↔卷积:)(*)(21)()(jw Y jw X t y t x π↔相乘:)()(jw jwX t x dtd ↔时域微分:⎰+↔∞)()0()(1)(t -w X jw X jwdt t x δπ积分:)()(jw X dwdjt tx ↔频域微分:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=-=--∠=∠↔)()(|)(||)(|)}(Im{)}(Im{)}(Re{)}({Re )()()(*jw X jw X jw X jw X jw X jw X jw X jw X jw X jw X t x 实共轭对称:ωπd jw X dt t x 22-|)(|21|)(|⎰⎰∞∞-∞∞=帕斯瓦尔:连续时间傅里叶变换性质)()(][][jw jw e bY e aX n by n ax +↔+线性:)(][00jw jwn e X e n n x -↔-时移:)(][)(00w w j n jw e X n x e -↔频移:)(][**jw e X n x -↔共轭:)(][jw e X n x -↔-时间反转:)(X k n 0k n ],/[][)(jkw k e k n x n x ↔⎩⎨⎧=的倍数不为,的倍数为若时域扩展:)()(][*][jw jw e Y e X n y n x ↔卷积:θπθθπd e Y e X n y n x w j j )()(21][][)(2-⎰↔相乘:)时域差分:jw jw e X e n x n x ()1(]1[][--↔--∑∑∞-∞=--∞=-+-↔k j jw jw k k w e X e X e k x )2()((11][0n πδπ)累加:dwe dX jn nx jw)(][↔频域微分:dwe X n x jw n 222|)(|21|][|⎰∑=∞-∞=ππ帕斯瓦尔定理:离散时间傅里叶变换性质S,1)(全部↔t δ0}Re{,1)(>↔s st u 0}Re{,1)(<↔--s st u 0}Re{,1)()!1(1>↔--s st u n t n n 0}Re{,1)-()!1(1<↔--s st u n t n n as sa t u e at ->+↔-}Re{,1)(as sa t u e at -<+↔--}Re{,1)(-as a s t u e n t n at n ->+↔---}Re{,)(1)()!1(1as a s t u e n t nat n -<+↔---}Re{,)(1)-()!1(-1S,T )-t (全部s T e -↔δ0}Re{,)(][cos 220>+↔s w s st u t w 0}Re{,)(][sin 20200>+↔s w s wt u t w 212121),()()()(R R s bX s aX t bx t ax 至少线性:+↔+Rs X e t t x s t ),()(00-↔-时移:]ROC R )([),(][:s 000中中,则就于在若的平移域平移s s R s s X t x e t s --↔]ROC s R s/a [/),(||1)(中就位于中,则在若时间尺度变换:aR a sX a at x ↔Rs X t x ),()(***↔共轭:212121),()()(*)(R R s X s X t x t x 至少卷积:↔R),(至少时域微分:s sX xt dtd↔Rs X dsdt tx s ),()(↔-域微分:}0}{Re{s R [)(1)()(t->↔⎰∞至少时域积分:s X sd x ττa s w a s as t u t w e at->+++↔-}Re{,)()(]cos [2020a s w a s w t u t w e at ->++↔-}Re{,)()(]sin [22000}Re{,1)]([)(>↔=-s st u t u n n 拉普拉斯变换njw N k ktjkw k k e a n x ea t x 00)()(->=<∞-∞=∑∑==∑∑>=<∞-∞===N k njkw kjw ktjkw k keeH a n y ejkw H a t y 000)()()()(0LTI 输入周期信号为x(t)或x(n),其输出y(t)或y(n)如下:∑⎰∞-∞=--∞∞-==n nstzn h z H dt et h s H )()()()(tjkw k kea t x 0)(∑∞-∞==dte t x Ta t jkw Tk 0)(1-⎰=连续时间级数 dwe e X n x jwn jw )(21][2⎰=ππ∑∞-∞=-=n jwnjwen x e X ][)( 离散时间级数∑>=<=N k njkw kea n x 0][∑>=<-=N k njkw k en x Na 0][1 离散时间级数连续时间傅里叶dwejw X t x jwt)(21)(⎰∞∞-=πdte t x jw X jwt-∞∞-⎰=)()(。
信号与系统主要公式和内容摘要
信号与系统主要公式和内容摘要一.单位冲激信号()t δ的基本特性: 1. √()()()()()0t x dt t t t x dt t t t x =+=-⎰⎰∞∞-∞∞-δδ2.()()()⎩⎨⎧><=⎰00ab ab dt t t b aϕδϕ3.()()t aat δδ1=4. √ ()()()()000t t t x t t t x -=-δδ5. ()()t t δδ=- 偶函数6.()()t dtt du δ= ()()t u d t =⎰∞-ττδ 7. ()()()t x t t x =*δ ()()()00t t x t t t x -=-*δ 8. ()()()2121t t t t t t t --=-*-δδδ 9. ()()()t x t t x '='*δ ()()()ττd x t u t x t⎰∞-=*10. 若:()()()t x t x t y 21*=则:()()()()()t x t x t x t x t y 2121'*=*'=' ()()()()()()()()t x t x t x t x t y1212111---*=*=()()()212211t t t y t t x t t x --=-*- 二.单位脉冲序列[]n δ的基本特性: 1. [][]∑+∞=-=k k n n u δ [][]∑-∞==nk k n u δ √[][][]1--=n u n u n δ2. √[][][][]000n n n x n n n x -=-δδ√[][][]n x n n x =*δ √[][][]00n n x n n n x -=-*δ 3. [][][]k n k x n x k -=∑∞-∞=δ特殊:()()()()t r t tu t u t u ==* [][]()[]n u n n u n u 1+=* 1欧拉公式:()()()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+=+=--t j t j t j t j t j e e j t Sin e e t Cos t jSin t Cos e ααααααααα2121三.线性时不变系统(LTI 系统)的主要特性 1. 线性:(1) 无初值:()()()()t y a t y a t x a t x a 22112211+→+ [][][][]n y a n y a n x a n x a 22112211+→+ (2) 含初值:若:()()()t y x t f 1110→⎥⎦⎤⎢⎣⎡ ()()()t y x t f 2220→⎥⎦⎤⎢⎣⎡ 则:()()()()()()t y t y x t f x t f 21221100βαβα+→⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡[][][][][][]k y k y x k f x k f 21221100βαβα+→⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ 2. 时不变性:()()00t t y t t x -→- [][]00n n y n n x -→- 3. 微(差)分性:()()dtt dy dt t dx → [][]k n y k n x -→- 4. 积分(累加)特性:()()⎰⎰→ttd y d x 0ττττ [][]∑∑==→Nk Nk k y k x 05. 因果性:若:()0=t h ,当0<t 时 √若:[]0=n h ,当0<n 时 6. 稳定性:()∞<⎰∞∞-ττd h √[]∑∞-∞=∞<k k h27. 卷积特性: ()()()()()()()ττττττd t x h d t h x t h t x t y f ⎰⎰∞∞-∞∞--=-=*=[][][][][][][]k n x k h k n h k x n h n x n y k k f -=-=*=∑∑∞-∞=∞-∞=有:()()()ωωωj H j X j Y f =()()()S H S X S Y f =()()()Z H Z X Z Y f =四.信号的基本运算: 1. 相加:()()()t x t x t y 21+= [][][]n x n x n y 21+=2. 相乘:()()()t x t x t y 21= [][][]n x n x n y 21=3. 幅度加权:()()t x t y α= [][]n x n y α=4. 反折:()()t x t y -= [][]n x n y -=5. 时移:()()0t t x t y -= [][]0n n x n y -=00>t (或00>n )为右移,00<t (或00<n )为左移 6. 尺度变换:(1) 连续时间信号的尺度变换:()()at x t y =1>a 时,表示()t x 在时间轴上被压缩a 倍 1<a 时,表示()t x 在时间轴上被扩展a 倍(2) 离散时间信号的内插与抽取: 内插:[]⎥⎦⎤⎢⎣⎡→L k f k f , L 为正整数[]0f 不动,在序列2点之间插入1-L 个零点 3抽取:[][]Mk f k f →, M 为正整数[]0f 不动,在原序列中每隔1-M 点抽取一点 7. 微分(差分): ()()dtt dx t y =[][][]1--=n x n x n y8. 积分(累加): ()()ττd x t y t⎰∞-= [][]∑-∞==nk k x n y9. 卷积()()()()()()()ττττττd t x x d t x x t x t x t y -=-=*=⎰⎰∞∞-∞∞-122121[][][][][][][]k n x k x k n x k x n x n x n y k k -=-=*=∑∑∞-∞=∞-∞=122121五.几何级数的求值公式:1. ⎪⎪⎩⎪⎪⎨⎧=+≠--=+=∑1111121220a n a a a a n n n n2. ⎪⎪⎩⎪⎪⎨⎧=+-≠--=+=∑11111212121a n n a a a a a n n n n n n210n n ≤<3.aa n n -=∑+∞=110 1<a 4. a a a n n-=∑+∞=111<a 5. a a a n n n n-=∑+∞=111 1<a六.傅里叶变换、拉普拉斯变换、Z 变换 1.LTI 系统对虚指数信号的响应:→t j e ω()()t j e j H t y ωω=→()()()tjn n n n tjn n e jn H C t y eC t f 000ωωω∑∑∞-∞=∞-∞==→=42.傅里叶级数公式: ()∑∞-∞==n tjn n eC t x0ω 其中:()dt e t x T C tjn Tn 01ω-⎰= 3. 傅里叶变换公式(系统稳定):(1)非周期信号:()()ωωπωd ej X t x tj ⎰∞+∞-=21()()dt e t x j X t j ωω-∞+∞-⎰=条件:()⎰∞+∞-∞<dt t x 或()⎰∞+∞-∞<dt t x 2(2)周期信号:()∑∞-∞==k t jk k e a t xω()()∑∞-∞=-=k k k a j X 02ωωδπω 002T πω=()dt e t x T a tjk Tk 01ω-⎰=4. 拉普拉斯变换公式: ()()dt et x S XtS -∞-⎰=0 ()()dS e S X j t x t S j j ⎰∞+∞-=σσπ215. Z 变换公式: ()[]n n Z n x Z X -∞=∑=[]()dZ Z Z X j n x n C121-⎰=π6. 典型信号的三种变换公式:(1)√()1−→←FTt δ√()1−→←LT t δ √()()n LTn S t −→←δROC:整个S 平面√[]1−→←Zn δ ROC:整个Z 平面 (2) √()00t j FTe t t ωδ-−→←-√()00tS LT e t t -−→←-δ ROC:整个S 平面√[]00nZ Z n n -−→←-δROC:整个Z 平面(可能去除0=Z )(3) ()()ωπδω+−→←j t u FT15()St u LT1−→← ROC:{}0>S R e √ []111--−→←Zn u ZROC: 1>Z (4) ()ωj a t u eFTat+−→←-1{}0>a R e√()a S t u eLTat+−→←-1ROC: {}a S R e -> []111--−→←aZn u a Z nROC: a Z > (5) ()()21ωj a t u teFTat+−→←- {}0>a R e ()()21a S t u teLTat+−→←- ROC: {}a S R e ->()[]()21111--−→←+aZ k u a k Zk ROC: a Z >(6)()∑∑+∞-∞=+∞-∞=-−→←k kFTk tjk k k a ea 020ωωδπω(7) ()020ωωπδω-−→←FT tj e()020ωωπδω+−→←-FTt j e(8) ()ωπδ21−→←FT(9) √()()[]000ωωδωωδπω++-−→←FTt Cos()2020)(ωω+−→←S St u t Cos LTROC: {}0>S R e (10) ()()[]000ωωδωωδπω--+−→←j t Sin FT()2020)(ωωω+−→←S t u t Sin LTROC: {}0>S R e (11) ()∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛-−→←-k FTn T kT nT t πωδπδ226(12) −→←FTT ASa T )(211ω(13) −→←FTtt ASin πλ√()()21ωSa t p FT−→← ()()()2211ωSa t p t p FT−→←*七.傅里叶变换、拉普拉斯变换、Z 变换的主要性质设:()S X :ROC {}0Re σ>S ()Z X :ROC Rf Z > 1. 线性:()()()()ωωj bY j aX t by t ax FT+−→←+()()()()S bY S aX t by t ax lT +−→←+ ROC :公共收敛域 [][]()()Z bY Z aX n by n ax ZT +−→←+ ROC :公共收敛域2. 时移: √()()ωωj X e t t x t j FT0-−→←-√()()S X e t t xt S LT 00-−→←- 要求:右移,即00>tROC :未变因果序列:√[][]()Z X Z n n u n n xn ZT00-−→←-- 要求:右移,即00>nROC :未变非因果序列:√[][]()[]111-+−→←--x Z X Z n u n x ZT√ [][]()[][]21212-+-+−→←---x x Z Z X Zn u n x ZT73. 频移:()()[]00ωωω-−→←j X t x e FTt j()()00S S X t x e LTtS -−→← ROC: {}00Re σ>-S S []⎪⎭⎫ ⎝⎛−→←a Z X n x a ZT n ROC: Rf a Z >()[]()Z X n x ZTn -−→←-1 ROC:Rf Z >-4.反折:()()ωj X t x FT -−→←-()()S X t x LT -−→←- ROC: {}0Re σ>-S5.尺度变换:()⎪⎭⎫ ⎝⎛−→←a j X a at x FT ω1 √()⎪⎭⎫ ⎝⎛−→←a S X a at x LT1 ROC :0Re σ>⎭⎬⎫⎩⎨⎧a S6.卷积:√()()()()ωωj Y j X t y t x FT−→←*()()()()S Y S X t y t x LT−→←* ROC :公共收敛域 [][]()()Z Y Z X n y n x ZT −→←* ROC :公共收敛域7.时域微分:()()ωωj X j t x dtd FT−→←:未修正 不含初值:√()()S SX t x dtd LT−→← √()()S X S t x dt d n LT n n −→← 含初值: √()()()--−→←0x S SX t x dtd LT √ ()()()()--'--−→←00222x Sx S X S t x dt d LT 8.频域微分: 8()()ωωj X d djt tx FT−→← ()()S X dSd t tx LT-−→← ROC :未变[]()dZZ dX Zn nx ZT-−→← ROC :未变 9.积分(累加):()()()()ωδπωωττ01X j X j d x FTt +−→←⎰∞- ()()S X Sd x LTt1−→←⎰-ττ ROC :{})0,m ax (Re 0σ>S []()Z X Zn x ZTkn 111-=-−→←∑ ROC :),1max(Rf Z > 10.调制(频域卷积):()()()(){}ωωπj Y j X t y t x FT *−→←2111.对偶:若:()()ωj F t g FT−→← 则:()()ωπ-−→←g jt F FT2 八.系统函数: 1.连续系统:()()∑∑===Nk M k kk k k k k dt t x d b dt t y d a 00√()()()()()∑∑====Nk kk kM k k j a j b j X j Y j H 00ωωωωω√()()()∑∑====Nk kkMk kk f S aSb S X S Y S H 0()()ωωπωd ej H t h tj ⎰∞∞-=21()()dS e S H j t h t S j j ⎰∞+∞-=σσπ212. 离散系统:[][]∑∑==-=-Mk kN k kk n x b k n y a 0√()()()k Nk k Mk Kk f Z a Zb Z X Z Y Z H -==-∑∑==[]()dZ Z Z H jn h n C121-⎰=π3. 系统的因果性:(1)连续系统:S 域 一个具有有理系统函数H(S)的LTI 系统,其因果性等价于H(S)的ROC 位于S 平面上最右边极 点的右半平面。
信与线性系统分析重要公式
信与线性系统分析重要公式线性系统分析是电路理论和控制理论中的重要内容,其涉及的公式也相对较多。
下面将介绍一些线性系统分析中的重要公式,包括线性系统的传递函数、频率响应等。
1.传递函数:传递函数是描述线性系统输入输出关系的重要工具,可以表示为:H(s)=Y(s)/X(s)其中,H(s)为传递函数,s为复变量,Y(s)为输出信号的拉普拉斯变换,X(s)为输入信号的拉普拉斯变换。
2.系统阶数:系统的阶数是指传递函数中最高次项分子多项式的阶数与分母多项式的阶数中较大者。
阶数可以决定系统的稳定性及动态性能。
3.零极点分布:传递函数的零点和极点对系统的频率特性和稳定性有很大影响。
零点是使传递函数为零的s值,极点是使传递函数为无穷大的s值。
4.极点及零点对应的频率响应:对于一阶系统,其频率响应可以表示为:H(jω)=,H(jω),*e^(jφ)其中,H(jω)为频率响应,H(jω),为幅频响应,φ为相频响应。
5.系统的稳定性判据:对于线性时不变系统,其稳定性可以通过判断传递函数的极点位置来进行判定。
当所有极点实部小于零时,系统是稳定的。
6.单位阶跃响应:单位阶跃信号是一种特殊的输入信号,对于线性系统,可以通过传递函数计算出输出信号的单位阶跃响应。
单位阶跃响应关注的是系统的动态性能。
7. 系统的频率响应:频率响应是指线性系统对不同频率输入信号的响应情况。
通过频率响应,可以了解系统的通频带特性以及对不同频率信号的衰减和相位变化。
常用的频率响应图形包括Bode图、Nyquist图等。
8.系统的稳定域:对于控制系统,稳定性判据还可以通过频率响应的幅值结果进行判断。
当幅频响应在所有频率上均小于1时,系统是稳定的。
9.系统的增益裕度:增益裕度是稳定性的定量指标,可以表示为系统的幅频响应曲线与稳定界限之间的垂直距离。
10.系统的相位裕度:相位裕度是稳定性的定量指标,可以表示为系统的相频响应曲线与稳定界限之间的水平距离。
这些是线性系统分析中的一些重要公式,可以用于分析系统的稳定性、动态性能以及频率特性等。
《信号与线性系统分析》重要公式汇总
信号与线性系统重要公式第一章:信号与系统1.1单位阶跃函数ε(t) 单位冲激函数δ(t )1.2冲激函数的性质:'''''()()()()()(0)()()()(0)()()(0)()(0)()()()(0)()()(1)(0)n n n f t t f t f t t dt f f t t f t f t f t t dt f f t t dt fδδδδδδδδ∞-∞∞-∞∞-∞===-=-=-⎰⎰⎰1111111'''11111''11()()()()()()()()()()()()()()()()()()f t t t f t t t f t t t dt f t t t dt f t f t t t f t t t f t t t f t t t dt f t δδδδδδδδ∞∞-∞-∞∞-∞-=--=-=-=----=-⎰⎰⎰''()()()1()()11()()11()()n n n at t a at t a aat t a a δδδδδδ===()()()()()()()()n n n n t t n t t n δδδδ-=-=-为偶数为奇数1.3线形系统的性质:齐次性 可加性[()]()T af af ∙=∙ 1212[()()][()][()]T f f T f T f ∙+∙=∙+∙11221122[()()][()][()]T a f a f a T f a T f ∙+∙=∙+∙零输入响应,零状态响应,全响应()[{(0)},{0}]x y T x ∙= ()[{0},{()f y T f ∙=∙ ()()()x f y y y ∙=∙+∙第二章 连续系统的时域分析法全解=齐次解(自由响应)()h y t +特解(强迫响应)()p y t 全响应=零输入响应()x y t +零状态响应()f y t()()()h p y t y t y t =+= ()()x f y t y t +零输入响应是指激励为零,仅由系统的初始状态所引起的响应,用 ()x y t 表示。