离散数学 数理逻辑2.1-2

合集下载

离散数学第二章一阶逻辑知识点总结

离散数学第二章一阶逻辑知识点总结

离散数学第二章一阶逻辑知识点总结数理逻辑部分第2章一阶逻辑2.1 一阶逻辑基本概念个体词(个体): 所研究对象中能够独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域: 个体变项的取值范围有限个体域,如{a, b, c}, {1, 2}无限个体域,如N, Z, R, …全总个体域: 宇宙间一切事物组成谓词: 表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词: 表示事物的性质多元谓词(n元谓词, n2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x y,…0元谓词: 别含个体变项的谓词, 即命题常项或命题变项量词: 表示数量的词全称量词: 表示任意的, 所有的, 一切的等如x 表示对个体域中所有的x存在量词: 表示存在, 有的, 至少有一具等如x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中, 设p:墨西哥位于南美洲符号化为p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1) 人都爱美; (2) 有人用左手写字分不取(a) D为人类集合, (b) D为全总个体域.解:(a) (1) 设G(x):x爱美, 符号化为x G(x)(2) 设G(x):x用左手写字, 符号化为x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) x (F(x)G(x))(2) x (F(x)G(x))这是两个基本公式, 注意这两个基本公式的使用.例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2) 有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1) 令F(x): x为正数, G(y): y为负数, L(x,y): x>y x(F(x)y(G(y)L(x,y))) 或x y(F(x)G(y)L(x,y)) 两者等值(2) 令F(x): x是无理数, G(y): y是有理数,L(x,y):x>yx(F(x)y(G(y)L(x,y)))或x y(F(x)G(y)L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特殊要求,用全总个体域量词顺序普通别能随便颠倒否定式的使用考虑:①没有别呼吸的人②别是所有的人都喜爱吃糖③别是所有的火车都比所有的汽车快以上命题应怎么符号化?2.2 一阶逻辑合式公式及解释字母表定义字母表包含下述符号:(1) 个体常项:a, b, c, …, a i, b i, c i, …, i1(2) 个体变项:x, y, z, …, x i, y i, z i, …, i 1(3) 函数符号:f, g, h, …, f i, g i, h i, …, i1(4) 谓词符号:F, G, H, …, F i, G i, H i, …, i1(5) 量词符号:,(6) 联结词符号:, , , ,(7) 括号与逗号:(, ), ,定义项的定义如下:(1) 个体常项和个体变项是项.(2) 若(x1, x2, …, x n)是任意的n元函数,t1,t2,…,t n是任意的n个项,则(t1, t2, …, t n) 是项.(3) 所有的项基本上有限次使用(1), (2) 得到的.个体常项、变项是项,由它们构成的n元函数和复合函数依然项定义设R(x1, x2, …, x n)是任意的n元谓词,t1,t2,…, t n 是任意的n个项,则称R(t1, t2, …, t n)是原子公式.原子公式是由项组成的n元谓词.例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式定义合式公式(简称公式)定义如下:(1) 原子公式是合式公式.(2) 若A是合式公式,则(A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B),(A B)也是合式公式(4) 若A是合式公式,则xA, xA也是合式公式(5) 惟独有限次地应用(1)~(4)形成的符号串是合式公式.请举出几个合式公式的例子.定义在公式xA和xA中,称x为指导变元,A为相应量词的辖域. 在x和x的辖域中,x的所有浮现都称为约束浮现,A中别是约束浮现的其他变项均称为是自由浮现的.例如, 在公式x(F(x,y)G(x,z)) 中,A=(F(x,y)G(x,z))为x的辖域,x为指导变元, A中x的两次浮现均为约束浮现,y与z均为自由浮现.闭式: 别含自由浮现的个体变项的公式.给定公式A=x(F(x)G(x))成真解释: 个体域N, F(x): x>2, G(x): x>1代入得A=x(x>2x>1) 真命题成假解释: 个体域N, F(x): x>1, G(x): x>2 代入得A=x(x>1x>2) 假命题咨询: xF(x)x F(x) 有成真解释吗?xF(x)x F(x) 有成假解释吗?被解释的公式别一定全部包含解释中的4部分.闭式在任何解释下基本上命题,注意别是闭式的公式在某些解释下也也许是命题.永真式(逻辑有效式):无成假赋值矛盾式(永假式):无成真赋值可满脚式:至少有一具成真赋值几点讲明:永真式为可满脚式,但反之别真谓词公式的可满脚性(永真性,永假性)是别可判定的利用代换实例可判某些公式的类型定义设A0是含命题变项p1, p2, …,p n的命题公式,A1,A2,…,A n是n个谓词公式,用A i处处代替A0中的p i (1i n),所得公式A称为A0的代换实例.例如:F(x)G(x), xF(x)yG(y) 等基本上p q的换实例,x(F(x)G(x)) 等别是p q 的代换实例.定理重言式的代换实例基本上永真式,矛盾式的代换实例基本上矛盾式.2.3 一阶逻辑等值式等值式定义若A B为逻辑有效式,则称A与B是等值的,记作A B,并称A B 为等值式.基本等值式:命题逻辑中16组基本等值式的代换实例如,xF(x)yG(y) xF(x)yG(y)(xF(x)yG(y)) xF(x)yG(y) 等消去量词等值式设D={a1,a2,…,a n} xA(x)A(a1)A(a2)…A(a n)xA(x)A(a1)A(a2)…A(a n)量词否定等值式设A(x)是含x自由浮现的公式xA(x)x A(x)xA(x)x A(x)量词分配等值式x(A(x)B(x))xA(x)xB(x)x(A(x)B(x))xA(x)xB(x)注意:对无分配律,对无分配律例将下面命题用两种形式符号化(1) 没有别犯错误的人(2) 别是所有的人都爱看电影解(1) 令F(x):x是人,G(x):x犯错误.x(F(x)G(x))x(F(x)G(x))请给出演算过程,并讲明理由.(2) 令F(x):x是人,G(x):爱看电影.x(F(x)G(x))x(F(x)G(x))给出演算过程,并讲明理由.前束范式定义设A为一具一阶逻辑公式, 若A具有如下形式Q1x1Q2x2…Q k x k B, 则称A为前束范式, 其中Q i(1i k)为或,B为别含量词的公式.例如,x y(F(x)(G(y)H(x,y)))x(F(x)G(x))是前束范式, 而x(F(x)y(G(y)H(x,y)))x(F(x)G(x))别是前束范式.定理(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式注意:公式的前束范式别惟一求公式的前束范式的办法: 利用重要等值式、置换规则、换名规则、代替规则举行等值演算.换名规则: 将量词辖域中浮现的某个约束浮现的个体变项及对应的指导变项,改成其他辖域中未曾浮现过的个体变项符号,公式中其余部分别变,则所得公式与原来的公式等值.代替规则: 对某自由浮现的个体变项用与原公式中所有个体变项符号别同的符号去代替,则所得公式与原来的公式等值.例求下列公式的前束范式(1) x(M(x)F(x))解x(M(x)F(x))x(M(x)F(x)) (量词否定等值式)x(M(x)F(x))两步结果基本上前束范式,讲明前束范式别惟一.(2) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x) (量词否定等值式)x(F(x)G(x)) (量词分配等值式)另有一种形式xF(x)xG(x)xF(x)x G(x)xF(x)y G(y) ( 换名规则) x y(F(x)G(y)) ( 量词辖域扩张) 两种形式是等值的(3) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x)x(F(x)G(x)) (为啥?)或x y(F(x)G(y)) (为啥?)(4) xF(x)y(G(x,y)H(y))解xF(x)y(G(x,y)H(y))zF(z)y(G(x,y)H(y)) (换名规则)z y(F(z)(G(x,y)H(y))) (为啥?)或xF(x)y(G(z,y)H(y)) (代替规则)x y(F(x)(G(z,y)H(y)))(5) x(F(x,y)y(G(x,y)H(x,z)))解用换名规则, 也可用代替规则, 这个地方用代替规则 x(F(x,y)y(G(x,y)H(x,z)))x(F(x,u)y(G(x,y)H(x,z)))x y(F(x,u)G(x,y)H(x,z)))注意:x与y别能颠倒。

离散数学-第一部分 数理逻辑-第二章 命题逻辑等值演算

离散数学-第一部分 数理逻辑-第二章 命题逻辑等值演算

名称
M0 M1 M2 M3
20
实例
由三个命题变项 p, q, r 形成的极小项与极大项.
极小项
公式
成真赋值 名称
p q r 0 0 0 m0
p q r 0 0 1 m1
p q r 0 1 0 m2
p q r 0 1 1 m3
p q r 1 0 0 m4
p q r 1 0 1 m5
p q r 1 1 0 m6
p(qr) (pq) r p(qr) 不与 (pq) r 等值
2
等值式例题
例1 判断下列各组公式是否等值: (1) p(qr) 与 (pq) r
p q r qr p(qr) pq (pq)r
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1Hale Waihona Puke 110 00111 1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
结论: p(qr) (pq) r
3
等值式例题
(2) p(qr) 与 (pq) r
p q r qr p(qr)
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1
110 0
0
111 1
1
pq (pq)r
1
0
1
1
1
0
1
1
0
1
0

离散数学第2版课后习题答案

离散数学第2版课后习题答案

离散数学第2版课后习题答案离散数学是计算机科学和数学领域中一门重要的学科,它研究离散对象及其关系、结构和运算方法。

离散数学的应用非常广泛,包括计算机科学、信息科学、密码学、人工智能等领域。

而离散数学第2版是一本经典的教材,它系统地介绍了离散数学的基本概念、原理和方法。

本文将为读者提供离散数学第2版课后习题的答案,帮助读者更好地理解和掌握离散数学的知识。

第一章:基本概念和原理1.1 命题逻辑习题1:命题逻辑的基本符号有哪些?它们的含义是什么?答:命题逻辑的基本符号包括命题变量、命题联结词和括号。

命题变量用字母表示,代表一个命题。

命题联结词包括否定、合取、析取、条件和双条件等,分别表示“非”、“与”、“或”、“如果...则...”和“当且仅当”。

括号用于改变命题联结词的优先级。

习题2:列举命题逻辑的基本定律。

答:命题逻辑的基本定律包括德摩根定律、分配律、结合律、交换律、吸收律和否定律等。

1.2 集合论习题1:什么是集合?集合的基本运算有哪些?答:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。

集合的基本运算包括并、交、差和补等。

习题2:列举集合的基本定律。

答:集合的基本定律包括幂等律、交换律、结合律、分配律、吸收律和德摩根定律等。

第二章:数理逻辑2.1 命题逻辑的推理习题1:什么是命题逻辑的推理规则?列举几个常用的推理规则。

答:命题逻辑的推理规则是用来推导命题的逻辑规则。

常用的推理规则包括假言推理、拒取推理、假言三段论和析取三段论等。

习题2:使用推理规则证明以下命题:如果A成立,则B成立;B不成立,则A不成立。

答:假言推理规则可以用来证明该命题。

根据假言推理规则,如果A成立,则B成立。

又根据假言推理规则,如果B不成立,则A不成立。

2.2 谓词逻辑习题1:什么是谓词逻辑?它与命题逻辑有何区别?答:谓词逻辑是一种扩展了命题逻辑的逻辑系统,它引入了谓词和量词。

与命题逻辑不同,谓词逻辑可以对个体进行量化和描述。

数理逻辑和离散数学的关系

数理逻辑和离散数学的关系

数理逻辑和离散数学的关系数理逻辑和离散数学是两个与数学紧密相关的学科,它们在逻辑推理和离散结构上有着密切的联系。

数理逻辑是研究符号逻辑、形式逻辑和数理符号系统的学科,而离散数学则是研究离散对象、离散结构和离散算法的学科。

本文将从数理逻辑和离散数学的定义、研究内容以及它们之间的关系进行探讨。

我们来了解一下数理逻辑。

数理逻辑是研究推理和证明的一门学科,它利用符号和形式系统来研究逻辑的规律和原理。

数理逻辑主要包括命题逻辑、谓词逻辑和模态逻辑等分支。

命题逻辑研究命题之间的逻辑关系,谓词逻辑则引入了谓词和量词的概念,用于研究量化和谓词之间的逻辑关系,而模态逻辑则研究命题的可能性和必然性等模态概念。

数理逻辑在数学、计算机科学、哲学等领域有着广泛的应用,例如在证明定理、验证计算机程序、人工智能等方面起着重要的作用。

接下来,我们来介绍一下离散数学。

离散数学是研究离散对象和离散结构的一门学科,它主要包括集合论、图论、代数结构、组合数学等分支。

离散数学研究的对象是离散的、不连续的数学结构,与连续的实数和实数运算相对应。

离散数学的研究内容包括集合的运算和关系、图的性质和算法、代数系统的结构和性质、组合数学中的排列组合等。

离散数学在计算机科学、密码学、网络优化等领域有着广泛的应用,例如在网络拓扑设计、图像处理、密码算法等方面发挥着重要作用。

数理逻辑和离散数学之间存在着密切的关系。

首先,数理逻辑为离散数学提供了严密的推理和证明方法。

数理逻辑的符号系统和形式化推理方法为离散数学的证明和推理提供了基础。

通过数理逻辑的方法,我们可以准确地表达和证明离散数学中的结论,确保其准确性和严谨性。

离散数学为数理逻辑提供了具体的应用背景和实例。

离散数学中的离散结构和离散算法为数理逻辑提供了实际的应用场景。

例如,图论中的图模型可以用于表示逻辑推理的过程,集合论中的集合运算和关系可以用于描述命题逻辑和谓词逻辑中的逻辑关系。

离散数学中的算法和计算复杂性理论也为数理逻辑中的计算问题提供了解决方案。

数理逻辑与离散数学

数理逻辑与离散数学

数理逻辑与离散数学数理逻辑与离散数学是一门研究数学中的逻辑和离散结构的学科。

它们在数学领域中扮演着重要的角色,为数学家和计算机科学家提供了强大的工具和方法。

在这篇文章中,我们将探讨数理逻辑与离散数学的基本概念、应用和发展。

1. 数理逻辑的基本概念数理逻辑是研究逻辑的数学分支,它主要关注命题、谓词和推理的形式化。

数理逻辑的基本概念包括命题逻辑、谓词逻辑和形式系统等。

命题逻辑研究的是命题的真假和推理的正确性,谓词逻辑则引入了个体和谓词的概念,用于描述更加复杂的逻辑结构。

形式系统则是数理逻辑的基础,它定义了逻辑推理的规则和语法。

2. 离散数学的基本概念离散数学是研究离散结构的数学分支,它主要关注离散对象和离散关系的性质。

离散数学的基本概念包括集合论、图论、代数结构等。

集合论研究的是集合的性质和运算,图论则研究的是图的性质和算法。

代数结构则是研究代数系统的抽象结构,包括群、环和域等。

3. 数理逻辑与离散数学的应用数理逻辑和离散数学在数学和计算机科学中有广泛的应用。

在数学领域,它们被用于证明和推理,帮助数学家发现新的定理和结论。

在计算机科学领域,数理逻辑和离散数学为计算机科学家提供了建模和分析的工具。

例如,图论被广泛应用于网络和路由算法的设计,离散数学的概念被用于设计和分析算法的正确性和复杂性。

4. 数理逻辑与离散数学的发展数理逻辑和离散数学作为学科的发展可以追溯到19世纪末。

随着数学和计算机科学的发展,它们变得越来越重要。

在20世纪,数理逻辑和离散数学得到了快速发展,涌现出了许多重要的理论和方法。

例如,哥德尔的不完备性定理揭示了数理逻辑的局限性,图论的四色定理解决了染色问题的一个重要难题。

总结起来,数理逻辑与离散数学是一门研究数学逻辑和离散结构的学科,它们在数学和计算机科学中有重要的应用和发展。

通过形式化和抽象化,数理逻辑和离散数学帮助数学家和计算机科学家研究和理解复杂的问题。

随着科学技术的不断进步,数理逻辑和离散数学将继续发展,为人类的认知和计算能力提供更强大的支持。

《离散数学》命题逻辑

《离散数学》命题逻辑
由原子命题组合而成的命题称为复合 命题(compound proposition)。
例如:
和 e 都是无理数。 6和8至少有一个是合数。 说刘老师讲课不好是不正确的。 不下雨我就去买书。
7
命题与命题联结词
将命题连接起来的方式叫做命题联结词
( proposition connective ) 或 命 题 运 算 符
3
命题与命题联结词
逻辑
如何表示? 如何“操作”?
非真即假的陈述句称为命题(proposition)。 一个命题如果是对的或正确的,则称为真命
题,其真值为“真”(true),常用T或1表示; 一个命题如果是错的或不正确的,则称为假
命题,其真值为“假”(false),常用F或0表示。
4
命题与命题联结词
32
命题公式及其分类
为简化公式的形式,作如下规定:
(1) 优先级 , (∧, ∨), (, ) (2) 公式 (~p) 的括号可以省略,写成 ~p (3) 整个公式最外层的括号可以省略
例1
(((p)∧q)(q∨p)) p∧q q∨p
例2
p∧q∨r 不是 命题公式 应写作 (p∧q)∨r 或 p∧(q∨r)
例 判断下列句子哪些是命题,哪些不是
这门课程题为“离散数学”。 这门“离散数学”讲得好吗? X 这门“离散数学”讲得真好! X 请学习“离散数学” 。 X 5是素数。 太阳从西方升起。 如果明天晴,而且我有空,我就去踢球。 天王星上没有生命。 x + 3 > 5。 X 5 本命题是假的。X
俞伯牙和钟子期是好朋友。 俞伯牙是好朋友 ∧ 钟子期是好朋友 俞伯牙 ∧ 钟子期是好朋友 Friend (俞伯牙,钟子期)
23

离散数学逻辑公式大全化简

离散数学逻辑公式大全化简

离散数学逻辑公式大全化简
离散数学逻辑公式大全:
一、对称表达式
1. 对立矛盾:P∧(¬P),这就意味着,实际上什么都不是真。

2. 波尔定理:(P→Q)∨(Q→P),即P和Q之一必定是另一个的条件。

3. 谓词逻辑:∀xPx,表明了P是对任意x是真的。

二、蕴涵表达式
1. 因果关系:P→Q,其中P是因,Q是果。

2. 排中律:P∨(Q∧R)≡(P∨Q)∧(P∨R),即P既支持Q和R的同时满足,也支持Q和R的分别满足。

3. 简单蕴涵:P→Q,Q即P的蕴涵结果。

三、命题逻辑
1. 范式:¬(P∨Q)即¬P∧¬Q,这表明,若P和Q两者成立其一,则结果
为假。

2. 合取范式:P ∨ Q,表示只要PQ其一成立,结果即成立。

3. 否定范式:P→Q,表示只有当P成立,Q才会成立,否则结果为假。

四、可辩证表达式
1. 含义性质:P→Q,表明当P为真时,Q也可能为真,但可能有证据
表明P为假时,Q也可能为假。

2. 对抗性质:¬P∧Q,表明当P(或Q)被否定时,另一方会加强对这个变量的认可。

3. 不可满足性:P∧¬P,表明两个性质之间存在矛盾,因此,这种形式无法同时满足。

离散数学-第二章命题逻辑

离散数学-第二章命题逻辑

设A( P1,P2,…,Pn )是一个命题公式,
P1,P2,…,Pn是出现于其中的全部命题变元,对P1, P2,…,Pn分别指定一个真值,称为对P1,P2,…,Pn公式A 的一组真值指派。
列出命题公式A在P1,P2,…,Pn的所有2n种真值指 派下对应的真值,这样的表称为A的真值表。
16
例3
值表。
例12 用符号形式表示下列命题。
(1) (2) 如果明天早上下雨或下雪,那么我不去学校 如果明天早上不下雨且不下雪,那么我去学校。
(3)
(4)
如果明天早上不是雨夹雪,那么我去学校。
只有当明天早上不下雨且不下雪时,我才去学校。 解 令P:明天早上下雨; Q:明天早上下雪; R:我去学校。 (1)(P∨Q)→ ¬ R; (2)(¬ ∧¬ P Q)→R; (3)¬ (P∧Q)→R (4)R→(¬ ∧¬ Q) P
4
例4
2.合取“∧” 定义2.2.2
设P和Q是两个命题,则P和Q的合取 是一个复合命题,记作“P ∧ Q”(读作“P且Q”)。
当且仅当命题P和Q均取值为真时,P ∧ Q才取值为真。
P 0 0 1 1 Q 0 1 0 1 P∧Q 0 0 0 1
例5
设P:我们去看电影。Q:房间里有十张桌子。则
P ∧ Q表示“我们去看电影并且房间里有十张桌子。”
5
3. 析取“∨” 定义2.2.3
设P和Q是两个命题,则P和Q的析取是一个复 合命题,记作“P∨Q”(读作“P或Q”)。
当且仅当P和Q至少有一个取值为真时,P∨Q取值为真。
P
0 0 1 1 Q 0 1 0 1 P∨Q 0 1 1 1
例6 设命题P:他可能是100米赛跑冠军;
Q:他可能是400米赛跑冠军。

离散数学基础-第二章-数理逻辑

离散数学基础-第二章-数理逻辑
41
g) 你获得这一职位表明你有最好的信誉。 h) 要成为美国公民,只要你生在美国就行了。 i) 除非下大雨,否则我是一定要出门的。 j) 要在服务器登录必须有一个有效的口令。
42
【定义】设P, Q是两个命题,复合命题“P当且仅 当Q” 称为P与Q的等价式,记做 P Q, 称为等 价联结词 。
是可兼或还是不可兼或。
▶若是可兼或,以及p, q不能同时为真的不可兼 或①,均可直接符号化为p∨q的形式。 ▶如果是不可兼或②,并且p与q可同时为真,就 应符号化为 (p∧┐q)∨(┐p∧q) 的形式。
31
【例】 将下列命题符号化。 (1)张三选修了英语课或者微积分课。 (2)今晚张三要么只看书要么只听音乐。 (3)a>0或a=0。
例:如果1+1=2,那么雪是白的。
37
4) 在数学和其他自然科学中, “如果p, 则q” 往往表达前件p为真,后件也为真的推理关 系;而在数理逻辑中,当前件p为假,不管 后件是真是假,规定 p→q都是真 (∵复合 命题p →q应有真值)。
例:校长宣布: 如果气温超过38℃,则全校停课。
38
关于“只有……, 才……”和“除非……, 否 则……”的符号化:
做 p → q, → 称为蕴涵联结词, p称为 前件, q称为后件。
“→ ”的读法:implies, if…then… (英)
蕴涵、如果…则… (中)
p→q的真值定义为:
p→q为假 iff p为真而q为

34
p→q的真值定义为: p→q为假 iff p为真而q为假
表2.4 p→q真值表
pq 00 01 10 11
(1) 相容或(可兼或): 用它联结的命题具有相容性:命题可以同时为真, 如:张三会讲英语或日语。

《离散数学》教学大纲

《离散数学》教学大纲

《离散数学》教学大纲一、教学目的与要求(一)目的本课程教学的目的是培养学生的数学思维能力,使学生得到良好的数学训练,提高学生的抽象思维和逻辑推理能力,为从事计算机的应用提供坚实的理论基础。

通过教学,最终使学生能够在众多的概念中要找出最重要的,在众多的定理中找出最根本的,将这些少量的概念和定理能够透彻地理解,自如地运用。

(二)要求1. 有效地掌握该门课程中的所有概念。

通过讲课和布置一定数量的习题使学生能够使用所学的概念对许多问题作出正确的判断。

2. 通过课程中许多定理的证明过程复习概念,了解证明的思路,学会证明的方法,并使学生掌握定理的内容和结果。

3. 通过介绍各种做题的方法,启发学生独立思维的能力。

创造性的提出自己解决问题的方法,提高学生解决问题的能力。

4.通过该门课程的学习使学生掌握逻辑思维和逻辑推理的能力,培养学生正规的逻辑思维方式。

二、教学重点及难点(一)重点1.集合论:集合恒等式,关系运算,关系性质,等价关系,偏序关系2.数理逻辑:等价演算,推理理论3.代数系统:代数系统,群的性质,子群,陪集与拉格朗日定理,循环群,置换群4.图论:图的基本概念,图的矩阵,根树,有向树和有序树。

5.代数系统:代数系统,群的性质,子群,陪集与拉格朗日定理,循环群,置换群(二)难点关系的运算,偏序关系,一阶逻辑推理,陪集,置换群,根树的应用三、教学方法采用多媒体和板书相结合,采用启发式和案例教学,以知识为载体,培养学生分析解决问题的思维方式和方法,激发学生创造性思维。

四、教学时数54学时,每周3学时五、考试或考察方式本课程为考试课考试方式六、学时安排序号章节内容学时1 第一章集合与关系122 第二章命题逻辑123 第三章谓词逻辑94 第四章图论125 第五章代数系统9合计54第一章集合与关系 1.1 集合的概念与运算一、教学目的及要求:1、掌握集合的两种表示法2、判别元素是否属于给定的集合3、判别两个集合之间是否存在包含、相等、真包含等关系4、掌握集合的基本运算(幂集运算,普通运算和广义运算)并能化简集合表达式二、教学难点及重点:教学重点:1. 集合的两种表示法2. 集合之间的包含、相等、真包含等关系3. 集合的基本运算(幂集运算,普通运算和广义运算)教学难点:集合的运算三、教学基本内容:1.集合的概念,集合的两种表示法2.元素与集合的关系3.两个集合之间的关系:包含、相等、真包含等关系4.空集,全集,幂集的概念5. 集合的基本运算(幂集运算,普通运算和广义运算),化简集合表达式四、作业习题1.1 2、3、5、7、9第一章集合与关系(1.2,1.3)一、教学目的及要求:1.掌握有序对的定义2.掌握笛卡儿积运算和性质3.熟练掌握二元关系的定义4.掌握二元关系表达式、关系矩阵、关系图的表示法5. 掌握关系的逆和合成运算二、教学难点及重点:教学重点:1.有序对的定义2.笛卡儿积运算和性质3.二元关系的定义4.二元关系表达式、关系矩阵、关系图的表示法5. 关系的逆和合成运算教学难点:笛卡儿积运算和性质、关系的合成三、教学基本内容:1.有序对的概念2.有序对的性质3.有序n元组4.笛卡儿积的定义5.笛卡儿积的运算和性质6.二元关系的概念7.集合A到B的关系、集合A上的关系的定义8.关系表达式、关系矩阵、关系图的表示法9.关系的逆和合成运算四、作业习题1.2 1、3、4、5、6 习题1.3 1、2、7、11第一章集合与关系(1.4)一、教学目的及要求:1.掌握二元关系的基本性质及其关系矩阵、关系图上的体现2.掌握二元关系的各种性质存在的充要条件3.了解二元关系各种性质与集合运算的关系4.掌握自反性、对称性、传递性的证明方法二、教学难点及重点:教学重点:1.二元关系的基本性质:自反性,非自反性,对称性,反对称性,传递性2.二元关系的各种性质存在的充要条件3.二元关系的基本性质在关系矩阵、关系图上的体现4.二元关系各种性质与集合运算的关系5.自反性、对称性、传递性的证明方法教学难点:1.二元关系的各种性质存在的充要条件2.自反性、对称性、传递性的证明方法三、教学基本内容:1.自反性的定义及关系矩阵、关系图的特征2.非自反性的定义及关系矩阵、关系图的特征3.对称性的定义及关系矩阵、关系图的特征4.反对称性的定义及关系矩阵、关系图的特征5.传递性的定义及关系矩阵、关系图的特征6.二元关系的各种性质存在的充要条件7.集合的并、交运算对自反性的保持8.集合的并、交运算对对称性的保持9.集合的并、交运算对传递性的保持10.二元关系性质的证明四、作业习题 1.4 1、2、3、4、8第一章集合与关系(1.5) 一、教学目的及要求:1.掌握二元关系闭包的含义2.掌握二元关系闭包的性质3.掌握二元关系闭包的计算方法二、教学难点及重点:教学重点:1.二元关系的闭包:自反闭包、对称闭包、传递闭包2.二元关系的闭包计算的基本定理3.利用关系矩阵和关系图计算闭包4.二元关系的闭包的性质教学难点:二元关系闭包的求法三、教学基本内容:1.闭包的定义:自反闭包、对称闭包、传递闭包2.利用集合与闭包的关系计算闭包3.利用关系矩阵和关系图计算闭包4.二元关系的闭包的性质5.闭包与闭包之间的关系6. 集合、关系矩阵、关系图之间的转换四、作业习题1.5 1、2、3、9第一章集合与关系(1.6) 一、教学目的及要求:1.掌握等价关系及其条件2.掌握等价关系与划分的联系二、教学难点及重点:教学重点:1.等价关系及充要条件2.等价关系与划分的联系教学难点:等价关系的划分三、教学基本内容:1.等价关系的定义2.利用矩阵表示等价关系3.等价关系的充要条件4.等价类与商集的定义5.等价关系与划分的联系四、作业习题 1.6 2、4、5、6第一章集合与关系(1.7) 一、教学目的及要求:1.了解序关系的概念2.掌握偏序与拟序3. 掌握哈斯图4. 掌握全序与良序二、教学难点及重点:教学重点:1.偏序与拟序2.哈斯图3. 全序与良序教学难点:全序与良序三、教学基本内容:1.序关系的概念:偏序关系、拟序关系2.偏序的充分必要条件3.拟序的充分必要条件4.覆盖的定义5.哈斯图6.极大元与极小元7.全序结构与良序结构四、作业习题 1.7 2、5、8第二章命题逻辑(2.1、2.2) 一、教学目的及要求:1.分清简单命题(既原子命题)与复合命题2.深刻理解5种常用联结词的涵义,每种联结词的真值3.分清“相容或”与“排斥或”4. 掌握命题公式及其真值表5. 掌握命题公式的类型与判定二、教学难点及重点:教学重点:1. 命题的概念2.简单命题(既原子命题)与复合命题3. 5种常用联结词4. “相容或”与“排斥或”5. 命题公式及其真值表6. 命题公式的类型与判定教学难点:“相容或”与“排斥或”逻辑区别、命题公式的判定三、教学基本内容:1.命题的概念,真命题,假命题,真值2.命题的判断,简单命题的符号化3.联结词4.每个联结词表示的逻辑关系5.每个联结词的真值6. 命题公式的真值表7. 命题公式的类型8. 命题公式的判定四、作业习题2.1 2、3、4 习题2.2 1、2、3、5第二章命题逻辑(2.3) 一、教学目的及要求:1.掌握命题公式的等价2.掌握命题公式的蕴含3.理解置换定理与对偶定理二、教学难点及重点:教学重点:1.命题公式的等价2.命题公式的蕴含3.置换定理与对偶定理教学难点:命题公式的关系及真值表演算三、教学基本内容:1.命题公式的等价2.命题公式的蕴含3.置换定理与对偶定理四、作业习题2.3 1、2、3、4第二章命题逻辑(2.4)一、教学目的及要求:1.了解文字、简单析取式、简单合取式、析取范式,合取范式,主析取范式与主合取范式等概念。

离散数学命题逻辑知识点总结

离散数学命题逻辑知识点总结

离散数学命题逻辑知识点总结《离散数学命题逻辑知识点总结》命题逻辑是数理逻辑的一个分支,研究的是命题之间的关系以及它们的推理规则。

以下是离散数学命题逻辑的一些重要知识点的总结:1. 命题:命题是一个陈述句,它要么是真的,要么是假的,但不能同时既是真的又是假的。

2. 逻辑运算符:逻辑运算符用于组合和操作命题。

常见的逻辑运算符有:“与(∧)”、“或(∨)”、“非(¬)”、“蕴含(→)”和“等价(↔)”。

3. 真值表:真值表用于表示逻辑运算符的结果。

通过列出所有可能的命题组合,并在每个组合下计算逻辑运算符的结果,可以得到真值表。

4. 合取范式和析取范式:合取范式是通过将命题用“与”运算符连接起来得到的,析取范式是通过将命题用“或”运算符连接起来得到的。

将命题转化为它们的合取范式或析取范式,能方便地进行逻辑运算。

5. 重言式和矛盾式:重言式是指对于所有可能的命题组合,逻辑表达式都为真的命题。

矛盾式是指对于所有可能的命题组合,逻辑表达式都为假的命题。

重言式和矛盾式具有重要的推理性质。

6. 推理规则:推理规则是用来推导逻辑表达式的一些基本规则。

常见的推理规则有“假言推理法”、“逆命题推理法”、“逆否命题推理法”和“拒取式推理法”。

7. 等价关系和等价演算:等价关系是指两个逻辑表达式具有相同的真值。

等价演算是一种通过运用逻辑等价关系来简化逻辑表达式的方法。

通过应用等价演算,可以将复杂的逻辑表达式简化为更简单的形式。

8. 形式化证明:在命题逻辑中,形式化证明是用推理规则和等价演算来推导出逻辑表达式的一系列步骤。

形式化证明的目的是证明一个逻辑表达式的正确性。

离散数学命题逻辑是理解和应用数理逻辑的基础。

通过掌握上述知识点,我们能够准确地分析和推理命题逻辑问题,并在解决问题时运用逻辑规律和推理方法。

对于计算机科学、人工智能和数学等领域的研究和应用,命题逻辑具有重要的理论和实际意义。

离散数学数理逻辑基础知识

离散数学数理逻辑基础知识

离散数学数理逻辑基础知识离散数学是计算机科学的基础,数理逻辑是离散数学中最重要的分支之一。

它们提供了描述和分析计算机科学中的问题所需的工具和方法。

本文将介绍离散数学和数理逻辑的基础知识。

一、集合论集合是离散数学的基础概念之一。

集合是由一些确定的对象组成的整体。

用大写字母表示集合,用小写字母表示集合的元素。

集合之间可以进行交集、并集、差集等运算。

例如,设集合A={1, 2, 3},集合B={2, 3, 4},则A∩B={2, 3}表示A和B的交集,A∪B={1, 2, 3, 4}表示A和B的并集。

二、命题逻辑命题逻辑是研究命题及其逻辑关系的数理逻辑分支。

命题是陈述句,可以判断为真或者为假。

常见的逻辑关系有与、或、非,分别用∧、∨、¬表示。

例如,如果P表示"今天是星期一",Q表示"明天是星期二",则P∧Q表示"今天是星期一并且明天是星期二",P∨Q表示"今天是星期一或者明天是星期二"。

三、谓词逻辑谓词逻辑是一种扩展的命题逻辑,它引入了谓词和量词。

谓词是陈述句中的关系词,描述了对象之间的关系。

量词则用来说明集合中的元素是否满足某个条件。

谓词逻辑的语句可以用∀表示全称量词,表示对于集合中的所有元素都成立;用∃表示存在量词,表示存在至少一个元素使语句成立。

四、关系和函数关系是用来描述元素之间的联系的数学工具。

关系可以是二元的,也可以是多元的。

例如,设A={1, 2, 3},则可以定义一个关系R={(1, 2), (2, 3)},表示元素1与元素2之间存在关系,元素2与元素3之间也存在关系。

函数是一种特殊的关系,它对于集合中的每一个元素,都有唯一对应的输出。

函数可以表示为f: A→B,表示定义在集合A上的函数f,其输出是集合B中的元素。

例如,设集合A={1, 2, 3},集合B={4, 5},则可以定义一个函数f={(1, 4), (2, 5)},表示元素1映射到4,元素2映射到5。

离散数学——数理逻辑

离散数学——数理逻辑

P:两个三角形全等。
Q:两个三角形的三组对应边相等。
P→← Q:两个三角形全等,当且仅当这两个三角形的三组对应边相等。 关于这五个联结词的定义,可以通过如表 1-1 的真值表给出,关于真值表的定义,我们 将在 1.3 节详细说明。
表 1-1 五个联结词的真值表
P Q ┐P P∧Q P∨Q P→Q
P→← Q
1.2.2 命题的翻译
有了合式公式的概念,我们可以把自然语言中的有些语句,翻译成数理逻辑中的符号形
式。把一个用文字叙述的命题相应地写成由命题标识符、联结词和圆括号表示的合式公式,
称为翻译,也称符号化。
例 1.3 张明正在睡觉或游泳。 解:设 P:张明正在睡觉。Q:张明正在游泳。本例的“或”是“不可兼或”,而析取
定义 1.1 单个的命题常元和命题变元,统称为原子命题公式,简称原子公式。 下面,我们使用递归来定义命题逻辑中的合式公式(wff)。 定义 1.2 命题逻辑中的合式公式是由下列规则形成的字符串: ① 原子命题公式和真值 T、F 都是一个合式公式。 ② 若 A 是合式公式,则 (┐A)是合式公式。 ③ 若 A 和 B 是合式公式,则(A∧B)、(A∨B)、(A→B)和(A→←B)都是合式公式。 ④ 经过有限次地使用①、②、③所得到的包含原子命题公式、联结词和圆括号的字符 串都是合式公式。 例 1.1 (┐P)∨Q,(P→(Q∧R))都是合式公式,而(P→Q)→(∧Q),(P,( P→Q)→←(∧R)) 都不是合式公式。
2
1.1.2 联结词
联结词是逻辑联结词或命题联结词的简称,用它和原子命题构成复合命题。常用联结词 有以下五种。定义如下:
(1) 否定联结词 设 P 是一个命题,由联结词┐和命题 P 构成 ┐P,┐P 为命题 P 的否定式复合命题。┐P 读做“非 P”。 联结词 ┐是自然语言中的“非”、“不”和“没有”等的逻辑抽象。否定联结词是一 个一元运算。例如; P:离散数学是计算机及相关专业的基础课。 ┐P:离散数学不是计算机及相关专业的基础课。 (2) 合取联结词 令 P 和 Q 是两个命题,由联结词∧把 P,Q 连接成 P∧Q ,称 P∧Q 为 P 和 Q 的合取 式复合命题,P∧Q 读做“P 与 Q”,或“P 合取 Q”。 联结词∧是自然语言中的“和”,“与”,“并且”,“既…又…”等的逻辑抽象。合取 联结词是一个二元运算。例如: P:今天下雨。 Q:明天下雨。 P∧Q:今天与明天都下雨。 (3) 析取联结词 设 P 和 Q 是两个命题,由联结词∨把 P,Q 连接成 P∨Q,称 P∨Q 为 P 和 Q 的析取式 复合命题,P∨Q 读做“P 或 Q”,或“P 析取 Q”。 析取联结词∨是自然语言中的“或”的逻辑抽象。但它与自然语言中的“或”的意义并 不完全相同,自然语言中的“或”既可以表示“排斥或”,也可以表示“可兼或”。例如: P:今天晚上我在家里看电视或去剧场看戏。 Q:他可能是 100 米或 200 米赛跑的冠军。 命题 P 中的“或”是“排斥或”,命题 Q 中的“或”是“可兼或”,而析取联结词表示 的是“可兼或”。关于“排斥或”,我们会在 1.5 节给出它的定义。析取联结词是一个二元运 算。 (4) 条件联结词 设 P 和 Q 是两个命题,由联结词→把 P,Q 连接成 P→Q,称 P→Q 为 P 和 Q 的条件式 复合命题,把 P 和 Q 分别称为 P→Q 的前件和后件,或者前提和结论。P→Q 读做“若 P, 则 Q”或“P 条件 Q”。 联结词→是自然语言中“如果…,则…”,“若…,才能…”等的逻辑抽象。条件联结 词是一个二元运算。 在自然语言中,前件为假,不管结论真假,整个语句的意义,往往无法判断。但在命题 逻辑中,当 P 为 F 时,无论 Q 为 T 还是为 F,都规定 P→Q 为 T,这称为“善意推定”。例 如: P:雪是黑的。 Q:太阳从西方升起。 R:3+3=6。 P→Q:如果雪是黑的,那么太阳从西方升起。 P→R:如果雪是黑的,那么 3+3=6。

离散数学2 一阶逻辑共103页文档

离散数学2 一阶逻辑共103页文档

16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生

离散数学数理逻辑课件

离散数学数理逻辑课件

课程说明一、离散数学课程的地位和作用
二、离散数学课程的特点
三、如何学好离散数学1熟读教材。

2独立思考,大量练习。

3注重抽象思维能力的培养。

四、离散数学课程的主要内容第一部分数理逻辑。

第二部分集合论。

第三部分代数系统。

第四部分图论。

逻辑举例
第一章数理逻辑
数学方法数学方法
符号逻辑
命题逻辑和谓词逻辑
逻辑:是研究推理的科学。

数理逻辑逻辑
数理逻辑
数理逻辑共同基础:指引进一套符号体系的方法。

主要内容如下:
命题逻辑部分要求:谓词逻辑部分要求:
1.1 命题
一、命题的概念
1、命题:
2、真值:
例1

练习:
我正在说谎。

(备注举例)
3、命题标识符:
例2

4、原子命题与复合命题:原子命题
复合命题
二、命题联结词
原子命题:
复合命题:
例3
定义五种联结词(或称命题的五种运算)。

1. 否定“¬”
定义1-1
P¬P
1 0
0 1
•真值表:运算对象的真值,
应用运算符命题的真值•真值表的生成:
•真值表的表示:
例4
2.合取“∧”
定义1-2
例5P Q P∧Q 000 010 100 111
•例如,
记作P∧Q
3. 析取“∨”
定义1-3
P Q P∨Q
000
011
101
111例6
解。

离散数学逻辑推理规则

离散数学逻辑推理规则

离散数学逻辑推理规则
嘿,朋友们!今天咱们来聊聊离散数学里的逻辑推理规则。

啥是离散数学的逻辑推理规则呢?简单说,就是在离散数学这个领
域里,咱们怎么根据已知的条件和信息,有理有据地推出新的结论。

先来说说允许的行为哈。

比如说,咱们可以根据给定的命题和已经
证明过的定理,一步一步地推导。

就像搭积木一样,一块一块稳稳地
往上加,只要每一步都有理有据,那就是被允许的。

再说说禁止的行为。

可千万别乱猜!不能毫无根据就得出结论,这
就像闭着眼睛走路,容易摔跟头。

也不能随便否定已经被严格证明过
的定理和规则,不然整个推理的大厦可就要摇摇欲坠啦。

举个例子哈,如果已知“所有的猫都会抓老鼠”,又知道“小花是一只猫”,那咱们就能得出“小花会抓老鼠”的结论。

这就是合理的推导。


要是说“因为我觉得小花长得可爱,所以它会抓老鼠”,这可就不行啦,这完全没逻辑嘛!
为啥要有这些规则呢?这就好比咱们玩游戏得有游戏规则,不然就
乱套啦。

在离散数学里,有了明确的逻辑推理规则,才能保证咱们得
出的结论是可靠的,是能站得住脚的。

而且哦,掌握好这些规则,能让咱们的思维更加清晰,解决问题更
加有条理。

就像在迷宫里有了地图,能更快找到出口。

总之呢,离散数学的逻辑推理规则很重要,咱们要遵守允许的,避开禁止的,这样才能在离散数学的世界里畅游,得出准确又靠谱的结论!好啦,希望大家都能玩转这些规则,在离散数学里玩得开心!。

离散数学之数理逻辑2

离散数学之数理逻辑2

离散数学之数理逻辑2第一篇数理逻辑数理逻辑是应用数学方法引进一套符号系统来研究思维的形式结构和规律的学科,它起源于公元十七世纪。

十九世纪英国的德·摩根和乔治·布尔发展了逻辑代数,二十世纪三十年代数理逻辑进入了成熟时期,基本内容(命题逻辑和谓词逻辑)有了明确的理论基础,成为数学的一个重要分支,同时也是电子元件设计和性质分析的工具。

冯·诺意曼,图灵,克林,…等人研究了逻辑与计算的关系。

基于理论研究和实践,随着1946年第一台通用电子数字计算机的诞生和近代科学的发展,计算技术中提出了大量的逻辑问题,逻辑程序设计语言的研制,更促进了数理逻辑的发展。

除古典二值(真,假)逻辑外,还研究了多值逻辑、模态逻辑、概率逻辑、模糊逻辑、非单调逻辑等。

不仅有演绎逻辑,也还有归纳逻辑。

计算机科学中还专门研究计算逻辑、程序逻辑、时序逻辑等。

现代数理逻辑分为四论:证明论,递归论(它们与形式语言语法有关),模型论,公理化集合论(它们与形式语言的语义有关)。

第1-1章命题逻辑学习要求: 掌握命题,命题公式,重言式,等价式,蕴涵式等基本概念,能利用逻辑联结词或真值表,等价式与蕴涵式进行命题演算和推理;学习范式时与集合的范式进行对比。

表述客观世界的各种现象,表述人们的思想,表述各门学科的规则、理论等,除使用自然语言(这常常是上有歧异性的)外,还要使用一些特定的术语、符号、规律等“对象语言”,这些是所研究学科的一种特殊的形式化语言,研究思维结构与规律的逻辑学也有其对象语言。

本章就是讨论逻辑学中的对象语言—命题及其演算,它相当于自然语言中的语句。

§1-1-1 命题逻辑联结词与真值表一、命题的基本概念首先我们从下面的例子加以分析。

例1-1-1.1人总是要死的。

例1-1-1.2苏格拉底是人。

例1-1-1.3苏格拉底是要死的。

例1-1-1.4中国人民是勤劳和勇敢的。

例1-1-1.5鸵鸟是鸟。

例1-1-1.6 1是质(素)数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2.1 一阶逻辑基本概念
个体词 谓词 量词 一阶逻辑中命题符号化
3
ห้องสมุดไป่ตู้
基本概念——个体词、谓词、量词 个体词、谓词、 基本概念 个体词
个体词(个体) 个体词(个体): 所研究对象中可以独立存在的具体或抽象 的客体,它可以是一个具体的事物, 的客体,它可以是一个具体的事物,也可以是一个抽象的 概念. 表示主语的词(名词或代词) 苏格拉底, ,黑板, 概念 表示主语的词(名词或代词):苏格拉底,2,黑板, 自然数,思想,定理. 自然数,思想,定理 个体常项:具体的或特定的个体词, 个体常项:具体的或特定的个体词, 用a, b, c表示 表示 个体变项:抽象的或泛指的个体词, 个体变项:抽象的或泛指的个体词, 用x, y, z表示 表示 个体域: 个体域 个体变项的取值范围 有限个体域, 有限个体域,如{a, b, c}, {1, 2} 无限个体域, 无限个体域,如N, Z, R, … 全总个体域: 全总个体域 宇宙间一切事物组成
15
例:在一界逻辑中命题符号化
① 一切人都不一样高 ② 每个自然数都有后继数 ③ 有的自然数无先驱数 ① ∀ x ∀ y( F(x) ∧ F(y) ∧ G(x,y) → ¬ H(x,y)) 其中F(x):x是人, G(x,y) :x和y不是同一个人, H(x,y): x和y一样高 : 是人 是人, 不是同一个人, 其中 和 不是同一个人 : 和 一样高 或者: 或者: ¬ ∃ x ∃ y( F(x) ∧ F(y) ∧ G(x,y) ∧ H(x,y)) ② ∀ x( F(x) → ∃y(G(y) ∧ H(x,y)) 其中F(x):x是自然数, H(x,y) :y是x的后继数 : 是自然数 是自然数, 其中 是 的后继数 或者: 或者: ∀x( F(x) → L(x)) , L(x) :x有后继数 有后继数 ③ ∃ x( F(x) ∧ ∀ y(G(y) → ¬ H(x,y)) 或者: 或者: ∃x( F(x)∧ ¬ L(x) ) ,L(x) :x有先驱数 ∧ 有先驱数
特性谓词: 特性谓词: M(x): x是人 是人
符号化为: 符号化为: (1)∀x (M(x) → F(x)) ) ) (2) ∃x (M(x) ∧ G(x)) ) )
考虑: (1)∀x (M(x) ∧ F(x)) 考虑: ) )
(2) ∃x (M(x) → G(x)) ) )
11
一阶逻辑中命题符号化( 一阶逻辑中命题符号化(续)
7
例1(续) 续
(2) 2 是无理数仅当 3 是有理数 2 在命题逻辑中, 是有理数. 在命题逻辑中 设 p: 2 是无理数,q: 33 : 2是无理数, : 是有理数 符号化为 p → q, 这是假命题 在一阶逻辑中, x是无理数 是无理数, x是有理 在一阶逻辑中, 设F(x): x是无理数, G(x): x是有理 数符号化为 F ( ( 22 ) → G (3 )3 ) F ) → G( (3) 如果 如果2>3,则3<4 , 在命题逻辑中, 在命题逻辑中 设 p:2>3,q:3<4. : , : 符号化为 p→q, 这是真命题 → 在一阶逻辑中, 在一阶逻辑中 设 F(x,y):x>y,G(x,y):x<y, : , : 符号化为 F(2,3)→G(3,4) →
例2 在一阶逻辑中将下面命题符号化 (1) 人都爱美 (2) 有人用左手写字 人都爱美; 分别取(a) 为人类集合 为人类集合, 分别取 D为人类集合 (b) D为全总个体域 . 为全总个体域 爱美, 解:(a) (1) 设G(x):x爱美 符号化为 ∀x G(x) : 爱美 (2) 设G(x):x用左手写字 符号化为 ∃x G(x) 用左手写字, : 用左手写字 (b) 设F(x):x为人,G(x):同(a)中 为人, : 为人 : 中 (1) ∀x (F(x)→G(x)) → (2) ∃ x (F(x)∧G(x)) 这是两个基本公式, 注意这两个基本公式的使用. 这是两个基本公式 注意这两个基本公式的使用
10
如果个体域D为全总个体域, 如果个体域 为全总个体域,则 为全总个体域
其中F(x): x是要死的,表示宇宙间的一切事物都要死 是要死的, ∀x F(x),其中 是要死的 的. 其中G 活一百岁以上, ∃x G(x),其中 (x): x活一百岁以上,表示宇宙间的一切事物中 活一百岁以上 存在活一百岁以上的. 存在活一百岁以上的
6
一阶逻辑中命题符号化
例1 用0元谓词将命题符号化 元谓词将命题符号化 要求:先将它们在命题逻辑中符号化,再在一阶 要求:先将它们在命题逻辑中符号化, 逻辑中符号化 (1) 墨西哥位于南美洲 在命题逻辑中, 在命题逻辑中 设 p: 墨西哥位于南美洲 符号化为 p, 这是真命题 在一阶逻辑中, 在一阶逻辑中 设a:墨西哥,F(x):x位于南美洲 :墨西哥, : 位于南美洲 符号化为F(a) 符号化为
13
一阶逻辑中命题符号化( 一阶逻辑中命题符号化(续)
几点注意: 几点注意: 1元谓词与多元谓词的区分 无特别要求, 无特别要求,用全总个体域 量词顺序一般不要随便颠倒
例:对任意x,存在着y,使得x+y=5. 个体域为实数集. 对任意x 存在着y 使得x+y=5 个体域为实数集. x+y= 符号化为: 其中H( 符号化为: ∀x ∃y H(x,y), 其中 (x,y):x+y=5 ( 考虑 ∃y ∀x H(x,y) (
16
2.2 一阶逻辑公式及解释
字母表 合式公式(简称公式) 合式公式(简称公式) 个体变项的自由出现和约束出现 解释 永真式(逻辑有效式) 永真式(逻辑有效式) 矛盾式(永假式) 矛盾式(永假式) 可满足式
17
字母表
字母表包含下述符号 包含下述符号: 定义 字母表包含下述符号: (1) 个体常项:a, b, c, …, ai, bi, ci, …, i ≥1 个体常项: (2) 个体变项:x, y, z, …, xi, yi, zi, …, i ≥1 个体变项: (3) 函数符号:f, g, h, …, fi, gi, hi, …, i ≥1 函数符号: (4) 谓词符号:F, G, H, …, Fi, Gi, Hi, …, i ≥1 谓词符号: (5) 量词符号:∀, ∃ 量词符号: (6) 联结词符号:¬, ∧, ∨, →, ↔ 联结词符号: (7) 括号与逗号:( , ), , 括号与逗号:
12
一阶逻辑中命题符号化( 一阶逻辑中命题符号化(续)
例3 在一阶逻辑中将下面命题符号化 (1) 正数都大于负数 (2) 有的无理数大于有的有理数 注意: 题目中没给个体域, 解 注意 题目中没给个体域 一律用全总个体域 (1) 令F(x): x为正数 G(y): y为负数 L(x,y): x>y 为正数, 为负数, 为正数 为负数 →∀y(G(y)→L(x,y))) 或 ∀x(F(x)→∀ →∀ → ∀x∀y(F(x)∧G(y)→L(x,y)) ∀ ∧ → 两者等值 (2) 令F(x): x是无理数 G(y): y是有理数 是无理数, 是有理数, 是无理数 是有理数 L(x,y):x>y : ∧∃y(G(y)∧L(x,y))) ∃x(F(x)∧∃ ∧∃ ∧ 或 ∃x∃y(F(x)∧G(y)∧L(x,y)) ∃ ∧ ∧ 两者等值
9
基本概念( 基本概念(续)
量词: 表示数量的词 量词
例如 (1)所有的人都要死的; )所有的人都要死的; (2)有的人活一百岁以上; )有的人活一百岁以上; 全称量词∀ 表示任意的, 所有的, 全称量词∀: 表示任意的 所有的 一切的等 表示对个体域中所有的个体, ∀x 表示对个体域中所有的个体, ∀x F(x)表示个体域中所有的 表示个体域中所有的 个体都有性质F. 个体都有性质 其中F(x): x是要死的,个体域为人类集合 是要死的, ∀x F(x),其中 是要死的 存在量词∃ 表示存在着, 有的, 有一个, 存在量词∃: 表示存在着 有的 有一个,至少有一个等 表示存在个体域中的个体, ∃x 表示存在个体域中的个体, ∃x F(x)表示存在着个体域中的 表示存在着个体域中的 个体具有有性质F 个体具有有性质 其中G 活一百岁以上, ∃x G(x),其中 (x): x活一百岁以上,个体域为人类集合 活一百岁以上
4
基本概念 (续) 续
谓词: 谓词 表示个体词的性质或相互之间关系的词 谓词常项: 谓词常项:表示具体性质或关系的谓词 F: …是人,F(a):a是人 是人, 是人 : 是人 G: …是自然数, F(2):2是自然数 是自然数, : 是自然数 是自然数 谓词变项: 谓词变项:表示抽象的或泛指的谓词 F: …具有性质 ,F(x):x具有性质 具有性质F, 具有性质F 具有性质 : 具有性质 元数: 元数:谓词中所包含的个体词数 一元谓词: 一元谓词 表示事物的性质 多元谓词(n元谓词 ≥ 元谓词, 多元谓词 元谓词 n≥2): 表示个体词之间的关系 有关系L, 如 L(x,y): x与y有关系 , L(x,y): x比y高2厘米 : 与 有关系 : 比 高 厘米 注意:多元谓词中, 注意:多元谓词中,个体变项的顺序不能随意改动
否定式的使用
14
例:在一界逻辑中命题符号化
① 没有不呼吸的人 ② 不是所有的人都喜欢吃糖 ③ 不是所有的火车都比所有的汽车快
① ¬ ∃x( F(x)∧ ¬ G(x)) ∧ 其中F(x):x是人, G(x):x呼吸 : 是人 是人, 其中 : 呼吸 或者: 或者:∀ x( F(x) → G(x)) ② ¬ ∀ x( F(x) → G(x)) 其中F(x):x是人, G(x):x喜欢吃糖 : 是人 是人, 其中 : 喜欢吃糖 或者: 或者: ∃x( F(x)∧ ¬ G(x)) ∧ ③¬ ∀ x( F(x) → ∀ y (G(y) →H(x,y)) ) 或者: 或者: ∃x( F(x)∧ ∃ y (G(y) ∧ ¬ H(x,y)) ) ∧
相关文档
最新文档