2019年数学中考真题知识点汇编22 线段垂直平分线、角平分线、中位线(含解析).docx
中考专题:垂直平分线与角平分线
线段的垂直平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D,且A D=B D,若点C 在直线m上,则AC =BC.定理的作用:证明两条线段相等(2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若A C=BC,则点C 在直线m上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△A BC 三边AB 、B C、CA 的垂直平分线,则直线,,i j k 相交于一点O,且OA=OB=O C.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在△AB C中,B C=8c m,A B的垂直平分线交AB 于点D,交边AC 于m图1DABCm图2DABCjik图3OBCA点E,△B CE的周长等于18cm,则A C的长等于( ) A.6cm B.8cm ﻩ C.10cm D.12cm 针对性练习:已知:1)如图,AB=AC=14cm ,AB 的垂直平分线交AB 于点D,交BC于点 AE ,如果△EBC 的周长是24cm,那么BC= 2) 如图,A B=AC =14cm ,AB的垂直平分线交AB 于点D,交BC 于点 E ,如果BC=8cm ,那么△EB C的周长是如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E,如果∠A=28度,那么∠EBC 是例2. 已知:如图所示,AB=AC,DB =DC ,E 是AD 上一点,求证:B E=CE 。
学姐笔记-中考数学几何-角平分线、垂直平分线经典题型总结
角平分线、垂直平分线知识考点:了解角平分线、垂直平分线的有关性质和定理,并能解决一些实际问题。
精典例题:【例题】如图,已知在△ABC 中,AB =AC ,∠B =300,AB 的垂直平分线EF 交AB 于点E ,交BC 于点F ,求证:CF =2BF 。
分析一:要证明CF =2BF ,由于BF 与CF 没有直接联系,联想题设中EF 是中垂线,根据其性质可连结AF ,则BF =AF 。
问题转化为证CF =2AF ,又∠B =∠C =300,这就等价于要证∠CAF =900,则根据含300角的直角三角形的性质可得CF =2AF =2BF 。
分析二:要证明CF =2BF ,联想∠B =300,EF 是AB 的中垂线,可过点A 作AG ∥EF 交FC 于G 后,得到含300角的Rt △ABG ,且EF 是Rt △ABG 的中位线,因此BG =2BF =2AG ,再设法证明AG =GC ,即有BF =FG =GC 。
分析三:由等腰三角形联想到“三线合一”的性质,作AD ⊥BC 于D ,则BD =CD ,考虑到∠B =300,不妨设EF =1,再用勾股定理计算便可得证。
以上三种分析的证明略。
探索与创新:【问题】请阅读下面材料,并回答所提出的问题: 三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。
如图,△ABC 中,AD 是角平分线。
求证:ACABDC BD =。
分析:要证ACABDC BD =,一般只要证BD 、DC 与AB 、AC 或BD 、AB 与DC 、AC 所在三角形相似,现在B 、D 、C 在同一条直线上,△ABD 与△ADC 不相似,需要考虑用别的方法换比。
我们注意到在比例式ACABDC BD =中,AC 恰好是BD 、DC 、AB 的第四比例项,所以考虑过C 作CE ∥AD 交BA 的延长线于E ,从而得到BD 、CD 、AB 的第四比例项AE ,这样,证明ACABDC BD =就可以转化为证AE =AC 。
中垂线和角平分线
线段的垂直平分线与角平分线知识要点详解C1、线段垂直平分线的性质/\(1)垂直平分线性质定理:线段垂直平分线上的点到/ m\这条线段两个端点的距离相等. A |D—X B图i 定理的数学表示:如图1,已知直线m与线段AB垂直相交于点D,且A[> BD若点C在直线m上,贝S AO BC.定理的作用:证明两条线段相等(2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m与线段AB垂直相交于点D,且AD=BD,若AC= BC则点C在直线m上. 定理的作用:证明一个点在某线段的垂直平分线上.课堂笔记:3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一ki点到三个顶点的距离相等.定理的数学表示:如图3,若直线i,j,k分别是△ ABC三边AB BGCA的垂直平分线,则直线i,j,k相交于一点0,且0A= OB= OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在厶ABC中, BC= 8cm AB的垂直平分线交AB于点D,交边AC于点E, △ BCE勺周长等于18cm 则AC的长等于( )A. 6cmB. 8cmC. 10cm D .课堂笔记:例2、在厶ABC中, AB二AC AB的垂直平分线与边AC所在的直线相交所成锐角为50°,^ ABC的底角/ B的大小为__________________ 。
中考数学之平面几何最全总结+经典习题
平面几何知识要点(一)【线段、角、直线】1.过两点有且只有一条直线.2.两点之间线段最短。
3.过一点有且只有一条直线和已知直线垂直。
4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。
垂直平分线,简称“中垂线”。
定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
中垂线性质:垂直平分线垂直且平分其所在线段。
垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。
逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
角1.同角或等角的余角相等。
2.同角或等角的补角相等.3.对顶角相等。
角的平分线性质角的平分线是到角的两边距离相等的所有点的集合定理1:角的平分线上的点到这个角的两边的距离相等.定理2:到一个角的两边距离相等的点,在这个角的平分线上.三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。
【平行线】平行线性质1:两直线平行,同位角相等。
平行线性质2:两直线平行,内错角相等。
平行线性质3:两直线平行,同旁内角互补。
平行线判定1:同位角相等,两直线平行。
平行线判定2:内错角相等,两直线平行。
平行线判定3:同旁内角互补,两直线平行。
平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
平面几何知识要点(二)【三角形】面积公式:1. 已知三角形底a ,高h ,12S ah =2. 正三角形面积 S=24(a 为边长正三角形)3.已知三角形三边a ,b,c ,则S =(海伦公式) 其中:()2a b c p ++= (周长的一半) 4.已知三角形两边a ,b 及这两边夹角C ,则1sin 2S ab C =. 5.设三角形三边分别为a 、b 、c,内切圆半径为r ,则()2a b c r S ++= 6.设三角形三边分别为a 、b 、c,外接圆半径为R ,则4abc S R =记住★:已知正三角形边长为a ,其外接圆半径为R ,内切圆半径为r ,则有:R = ,r = , 2R r = 内角和定理:三角形三个内角的和等于180°推论1 :直角三角形的两个锐角互余推论2 :三角形的一个外角等于和它不相邻的两个内角的和推论3 :三角形的一个外角大于任何一个和它不相邻的内角全等三角形性质:如果两三角形全等,那么其对应边,对应角相等.其中对应边除了三角形的边长外,还包括对应高,对应中线,对角平分线.全等三角形判定定理:边边边公理:有三边对应相等的两个三角形全等.(SSS )边角边公理:有两边和它们的夹角对应相等的两个三角形全等。
线段垂直平分线知识点+经典例题
第三讲 线段的垂直平分线【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于AB 的长为半径作弧,两弧相交于C ,D 两点;(2)作直线CD ,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于AB 的长,否则就不能得到两弧的交点了.(2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等.要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx 即为所求”.2121【典型例题】类型一、线段的垂直平分线定理例1、如图,△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9 B.8 C.7 D.6【思路点拨】先根据线段垂直平分线的性质得到AD=BD,即AD+CD=BD+CD=AC,再根据△BCD的周长=BC+BD+CD即可进行解答.【答案】A;【解析】因为BD=AD,所以△BCD的周长=BD+CD+BC=AD+CD+BC=5+4=9.【总结升华】此题正是应用了线段垂直平分线的性质定理,也就是已知直线是线段垂直平分线,那么垂直平分线上的点到线段的两个端点距离相等,从而把三角形的边进行转移,进而求得三角形的周长.【变式1】如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【答案】D;提示:根据等边对等角、三角形内角和定理及线段垂直平分线的性质定理即可推得选项A、B、C正确;所以选D,另外,注意排除法在解选择题中的应用.【变式2】如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.【答案】解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.类型二、线段的垂直平分线的逆定理例2、如图,已知AB=AC,∠ABD=∠ACD,求证:AD是线段BC的垂直平分线.A【答案与解析】证明:∵ AB=AC(已知)∴∠ABC=∠ACB (等边对等角)又∵∠ABD=∠ACD (已知)∴∠ABD-∠ABC =∠ACD-∠ACB (等式性质)即∠DBC=∠DCB∴DB=DC (等角对等边)∵AB=AC(已知)DB=DC (已证)∴点A 和点D 都在线段BC 的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AD 是线段BC 的垂直平分线。
2019年中考数学真题分类汇编—线段的垂直平分线、角平分线、中位线
线段的垂直平分线、角平分线、中位线一、选择题1. (广东省广州市,7,3分)如图,已知△ABC 中,AB =10,AC =8,BC =6,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则CD =()A .3 B .4C .4.8D .5CABD E 【答案】D 【逐步提示】根据已知数据可先判断得出△ABC 的形状,再进一步探索DE 与BC 的位置关系,及AD 与BD 的数量关系,进而得CD 即为△ABC 的中位线,故有CD 长为AB 长的一半.【详细解答】解:∵62+82=102,即BC 2+AC 2=AB 2,∴△ABC 是直角三角形,∠ACB =90°.∵DE 是AC 的垂直平分线,∴DE ⊥AC ,AE =CE ,∴DE ∥BC ,∴AD :BD =AE :CE =1,∴AD =BD ,∴CD 是Rt △ABC 斜边的中线,则CD =AB =×10=5,故选择D . 2121【解后反思】勾股定理的逆定理,三角形的中位线定理与“直角三角形斜边的中线等于斜边的一半”的性质,是判断两条直线位置关系与求解线段长度的重要知识依据,倘若忽视它们,将会出现解决问题时束手无策的局面.【关键词】勾股定理的逆定理;线段垂直平分线;平行线分线段成比例定理;直角三角形的性质2. (贵州省毕节市,6,3分)到三角形三个顶点的距离都相等的点是这个三角形的( )A.三条高的交点B. 三条角平分线的交点C.三条中线的交点D. 三条边的垂直平分线的交点【答案】D【逐步提示】本题考查线段垂直平分线的定义及性质,解题的关键是牢固掌握线段垂直平分线的性质,并能与其他概念及性质相区别.根据各自的定义及性质,逐项分析是否满足“到三角形三个顶点的距离都相等”.【详细解答】解:依题意,知这个点到三角形每边的两个端点的距离相等,所以,它是三条边的垂直平分线的交点,故选择D.【解后反思】本题的易错点是记错性质,与角平分线的性质相混淆,而误选B.【关键词】三角形的高;角平分线的性质;三角形的中线;线段垂直平分线的性质;3. (河北省,9,3分)图示为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心【答案】B【逐步提示】本题考查了三角形的外心和内心,根据“外心是三角形三边垂直平分线的交点”和“内心是三角形三条角平分线的交点”进行判断即可.【详细解答】解:如图,点O是△ABC的边AC的垂直平分线和边BC的垂直平分线的交点,即点O是△ABC 的外心,故答案为选项B.【解后反思】三角形的外心的位置随三角形的形状不同而不同,锐角三角形的外心在三角形内部;直角三角形的外心是斜边的中点,钝角三角形的外心在三角形的外部;而三角形的内心一定三角形的内部.【关键词】三角形的外心;三角形的内心4. (河南省,6,3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB 于点E ,则DE 的长为【】(A )6(B )5(C )4(D )3【答案】D【逐步提示】本题是一道考查垂直平分线、三角形的相似(或者三角形的中位线的判定和性质)和勾股定理的综合题型,解题的关键是利用垂直平分线和三角形相似的相关知识在综合问题中的灵活运用.思路:在Rt △ABC中利用勾股定理求出BC长,再由垂直平分线可知三角形相似(或者得DE是三角形的中位线),由相似三角形(或三角形的中位线)的性质求出DE长.【详细解答】解:方法一:在Rt △A BC中,AO . 6=∵DE垂直平分AC,∠ACB=90°∴DE∥BC,点D是AC的中点∴DE是△ABC的中位线∴DE=BC=3 ,21方法二:在Rt △A BC中,AO =. 681022=-∵DE垂直平分AC,∠ACB=90°∴DE∥BC,点D是AC的中点∴△ABC∽△AED∴21==AC AD BC DE ∴DE=BC=321故选择 D.【解后反思】本题的重点是垂直平分线和三角形中位线的性质综合运用,难点是不能发现基本的图形结构以及条件与结论之间的关系,解决问题的一般思维模式综合运用垂直平分线和三角形中位线的相关知识,在直角三角形中利用勾股定理或相似等求解线段长度.【关键词】垂直平分线;勾股定理;三角形的中位线;相似.5. (湖北省黄石市,4,3分)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙( )A.50°B.100°C.120°D.130°ADCB【答案】B.【逐步提示】本题考查了线段垂直平分线的性质、等腰三角形的性质,解题的关键是利用线段垂直平分线的性质、等腰三角形的性质求出∠ACD的度数,而∠BDC是△ACD的外角,利用三角形的一个外角等于与它不相邻的两个内角的和可求出∠BDC.【详细解答】解:因为点D在线段AB的垂直平分线上,所以AD=CD,所以∠ACD=∠A=50°.因为∠BDC是△ACD的外角,所以∠BDC=∠A+∠ACD=50°×2=100°,故选择B.【解后反思】(1)线段垂直平分线是经过某一条线段的中点,并且垂直于这条线段的直线,它具有性质:①垂直平分线垂直且平分线段;②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫三角形的外心,这一点到三个顶点的距离相等.(2)等腰三角形是有两条边相等的三角形,它具有性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等(简称:等边对等角);③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一).【关键词】等腰三角形的性质;线段垂直平分线的性质.6.(湖北省荆州市,8,3分)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A .1B .2C .3D .5【答案】A【逐步提示】先应用角的平分线的性质和垂直平分线的性质可得到AD=BD ,∠BAD=∠CAD=∠B=30°,再应用含30°角的直角三角形性质即可。
2019年中考数学几何基础知识汇总
中考数学几何基础知识汇总(名师总结知识点汇总,绝对精品,值得下载)中考几何证明(三角形、四边形、圆)考察形式:①、证明线段相等或证全等;②、在①结论的基础上给出一定条件求值或判断说明初中几何证明线段或角度相等思路:1、证明三角形全等(5个判定条件);2、看题目是否有“平分”存在,若有,则利用角平分线的性质证明;3、看题目中是否存在若干个线段中点的条件,若有,则想办法构造或利用中位线,利用中位线的性质证明;4、利用已知图形的性质证明(特殊的平行四边形、等腰三角形三线合一)三角形相关知识点汇总1、与三角形有关的线段:三角形任意两边之和大于第三边,a为△三角形的中位线平行于第三边且等于第三边的一半且1离与重心到对边中点的距离之比为2个顶点组成的角形面积相等。
3个顶点距离平方的和最小。
有两边相等,且底角相等的三角形1等角对等边;合一中线)AB直角三角形中的两直角边的平方之两直角边的平方之和等(2、与三角形有关的角三角形的三个内角和∠直角三角形的两个锐∠三角形的外角等于与∠它不相邻的两个内角三边相等,三角相等∠,AC3、三角形面积计算4、三角形全等全等三角形判定条件:1、_______:三边对应相等的两个三角形全等(可简写成“SSS”)2、________:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)3、_________:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)4、_________:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)5、__________:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”5、四边形相关知识点汇总1、平行四边形的概念、性质及判定2、特殊平行四边形的概念、性质及判定①矩形②菱形③正方形。
垂直平分线的定义和性质
垂直平分线的定义经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)(英文:perpen dicul ar bisect or)。
垂直平分线,简称“中垂线”,是初中几何学科中占有绝大部分的非常重要的一部分。
垂直平分线的性质1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
3.三角形三条边的垂直平分线相交于一点,该点叫外心(circum cente r),并且这一点到三个顶点的距离相等。
垂直平分线的逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
如图:直线MN即为线段AB的垂直平分线。
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧计方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到一个交点(两交点交与线段的同侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直等分底边。
方法之二:1、连接这两个交点。
原理:两点成一线。
等腰三角形的性质:1、三线合一( 等腰三角形底边上的高线、底边上的中线、顶角平分线相互重合。
)练习:(1)根据线段垂直平分线的性质解答即可;(2)依据角平分线的性质解答;(3)连接BD、CD,利用角平分线及线段垂直平分线的性质可求出B D=DH,DG=DC,依据HL定理可判断出R t△BDG≌Rt△CDH,根据全等三角形的性质即可得出结论.解答:解:(1)相等.∵D是线段BC垂直平分线上的一点,∴D点到B、C两点的距离相等;(2)相等.∵点D在∠BAC的角平分线上,∴D点到∠BAC两边的距离相等;(3)BG=CH.连接BD、CD,∵D是线段BC垂直平分线上的点,∴BD=DH,。
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)知识点总结1.角平分线的定义:角的内部把角平均分成两个相等的角的射线叫做角的平分线。
2.角平分线的性质:①平分角。
②角平分线上任意一点到角两边的距离相等。
3.角平分线的判定:角的内部到角两边相等的点一定在角平分线上。
4.角平分线的尺规作图:具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。
如图①。
②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。
如图②。
③连接OP,OP即为角的平分线。
5.线段的垂直平分线的定义:过线段的中点且与线段垂直的直线是这条线段的垂直平分线。
6.垂直平分线的性质:①垂直且平分线段。
②垂直平分线上任意一点到这条线段两个端点的距离相等。
7.垂直平分线的判定:到线段两端点距离相等的点一定在线段的垂直平分线上。
8.垂直平分线的吃规作图:具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。
如图①②连接MN,过MN的直线即为线段的垂直平分线。
如图②练习题1、(2022•鄂尔多斯)如图,∠AOE=15°,OE平分∠AOB,DE∥OB交OA于点D,EC⊥OB,垂足为C.若EC=2,则OD的长为()A.2 B.2C.4 D.4+2【分析】过点E作EH⊥OA于点H,根据角平分线的性质可得EH=EC,再根据平行线的性质可得∠ADE的度数,再根据含30°角的直角三角形的性质可得DE的长度,再证明OD=DE,即可求出OD的长.【解答】解:过点E作EH⊥OA于点H,如图所示:∵OE平分∠AOB,EC⊥OB,∴EH=EC,∵∠AOE=15°,OE平分∠AOB,∴∠AOC=2∠AOE=30°,∵DE∥OB,∴∠ADE=30°,∴DE=2HE=2EC,∵EC=2,∴DE=4,∵∠ADE=30°,∠AOE=15°,∴∠DEO=15°,∴∠AOE=∠DEO,∴OD=DE=4,故选:C.2、(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S △ACD=.【分析】过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.【解答】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,∴S△ACD=×2×1=1.故答案为:1.3、(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.4、(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25 B.22 C.19 D.18【分析】根据题意可知MN垂直平分BC,即可得到DB=DC,然后即可得到AB+BD+AD =AB+DC+AD=AB+AC,从而可以求得△ABD的周长.【解答】解:由题意可得,MN垂直平分BC,∴DB=DC,∵△ABD的周长是AB+BD+AD,∴AB+BD+AD=AB+DC+AD=AB+AC,∵AB=7,AC=12,∴AB+AC=19,∴△ABD的周长是19,故选:C.5、(2022•湖北)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】根据题意分别证明各个结论来判断即可.【解答】解:根据题意知,EF垂直平分AC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,∴AE=AF=CF=CE,即四边形AECF是菱形,故①结论正确;∵∠AFB=∠FAO+∠ACB,AF=FC,∴∠FAO=∠ACB,∴∠AFB=2∠ACB,故②结论正确;∵S四边形AECF=CF•CD=AC•OE×2=AC•EF,故③结论不正确;若AF平分∠BAC,则∠BAF=∠FAC=∠CAD=90°=30°,∴AF=2BF,∵CF=AF,∴CF=2BF,故④结论正确;故选:B.33.(2022•鄂尔多斯)如图,在△ABC中,边BC的垂直平分线DE交AB于点D,连接DC,若AB=3.7,AC=2.3,则△ADC的周长是.【分析】根据线段垂直平分线的性质可得BD=CD,进一步即可求出△ADC的周长.【解答】解:∵边BC的垂直平分线DE交AB于点D,∴BD=CD,∵AB=3.7,AC=2.3,∴△ADC的周长为AD+CD+AC=AB+AC=6,故答案为:6.34.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC 于点D,交BC于点E,∠BAE=10°,则∠C的度数是.【分析】根据线段垂直平分线的性质可得AE=EC,从而可得∠EAC=∠C,然后利用三角形内角和定理可得∠EAC+∠C=80°,进行计算即可解答.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.。
中垂线和角平分线
线段的垂直平分线与角平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理 (1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 课堂笔记:3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形. 经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cmm图1DABCm图2DABCjik图3OBCA课堂笔记:例2、 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。
中考数学真题分类汇编及解析(二十一)角平分线、线段垂直平分线、中位线
(2022•广东中考)如图,在△ABC 中,BC =4,点D ,E 分别为AB ,AC 的中点,则DE =( )A .14B .12C .1D .2【解析】选D .因为点D ,E 分别为AB ,AC 的中点,BC =4,所以DE 是△ABC 的中位线,所以DE =12BC =12×4=2.(2022•南充中考)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,DE ∥AB ,交AC 于点E ,DF ⊥AB 于点F ,DE =5,DF =3,则下列结论错误的是( )A .BF =1B .DC =3 C .AE =5D .AC =9【解析】选A .因为AD 平分∠BAC ,∠C =90°,DF ⊥AB , 所以∠1=∠2,DC =FD ,∠C =∠DFB =90°,因为DE ∥AB ,所以∠2=∠3,所以∠1=∠3,所以AE =DE , 因为DE =5,DF =3,所以AE =5,CD =3,故选项B 、C 正确; 所以CE =√DE 2−CD 2=4,所以AC =AE +EC =5+4=9,故选项D 正确; 因为DE ∥AB ,∠DFB =90°, 所以∠EDF =∠DFB =90°, 所以∠CDF +∠FDB =90°, 因为∠CDF +∠DEC =90°, 所以∠DEC =∠FDB , 因为∠C =∠DFB ,CD =FD , 所以△ECD ≌△DFB (AAS ), 所以CE =BF =4,故选项A 错误;(2022•德阳中考)如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,则下列结论一定正确的是( )A .四边形EFGH 是矩形B .四边形EFGH 的内角和小于四边形ABCD 的内角和C .四边形EFGH 的周长等于四边形ABCD 的对角线长度之和 D .四边形EFGH 的面积等于四边形ABCD 的面积的14【解析】选C .A .如图,连接AC ,BD ,在四边形ABCD 中,因为点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,所以EH ∥BD ,EH =12BD ,FG ∥BD ,FG =12BD ,所以EH ∥FG ,EH =FG ,所以四边形EFGH 是平行四边形,故A 选项错误;B .因为四边形EFGH 的内角和等于360°,四边形ABCD 的内角和等于360°,故B 选项错误;C .因为点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,所以EH =12BD ,FG =12BD ,所以EH +FG =BD , 同理:EF +HG =AC ,所以四边形EFGH 的周长等于四边形ABCD 的对角线长度之和,故C 选项正确; D .四边形EFGH 的面积不等于四边形ABCD 的面积的14,故D 选项错误.A .12B .9C .6D .3√2【解析】选B .因为AB =AC ,AD 是△ABC 的角平分线,所以BD =CD =12BC =3,AD ⊥BC ,在Rt △EBD 中,∠EBC =45°, 所以ED =BD =3,所以S △EBC =12BC •ED =12×6×3=9(2022•河北中考)如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是△ABC 的( )A .中线B .中位线C .高线D .角平分线【解析】选D .由已知可得,∠1=∠2,则l 为△ABC 的角平分线.2101(2022•宜昌中考)如图,在△ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为( )A .25B .22C .19D .18【解析】选C .由题意可得,MN 垂直平分BC ,所以DB =DC , 因为△ABD 的周长是AB +BD +AD ,所以AB +BD +AD =AB +DC +AD =AB +AC , 因为AB =7,AC =12,所以AB +AC =19,所以△ABD 的周长是19.A .△ABC 是等边三角形B .AB ⊥CDC .AH =BHD .∠ACD =45°【解析】选ABC .由作法得CD 垂直平分AB ,AC =BC =AB ,所以△ABC 为等边三角形,AB ⊥CD ,AH =BH ,所以A 、B 、C 选项符合题意; 所以∠ACD =12∠ACB =30°.所以D 选项不符合题意(2022•眉山中考)在△ABC 中,AB =4,BC =6,AC =8,点D ,E ,F 分别为边AB ,AC ,BC 的中点,则△DEF 的周长为( ) A .9B .12C .14D .16【解析】选A.如图,点E ,F 分别为各边的中点, 所以DE 、EF 、DF 是△ABC 的中位线,所以DE =12BC =3,EF =12AB =2,DF =12AC =4, 所以△DEF 的周长=3+2+4=9(2022•毕节中考)在△ABC 中,用尺规作图,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N .作直线MN 交AC 于点D ,交BC 于点E ,连接AE .则下列结论不一定正确的是( )A .AB =AE B .AD =CDC .AE =CED .∠ADE =∠CDE 【解析】选A .由作图可知,MN 垂直平分线段AC , 所以AD =DC ,EA =EC ,∠ADE =∠CDE =90°, 故选项B ,C ,D 正确.②作直线PQ 交AB 于点D ;③以点D 为圆心,AD 长为半径画弧交PQ 于点M ,连接AM 、BM . 若AB =2√2,则AM 的长为( )A .4B .2C .√3D .√2【解析】选B .由作图可知,PQ 是AB 的垂直平分线,所以AM =BM , 因为以点D 为圆心,AD 长为半径画弧交PQ 于点M ,所以DA =DM =DB , 所以∠DAM =∠DMA ,∠DBM =∠DMB ,因为∠DAM +∠DMA +∠DBM +∠DMB =180°,所以2∠DMA +2∠DMB =180°, 所以∠DMA +∠DMB =90°,即∠AMB =90°,所以△AMB 是等腰直角三角形,所以AM =√22AB =√22×2√2=2.(2022•怀化中考)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,若S △ADE =2,则S △ABC = 8 .【解析】因为D ,E 分别是AB ,AC 的中点, 所以DE :BC =1:2,DE ∥BC , 所以△ADE ∽△ABC , 所以S △ADE S △ABC =(DE BC)2=14,即2S △ABC=14,所以S △ABC =8. 答案:8(2022•株洲中考)如图所示,点O 在一块直角三角板ABC 上(其中∠ABC =30°),OM ⊥AB 于点M ,ON ⊥BC 于点N ,若OM =ON ,则∠ABO = 15 度.【解析】方法一:因为OM ⊥AB ,ON ⊥BC ,OM =ON , 所以点O 在∠ABC 的平分线上,(2022•扬州中考)“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B′处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB′于点P.若BC=12,则MP+MN=6.【解析】如图2,由折叠得:AM=MD,MN⊥AD,AD⊥BC,所以GN∥BC,所以AG=BG,所以GN是△ABC的中位线,所以GN=12BC=12×12=6,因为PM=GM,所以MP+MN=GM+MN=GN=6.答案:61【解析】设MN 交BC 于D ,连接EC ,如图:由作图可知:MN 是线段BC 的垂直平分线, 所以BE =CE =4, 所以∠ECB =∠B =45°, 所以∠AEC =∠ECB +∠B =90°, 在Rt △ACE 中,AE =√AC 2−CE 2=√52−42=3, 所以AB =AE +BE =3+4=7, 答案:7.(2022•达州中考)如图,在Rt △ABC 中,∠C =90°,∠B =20°,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数为 50° .【解析】因为∠C =90°,∠B =20°, 所以∠CAB =90°﹣∠B =90°﹣20°=70°, 由作图可知,MN 垂直平分线段AB , 所以DA =DB ,所以∠DAB =∠B =20°,所以∠CAD =∠CAB ﹣∠DAB =70°﹣20°=50°, 答案:50°【解析】因为CD =AD ,CE =EB ,所以DE 是△ABC 的中位线,所以AB =2DE , 因为DE =10m ,所以AB =20m , 答案:20.(2022•苏州中考)如图,在平行四边形ABCD 中,AB ⊥AC ,AB =3,AC =4,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AECF 的周长为 10 .【解析】因为AB ⊥AC ,AB =3,AC =4, 所以BC =√AB 2+AC 2=5,由作图可知,MN 是线段AC 的垂直平分线, 所以EC =EA ,AF =CF ,所以∠EAC =∠ACE , 因为∠B +∠ACB =∠BAE +∠CAE =90°, 所以∠B =∠BAE ,所以AE =BE , 所以AE =CE =12BC =2.5, 因为四边形ABCD 是平行四边形,所以AD =BC =5,CD =AB =3,∠ACD =∠BAC =90°, 同理证得AF =CF =2.5,所以四边形AECF 的周长=EC +EA +AF +CF =10, 答案:10(2022•衡阳中考)如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若AC =8,BC =15,则△ACD 的周长为 23 .【解析】根据作图过程可知:MN 是线段AB 的垂直平分线,(2022•台州中考)如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为10 .【解析】因为E,F分别为BC,CA的中点,所以EF是△ABC的中位线,所以EF=12AB,所以AB=2EF=20,在Rt△ABC中,∠ACB=90°,D为AB中点,AB=20,所以CD=12AB=10,答案:10(2022•福建中考)如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为6.【解析】因为D,E分别是AB,AC的中点,所以DE为△ABC的中位线,所以DE=12BC=12×12=6.答案:6.(2022•荆州中考)如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC于D,E,连接CD.若CE=13AE=1,则CD=√6.【解析】如图,连接BE,因为CE=13AE=1,所以AE=3,AC=4,而根据作图可知MN为AB的垂直平分线,所以AE=BE=3,在Rt△ECB中,BC=√BE2−CE2=2√2,所以AB=√AC2+BC2=2√6,因为CD 为直角三角形ABC 斜边上的中线,所以CD =12AB =√6. 答案:√6.(2022•梧州中考)如图,在△ABC 中,∠ACB =90°,点D ,E 分别是AB ,AC 边上的中点,连接CD ,DE .如果AB =5m ,BC =3m ,那么CD +DE 的长是 4 m .【解析】因为点D ,E 分别是AB ,AC 边上的中点,所以DE 是△ABC 的中位线,所以DE =12BC , 因为BC =3m ,所以DE =1.5m ,因为∠ACB =90°,所以CD =12AB , 因为AB =5m ,所以CD =2.5m ,所以CD +DE =2.5+1.5=4(m ). 答案:4.(2022·牡丹江中考)在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,CD = 3 .【解析】如图,过点D 作DE ⊥AB 于E , 因为∠C =90°,AC =6,BC =8, 所以AB =√AC 2+BC 2=√62+82=10, 因为AD 平分∠CAB , 所以CD =DE ,所以S △ABC =12AC •CD +12AB •DE =12AC •BC , 即12×6•CD +12×10•CD =12×6×8,解得CD =3.答案:3(2022•吉林中考)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AD 的中点,点F 在对角线AC 上,且AF =14AC ,连接EF .若AC =10,则EF = 52 .【解析】在矩形ABCD 中,AO =OC =12AC ,AC =BD =10,因为AF =14AC ,所以AF =12AO ,所以点F 为AO 中点,所以EF 为△AOD 的中位线,所以EF =12OD =14BD =52.答案:52(2022•广东中考)如图,已知∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E .求证:△OPD ≌△OPE .【证明】因为∠AOC =∠BOC ,PD ⊥OA ,PE ⊥OB ,所以PD =PE ,在Rt △OPD 和Rt △OPE 中,{OP =OP PD =PE,所以Rt △OPD ≌Rt △OPE (HL ). (2022•赤峰中考)如图,已知Rt △ABC 中,∠ACB =90°,AB =8,BC =5.(1)作BC 的垂直平分线,分别交AB 、BC 于点D 、H ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD ,求△BCD 的周长.【解析】(1)如图,DH 为所作;。
人教版中考数学知识点分类 知识点24 线段垂直平分线、角平分线、中位线(2)
一、选择题1. (2019广东深圳,8,3分)如图,已知AB=AC,AB=5,BC=3.以AB两点为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,过M,N作直线与AC相交于点D,则△BDC的周长为()A.8 B.10 C.11 D.13【答案】A【解析】由作图方法知,MN是线段AB的垂直平分线,∴AD=BD,∴△BDC的周长=BD+DC+BC=AD+DC+BC=5+3=8.故选A.【知识点】尺规作图;线段的垂直平分线;等腰三角形2. (2019广西北部湾,7,3分)如图,在△ABC中AC=BC,∠A=40°,观察图中尺规作图的痕迹可知∠BCG 的度数为A. 40°B. 45°C.50°D.60°【答案】C.【解析】解:由作法得CG⊥AB,∵BC=AC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°-40°-40°=100°,∴∠BCG=12∠ACB=50°.故选C.【知识点】等腰三角形的性质;作图—基本作图.3.(2019·湖南张家界,7,3)如图,在△ABC中,∠C=90°,AC=8,DC=13AD,BD平分∠ABC,则点D到AB的距离等于()A .4B .3C .2D .1【答案】C .【解析】如答图,过点D 作DE ⊥AB 于点E .∵AC =8,DC =13AD , ∴CD =2.∵BD 平分∠ABC ,∠C =90°,DE ⊥AB , ∴DE =DC =2.∴点D 到AB 的距离等于2. 故选C .【知识点】角平分线的性质定理4. (2019湖南郴州,7,3分)如图,分别以线段AB 的两端点A ,B 为圆心,大于AB 长为半径画弧,在线段AB 的两侧分别交于点E ,F ,作直线EF 交AB 于点O .在直线EF 上任取一点P (不与O 重合),连接P A ,PB ,则下列结论不一定成立的是( )A .P A =PB B .OA =OBC .OP =OFD .PO ⊥AB【答案】C【解析】解:∵由作图可知,EF 垂直平分AB , ∴P A =PB ,故A 选项正确; OA =OB ,故B 选项正确; OE =OF ,故C 选项错误; PO ⊥AB ,故D 选项正确; 故选:C .EDCBA第7题答图DCBA第7题图【知识点】线段垂直平分线的性质;基本作图5. (2019内蒙古包头市,7题,3分)如图3,在Rt△ABC中,∠B=900,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D、E,再分别以点D、E为圆心,大于DE的长为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1B.C.2D.【答案】C.【解析】解:过G作GH⊥AC于H,由尺规作图可知,AG平分∠BAC,∵∠B=900,∴BG⊥AB,又∵GH⊥AC,∴GH=GB=1.∴S△ACG=AC·GH=×4×1=2.故选C.【知识点】尺规作图,角平分线的性质.6.(2019山东东营,7,3分)如图,在 Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于12BC 的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连接CF.AC=3,CG=2,则CF的长为()A.52B.3 C.2 D.72【答案】A【解析】由作法知,DE是BC的垂直平分线,又∵CG=2,∴BC=4.在Rt△ABC中,∵AC=3,∴,∴CF=12AB=52.故选A.【知识点】线段的垂直平分线的作法;勾股定理;斜边上的中线的性质7. (2019黑龙江大庆,8题,3分)如图,在△ABC中BE是∠ABC的平分线,CE是外角∠ACM的平分线,CE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15°B.30°C.45°D.60°第8题图【答案】B【解析】∠ACM=∠A+∠ABC,所以∠ECM=∠EBC+30°,又因为∠ECM=∠EBC+∠E,所以∠E=30°,故选B. 【知识点】外角,角平分线8. (2019吉林长春,7,3分)如图,在△ABC中,∠ACB为钝角。
九年级数学知识点归纳
九年级数学知识点归纳九年级数学知识点归纳垂直平分线的逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法九年级数学知识点归纳总结垂直平分线经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
垂直平分线的性质1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
4.线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5.三角形三条边的垂直平分线相交于一点,该点叫外心(circumcenter),并且这一点到三个顶点的距离相等。
(此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。
)初三数学基础知识三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα初三数学知识重点巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。
2019年中考数学试题汇编—— 线段垂直平分线、角平分线、中位线2019 (2)
一、选择题1. (2019广东深圳,8,3分)如图,已知AB=AC,AB=5,BC=3.以AB两点为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,过M,N作直线与AC相交于点D,则△BDC的周长为()A.8 B.10 C.11 D.13【答案】A【解析】由作图方法知,MN是线段AB的垂直平分线,△AD=BD,△△BDC的周长=BD+DC+BC=AD+DC+BC=5+3=8.故选A.【知识点】尺规作图;线段的垂直平分线;等腰三角形2. (2019广西北部湾,7,3分)如图,在△ABC中AC=BC,△A=40°,观察图中尺规作图的痕迹可知△BCG的度数为A. 40°B. 45°C.50°D.60°【答案】C.【解析】解:由作法得CG△AB,△BC=AC,△CG平分△ACB,△A=△B,△△ACB=180°-40°-40°=100°,△△BCG=12△ACB=50°.故选C.【知识点】等腰三角形的性质;作图—基本作图.3.(2019·湖南张家界,7,3)如图,在△ABC中,∠C=90°,AC=8,DC=13AD,BD平分∠ABC,则点D到AB的距离等于()A.4 B.3 C.2 D.1【答案】C .【解析】如答图,过点D 作DE ⊥AB 于点E .∵AC =8,DC=13AD , ∴CD =2.∵BD 平分∠ABC ,∠C =90°,DE ⊥AB , ∴DE =DC =2.∴点D 到AB 的距离等于2. 故选C .【知识点】角平分线的性质定理4. (2019湖南郴州,7,3分)如图,分别以线段AB 的两端点A ,B 为圆心,大于12AB 长为半径画弧,在线段AB 的两侧分别交于点E ,F ,作直线EF 交AB 于点O .在直线EF 上任取一点P (不与O 重合),连接P A ,PB ,则下列结论不一定成立的是( )A .P A =PB B .OA =OBC .OP =OFD .PO ⊥AB【答案】C【解析】解:∵由作图可知,EF 垂直平分AB , ∴P A =PB ,故A 选项正确; OA =OB ,故B 选项正确; OE =OF ,故C 选项错误; PO ⊥AB ,故D 选项正确; 故选:C .【知识点】线段垂直平分线的性质;基本作图DCBA第7题图EDCBA第7题答图5. (2019内蒙古包头市,7题,3分)如图3,在Rt △ABC 中,∠B =900,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D 、E ,再分别以点D 、E 为圆心,大于12DE 的长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若BG =1,AC =4,则△ACG 的面积是( ) A.1B.32C.2D.52【答案】C. 【解析】解:过G 作GH ⊥AC 于H ,由尺规作图可知,AG 平分∠BAC , ∵∠B =900, ∴BG ⊥AB , 又∵GH ⊥AC , ∴GH =GB =1.∴S △ACG =12AC ·GH =12×4×1=2.故选C.【知识点】尺规作图,角平分线的性质.6.(2019山东东营,7,3分)如图,在 Rt △ABC 中, ∠ACB =90°,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D 、E 两点,作直线 DE 交 AB 于点F ,交 BC 于点 G ,连接CF . AC =3,CG =2,则CF 的长为( ) A .52B .3C .2D .72【答案】A【解析】由作法知,DE是BC的垂直平分线,又∵CG=2,∴BC=4.在Rt△ABC中,∵AC=3,∴,∴CF=12AB=52.故选A.【知识点】线段的垂直平分线的作法;勾股定理;斜边上的中线的性质7. (2019黑龙江大庆,8题,3分)如图,在△ABC中BE是∠ABC的平分线,CE是外角∠ACM的平分线,CE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15°B.30°C.45°D.60°第8题图【答案】B【解析】∠ACM=∠A+∠ABC,所以∠ECM=∠EBC+30°,又因为∠ECM=∠EBC+∠E,所以∠E=30°,故选B.【知识点】外角,角平分线8. (2019吉林长春,7,3分)如图,在△ABC中,△ACB为钝角。
2019中考数学试题分类汇编 知识点24 线段垂直平分线、角平分线、中位线
线段垂直平分线、角平分线、中位线一、选择题1. (2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB中点,且AE+EO=4,则ABCD 的周长为( )A.20B. 16C. 12D.8D第7题图 【答案】B 【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO 是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16 【知识点】平行四边形的性质,三角形中位线2. (2018四川省南充市,第8题,3分)如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A.12B.1 C.32D【答案】B【思路分析】1.由∠ACB=90°,∠A=30°,BC的长度,可求得AB的长度,2.利用直角三角形斜边的中线等于斜边第一半,求得CD的长度;3.利用中位线定理,即可求得EF的长.【解题过程】解:在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,,∴AB=4,CD=12 AB,∴CD=12×4=2,∵E,F分别为AC,AD的中点,∴EF=12CD=12×2=1,故选B.【知识点】30°所对直角边是斜边的一半;直角三角形斜边的中线等于斜边第一半;中位线定理3. (2018四川省达州市,8,3分)△ABC的周长为19,点D、E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M.若BC=7,则MN的长为().A.32B.2 C.52D.3第8题图【答案】C,【解析】∵△ABC的周长为19,BC=7,∴AB+AC=12.∵∠ABC的平分线垂直于AE,垂足为N,∴BA=BE,N是AE的中点.∵∠ACB的平分线垂直于AD,垂足为M,∴AC=DC,M是AD的中点.∴DE=AB+AC-BC=5.∵MN是△ADE的中位线,∴MN=12DE=52.故选C.【知识点】三角形的中位线4. (2018浙江杭州, 10,3分)如图,在△ABC中,点D在AB边上,DE//BC,与边AC交于点E,连接BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若2AD>AB,则3S1>2S2B. 若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D. 若2AD<AB,则3S1<2S2【答案】D【思路分析】首先考虑极点位置,当2AD=AB即AD=BD时S1,S2的关系,然后再考虑AD>BD 时S1,S2的变化情况。
给初二数学垂直平分线知识点总结
给初二数学垂直平分线知识点总结给初二数学垂直平分线知识点总结初二数学垂直平分线知识点总结知识要领:垂直平分线,简称“中垂线”,是初中几何学科中非常重要的一部分。
垂直平分线的性质1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
3.如果两个图形某直线对称,那么对称轴是对应点连线的垂直平分线。
4.线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5.三角形三条边的垂直平分线相交于一点,该点叫外心(circumcenter),并且这一点到三个顶点的距离相等。
(此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。
) 垂直平分线的逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
图式如图:直线MN即为线段AB的垂直平分线。
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点(两交点交与线段的同侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
方法之二:1、连接这两个交点。
原理:两点成一线。
等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。
)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。
)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。
)知识归纳:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
2019年中考数学三角形及全等知识点总结与解析
2019年中考数学三角形及全等知识点总结与解析三角形知识结构1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号""表示,顶点是A、B、C的三角形记作"ABC",读作"三角形ABC"。
5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】
一、选择题
5.(2019·泰州) 如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,
则△ABC 的重心是( )
A.点D
B.点E
C.点F
D.点G
第5题图
【答案】A
【解析】三角形的重心是三条中线的交点,由图中可知,△ABC 的三边的中点都在格点上,三条中线如图所示交于点
D,故选A.
第5题图
4.(2019·盐城)如图,点D 、E 分别是△ABC 边BA 、BC 的中点,AC =3,则DE 的长为( )
A .2
B .
C .3
D .
【答案】D
342
3E D
B
A
C A
C
E D G F
A
B
C
E D G F
【解析】由中位线的定义可知DE 是△ABC 的中位线,进而由中位线的性质可得DE =21AC =2
3,故选D. 7.(2019·青岛)如图,BD 是△ABC 的角平分钱,AE ⊥BD ,垂足为F . 若∠ABC =35°,∠C =50°,则∠CDE 的度数为
A .35︒
B .40︒
C .45︒
D .50︒
【答案】C
【解析】本题考查角平分线的性质,因为BD 平分∠ABC ,AE ⊥BD ,所以△ABF ≌△EBF ,所以BD 是线段AE 的垂直平分线,所以AD =ED ,所以∠BAD =∠BED =180°-35°-50°=95°, 所以∠CDE =180°-∠C =95°-50°=45°,故选C .
1. (2019·湖州)如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,
则四边形ABCD 的面积是( )
A .24
B .30
C .36
D .42
【答案】B .
【解析】如图,过D 点作DE ⊥BA 于点D ,
又∵BD 平分∠ABC ,∠BCD =90°,
∴DC =DE =4.
∵AB =6,BC =9,
∴S 四边形ABCD =S △BCD +S 四边形ABD =12AB •DE +12BC •DC =12×6×4+12
×9×4=12+18=30. 故选B .
二、填空题
17.(2019·长沙)如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分
别取AC ,BC 的中点D ,E ,测得DE=50m ,则AB 的长是 m .
【答案】100
【解析】∵AC ,BC 的中点D ,E ,∴DE 是△ABC 的中位线,∴DE=12
AB. ∵DE=50m ,∴AB=100m. 故填:100.
18.(2019·广元)如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=1
2
AB,点E,F分别是边BC,AC的
中点.
求证:DF=BE.
第18题图
解:连接AE,∵点E,F分别是边BC,AC的中点,∴EF是△ABC的中位线,∴EF∥AB,即EF∥AD,且EF=1
2
AB,又
∵AD=1
2
AB,∴AD=EF,∴四边形ADFE是平行四边形,∴DF=AE,又∵在Rt△ABC中,点E是中点,∴AE=
1
2
BC=BE=CE,∴BE=DF.。