排序算法时间复杂度比较
各种排序的时间复杂度
排序算法所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类在计算机科学所使用的排序算法通常被分类为:计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。
一般而言,好的表现是O。
(n log n),且坏的行为是Ω(n2)。
对於一个排序理想的表现是O(n)。
仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
记忆体使用量(以及其他电脑资源的使用)稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。
也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。
交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。
选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。
然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。
不稳定排序算法可以被特别地时作为稳定。
作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。
然而,要记住这种次序通常牵涉到额外的空间负担。
排列算法列表在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的冒泡排序(bubble sort)— O(n2)鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)插入排序(insertion sort)— O(n2)桶排序(bucket sort)— O(n); 需要 O(k) 额外记忆体计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外记忆体归并排序(merge sort)— O(n log n); 需要 O(n) 额外记忆体原地归并排序— O(n2)二叉树排序(Binary tree sort)— O(n log n); 需要 O(n) 额外记忆体鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体基数排序(radix sort)—O(n·k); 需要 O(n) 额外记忆体Gnome sort — O(n2)Library sort — O(n log n) with high probability, 需要(1+ε)n 额外记忆体不稳定选择排序(selection sort)— O(n2)希尔排序(shell sort)— O(n log n) 如果使用最佳的现在版本Comb sort — O(n log n)堆排序(heapsort)— O(n log n)Smoothsort — O(n log n)快速排序(quicksort)—O(n log n) 期望时间, O(n2) 最坏情况; 对於大的、乱数串列一般相信是最快的已知排序Introsort — O(n log n)Patience sorting —O(n log n + k) 最外情况时间, 需要额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)不实用的排序算法Bogo排序—O(n × n!) 期望时间, 无穷的最坏情况。
几种排序的算法时间复杂度比较
几种排序的算法时间复杂度比较1.选择排序:不稳定,时间复杂度 O(n^2)选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。
这样,经过i遍处理之后,前i个记录的位置已经是正确的了。
2.插入排序:稳定,时间复杂度 O(n^2)插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。
第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。
要达到这个目的,我们可以用顺序比较的方法。
首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。
图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。
3.冒泡排序:稳定,时间复杂度 O(n^2)冒泡排序方法是最简单的排序方法。
这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。
在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。
所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。
如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。
显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。
在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。
一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。
4.堆排序:不稳定,时间复杂度 O(nlog n)堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
查找算法学习常用的查找算法及其时间复杂度
查找算法学习常用的查找算法及其时间复杂度查找算法是计算机科学中非常重要的一种算法,它用于在一组数据中查找指定的元素。
在实际应用中,我们经常需要对大量数据进行查找操作,因此了解不同的查找算法及其时间复杂度对于提高查找效率至关重要。
本文将介绍几种常用的查找算法,并分析它们的时间复杂度。
一、顺序查找算法顺序查找算法是最简单的一种查找算法,也被称为线性查找算法。
它的基本思想是从数据的起始位置开始,一个一个地比较待查找元素和数据中的元素,直到找到匹配的元素或者遍历完所有的元素。
顺序查找算法的时间复杂度为O(n),其中n表示数据的规模。
由于它需要逐个比较元素,因此在数据规模较大时,效率较低。
二、二分查找算法二分查找算法,也被称为折半查找算法,是一种高效的查找算法。
它的前提是数据必须有序。
基本思想是将待查找的值与中间元素进行比较,如果相等则返回位置,如果不相等则根据大小关系决定继续在左半部分或右半部分进行查找,直到找到匹配的元素或者确定不存在。
二分查找算法的时间复杂度为O(log n),其中n表示数据的规模。
由于每次查找都将数据规模减半,因此效率非常高。
但是它要求数据必须有序,如果数据无序,需要先进行排序操作。
三、哈希查找算法哈希查找算法是一种常用的查找算法,通过哈希函数将待查找的元素映射到一个桶中,然后在桶中进行查找操作。
它的特点是查找的速度非常快,不受数据规模的影响。
哈希查找算法的时间复杂度近似为O(1),其中1表示常数时间。
但是它的缺点是需要额外的存储空间来构建哈希表,并且需要解决哈希冲突的问题。
四、二叉查找树算法二叉查找树算法是一种基于二叉树的查找算法,它的特点是左子树的所有节点值小于根节点的值,右子树的所有节点值大于根节点的值。
基于这个特点,可以通过比较待查找元素和当前节点的值来确定查找的方向。
二叉查找树算法的时间复杂度取决于树的高度,如果树的高度为h,则查找的时间复杂度为O(h)。
当二叉查找树退化成链表时,树的高度为n,其中n表示节点的个数,此时查找的时间复杂度为O(n)。
各种排序方法的综合比较
各种排序方法的综合比较在计算机科学中,排序是一种常见的算法操作,它将一组数据按照特定的顺序重新排列。
不同的排序方法具有不同的适用场景和性能特点。
本文将综合比较几种常见的排序方法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。
一、冒泡排序冒泡排序是一种简单但效率较低的排序方法。
它通过多次遍历数组,每次比较相邻的两个元素,将较大的元素逐渐“冒泡”到数组的末尾。
冒泡排序的时间复杂度为O(n^2),其中n为待排序元素的数量。
二、选择排序选择排序是一种简单且性能较优的排序方法。
它通过多次遍历数组,在每次遍历中选择最小的元素,并将其与当前位置交换。
选择排序的时间复杂度同样为O(n^2)。
三、插入排序插入排序是一种简单且适用于小规模数据的排序方法。
它通过将待排序元素逐个插入已排序的部分,最终得到完全有序的数组。
插入排序的时间复杂度为O(n^2),但在实际应用中,它通常比冒泡排序和选择排序更快。
四、快速排序快速排序是一种高效的排序方法,它通过分治法将数组划分为两个子数组,其中一个子数组的所有元素都小于另一个子数组。
然后递归地对两个子数组进行排序,最终将整个数组排序完成。
快速排序的平均时间复杂度为O(nlogn),但最坏情况下可能达到O(n^2)。
五、归并排序归并排序是一种稳定且高效的排序方法。
它通过将数组分成两个子数组,递归地对两个子数组进行排序,然后合并两个有序的子数组,得到最终排序结果。
归并排序的时间复杂度始终为O(nlogn),但它需要额外的空间来存储临时数组。
综合比较上述几种排序方法,可以得出以下结论:1. 冒泡排序、选择排序和插入排序都属于简单排序方法,适用于小规模数据的排序。
它们的时间复杂度都为O(n^2),但插入排序在实际应用中通常更快。
2. 快速排序和归并排序都属于高效排序方法,适用于大规模数据的排序。
它们的时间复杂度都为O(nlogn),但快速排序的最坏情况下性能较差,而归并排序需要额外的空间。
几种排序的算法时间复杂度比较
几种排序的算法时间复杂度比较1.选择排序:不稳定,时间复杂度 O(n^2)选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。
这样,经过i遍处理之后,前i个记录的位置已经是正确的了。
2.插入排序:稳定,时间复杂度 O(n^2)插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。
第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。
要达到这个目的,我们可以用顺序比较的方法。
首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。
图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。
3.冒泡排序:稳定,时间复杂度 O(n^2)冒泡排序方法是最简单的排序方法。
这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。
在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。
所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。
如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。
显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。
在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。
一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。
4.堆排序:不稳定,时间复杂度 O(nlog n)堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
各排序算法的时间复杂度和空间复杂度
各排序算法的时间复杂度和空间复杂度
本⽂主要讲解下平常我们⽤到的堆排序,归并排序以及快速排序的时间和空间复杂度。
堆排序:
堆排序分为建堆和调整堆。
建堆是通过⽗节点和⼦节点两两⽐较并交换得到的,时间复杂度为O(n),调整堆需要交换n-1次堆顶元素,并调整堆,调整堆的过程就是满⼆叉树的深度logn,所以时间复杂度为O(nlogn),所以最终时间复杂度为O(nlogn)。
空间复杂度为O(1)。
不稳定排序。
归并排序:
归并排序主要就是分解,和归并排序两部分,分解需要扫描所有的元素,所以时间复杂度为O(n)。
归并过程中,两两归并,其实就是满⼆叉树,深度为logn,每⼀层都要进⾏两两⽐较,也就是n次,所以时间复杂度为O(nlogn)。
归并过程中是需要保存排序好的元素,所以空间复杂度为O(n)。
稳定排序。
快速排序:
简单的可以认为,每次需要⼆分分解,左右两边均匀,每层需要⽐较n次⽐较,所以时间复杂度为O(nlogn)。
当然如果待排序数组本⾝就是正序或逆序,那么时间复杂度会O(n2)。
空间复杂度为O(logn),因为递归栈空间的使⽤问题。
不稳定排序。
几种常见算法的介绍及复杂度分析
几种常见算法的介绍及复杂度分析一、排序算法1.冒泡排序:通过反复交换相邻元素实现排序,每次遍历将最大元素放到最后。
时间复杂度为O(n^2)。
2.插入排序:将未排序元素插入已排序序列的适当位置,时间复杂度为O(n^2)。
3.选择排序:每次选择最小的元素放到已排序序列末尾,时间复杂度为O(n^2)。
4. 快速排序:通过递归将数组分段,并以一个基准元素为准将小于它的元素放在左边,大于它的元素放在右边,时间复杂度为O(nlogn)。
5. 归并排序:将数组递归拆分为多个子数组,对子数组进行排序并合并,时间复杂度为O(nlogn)。
二、查找算法1.顺序查找:从头到尾依次比较目标元素与数组中的元素,时间复杂度为O(n)。
2. 二分查找:依据已排序的数组特性,将目标元素与中间位置的元素比较,并根据大小取舍一半的数组进行查找,时间复杂度为O(logn)。
3.哈希查找:通过哈希函数将目标元素映射到数组的索引位置,时间复杂度为O(1),但可能需要额外的空间。
三、图算法1.广度优先(BFS):从起始节点开始,依次访问其邻居节点,再访问邻居的邻居,直到找到目标节点或遍历所有节点。
时间复杂度为O(V+E),V为顶点数量,E为边的数量。
2.深度优先(DFS):从起始节点开始一直遍历到没有未访问的邻居,再回溯到上一个节点继续遍历,直到找到目标节点或遍历所有节点。
时间复杂度为O(V+E),V为顶点数量,E为边的数量。
3. 最短路径算法(如Dijkstra算法):通过计算起始节点到每个节点的最短路径,找到起始节点到目标节点的最短路径。
时间复杂度为O(V^2),V为顶点数量。
4. 最小生成树算法(如Prim算法):通过贪心策略找到连通图的最小权重生成树,时间复杂度为O(V^2),V为顶点数量。
四、动态规划算法1.背包问题:将问题拆解为若干子问题,并通过求解子问题的最优解推导出原问题的最优解。
时间复杂度为O(nW),n为物品数量,W为背包容量。
常见排序算法的时间复杂度比较和应用场景
常见排序算法的时间复杂度比较和应用场景排序算法是计算机科学中最基本的算法之一。
在数据结构和算法中,排序算法的研究一直是热门话题。
这篇文章将会介绍一些最基本的排序算法,探讨它们的时间复杂度和一些应用场景。
1. 冒泡排序冒泡排序是最基本的排序算法之一。
其主要思想是循环遍历待排序的序列多次,每次比较相邻的两个元素的大小,如果前面的元素大于后面的元素,则交换这两个元素。
一个简单的例子如下:```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```冒泡排序的时间复杂度为 $O(n^2)$,其中 $n$ 是待排序序列的长度。
由于其时间复杂度较高,冒泡排序只适用于小规模的排序任务。
2. 快速排序快速排序是一种高效的排序算法。
其主要思想是选取序列中的一个元素作为基准值,将序列中小于基准值的元素放在基准值左边,大于基准值的元素放在右边,然后递归地对左右两部分进行排序。
一个简单的例子如下:```pythondef quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr)//2]left = [x for x in arr if x < pivot]right = [x for x in arr if x > pivot]middle = [x for x in arr if x == pivot]return quick_sort(left) + middle + quick_sort(right)```快速排序的时间复杂度为 $O(n\log n)$,其中 $n$ 是待排序序列的长度。
数组排序算法与时间复杂度分析
数组排序算法与时间复杂度分析在计算机科学中,数组排序是一项基本的操作。
排序算法的目的是将一个无序的数组按照一定的规则重新排列,使得数组中的元素按照升序或降序排列。
在实际应用中,排序算法被广泛应用于数据处理、搜索和数据库等领域。
本文将介绍几种常见的数组排序算法,并分析它们的时间复杂度。
一、冒泡排序(Bubble Sort)冒泡排序是一种简单直观的排序算法,它重复地遍历数组,每次比较相邻的两个元素,如果顺序错误就交换它们。
通过多次遍历,将最大(或最小)的元素逐渐“冒泡”到数组的末尾。
冒泡排序的时间复杂度为O(n^2),其中n是数组的长度。
这是因为冒泡排序需要遍历n次数组,并且每次遍历需要比较n-1次相邻元素。
二、选择排序(Selection Sort)选择排序是一种简单直观的排序算法,它重复地从未排序的部分选择最小(或最大)的元素,将其放到已排序部分的末尾。
选择排序的时间复杂度也为O(n^2),因为它需要遍历n次数组,并且每次遍历需要比较n-1次未排序元素。
三、插入排序(Insertion Sort)插入排序是一种简单直观的排序算法,它将数组分为已排序和未排序两部分,每次从未排序部分选择一个元素插入到已排序部分的正确位置。
插入排序的时间复杂度为O(n^2),因为它需要遍历n次数组,并且每次遍历需要比较最多n-1次已排序元素。
四、快速排序(Quick Sort)快速排序是一种高效的排序算法,它采用分治法的思想。
首先选择一个基准元素,然后将数组分成两部分,使得左边的元素都小于基准元素,右边的元素都大于基准元素。
然后递归地对左右两部分进行快速排序。
快速排序的平均时间复杂度为O(nlogn),最坏情况下为O(n^2)。
这是因为在最坏情况下,每次选择的基准元素都是数组中的最大或最小元素,导致分割不均匀。
五、归并排序(Merge Sort)归并排序是一种稳定的排序算法,它采用分治法的思想。
将数组分成两部分,分别对左右两部分进行归并排序,然后将排序好的两个部分合并成一个有序的数组。
排序算法(比较类和非比较类)
0、算法概述0.1 算法分类十种常见排序算法可以分为两大类:∙比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。
∙非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
0.2 算法复杂度0.3 相关概念∙稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
∙不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。
∙时间复杂度:对排序数据的总的操作次数。
反映当n变化时,操作次数呈现什么规律。
∙空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。
1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述∙比较相邻的元素。
如果第一个比第二个大,就交换它们两个;∙对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;∙针对所有的元素重复以上的步骤,除了最后一个;∙ 重复步骤1~3,直到排序完成。
1.2 代码实现 12 345678 910111213 function bubbleSort(arr) { var len = arr.length; for (var i = 0; i < len - 1; i++) { for (var j = 0; j < len - 1 - i; j++) { if (arr[j] > arr[j+1]) { // 相邻元素两两对比 var temp = arr[j+1]; // 元素交换 arr[j+1] = arr[j]; arr[j] = temp; } } } return arr; }2、选择排序(Selection Sort )选择排序(Selection-sort)是一种简单直观的排序算法。
各种排序算法的稳定性和时间复杂度小结
各种排序算法的稳定性和时间复杂度小结选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:log2(n)*n堆排序:log2(n)*n希尔排序:算法的复杂度为n的1.2次幂关于快速排序分析这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(log2(n)*n)其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
本文是针对老是记不住这个或者想真正明白到底为什么是稳定或者不稳定的人准备的。
首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
快速排序和复杂排序的区别?
快速排序(Quick Sort)和复杂排序(Merge Sort)是两种常见的排序算法,它们有以下区别:
1. 算法思想:快速排序是一种基于分治思想的排序算法,通过选择一个基准元素将数据分为两部分,然后分别对这两部分进行排序,最后将排序好的两部分合并起来;复杂排序是一种基于分治和合并思想的排序算法,通过将数据划分为较小的子序列,对每个子序列进行排序,然后再将这些排序好的子序列合并成一个完整的有序序列。
2. 平均时间复杂度:快速排序的平均时间复杂度为O(nlogn),其中n是待排序元素的数量;复杂排序的平均时间复杂度也为O(nlogn)。
3. 空间复杂度:快速排序的空间复杂度为O(logn),使用递归调用时需要额外的栈空间;复杂排序的空间复杂度为O(n),需要额外的存储空间来合并子序列。
4. 稳定性:快速排序是一种不稳定的排序算法,即相同元素的相对顺序可能在排序后发生改变;复杂排序是一种稳定的排序算法,相同元素的相对顺序不会改变。
5. 应用场景:由于快速排序在大多数情况下具有较好的性能表现,因此常被用于实际应用中。
复杂排序更适用于需要稳定性的场景,或者需要外部排序(例如大规模数据集无法一次加载到内存)的情况。
总的来说,快速排序和复杂排序都是常用的高效排序算法,选择哪种算法取决于具体的应用需求和数据特征。
排序算法的时间复杂度分析
排序算法的时间复杂度分析排序算法是计算机科学领域中的重要问题之一,用于将一组未排序的数据按照一定规则重新排列。
排序算法的时间复杂度是评估算法执行效率的一个指标,它表示对于特定输入规模的数据,算法执行所需的计算时间与数据量增加的关系。
在实际应用中,时间复杂度是衡量算法效率的重要标准之一,因为它决定算法在处理大规模数据时的速度。
不同的排序算法具有不同的时间复杂度,根据复杂度不同,其执行时间也不同。
在具体应用场景中,我们需要根据不同的数据规模和数据特征选择合适的排序算法,以确保算法具有高效性和可扩展性。
下面具体介绍几种常见的排序算法及其时间复杂度分析。
1. 冒泡排序算法冒泡排序算法是一种简单的排序算法,其基本思想是通过比较相邻两个数据的大小,将较大的数据往后移,最终实现数据升序或降序排列的目的。
其时间复杂度为O(n^2),即当数据量增加一倍时,执行时间将增加4倍,算法效率较低。
2. 快速排序算法快速排序算法是一种经典的排序算法,在实际应用中广泛使用。
该算法通过定义基准值,将待排序数据分成两个子序列,并递归地对子序列进行排序,最终实现数据排序的目的。
其时间复杂度为O(n log n),效率较高,在对大规模数据进行排序时表现出色。
3. 直接插入排序算法直接插入排序算法是一种简单但效率较低的排序算法,其基本思想是将数据依次插入已排序的有序序列中,最终实现数据排序的目的。
该算法的时间复杂度为O(n^2),随着数据量的增加,算法执行时间增加较快。
4. 堆排序算法堆排序算法是一种基于堆数据结构的排序算法,其基本思想是通过维护一个堆,不断取出堆中最大或最小元素,最终实现数据排序的目的。
其时间复杂度为O(n log n),执行效率较高,在处理大规模数据时表现出色。
综上所述,排序算法的时间复杂度对算法的效率和可扩展性具有重要影响。
在具体应用场景中,我们需要根据数据特征和数据规模选择合适的排序算法,并结合算法的时间复杂度进行评估,以确保算法具有高效性和可扩展性。
常见排序算法及对应的时间复杂度和空间复杂度
常见排序算法及对应的时间复杂度和空间复杂度转载请注明出处:(浏览效果更好)排序算法经过了很长时间的演变,产⽣了很多种不同的⽅法。
对于初学者来说,对它们进⾏整理便于理解记忆显得很重要。
每种算法都有它特定的使⽤场合,很难通⽤。
因此,我们很有必要对所有常见的排序算法进⾏归纳。
排序⼤的分类可以分为两种:内排序和外排序。
在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使⽤外存,则称为外排序。
下⾯讲的排序都是属于内排序。
内排序有可以分为以下⼏类: (1)、插⼊排序:直接插⼊排序、⼆分法插⼊排序、希尔排序。
(2)、选择排序:直接选择排序、堆排序。
(3)、交换排序:冒泡排序、快速排序。
(4)、归并排序 (5)、基数排序表格版排序⽅法时间复杂度(平均)时间复杂度(最坏)时间复杂度(最好)空间复杂度稳定性复杂性直接插⼊排序O(n2)O(n2)O(n2)O(n2)O(n)O(n)O(1)O(1)稳定简单希尔排序O(nlog2n)O(nlog2n)O(n2)O(n2)O(n)O(n)O(1)O(1)不稳定较复杂直接选择排序O(n2)O(n2)O(n2)O(n2)O(n2)O(n2)O(1)O(1)不稳定简单堆排序O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(1)O(1)不稳定较复杂冒泡排序O(n2)O(n2)O(n2)O(n2)O(n)O(n)O(1)O(1)稳定简单快速排序O(nlog2n)O(nlog2n)O(n2)O(n2)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)不稳定较复杂归并排序O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(n)O(n)稳定较复杂基数排序O(d(n+r))O(d(n+r))O(d(n+r))O(d(n+r))O(d(n+r))O(d(n+r))O(n+r)O(n+r)稳定较复杂图⽚版①插⼊排序•思想:每步将⼀个待排序的记录,按其顺序码⼤⼩插⼊到前⾯已经排序的字序列的合适位置,直到全部插⼊排序完为⽌。
堆排序和快速排序的时间复杂度有何不同
堆排序和快速排序的时间复杂度有何不同堆排序和快速排序是两种常见且重要的排序算法,它们在时间复杂度方面存在着明显的不同。
要理解这两种排序算法时间复杂度的差异,首先得对它们的基本原理和操作过程有一定的认识。
堆排序是利用二叉堆这种数据结构来实现的排序算法。
二叉堆可以看作是一棵完全二叉树,分为最大堆和最小堆。
在堆排序中,首先要将待排序的数组构建成一个最大堆(或者最小堆)。
然后,将堆顶元素与堆的最后一个元素交换位置,并对堆进行调整,使其重新成为一个最大堆(或最小堆)。
重复这个过程,直到整个数组有序。
快速排序则是采用了分治的思想。
它首先选择一个基准元素,将数组分成两部分,一部分的元素都小于等于基准元素,另一部分的元素都大于等于基准元素。
然后对这两部分分别进行快速排序,从而实现整个数组的排序。
接下来,我们具体分析一下堆排序和快速排序的时间复杂度。
堆排序的平均时间复杂度和最坏时间复杂度都是 O(nlogn)。
这是因为在构建堆的过程中,调整堆的操作时间复杂度为 O(logn),而整个数组的元素个数为 n,所以总的时间复杂度为 O(nlogn)。
快速排序的平均时间复杂度也是 O(nlogn)。
在理想情况下,每次划分都能将数组平均分成两部分,那么递归的深度就是 O(logn),每次划分的时间复杂度为 O(n),所以总的时间复杂度为 O(nlogn)。
然而,快速排序的最坏时间复杂度是 O(n²)。
这种情况发生在每次选择的基准元素都是数组中的最大(或最小)元素,导致划分的结果极度不均衡,其中一个子数组为空,另一个子数组包含了几乎所有的元素。
这样,递归的深度就达到了n,总的时间复杂度就变成了O(n²)。
为了更直观地理解它们时间复杂度的不同,我们可以通过一些具体的例子来感受。
假设我们有一个包含 100 个元素的数组。
对于堆排序来说,无论数组的初始状态如何,其时间复杂度都大致是 O(100log100) = O(600)。
各种排序算法的时间复杂度和空间复杂度(阿里)
各种排序算法的时间复杂度和空间复杂度(阿⾥)⼆分查找法的时间复杂度:O(logn) redis,kafka,B+树的底层都采⽤了⼆分查找法参考:⼆分查找法 redis的索引底层的跳表原理实现参考:⼆分查找法参考:⼆分查找法:1.⼆分查找⼆分查找也称为折半查找,它是⼀种效率较⾼的查找⽅法。
⼆分查找的使⽤前提是线性表已经按照⼤⼩排好了序。
这种⽅法充分利⽤了元素间的次序关系,采⽤分治策略。
基本原理是:⾸先在有序的线性表中找到中值,将要查找的⽬标与中值进⾏⽐较,如果⽬标⼩于中值,则在前半部分找,如果⽬标⼩于中值,则在后半部分找;假设在前半部分找,则再与前半部分的中值相⽐较,如果⼩于中值,则在中值的前半部分找,如果⼤于中值,则在后半部分找。
以此类推,直到找到⽬标为⽌。
假设我们要在 2,6,11,13,16,17,22,30中查找22,上图所⽰,则查找步骤为:⾸先找到中值:中值为13(下标:int middle = (0+7)/2),将22与13进⾏⽐较,发现22⽐13⼤,则在13的后半部分找;在后半部分 16,17,22,30中查找22,⾸先找到中值,中值为17(下标:int middle=(0+3)/2),将22与17进⾏⽐较,发现22⽐17⼤,则继续在17的后半部分查找;在17的后半部分 22,30查找22,⾸先找到中值,中值为22(下标:int middle=(0+1)/2),将22与22进⾏⽐较,查找到结果。
⼆分查找⼤⼤降低了⽐较次数,⼆分查找的时间复杂度为:O(logn),即。
⽰例代码:public class BinarySearch {public static void main(String[] args) {int arr[] = {2, 6, 11, 13, 16, 17, 22, 30};System.out.println("⾮递归结果,22的位置为:" + binarySearch(arr, 22));System.out.println("递归结果,22的位置为:" + binarySearch(arr, 22, 0, 7));}//⾮递归static int binarySearch(int[] arr, int res) {int low = 0;int high = arr.length-1;while(low <= high) {int middle = (low + high)/2;if(res == arr[middle]) {return middle;}else if(res <arr[middle]) {high = middle - 1;}else {low = middle + 1;}}return -1;}//递归static int binarySearch(int[] arr,int res,int low,int high){if(res < arr[low] || res > arr[high] || low > high){return -1;}int middle = (low+high)/2;if(res < arr[middle]){return binarySearch(arr, res, low, middle-1);}else if(res > arr[middle]){return binarySearch(arr, res, middle+1, high);}else {return middle;}}}其中冒泡排序加个标志,所以最好情况下是o(n)直接选择排序:排序过程:1 、⾸先在所有数据中经过 n-1次⽐较选出最⼩的数,把它与第 1个数据交换,2、然后在其余的数据内选出排序码最⼩的数,与第 2个数据交换...... 依次类推,直到所有数据排完为⽌。
常用排序算法的时间复杂度和空间复杂度
常⽤排序算法的时间复杂度和空间复杂度以上快速排序和归并排序的空间复杂度不正确没有的参考图1,以图2为准(对,就是懒得重新画图了)排序法最差时间分析平均时间复杂度稳定度空间复杂度冒泡排序O(n2)O(n2)稳定O(1)快速排序O(n2)O(n*log2n)不稳定O(log2n)~O(n)选择排序O(n2)O(n2)稳定O(1)⼆叉树排O(n2)O(n*log2n)不稳定O(n)序插⼊排序O(n2)O(n2)稳定O(1)堆排序O(n*log2n)O(n*log2n)不稳定O(1)希尔排序O O不稳定O(1)1.插⼊排序由N-1趟排序组成,对于p=1到p=N-1趟,插⼊排序保证从位置0到位置p上的元素为已排序状态。
时间复杂度:O(N^2)代码void InsertionSort(ElementType A[],int N){int j,p;ElementType Tmp;for(p=1;p<N;p++){Tmp=A[j];//把A[j]保存下来,因为它要被插⼊到前⾯的某个位置去for(j=p;j>0&&A[j-1]>Tmp;j--)//⼤于A[j]的元素逐个后移{A[j]=A[j-1];}A[j]=Tmp;}}2.希尔排序希尔排序使⽤⼀个序列h1,h2,h3,ht,叫做增量排序。
在使⽤增量hk的⼀趟排序之后,对于每个i我们有A[i]<A[i+hk],所有相隔hk的元素被排序。
时间复杂度:O(N^(1+a)),其中0<a<1。
//代码不太好理解,使⽤了3层循环void ShellSort(ElementType A[],int N){int j,p,Increment;ElementType Tmp;for(Increment=N/2;Increment>0;Increment/=2){for(p=Increment;p<N;p++){Tmp=A[p];for(j=p;j>=Increment;j-=Increment){if(A[j]<A[j-Increment])A[j]=A[j-Increment];elsebreak;}A[j]=Tmp;}}}3. 堆排序思想:建⽴⼩顶堆,然后执⾏N次deleteMin操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排序算法比较主要容:1)利用随机函数产生10000个随机整数,对这些数进行多种方法排序。
2)至少采用4种方法实现上述问题求解(可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序),并把排序后的结功能果保存在不同的文件里。
3)给出该排序算法统计每一种排序方法的性能(以运行程序所花费的时间为准进行对比),找出其中两种较快的方法。
程序的主要功能:1.随机数在排序函数作用下进行排序2.程序给出随机数排序所用的时间。
算法及时间复杂度(一)各个排序是算法思想:(1)直接插入排序:将一个记录插入到已排好的有序表中,从而得到一个新的,记录数增加1的有序表。
(2)冒泡排序:首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。
依此类推,直到第N-1和第N个记录的关键字进行过比较为止。
上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。
然后进行第二趟起泡排序,对前N-1个记录进行同样操作。
一共要进行N-1趟起泡排序。
(3)快速排序:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。
(4)选择排序:通过N-I次关键字间的比较,从N-I+1个记录中选出关键字最小的记录,并和第I(1<=I<=N)个记录交换。
时间复杂度分析10000个数据的时间比较:程序源代码:/********************************************************************************************** package test;public class SortArray {private static final int Min = 1;//生成随机数最小值private static final int Max = 10000;//生成随机数最大值private static final int Length = 10000;//生成随机数组长度(测试的朋友建议不要超过40000,不然你要等很久,如果你电脑配置绝对高的情况下你可以再加个0试试)public static void main(String[] args) {System.out.println("数组长度:"+Length+", Min:"+Min+", Max:"+Max);long begin;long end;int arr[] = getArray(Length);begin = System.currentTimeMillis();insertSort(arr.clone());end = System.currentTimeMillis();System.out.println("插入法排序法消耗时间:"+(end-begin)+"毫秒");begin = System.currentTimeMillis();bubbleSort(arr.clone());end = System.currentTimeMillis();System.out.println("冒泡发排序法消耗时间:"+(end-begin)+"毫秒");begin = System.currentTimeMillis();fastSort(arr.clone(),0,arr.length-1);end = System.currentTimeMillis();System.out.println("快速排序法消耗时间:"+(end-begin)+"毫秒");begin = System.currentTimeMillis();choiceSort(arr.clone());end = System.currentTimeMillis();System.out.println("选择排序法消耗时间:"+(end-begin)+"毫秒");}/**生成随机数数组* param length 数组长度* return int[]*/private static int[] getArray(int length){if(length<=0)return null;int arr[] = new int[length];for (int i = 0; i < arr.length; i++) {int temp = (int)(Min+Math.random()*(Max-Min-1)); arr[i] = temp;}return arr;}/**快速发排序* param arr 需要排序的数组* param left 数组最小下标(一般是0)* param right 数组最大下标(一般是Length-1)* return int[]*/private static int[] fastSort(int[] arr,int left,int right){ if(left < right){int s = arr[left];int i = left;int j = right + 1;while(true){//向右找大于s的元素的索引while(i+1 < arr.length && arr[++i] < s);//向左找小于s的元素的索引while(j-1 > -1 && arr[--j] > s);//如果i >= j 推出循环if(i >= j){break;}else{//教化i和j位置的元素int t = arr[i];arr[i] = arr[j];arr[j] = t;}}arr[left] = arr[j];arr[j] = s;//对左面进行递归fastSort(arr,left,j-1);//对右面进行递归fastSort(arr,j+1,right);}return arr;}/**插入法排序* param arr 需要排序的数组* return int[]*/private static int[] insertSort(int[] arr){ for(int i = 1;i < arr.length;i++){ int temp = arr[i];int j = i - 1;while(temp < arr[j]){arr[j+1] = arr[j];j--;if(j == -1){break;}}arr[j+1] = temp;}return arr;}/**冒泡发排序* param arr 需要排序的数组* return int[]*/private static int[] bubbleSort(int[] arr){for(int i = 0;i < arr.length;i++){//比较两个相邻的元素for(int j = 0;j < arr.length-i-1;j++){ if(arr[j] > arr[j+1]){int t = arr[j];arr[j] = arr[j+1];arr[j+1] = t;}}}return arr;}/**选择法排序* param arr* return*/private static int[] choiceSort(int[] arr){for(int i = 0;i < arr.length;i++){int m = i;for(int j = i + 1;j < arr.length;j++){//如果第j个元素比第m个元素小,将j赋值给mif(arr[j] < arr[m]){m = j;}}//交换m和i两个元素的位置if(i != m){int t = arr[i];arr[i] = arr[m];arr[m] = t;}}return arr; }/**打印数组* param arr 需要打印的数组*/private static void print(int[] arr){ if(arr==null||arr.length==0)return;for (int i = 0; i < arr.length; i++) { System.out.print(arr[i]+",");}}}测试结果:文档总结:好的算法+编程技巧+高效率=好的程序。
1、做什么都需要耐心,做设计写程序则更需要耐心。
一开始的时候,好不容易写好了程序,可是等最后调试的时候发现错误很隐蔽,就很费时间了。
后来我先在纸上构思出函数的功能和参数,先把各小部分编好才编主函数,考虑好接口之后才动手编,这样就比较容易成功了。
2、做任何事情我决定都应该有个总体规划。
之后的工作按照规划逐步展开完成。
对于一个完整的程序设计,首先需要总体规划写程序的步骤,分块写,分函数写,然后写完一部分马上纠错调试。
而不是像我第一次那样,一口气写完,然后再花几倍的时间调试。
一步步来,走好一步再走下一步。
3、感觉一开始设计结构写函数体现的是数据结构的思想,后面的调试则更加体现了人的综合素质,专业知识、坚定耐心、锲而不舍,真的缺一不可。
4、通过这次实验,复习了Java语言相关知识,磨练了我的意志,是我更有了自信心。