数学必修2试题.doc
高中数学必修二测试题及答案人教版
第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
高中数学必修二试题
2.1.4-6 两条直线的交点、平面上两点间的距离、点到直线的距离重难点:能判断两直线是否相交并求出交点坐标,体会两直线相交与二元一次方程的关系;理解两点间距离公式的推导,并能应用两点间距离公式证明几何问题;点到直线距离公式的理解与应用.经典例题:求经过点P(2,-1),且过点A(-3,-1)和点B(7,-3)距离相等的直线方程.当堂练习:1.两条直线A1x+B1y+C1=0与A2x+B2y+C2=0的交点坐标就是方程组的实数解,以下四个命题:(1)若方程组无解,则两直线平行(2)若方程组只有一解,则两直线相交(3)若方程组有两个解,则两直线重合(4)若方程组有无数多解,则两直线重合。
其中命题正确的个数有()A.1个B.2个C.3个D.4个2.直线3x-(k+2)y+k+5=0与直线kx+(2k-3)y+2=0相交,则实数k的值为()A.B.C.D.3.直线y=kx-k+1与ky-x-2k=0交点在第一象限,则k的取值范围是()A.0<k<1 B.k>1或-1<k<0 C.k>1或k<0 D.k>1或k<4.三条直线x-y+1=0、2x+y-4=0、ax-y+2=0共有两个交点,则a的值为()A.1 B.2 C.1或-2 D.-1或25.无论m、n取何实数,直线(3m-n)x+(m+2n)y-n=0都过一定点P,则P点坐标为()A.(-1,3)B.(-,)C.(-,)D.(-)6.设Q(1,2), 在x轴上有一点P , 且|PQ|=5 , 则点P的坐标是()A.(0,0)或(2,0) B.(1+,0) C.(1-,0) D.(1+,0)或(1-,0)7.线段AB与x轴平行,且|AB|=5 , 若点A的坐标为(2,1) , 则点B的坐标为()A. (2,-3)或(2,7)B. (2,-3)或(2,5) C.(-3,1)或(7,1) D.(-3,1)或(5,1)8.在直角坐标系中, O为原点. 设点P(1,2) , P/(-1, -2) , 则OPP/的周长是()A.2B.4C.D.69.以A(-1,1) ,B(2,-1) , C(1 ,4)为顶点的三角形是()A.锐角三角形B.直角三角形C.等腰三角形D.等腰直角三角形10.过点(1,3)且与原点的距离为1的直线共有()A.3条 B.2条C.1条D.0条11.过点P(1,2)的直线与两点A(2,3)、B(4,-5)的距离相等,则直线的方程为()A.4x+y-6=0 B.x+4y-6=0 C.3x+2y=7或4x+y=6 D.2x+3y=7或x+4y=612.直线l1过点A(3,0),直线l2过点B(0,4),,用d表示的距离,则()A.d 5 B.3C.0D.0<d13.已知两点A(1,6)、B(0,5)到直线的距离等于a, 且这样的直线可作4条,则a的取值范围为()A.a 1 B.0<a<1 C.0<a 1 D.0<a<2114.若p、q满足p-2q=1,直线px+3y+q=0必过一个定点,该定点坐标为________.15.直线ax+by+6=0与x-2y=0平行,并过直线4x+3y-10=0和2x-y-10=0的交点,则a= _______,b=___________.16.已知ABC的顶点A(-1,5) ,B(-2,-1) ,C(4,7), 则BC边上的中线AD的长为___________.17.已知P为直线4x-y-1=0上一点,P点到直线2x+y+5=0的距离与原点到这条直线的距离相等,则P点的坐标为___________.18.ABC的顶点B(3,4),AB边上的高CE所在直线方程为2x+3y-16=0,BC边上的中线AD所在直线方程为2x-3y+1=0,求AC的长.19.已知二次方程x2+xy-6y2-20x-20y+k=0表示两条直线,求这两条直线的交点坐标.20.已知平行四边形ABCD的三个顶点的坐标是A(-3,-4),B(3,-2),C(5,2),求点D的坐标.21.直线经过点A(2,4),且被平行直线x-y+1=0与x-y-1=0所截得的线段的中点在直线x+y-3=0上,求直线的方程.参考答案:经典例题:解:若过P点的直线垂直于x轴,点A与点B到此直线的距离均为5,所求直线为x=2; 若过P点的直线不垂直于x轴时,设的方程为y+1=k(x-2), 即kx-y+(-1-2k)=0.由,即|5k|=|5k+2|, 解得k=-所求直线方程为x+5y+3=0;综上,经过P点的直线方程为x=2或x+5y+3=0.当堂练习:1.D;2.D;3.B;4.C;5.D;6.D;7.C;8.B;9.D; 10.B; 11.C; 12.D; 13.B; 14. (-); 15. –2, 4; 16. 2; 17. (;18. 解:kCE= -, AB方程为3x-2y-1=0,由, 求得A(1,1),设C(a,b) , 则D(, C点在CE上,BC中点D在AD上,, 求得C(5,2),再利用两点间距离公式,求得AC的长为19. 解:利用待定系数法,原二次函数可化为(x-2y+m)(x+3y+n)=0, 由两个多项式恒等,对应项系数对应相等,于是有(x-2y-12=0)(x+3y-8)=0由, 得两直线交点坐标为().20. 解:设点P为平行四边形ABCD的中心, 则P是对角线AC的中点,即P( 1, -1) . 点P又是对角线BD的中点,D(-1,0).21. 解:中点在x+y-3=0上,同时它在到两平行直线距离相等的直线x-y=0上,从而求得中点坐标为(,),由直线过点(2,4)和点(,),得直线的方程为5x-y-6=0.2.2圆与方程考纲要求:①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程.判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.2.2.1 圆的方程重难点:会根据不同的已知条件,利用待定系数法求圆的标准方程;了解圆的一般方程的代数特征,能实现一般方程与标准方程间的互化,根据已知条件确定方程中的系数,D、E、F.经典例题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标.当堂练习:1.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是()A.-1<a<1 B.0<a<1 C.a<-1或a>1 D.a= 12.点P(m2,5)与圆x2+y2=24的位置关系是()A.在圆内B.在圆外C.在圆上D.不确定3.方程(x+a)2+(y+b)2=0表示的图形是()A.点(a,b)B.点(-a,-b) C.以(a,b)为圆心的圆D.以(-a,-b)为圆心的圆4.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的方程是()A.(x-2)2+(y+3)2=13 B.(x+2)2+(y-3)2=13 C.(x-2)2+(y+3)2=52 D.(x+2)2+(y-3)2=52 5.圆(x-a)2+(y-b)2=r2与两坐标轴都相切的充要条件是()A.a=b=r B.|a|=|b|=r C.|a|=|b|=|r|0 D.以上皆对6.圆(x-1)2+(y-3)2=1关于2x+y+5=0对称的圆方程是()A.(x+7)2+(y+1)2=1 B.(x+7)2+(y+2)2=1 C.(x+6)2+(y+1)2=1 D.(x+6)2+(y+2)2=1 7.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心坐标为()A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)8.圆x2+y2-2Rx-2Ry+R2=0在直角坐标系中的位置特征是()A.圆心在直线y=x上B.圆心在直线y=x上, 且与两坐标轴均相切C.圆心在直线y=-x上D.圆心在直线y=-x上, 且与两坐标轴均相切9.如果方程x2+y2+Dx+Ey+F=0与x轴相切于原点,则()A.D=0,E=0,F0 B.E=0,F=0,D0 C.D=0,F=0,E0 D.F=0,D0,E010.如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0) 所表示的曲线关于直线y=x对称,那么必有()A.D=E B.D=F C.E=F D.D=E=F11.方程x4-y4-4x2+4y2=0所表示的曲线是()A.一个圆B.两条平行直线C.两条平行直线和一个圆D.两条相交直线和一个圆12.若a0, 则方程x2+y2+ax-ay=0所表示的图形()A.关于x轴对称B.关于y轴对称C.关于直线x-y=0对称D.关于直线x+y=0对称13.圆的一条直径的两端点是(2,0)、(2,-2),则此圆方程是()A.x2+y2-4x+2y+4=0 B.x2+y2-4x-2y-4=0 C.x2+y2-4x+2y-4=0 D.x2+y2+4x+ 2y+4=014.过点P(12,0)且与y轴切于原点的圆的方程为__________________.15.圆(x-4)2+(y-1)2=5内一点P(3,0),则过P点的最短弦的弦长为_____,最短弦所在直线方程为___________________.16.过点(1,2)总可以向圆x2+y2+kx+2y+k2-15=0作两条切线,则k的取值范围是_______________.17.已知圆x2+y2-4x-4y+4=0,该圆上与坐标原点距离最近的点的坐标是___________,距离最远的点的坐标是________________.18.已知一圆与直线3x+4y-2=0相切于点P(2,-1),且截x轴的正半轴所得的弦的长为8,求此圆的标准方程.19.已知圆C:x2+y2-4x-6y+12=0, 求在两坐标轴上截距相等的圆的切线方程.20.已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆,(1)求t的取值范围;(2)求该圆半径r的取值范围.21.已知曲线C:x2+y2-4mx+2my+20m-20=0(1)求证不论m取何实数,曲线C恒过一定点;(2)证明当m≠2时,曲线C是一个圆,且圆心在一条定直线上;(3)若曲线C与y轴相切,求m的值.参考答案:经典例题:解:设所求的圆的方程为:∵在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于的三元一次方程组,即解此方程组,可得:∴所求圆的方程为:;得圆心坐标为(4,-3).或将左边配方化为圆的标准方程,,从而求出圆的半径,圆心坐标为(4,-3)当堂练习:1.A;2.B;3.B;4.A;5.C;6.A;7.D;8.B;9.C; 10.A; 11.D; 12.D; 13.A; 14. (x-6)2+y2=36; 15.2, x+y-3=0; 16. ; 17. (2-,2-), (2+,2+);18. 解:设所求圆圆心为Q(a,b),则直线PQ与直线3x+4y-2=0垂直,即,(1)且圆半径r=|PQ|=,(2)由(1)、(2)两式,解得a=5或a= -(舍),当a=5时,b=3,r=5, 故所求圆的方程为(x-5)2+(y-3)2=25.19. 解:圆C的方程为(x-2)2+(y-3)2=1, 设圆的切线方程为=1或y=kx,由x+y-a=0,d=.由kx-y=0,d=.综上,圆的切线方程为x+y-5=0或(2)x-y=0.20. 解:(1)方程表示一个圆的充要条件是D2+E2-4F=4(t+3)2+4(1-4t2)2-4(16t4+9)>0,即:7t2-6t-1<0,(2)r2= D2+E2-4F=4(t+3)2+4(1-4t2)2-4(16t4+9)=-28t2+24t+4=-28(t-)2+,21. 解:(1)曲线C的方程可化为:(x2+y2-20)+m(-4x+2y+20)=0,由, ∴不论m取何值时,x=4, y=-2总适合曲线C的方程,即曲线C恒过定点(4, -2).(2)D=-4m, E=2m, F=20m-20, D2+E2-4F=16m2+4m2-80m+80=20(m-2)2∵m≠2, ∴(m-2)2>0, ∴D2+E2-4F>0, ∴曲线C是一个圆, 设圆心坐标为(x, y), 则由消去m得x+2y=0, 即圆心在直线x+2y=0上.(3)若曲线C与y轴相切,则m≠2,曲线C为圆,其半径r=,又圆心为(2m, -m),则=|2m|, .2.2.2-3 直线与圆、圆与圆的位置关系重难点:掌握直线与圆、圆与圆的位置关系的几何图形及其判断方法,能用坐标法判直线与圆、圆与圆的位置关系.经典例题:已知圆C1:x2+y2=1和圆C2:(x-1)2+y2=16,动圆C与圆C1外切,与圆C2内切,求动圆C的圆心轨迹方程.当堂练习:1.已知直线和圆有两个交点,则的取值范围是()A.B.C. D.2.圆x2+y2-2acos x-2bsin y-a2sin=0在x轴上截得的弦长是()A.2a B.2|a| C.|a| D.4|a|3.过圆x2+y2-2x+4y- 4=0内一点M(3,0)作圆的割线,使它被该圆截得的线段最短,则直线的方程是()A.x+y-3=0 B.x-y-3=0C.x+4y-3=0 D.x-4y-3=04.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1或-1 B.2或-2 C.1 D.-15.若直线3x+4y+c=0与圆(x+1)2+y2=4相切,则c的值为()A.17或-23 B.23或-17 C.7或-13 D.-7或136.若P(x,y)在圆(x+3)2+(y-3)2=6上运动,则的最大值等于()A.-3+2B.-3+C.-3-2D.3-27.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是()A.相切B.相交C.相离D.内含8.若圆x2+y2=4和圆x2+y2+4x-4y+4=0关于直线对称,则直线的方程是()A.x+y=0 B.x+y-2=0 C.x-y-2=0 D.x-y+2=01.9.圆的方程x2+y2+2kx+k2-1=0与x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是()A.B.2C.1 D.10.已知圆x2+y2+x+2y=和圆(x-sin)2+(y-1)2=, 其中0900, 则两圆的位置关系是()A.相交B.外切C.内切D.相交或外切11.与圆(x-2)2+(y+1)2=1关于直线x-y+3=0成轴对称的曲线的方程是()A.(x-4)2+(y+5)2=1 B.(x-4)2+(y-5)2=1 C.(x+4)2+(y+5)2=1 D.(x+4)2+(y-5)2=112.圆x2+y2-ax+2y+1=0关于直线x-y=1对称的圆的方程为x2+y2=1, 则实数a的值为()A.0 B.1 C. 2 D.213.已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,则方程:f(x,y)- f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是()A.与圆C1重合B.与圆C1同心圆C.过P1且与圆C1同心相同的圆D.过P2且与圆C1同心相同的圆14.自直线y=x上一点向圆x2+y2-6x+7=0作切线,则切线的最小值为___________.15.如果把直线x-2y+=0向左平移1个单位,再向下平移2个单位,便与圆x2+y2+2x-4y=0相切,则实数的值等于__________.16.若a2+b2=4, 则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是____________.17.过点(0,6)且与圆C: x2+y2+10x+10y=0切于原点的圆的方程是____________.18.已知圆C:(x-1)2+(y-2)2=25, 直线:(2m+1)x+(m+1)y-7m-4=0(m R),证明直线与圆相交;(2) 求直线被圆C截得的弦长最小时,求直线的方程.19.求过直线x+3y-7=0与已知圆x2+y2+2x-2y-3=0的交点,且在两坐标轴上的四个截距之和为-8的圆的方程.20.已知圆满足:(1)截y轴所得弦长为2,(2)被x轴分成两段弧,其弧长的比为3:1,(3)圆心到直线:x-2y=0的距离为,求这个圆方程.21.求与已知圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0且过点(-2,3),(1,4)的圆的方程.参考答案:经典例题:解:设圆C圆心为C(x, y), 半径为r,由条件圆C1圆心为C1(0, 0);圆C2圆心为C2(1, 0);两圆半径分别为r1=1, r2=4,∵圆心与圆C1外切∴|CC1|=r+r1,又∵圆C与圆C2内切,∴|CC2|=r2-r (由题意r2>r),∴|CC1|+|CC2|=r1+r2,即,化简得24x2+25y2-24x-144=0, 即为动圆圆心轨迹方程.当堂练习:1.D;2.B;3.A;4.D;5.D;6.A;7.B;8.D;9.A; 10.D; 11.D; 12.D; 13.D; 14.; 15. 13或3; 16. 外切; 17. (x-3)2+(y-3)3=18;18. 证明:(1)将直线的方程整理为(x+y-4)+m(2x+y-7)=0,由,直线过定点A(3,1),(3-1)2+(1-2)2=5<25,点A在圆C的内部,故直线恒与圆相交.(2)圆心O(1,2),当截得的弦长最小时,AO,由kAO= -, 得直线的方程为y-1=2(x-3),即2x-y-5=0.19. 解:过直线与圆的交点的圆方程可设为x2+y2+2x-2y-3+(x+3y-7)=0,整理得x2+y2+(2+)x+(3-2)y-3-7=0,令y=0,得x2+y2+(2+)x -3-7=0圆在x轴上的两截距之和为x1+x2= -2-,同理,圆在y轴上的两截距之和为2-3,故有-2-+2-3=-8,=2,所求圆的方程为x2+y2+4x+4y-17=0.20. 解:设所求圆圆心为P(a,b),半径为r,则点P到x轴、y轴的距离分别为|b|、|a|,由题设知圆P截x轴所对劣弧对的圆心角为900,知圆P截x轴所得弦长为r,故r2=2b2, 又圆P被y轴所截提的弦长为2,所以有r2=a2+1,从而2b2-a2=1. 又因为P(a,b)到直线x-2y=0的距离为,所以d==,即|a-2b|=1, 解得a-2b=1,由此得,于是r2=2b2=2, 所求圆的方程是(x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2.21. 解:公共弦所在直线斜率为,已知圆的圆心坐标为(0,),故两圆连心线所在直线方程为y-=-x, 即3x+2y-7=0,设所求圆的方程为x2+y2+Dx+Ey+F=0,由, 所求圆的方程为x2+y2+2x-10y+21=0.2.3空间直角坐标系考纲要求:①了解空间直角坐标系,会用空间直角坐标系表示点的位置.②会推导空间两点间的距离公式.2.3.1-2空间直角坐标系、空间两点间的距离重难点:了解空间直角坐标系,会用空间直角坐标系刻画点的位置;会推导空间两点间的距离公式.经典例题:在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问(1)在y轴上是否存在点M,满足?(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.当堂练习:1.在空间直角坐标系中, 点P(1,2,3)关于x轴对称的点的坐标为()A.(-1,2,3) B.(1,-2,-3) C.(-1, -2, 3) D.(-1 ,2, -3)2.在空间直角坐标系中, 点P(3,4,5)关于yOz平面对称的点的坐标为()A.(-3,4,5) B.(-3,- 4,5) C.(3,-4,-5) D.(-3,4,-5)3.在空间直角坐标系中, 点A(1, 0, 1)与点B(2, 1, -1)之间的距离为()A.B.6 C.D.24.点P( 1,0, -2)关于原点的对称点P/的坐标为()A.(-1, 0, 2) B.(-1,0, 2) C.(1 , 0 ,2) D.(-2,0,1)5.点P( 1, 4, -3)与点Q(3 , -2 , 5)的中点坐标是()A.( 4, 2, 2) B.(2, -1, 2) C.(2, 1 , 1) D.4, -1, 2)6.若向量在y轴上的坐标为0, 其他坐标不为0, 那么与向量平行的坐标平面是()A.xOy平面B.xOz平面C.yOz平面D.以上都有可能7.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是()A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对8.已知点A的坐标是(1-t , 1-t , t), 点B的坐标是(2 , t, t), 则A与B两点间距离的最小值为()A.B.C.D.9.点B是点A(1,2,3)在坐标平面内的射影,则OB等于()A.B.C.D.10.已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则点D的坐标为()A.(,4,-1)B.(2,3,1)C.(-3,1,5)D.(5,13,-3)11.点到坐标平面的距离是()A.B.C.D.12.已知点,,三点共线,那么的值分别是()A.,4 B.1,8 C.,-4 D.-1,-813.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是()A.B.C.D.14.在空间直角坐标系中, 点P的坐标为(1, ),过点P作yOz平面的垂线PQ, 则垂足Q的坐标是________________.15.已知A(x, 5-x, 2x-1)、B(1,x+2,2-x),当|AB|取最小值时x的值为_______________.16.已知空间三点的坐标为A(1,5,-2)、B(2,4,1)、C(p,3,q+2),若A、B、C三点共线,则p =_________,q=__________.17.已知点A(-2, 3, 4), 在y轴上求一点B , 使|AB|=7 , 则点B的坐标为________________.18.求下列两点间的距离:A(1 , 1 , 0) , B(1 , 1 , 1);C(-3 ,1 , 5) , D(0 , -2 , 3).19.已知A(1 , -2 , 11) , B(4 , 2 , 3) ,C(6 , -1 , 4) , 求证: ABC是直角三角形.20.求到下列两定点的距离相等的点的坐标满足的条件:A(1 , 0 ,1) , B(3 , -2 , 1) ;A(-3 , 2 , 2) , B(1 , 0 , -2).21.在四棱锥P-ABCD中,底面ABCD为正方形,且边长为2a,棱PD⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G,H,写出点E,F,G,H的坐标.参考答案:经典例题:解:(1)假设在在y轴上存在点M,满足.因M在y轴上,可设M(0,y,0),由,可得,显然,此式对任意恒成立.这就是说y轴上所有点都满足关系.(2)假设在y轴上存在点M,使△MAB为等边三角形.由(1)可知,y轴上任一点都有,所以只要就可以使得△MAB 是等边三角形.因为于是,解得故y轴上存在点M使△MAB等边,M坐标为(0,,0),或(0,,0).当堂练习:1.B;2.A;3.A;4.B;5.C;6.B;7.B;8.C;9.B; 10.D; 11.C; 12.C; 13.A; 14. (0, ); 15. ; 16.3 , 2; 17. (0, ;18. 解: (1)|AB|=(2)|CD|==19. 证明:为直角三角形.20. 解: (1)设满足条件的点的坐标为(x ,y , z) , 则,化简得4x-4y-3=0即为所求.(2)设满足条件的点的坐标为(x ,y , z) , 则,化简得2x-y-2z+3=0即为所求.21. 解: 由图形知,DA⊥DC,DC⊥DP,DP⊥DA,故以D为原点,建立如图空间坐标系D -xyz.因为E,F,G,H分别为侧棱中点,由立体几何知识可知,平面EFGH与底面ABCD平行,从而这4个点的竖坐标都为P的竖坐标的一半,也就是b,由H为DP中点,得H(0,0,b)E在底面面上的投影为AD中点,所以E的横坐标和纵坐标分别为a和0,所以E(a,0,b),同理G(0,a,b);F在坐标平面xOz和yOz上的投影分别为点E和G,故F与E横坐标相同都是a,与G的纵坐标也同为a,又F竖坐标为b,故F(a,a,b).立体几何初步单元测试1.∥,a,b与,都垂直,则a,b的关系是A.平行B.相交C.异面D.平行、相交、异面都有可能2.异面直线a,b,a⊥b,c与a成300,则c与b成角范围是A.[600,900] B.[300,900] C.[600,1200] D.[300,1200]3.正方体AC1中,E、F分别是AB、BB1的中点,则A1E与C1F所成的角的余弦值是A.B.C.D.4.在正△ABC中,AD⊥BC于D,沿AD折成二面角B—AD—C后,BC=AB,这时二面角B—AD—C大小为A.600 B.900 C.450 D.12005.一个山坡面与水平面成600的二面角,坡脚的水平线(即二面角的棱)为AB,甲沿山坡自P朝垂直于AB的方向走30m,同时乙沿水平面自Q朝垂直于AB的方向走30m,P、Q都是AB上的点,若PQ=10m,这时甲、乙2个人之间的距离为A.B.C. D.6.E、F分别是正方形ABCD的边AB和CD的中点,EF交BD于O,以EF为棱将正方形折成直二面角如图,则∠BOD=A.1350 B.1200 C.1500 D.9007.三棱锥V—ABC中,VA=BC,VB=AC,VC=AB,侧面与底面ABC所成的二面角分别为α,β,γ(都是锐角),则cosα+cosβ+cosγ等于A.1 B.2 C.D.8.正n棱锥侧棱与底面所成的角为α,侧面与底面所成的角为β,tanα∶tanβ等于A.B.C.D.9.一个简单多面体的各面都是三角形,且有6个顶点,则这个简单多面体的面数是A.4 B.6 C.8 D.1010.三棱锥P—ABC中,3条侧棱两两垂直,PA=a,PB=b,PC=c,△ABC的面积为S,则P到平面ABC的距离为A.B.C. D.11.三棱柱ABC—A1B1C1的体积为V,P、Q分别为AA1、CC1上的点,且满足AP=C1Q,则四棱锥B—APQC的体积是A.B.C.D.12.多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,EF=,EF与面AC的距离为2,则该多面体的体积为A.B.5 C.6 D.13.已知异面直线a与b所成的角是500,空间有一定点P,则过点P与a,b所成的角都是300的直线有________条.14.线段AB的端点到平面α的距离分别为6cm和2cm,AB在α上的射影A’B’的长为3cm,则线段AB的长为__________.15.正n棱锥相邻两个侧面所成二面角的取值范围是____________.16.如果一个简单多面体的每个面都是奇数的多边形,那么它的面数是__________.17.在正方体ABCD—A1B1C1D1中,E、F、G、H分别为棱BC、CC1、C1D1、AA1的中点,O为AC与BD的交点.求证:(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H;(3)A1O⊥平面BDF;(4)平面BDF⊥平面AA1C.18.如图,三棱锥D—ABC中,平面ABD、平面ABC均为等腰直角三角形,∠ABC=∠BAD=900,其腰BC=a,且二面角D—AB—C=600.⑴求异面直线DA与BC所成的角;⑵求异面直线BD与AC所成的角;⑶求D到BC的距离;⑷求异面直线BD与AC的距离.19.如图,在600的二面角α—CD—β中,ACα,BDβ,且ACD=450,tg∠BDC=2,CD=a,AC=x,BD=x,当x为何值时,A、B的距离最小?并求此距离.20.如图,斜三棱柱ABC—A’B’C’中,底面是边长为a的正三角形,侧棱长为b,侧棱AA’与底面相邻两边AB、AC都成450角,求此三棱柱的侧面积和体积.参考答案:1.D;2.A;3.C;4.A;5.B;6.B;7.A;8.B;9.C; 10.B; 11.B; 12.D; 13.2; 14. 5或; 15.(); 16. 偶数;17. 解析:⑴欲证EG∥平面BB1D1D,须在平面BB1D1D内找一条与EG平行的直线,构造辅助平面BEGO’及辅助直线BO’,显然BO’即是。
人教版高中数学必修二第二章单元测试(二)- Word版含答案
2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C .l ⊄α,A ∈l ⇒A ∉α D .A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A .30°B .45°C .60°D .90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A .E ,F ,G ,H 一定是各边的中点 B .G ,H 一定是CD ,DA 的中点C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于( )A .8B .9C .10D .115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1DD .A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.此卷只装订不密封班级 姓名 准考证号 考场号 座位号现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1 C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥mB .AC ⊥mC .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3π C .4π D .6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( ) A .点H 是△A 1BD 的垂心 B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC ,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,B C AC'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.1sin 602ABC S =︒=11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=213OA ==,∴tan OP OAP OA ∠=,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则A B B EC E C D=,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA,且AD =OH .又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF中,1124OF OC AC ===,∴·tan 30EF OF =︒,∴2OP EF ==.∴2313P ABCD V a -=⨯. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC,所以AB == 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。
普通高中课程标准必修数学②测试题
普通高中课程标准必修数学②测试题测试题一、单选题1. 若a,b,c均是正数,且a,b,c满足a+b+c=1,则a²+b²+c²不小于:A.1/2B.1/3C.1/4D.1/62. 若x²+2x-3=0,y²-6y+13=0,求x²+y²的值为:A.20B.22C.24D.263. 已知抛物线y=ax²+bx+c的顶点坐标为(2,-5),则a,b,c的值为:A.a=1/2, b=-2, c=-3B.a=1/2, b=2, c=-3C.a=-1/2, b=-2, c=-3D.a=-1/2, b=2, c=-34. 若∠A:∠B:∠C=2:3:5,则∠A,∠B,∠C的大小依次为:A.40°,60°,80°B.80°,120°,200°C.20°,30°,50°D.60°,90°,150°5. 已知点A(3,4),B(-1,-6),点P在线段AB上且AP:PB=2:3,则点P的坐标为:A.(-3,-10)B.(1,-2)C.(2,-2)D.(5,-2)二、填空题6. 已知函数y=x³+ax²+bx+c,当x=1时,y=0;当x=-1时,y=4,则a,b,c的值分别为________。
7. 下列哪个数是3的倍数,又是4的倍数,又是5的倍数:________。
8. 整式4x³-3x²+2x-1÷2x-1=(________)x²+(-________)x+(________)。
三、解答题9.(6分)已知等差数列{a_n}的首项为a_1,公差为d,若a_5+a_7=12,且a_1+a_2+a_3=6,则求a_4。
10.(8分)已知正方形ABCD的边长为2,点P在AB上,点Q在线段CD上,且AP:PB=1:2,DQ:CQ=1:3,线段PQ与AC交于点M,求AM:MC的长度比。
高中数学必修2精选习题(含答案)
高中数学必修2精选习题(含答案)一、选择题:(每小题3分,共30分)1.垂直于同一条直线的两条直线一定( )A 、平行B 、相交C 、异面D 、以上都有可能 2. 下列说法正确的是( )A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3. 若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是 ( )A 、 l ∥αB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有 4. 直线k 10x y -+=,当k 变动时,所有直线都通过定点( ) A (0,0)B (0,1)C (3,1)D (2,1)5.用单位立方块搭一个几何体,使它的主视图和俯视图如右图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与156.如图,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=1,则梯形ABCD 的面积是( )A .10B .5C .5 2D .1027.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( ) A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=08.与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=09. 已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是 ( )俯视图主视图A .k ≥12B .k ≤-2C .k ≥12 或k ≤-2D .-2≤k ≤1210. 在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条二、填空题:(每小题4分,共16分)11若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值等于________.12.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________13. 正四棱锥S ABCD -S 、A 、B 、C 、D 都在同一个球面上,则该球的体积为_________。
高一数学必修2测试题及答案
试卷类型:A高一数学必修2试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至3页.第II 卷4至10页.共150分.考试用时120分钟. 考试结束后,本试卷和答题卡一并收回. 注意事项:1.答卷前,考生务必将自己的姓名、考号、考试科目、试卷类型用0.5毫米黑色签字笔填写在答题卡和试卷规定的位置上;用2B 铅笔填涂在答题卡上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在试题卷各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:1.S rl π=2圆柱侧(r 为底面圆的半径,l 为圆柱母线长).2.S rl π=圆锥侧(r 为底面圆的半径,l 为圆锥母线长).3.()S r l rl π'=+圆台侧(r '、r 分别为台体的上、下底面圆的半径,l 为圆台母线长).4.V Sh 柱体=(S 为底面积,h 为柱体的高).5.13V Sh =锥体(S 为底面积,h 为锥体的高).6.()13V h S S '=台体(,S S '分别为上、下底面积,h 为台体的高).7.343V R π球=(R 表示球的半径).第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知直线经过点(0,4)A 和点(1,2)B ,则直线AB 的斜率为(A )3 (B )-2 (C )2 (D )不存在 (2)若点M 在直线m 上,直线m 在平面α内,则下列表述正确的是(A ),M m m α∈∈ (B ),M m m α∈⊂ (C ),M m m α⊂⊂ (D ),M m m α⊂∈ (3)下列说法正确的是(A )三点确定一个平面 (B )四边形一定是平面图形 (C )梯形一定是平面图形(D )不重合的平面α和平面β有不同在一条直线上的三个交点 (4)过点(1,3)-且平行于直线032=+-y x 的直线方程为(A )072=+-y x (B )012=-+y x (C )250x y --= (D )052=-+y x (5)圆2240x y x +-=的圆心坐标和半径分别为(A )(0,2),2 (B )(2,0),4 (C )(2,0),2- (D )(2,0),2 (6)以下哪个条件可判断直线l 与平面α垂直(A )直线l 与平面α内无数条直线垂直 (B )直线l 与平面α内两条平行直线垂直 (C )直线l 与平面α内两条直线垂直 (D )直线l 与平面α内两条相交直线垂直(7)已知,a b 是两条异面直线,//c a ,那么c 与b 的位置关系(A )一定是异面 (B )一定是相交 (C )不可能平行 (D )不可能相交(820y +-=截圆224x y +=得到的弦长为(A )1 (B )(C )(D )2 (9)一个正方体的顶点在球面上,它的棱长为1cm ,则球的体积为(A )32cm (B 3cm (C )3cm (D )3cm (10)设直线20mx y -+=与圆221x y +=相切,则实数m 的值为(A (B (C )(D )2 (11)下列命题中错误的是(A )若//,,m n n m βα⊥⊂,则αβ⊥ (B )若α//β,//γβ 则//αγ (C )若α⊥γ,β⊥γ,l αβ=,则l ⊥γ(D )若α⊥β,a ⊂α,则a ⊥β(12)在圆22260x y x y +--=内,过点(0,1)E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为(A ) (B ) (C ) (D )111高一数学必修2试题成绩统计栏(考生不要填写)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. (13)直线1y x =-在y 轴上的截距为_______. (14)右图的正方体1111ABCD A BC D -中,二面角1D AB D --的大小是________. (15)圆2220x y x +-=和圆2240x y y ++=的位置关系是________.(16)若一个底面是正三角形的三棱柱的正视图如下图所示,则其侧面积...等于________.三、解答题:本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)用斜二测画法作出水平放置的边长为4cm 、高3cm 的矩形的直观图.(写出作图过程)(18)(本小题满分12分)已知点(4,5),(6,1)A B ---. 求以线段AB 为直径的圆的方程.(19)(本小题满分12分)已知:四面体ABCD 的棱长都相等. 求证:AB CD ⊥.(20)(本小题满分12分)已知ABC 三边所在直线方程为:34120,AB x y ++= :43160,BC x y -+=:220.CA x y +-=(Ⅰ)求直线AB 与直线BC 的交点B 的坐标; (Ⅱ)求AC 边上的高所在的直线方程.ABCD(21)(本小题满分12分)如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点. 求证:(Ⅰ)PA ∥平面BDE ;(Ⅱ)平面PAC ⊥平面BDE .(22)(本小题满分14分)已知:以点2(,)(,0)C t t t t∈≠R 为圆心的圆经过坐标原点O ,直线:1()l y kx k =+∈R 与圆C 相交于,P Q 两点.(Ⅰ)若2k =-,OP OQ =,求圆C 的方程; (Ⅱ)若2,,t CP CQ =⊥求直线l 的方程; (Ⅲ)若[]1,1,4,k t =∈求PQ 的最大值和最小值.高一数学必修2参考答案及评分标准一、选择题:每小题5分,共60分.二、填空题:每小题4分,共16分.(13)-1 (14)045 (15)相交 (16)6三、解答题:本大题共6个大题,共74分. (17)(本小题满分12分)解:① 如图(1)在已知ABCD 中,取AB 、AD 所在直线为x 轴与y 轴,两轴相交于O 点(O 与A 重合),在图(2)画对应x '轴与y '轴,两轴相交于O '点,使o 45x O y '''∠=.………………………………………………………………………2分② 在图(2)x '轴上取 A ',B '(O '与A '重合),使A B AB ''=,在y '轴上取D ',使12A D AD ''=,过D '作D C ''平行于x '轴,使D C A D ''''=.……………………4分 ③ 连结B C ''所得四边形A B C D '''',就是矩形ABCD 的直观图. ……………………6分………12分(18)(本小题满分12分)解:所求圆的方程为:222)()(r b y a x =-+-…………………………………………2分 由中点坐标公式得线段AB 的中点坐标为(1,3)C -…………………………………6分D'C'B'A'O'Y'X'图(2)DCBA Y XO图(1)29)53()41(22=+-++==AC r ……………………………………………10分故所求圆的方程为:29)3()1(22=++-y x ………………………………………12分 (19)(本小题满分12分)证明:取CD 的中点E ,连结,AE BE ,,AC AD BC BD ==∴,AE CD BE CD ⊥⊥……………………4分,AE ABE BE ABE AE BE E ⊂⊂=面面,∴CD ABE ⊥面……………………………8分 又AB ABE ⊂面∴AB CD ⊥…………………………………12分 (20)(本小题满分12分) 解:(Ⅰ)由34120,43160x y x y ++=⎧⎨-+=⎩解得交点(4,0)B -………………………………… 6分(Ⅱ)设AC 边上的高线BD ,112BD AC BD AC k k ⊥∴=-=………………………………………………………9分 ∴BD 的方程为:1(4),2402y x x y =+-+=即. 即所求直线的方程为:240x y -+=………………………………………………12分 (21)(本小题满分12分)证明:(Ⅰ)∵O 是AC 的中点,E 是PC 的中点,∴//OE AP ………………………………………………………………………2分 ∵OE ⊂平面BDE ,PA ⊄平面BDE ,……………………………………4分EABCD∴PA ∥平面BDE .………………………………………………………………6分 (Ⅱ)∵PO ⊥底面ABCD ,∴ PO BD ⊥,………………………………………………………………………8分 又∵AC BD ⊥,且AC PO O =∴BD ⊥平面PAC ,而BD ⊂平面BDE ,……………………………………10分 ∴平面PAC ⊥平面BDE .………………………………………………………12分(22)(本小题满分14分) 解:(Ⅰ),OP OQ CP CQ ==OC ∴垂直平分线段PQ .12,2PQ OC k k =-∴=∴直线OC 的方程是12y x =. ∴212t t =,解得:22t t ==-或………………………………………………………2分 当2t =时,圆心C 的坐标为)1,2(,5=OC ,此时C 到直线:21l y x =-+的距离d =< 圆C 与直线:21l y x =-+相交于两点.当2-=t 时,圆心C 的坐标为)1,2(--,5=OC ,此时C 到直线:21l y x =-+的距离d =圆C 与直线:21l y x =-+不相交. ∴2-=t 不符合题意舍去.∴圆C 的方程为22(2)(1)5x y -+-=.……………………………………………5分 (Ⅱ)当2t =时,圆C 的方程为22(2)(1)5x y -+-=设1122(,),(,)P x y Q x y ,由221(2)(1)5y kx x y =+⎧⎨-+-=⎩消去y 整理得22(1)410k x x +--= 12122241,11x x x x k k∴+==-++ ,1P Q y kx =+在上,11221, 1.y kx y kx ∴=+=+………………………………………7分,1,CP CQ CP CQ k k ⊥∴=-1212111,22y y x x --=---21212(1)2()40k x x x x +-++=即, 22214(1)()24011k kk+--⨯+=++即,解得k =所求直线l 的方程为:1y x =+.………………………………………………10分 (Ⅲ)222224:1,:()()l y x C x t y t t t=+-+-=+圆∴圆心C 到直线:1l y x =+的距离d =∴PQ ==12分 []271,4,12t t t ∈∴-≤-≤∴当21t t -=即2t =时,min PQ =当272t t -=即4t =时,max PQ =14分高一数学必修1试题第11页(共10页)。
人教A版高一数学必修第二册全册复习测试题卷含答案解析(54)
高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1.已知一家便利店从1月份至5月份的营业收入与成本支出的折线图如下:关于该便利店1月份至5月份的下列描述中,正确的是( )A.各月的利润保持不变B.各月的利润随营业收入的增加而增加C.各月的利润随成本支出的增加而增加D.各月的营业收入与成本支出呈正相关关系2.设i是虚数单位,如果复数(a+1)+(−a+7)i(a∈R)的实部与虚部相等,那么实数a的值为( )A.4B.3C.2D.13.关于频率分布直方图中小长方形的高的说法,正确的是( )A.表示该组上的个体在样本中出现的频率B.表示取某数的频率C.表示该组上的个体数与组距的比值D.表示该组上的个体在样本中出现的频率与组距的比值4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3000)内的频率为( )A.0.001B.0.1C.0.2D.0.35. 如果一组数据“x 1,x 2,x 3,x 4,x 5”的平均数是 2,方差是 13,那么另一组数据“3x 1−2,3x 2−2,3x 3−2,3x 4−2,3x 5−2”的平均数和方差分别为 ( ) A . 2,13B . 2,1C . 4,23D . 4,36. 在 △ABC 中,∠BAC =π2,AB =AC =2,P 为 △ABC 所在平面上任意一点,则 PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ) 的最小值为 ( ) A . 1B . −12C . −1D . −27. 已知互相垂直的平面 α,β 交于直线 l ,若直线 m ,n 满足 m ∥α,n ⊥β,则 ( ) A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n8. 复数 i (2−i )= ( ) A . 1+2iB . 1−2iC . −1+2iD . −1−2i9. 若复数 z 满足 z (1+i )=2i ,其中 i 为虚数单位,则 z = ( ) A . 1−iB . 1+iC . −1+iD . −1−i10. 在 △ABC 中,B =30∘,AB =2√3,AC =2,则 △ABC 的面积是 ( )A . √3B . 2√3C . √3 或 2√3D . 2√3 或 4√3二、填空题(共6题) 11. 思考辨析,判断正误.在 △ABC 中,已知两边及夹角时,△ABC 不一定唯一.( )12. 根据党中央关于“精准脱贫”的要求,某市农业经济部门派甲、乙、丙 3 位专家对 A ,B 两个区进行调研,每个区至少派 1 位专家,则甲、乙两位专家均派遣至 A 区的概率为 .13. 已知向量 a =(2,1),b ⃗ =(−1,x ),若 (a +b ⃗ )∥(a −b ⃗ ),则实数 x 的值为 .14. 半径为 3 的球体表面积为 .15. 平面与平面垂直的性质定理:文字语言:两个平面垂直,如果一个平面内有一直线垂直于这两个平面的 ,那么这条直线与另一个平面 .符号语言:α⊥β,α∩β=l,,⇒a⊥β.图形语言:16.若复数z=2+i,其中i为虚数单位,则z在复平面内对应点的坐标为.1−2i三、解答题(共6题)17.已知圆柱的底面直径与高都等于球的直径.求证:(1) 球的表面积等于圆柱的侧面积;.(2) 球的表面积等于圆柱全面积的2318.在静水中划船的速度的大小是每分钟40m,水流速度的大小是每分钟20m,如果一小船从岸边某处出发,沿着垂直于水流的方向到达对岸,则小船的行进方向应指向哪里?19.在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足b2+c2−a2=2bcsin(B+C).(1) 求角A的大小;,求△ABC的面积.(2) 若a=2,B=π320.应用面面平行判断定理应具备哪些条件?21.在北京市“危旧房改造”中,小强一家搬进了回龙观小区.这个小区冬季用家庭燃气炉取暖.为了估算冬季取暖第一个月使用天然气的开支情况,从11月15日起,小强连续八天每天晚上记录了天然气表显示的读数,如下表(注:天然气表上先后两次显示的读数之差就是这段时间内使用天然气的数量):日期15日16日17日18日19日20日21日22日小强的天然气表显示读数(单位:m3)220229241249259270279290妈妈11月15日买了一张面值600元的天然气使用卡,已知每立方米天然气1.70元,请你估算这张卡够小强家用一个月(按30天计算)吗?为什么?22.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1) 结合平均数和方差分析谁更优秀;(2) 结合平均数和中位数分析谁的成绩好些;(3) 结合平均数和命中9环及以上的次数分析谁的成绩好些;(4) 从折线图上两人射击命中环数的走势分析谁更有潜力.答案一、选择题(共10题) 1. 【答案】D【知识点】频率分布直方图2. 【答案】B【解析】由题意得 a +1=−a +7,则 a =3.故选B . 【知识点】复数的乘除运算3. 【答案】D【解析】频率分布直方图中小长方形的高是 频率组距,面积表示频率.【知识点】频率分布直方图4. 【答案】D【知识点】频率分布直方图5. 【答案】D【知识点】样本数据的数字特征6. 【答案】C【解析】如图,以直线 AB ,AC 分别为 x ,y 轴建立平面直角坐标系, 则 A (0,0),B (2,0),C (0,2),设 P (x,y ),则 PA⃗⃗⃗⃗⃗ =(−x,−y ),PB ⃗⃗⃗⃗⃗ =(2−x,−y ),PC ⃗⃗⃗⃗⃗ =(−x,2−y ),PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =(2−2x,2−2y ), 所以PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=−x (2−2x )−y (2−2y )=2x 2−2x +2y 2−2y =2(x −12)2+2(y −12)2−1,当 x =12,y =12 时,PA ⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ ) 取得最小值,为 −1. 故选C .【知识点】平面向量数量积的坐标运算7. 【答案】C【解析】由题意知α∩β=l,所以l⊂β,因为n⊥β,所以n⊥l.【知识点】直线与直线的位置关系、点、线、面的位置关系8. 【答案】A【解析】i(2−i)=1+2i.【知识点】复数的乘除运算9. 【答案】B【解析】因为复数z满足z(1+i)=2i,所以z=2i1+i=1+i.【知识点】复数的乘除运算10. 【答案】C【解析】由AB=2√3,AC=2,B=30∘及正弦定理ACsinB =ABsinC得sinC=ABsinBAC=2√3×122=√32.由C为三角形的内角可知C=60∘或120∘.因此A=90∘或30∘.在△ABC中,由AB=2√3,AC=2,A=90∘或30∘,得面积S=12AC⋅AB⋅sinA=2√3或√3.【知识点】正弦定理二、填空题(共6题)11. 【答案】×【知识点】余弦定理12. 【答案】16【解析】该试验所有的样本点为(甲,乙丙),(乙,甲丙),(丙,甲乙),(甲乙,丙),(甲丙,乙),(乙丙,甲)(其中每个样本点表示的都是“派往A区调研的专家、派往B区调研的专家”),共6个,其中甲、乙两位专家均被派遣至 A 区的样本点有 1 个,因此,所求事件的概率为 16. 【知识点】古典概型13. 【答案】 −12【解析】因为 a =(2,1),b⃗ =(−1,x ), 所以 a +b ⃗ =(1,x +1),a −b ⃗ =(3,1−x ), 又 (a +b ⃗ )∥(a −b⃗ ), 所以 1−x −3(x +1)=0, 解得 x =−12.【知识点】平面向量数乘的坐标运算14. 【答案】 36π【知识点】球的表面积与体积15. 【答案】交线;垂直; a ⊂α ; a ⊥l【知识点】平面与平面垂直关系的性质16. 【答案】 (0,1)【知识点】复数的几何意义、复数的乘除运算三、解答题(共6题) 17. 【答案】(1) 略. (2) 略.【知识点】圆柱的表面积与体积、球的表面积与体积18. 【答案】如图所示,设向量 OA⃗⃗⃗⃗⃗ 的长度和方向表示水流速度的大小和方向,向量 OB ⃗⃗⃗⃗⃗ 的长度和方向表示船在静水中速度的大小和方向,以 OA⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 为邻边作平行四边形 OACB ,连接 OC . 依题意得 OC ⃗⃗⃗⃗⃗ ⊥OA ⃗⃗⃗⃗⃗ ,∣∣BC ⃗⃗⃗⃗⃗ ∣∣=∣∣OA ⃗⃗⃗⃗⃗ ∣∣=20,∣∣OB ⃗⃗⃗⃗⃗ ∣∣=40,所以 ∠BOC =30∘.故船应向上游且与河岸夹角为 60∘ 的方向行进. 【知识点】平面向量的实际应用问题19. 【答案】(1) 因为 A +B +C =π, 所以 sin (B +C )=sinA , 所以 b 2+c 2−a 2=2bcsinA ,所以b 2+c 2−a 22bc=sinA ,由余弦定理得 cosA =sinA ,可得 tanA =1, 又因为 A ∈(0,π), 所以 A =π4.(2) 根据正弦定理得 b =a sinA ⋅sinB =√6,又 sinC =sin (A +B )=sin (π4+π3)=√6+√24, 所以S △ABC =12absinC =12⋅2⋅√6⋅√6+√24=3+√32.【知识点】余弦定理、正弦定理20. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定21. 【答案】 300×1.70<600,够用.【知识点】样本数据的数字特征22. 【答案】(1) 根据题意作出统计表:平均数方差中位数命中9环及以上次数甲7 1.271乙75.47.53因为平均数相同,且 s 甲2<s 乙2,所以甲的成绩比乙稳定,甲更优秀.(2) 因为平均数相同,甲的中位数 < 乙的中位数, 所以乙的成绩比甲好.(3) 因为平均数相同,且乙命中 9 环及以上的次数比甲多, 所以乙的成绩比甲好.(4) 因为甲的成绩在平均线附近波动,而乙的成绩整体处于上升趋势,从第 4 次开始射靶的环数没有比甲少的情况发生, 所以乙更有潜力.【知识点】样本数据的数字特征。
高一数学必修2第一章试题(3)
高一数学必修2第一章试题(3)一、选择题1. 给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若不共面与则点m l m A A l m ,,,∉=⋂⊂αα;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα;④若.//,//,//,,,βαββαα则点m l A m l m l =⋂⊂⊂ 其中为假命题的是 A .① B .② C .③ D .④ 2、若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A21倍 B 42倍 C 2倍 D 2倍3、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( ) A. 300 B.450 C. 600 D. 9004、右图的正方体ABCD- A ’B ’C ’D ’中,二面角D ’-AB-D 的大小是( )A. 300B.450C. 600D. 9005.正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:( ) A.3a π; B.2a π; C.a π2; D.a π3.6.已知直线n m l 、、及平面α,下列命题中的假命题是 A .若//l m ,//m n ,则//l n . B .若l α⊥,//n α,则l n ⊥.C .若l m ⊥,//m n ,则l n ⊥.D .若//l α,//n α,则//l n .7.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是 A .BC ∥平面PDF B .DF ⊥平面PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC 8.若圆锥的侧面展开图是圆心角为1200,半径为l 的扇形,则这个圆锥的表面积C AB DA ’B ’D ’与侧面积的比是( )A 3:2B 2:1C 4:3D 5:3 9.已知a 、b 、c 是直线,β是平面,给出下列命题: ①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是 A .1 B .2 C .3 D .410、已知长方体一个顶点上三条棱分别是3、4、5,且它的顶点都在同一个球面上,则这个球的表面积是( )A 220B π225C π50D π200二、填空题1.底面直径和高都是4cm 的圆柱的侧面积为 cm 2。
人教版高中数学必修2第二章测试题A组及答案解析
人教版高中数学必修2第二章测试题A组及答案解析第二章点、直线、平面之间的位置关系一、选择题1.设 $\alpha$,$\beta$ 为两个不同的平面,$l$,$m$ 为两条不同的直线,且 $l\subset\alpha$,$m\subset\beta$,有如下的两个命题:①若 $\alpha\parallel\beta$,则 $l\parallel m$;②若 $l\perp m$,则 $\alpha\perp\beta$。
那么()。
A。
①是真命题,②是假命题B。
①是假命题,②是真命题C。
①②都是真命题D。
①②都是假命题2.如图,ABCD为正方体,下面结论错误的是()。
A。
BD $\parallel$ 平面CBB。
AC $\perp$ BDC。
AC $\perp$ 平面CBD。
异面直线AD与CB角为60°3.关于直线 $m$,$n$ 与平面 $\alpha$,$\beta$,有下列四个命题:① $m\parallel\alpha$,$n\parallel\beta$ 且$\alpha\parallel\beta$,则 $m\parallel n$;② $m\perp\alpha$,$n\perp\beta$ 且 $\alpha\perp\beta$,则$m\perp n$;其中真命题的序号是()。
A。
①②B。
③④C。
①④D。
②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线 $l_1$,$l_2$ 与同一平面所成的角相等,则$l_1$,$l_2$ 互相平行④若直线 $l_1$,$l_2$ 是异面直线,则与 $l_1$,$l_2$ 都相交的两条直线是异面直线其中假命题的个数是()。
A。
1B。
2C。
3D。
45.下列命题中正确的个数是()。
①若直线 $l$ 上有无数个点不在平面 $\alpha$ 内,则$l\parallel\alpha$②若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都没有公共点A。
人教A版高一数学必修第二册全册复习测试题卷含答案解析(1)
高一数学必修第二册全册复习测试题卷11(共22题)一、选择题(共10题)1. △ABC 中,若 a =1,c =2,B =60∘,则 △ABC 的面积为 ( ) A . 12B . 1C .√32D . √32. 若书架中放有中文书 5 本,英文书 3 本,日文书 2 本,则抽出一本书为外文书的概率为 ( ) A . 15B . 310C . 25D . 123. 若 θ 为两个非零向量的夹角,则 θ 的取值范围为 ( ) A .(0,π) B .(0,π] C .[0,π) D .[0,π]4. 从一箱产品中随机地抽取一件,设事件 A = { 抽到一等品 },事件 B = { 抽到二等品 },事件 C = { 抽到三等品 } ,且已知 P (A )=0.65,P (B )=0.2,P (C )=0.1.则事件“抽到的是二等品或三等品”的概率为 ( ) A .0.7 B .0.65 C .0.35 D .0.35. 下列关于古典概型的说法中正确的是 ( ) ①试验中所有可能出现的样本点只有有限个; ②每个事件出现的可能性相等; ③每个样本点出现的可能性相等;④若样本点总数为 n ,随机事件 A 包含其中的 k 个样本点,则 P (A )=kn . A .②④ B .③④ C .①④ D .①③④6. 给定一组数据:102,100,103,104,101,这组数据的第 60 百分位数是 ( ) A . 102 B . 102.5 C . 103 D . 103.57. 为比较甲、乙两地某月 14 时的气温情况,随机选取该月中的 5 天,这 5 天中 14 时的气温数据(单位:∘C )如下:甲:2628293131乙:2829303132以下结论:①甲地该月 14 时的平均气温低于乙地该月 14 时的平均气温; ②甲地该月 14 时的平均气温高于乙地该月 14 时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据数据能得到的统计结论的编号为( )A.①③B.①④C.②③D.②④8.下列说法正确的是( )A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定9.用符号表示“点A在直线l上,l在平面α内”,正确的是( )A.A∈l,l∉αB.A⊂l,l⊄αC.A⊂l,l∈αD.A∈l,l⊂α10.半径为2的球的表面积为( )A.4πB.8πC.12πD.16π二、填空题(共6题)11.一家保险公司想了解汽车的挡风玻璃在一年时间里破碎的概率,公司收集了20000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率约为.12.思考辨析 判断正误.( )做100次拋硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是5110013.若空间两个角的两条边分别平行,则这两个角的大小关系是.14.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A,B对应的复数分别是z1,=.z2,则z2z115.平均数:如果n个数x1,x2,⋯,x n,那么x=叫做这n个数的平均数.16.思考辨析判断正误为了更清楚地反映学生在这学期多次考试中数学成绩情况,可以选用折线统计图.( )三、解答题(共6题)17.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.18.小明是班里的优秀学生,他的历次数学成绩是96,98,95,93,45分,最近一次考试成绩只有45分的原因是他带病参加了考试.期末评价时,怎样给小明评价(90分及90分以上为优秀,75∼90分为良好)?19.类比绝对值∣x−x0∣的几何意义,∣z−z0∣(z,z0∈C)的几何意义是什么?20.如图,在三棱锥P−ABC中,平面PAC⊥平面ABC,∠ACB=90∘,PA=AC=2BC.(1) 若PA⊥PB,求证:平面PAB⊥平面PBC;(2) 若PA与平面ABC所成角的大小为60∘,求二面角C−PB−A的余弦值.21.应用面面平行判断定理应具备哪些条件?22.如图,在四棱锥P−ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,PD=9,E为PA的中点.(1) 求证:DE∥平面BPC.(2) 在线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出此时三棱锥B−PCF的体积;若不存在,请说明理由.答案一、选择题(共10题) 1. 【答案】C【解析】由题得 △ABC 的面积 S =12AB ⋅BC ⋅sin60∘=12×2×1×√32=√32. 【知识点】三角形的面积公式2. 【答案】D【解析】在 10 本书中,中文书 5 本,外文书为 3+2=5 本,由古典概型,在其中抽出一本书为外文书的概率为 510,即 12. 【知识点】古典概型3. 【答案】D【知识点】平面向量的数量积与垂直4. 【答案】D【解析】由题意知事件 A 、 B 、 C 互为互斥事件,记事件 D =“抽到的是二等品或三等品”,则 P (D )=P (B ∪C )=P (B )+P (C )=0.2+0.1=0.3. 【知识点】事件的关系与运算5. 【答案】D【解析】②中所说的事件不一定是样本点,所以②不正确;根据古典概型的特征及计算公式可知①③④正确. 【知识点】古典概型6. 【答案】D【解析】 5×0.6=3,第 60 百分位数是第三与第四个数的平均数, 即103+1042=103.5.【知识点】样本数据的数字特征7. 【答案】B【解析】因为 x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,所以 x 甲<x 乙.又 s 甲2=9+1+0+4+45=185,s 乙2=4+1+0+1+45=2,所以 s 甲>s 乙,故由样本估计总体可知结论①④正确. 【知识点】样本数据的数字特征8. 【答案】C【解析】不可能事件的概率为 0,必然事件的概率为 1,故A 错误;频率是由试验的次数决定的,故B 错误;概率是频率的稳定值,故C 正确,D 错误. 【知识点】频率与概率9. 【答案】D【解析】点 A 在直线 l 上,表示为 A ∈l ,l 在平面 α 内,表示为 l ⊂α. 【知识点】平面的概念与基本性质10. 【答案】D【解析】因为球的半径为 r =2, 所以该球的表面积为 S =4πr 2=16π. 【知识点】球的表面积与体积二、填空题(共6题) 11. 【答案】 0.03【解析】 P =60020000=0.03.【知识点】频率与概率12. 【答案】 ×【知识点】频率与概率13. 【答案】相等或互补【知识点】直线与直线的位置关系14. 【答案】 −1−2i【解析】由题意,根据复数的表示可知z1=i,z2=2−i,所以z2z1=2−ii=(2−i)⋅(−i)i⋅(−i)=−1−2i.【知识点】复数的乘除运算、复数的几何意义15. 【答案】1n(x1+x2+⋯+x n)【知识点】样本数据的数字特征16. 【答案】√【知识点】频率分布直方图三、解答题(共6题)17. 【答案】如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.【知识点】组合体18. 【答案】小明5次考试成绩从小到大排列为45,93,95,96,98,中位数是95,应评定为“优秀”.【知识点】样本数据的数字特征19. 【答案】∣z−z0∣(z,z0∈C)的几何意义是复平面内点Z到点Z0的距离.【知识点】复数的加减运算20. 【答案】(1) 因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BC⊂平面ABC,BC⊥AC,所以BC⊥平面PAC,因为PA⊂平面PAC,所以PA⊥BC.又PA⊥PB,PB∩BC=B,所以PA⊥平面PBC,因为PA⊂平面PAB,所以平面PAB⊥平面PBC.(2) 如图,过P作PH⊥AC于点H,因为平面PAC⊥平面ABC,所以PH⊥平面ABC,所以∠PAH=60∘,不妨设PA=2,所以PH=√3,以 C 为原点,分别以 CA ,CB 所在直线为 x 轴,y 轴,以过 C 点且平行于 PH 的直线为 z 轴,建立如图所示的空间直角坐标系,则 C (0,0,0),A (2,0,0),B (0,1,0),P(1,0,√3),因此 AB⃗⃗⃗⃗⃗ =(−2,1,0),AP ⃗⃗⃗⃗⃗ =(−1,0,√3),CB ⃗⃗⃗⃗⃗ =(0,1,0),CP ⃗⃗⃗⃗⃗ =(1,0,√3). 设 n ⃗ =(x 1,y 1,z 1) 为平面 PAB 的一个法向量, 则 {n ⃗ ⋅AB⃗⃗⃗⃗⃗ =0,n ⃗ ⋅AP⃗⃗⃗⃗⃗ =0, 即 {−2x 1+y 1=0,−x 1+√3z 1=0,令 z 1=√3,可得 n ⃗ =(3,6,√3), 设 m ⃗⃗ =(x 2,y 2,z 2) 为平面 PBC 的一个法向量, 则 {m ⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =0,m ⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ =0, 即 {y 2=0,x 2+√3z 2=0,令 z 2=√3,可得 m ⃗⃗ =(−3,0,√3), 所以 cos⟨m ⃗⃗ ,n ⃗ ⟩=4√3×2√3=−14, 易知二面角 C −PB −A 为锐角, 所以二面角 C −PB −A 的余弦值为 14.【知识点】平面与平面垂直关系的判定、利用向量的坐标运算解决立体几何问题、二面角21. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定22. 【答案】(1) 取 PB 的中点 M ,连接 EM ,CM ,过点 C 作 CN ⊥AB ,垂足为 N ,如图所示. 因为 CN ⊥AB ,DA ⊥AB , 所以 CN ∥DA , 又 AB ∥CD ,所以四边形 CDAN 为矩形, 所以 CN =AD =8,DC =AN =6.在 Rt △BNC 中,BN =√BC 2−CN 2=√102−82=6, 所以 AB =12.因为 E ,M 分别为 PA ,PB 的中点, 所以 EM ∥AB 且 EM =6, 又 DC ∥AB ,且 CD =6, 所以 EM ∥CD 且 EM =CD , 则四边形 CDEM 为平行四边形, 所以 DE ∥CM .因为 CM ⊂平面BPC ,DE ⊄平面BPC ,所以 DE ∥平面BPC .(2) 存在.理由如下:由题意可得 DA ,DC ,DP 两两互相垂直,故以 D 为原点,DA ,DC ,DP所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Dxyz . 则 D (0,0,0),B (8,12,0),C (0,6,0),所以 DB⃗⃗⃗⃗⃗⃗ =(8,12,0). 假设 AB 上存在一点 F 使 CF ⊥BD ,设点 F 坐标为 (8,t,0)(0≤t ≤12), 则 CF⃗⃗⃗⃗⃗ =(8,t −6,0), 由 CF ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得 64+12(t −6)=12t −8=0, 所以 t =23,即 AF =23,故 BF =12−23=343.又 PD =9,所以 V 三棱锥B−PCF =V 三棱锥P−BCF =13×12×343×8×9=136.【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题。
数学必修2考试题及答案
数学必修2考试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{a_n}的首项a_1 = 3,公差d = 2,求a_5的值。
A. 13B. 11C. 9D. 7答案:A3. 计算下列三角函数值:sin(π/6)。
A. 1/2B. √3/2C. 1/3D. √2/2答案:A4. 已知复数z = 3 + 4i,求z的共轭复数。
A. 3 - 4iB. -3 + 4iC. -3 - 4iD. 3 + 4i答案:A5. 求下列二项式展开式的通项公式:(1 + x)^5。
A. C_5^k * x^kB. C_5^k * x^(5-k)C. C_5^k * x^k / k!D. C_5^k * x^(5-k) / k!答案:B6. 已知圆的方程为x^2 + y^2 = 4,求圆心坐标。
A. (0, 0)B. (2, 2)C. (-2, -2)D. (1, 1)答案:A7. 计算下列极限:lim(x→0) [sin(x) / x]。
A. 0B. 1C. 2D. ∞答案:B8. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)。
A. 3x^2 - 6xB. x^2 - 6x + 2C. 3x^2 - 6x + 1D. x^3 - 6x^2 + 2答案:A9. 求下列矩阵的行列式值:| 1 2 || 3 4 |A. -2B. 2C. 5D. 8答案:B10. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B。
A. {1, 2}B. {2, 3}C. {1, 3}D. {1, 2, 4}答案:B二、填空题(每题6分,共30分)1. 已知等比数列{a_n}的前三项分别为2,4,8,则该数列的公比q为______。
答案:22. 求函数f(x) = x^2 - 6x + 8的顶点坐标。
人教a版数学必修2试题及答案
人教a版数学必修2试题及答案一、选择题(每题4分,共40分)1. 已知函数f(x)=x^2-4x+c,若f(x)在区间(2,+∞)上单调递增,则c 的取值范围是()A. c≥0B. c≤0C. c≥4D. c≤4答案:C2. 函数y=x^3-3x+1的导数是()A. 3x^2-3B. x^2-3C. 3x^2+3xD. x^3-3答案:A3. 已知等差数列{a_n}的前三项分别为1,5,9,那么第五项a_5的值是()A. 13B. 17C. 21D. 25答案:B4. 计算定积分∫(0,1) x^2 dx的值是()A. 1/3B. 1/2C. 2/3D. 3/4答案:B5. 已知圆C的方程为(x-2)^2+(y-3)^2=16,圆心为C(2,3),半径为4,那么点(-1,0)到圆心的距离是()A. 5B. √17C. √20D. √25答案:B6. 函数y=2^x在区间[0,1]上的最大值是()A. 1B. 2C. 4D. 8答案:C7. 已知向量a=(3,-4),向量b=(-2,3),则向量a与向量b的点积是()A. -5B. -14C. 5D. 14答案:B8. 计算极限lim(x→0) (sin x)/x的值是()A. 0B. 1C. 2D. ∞答案:B9. 已知函数f(x)=x^3-6x^2+9x+1,求f'(x)的值是()A. 3x^2-12x+9B. x^2-4x+3C. 3x^2-12x+9D. x^3-6x^2+9答案:A10. 已知等比数列{b_n}的前三项分别为2,4,8,那么第四项b_4的值是()A. 16B. 32C. 64D. 128答案:A二、填空题(每题4分,共20分)1. 已知函数f(x)=x^3-3x^2+2,求f'(x)=______。
答案:3x^2-6x2. 计算定积分∫(0,2) (x^2-2x+1) dx的值是______。
答案:43. 已知向量a=(1,2),向量b=(3,-4),则向量a与向量b的叉积是______。
高一数学人教A版必修2试题3.2.2 直线的两点式方程 Word版含解析
第三章一、选择题.直线-=在轴、轴上的截距分别为( )..,-.-,-.-[解析]将-=化成直线截距式的标准形式为+=,故直线-=在轴、轴上的截距分别为、-..已知点(,-)、(),若线段的垂直平分线的方程是+=,则实数的值是( ).-.-..[解析]由中点坐标公式,得线段的中点是(,).又点(,)在线段的垂直平分线上,所以+=,所以=,选..如右图所示,直线的截距式方程是+=,则有( ).>,>.>,<.<,>.<,< [解析]很明显()、(,),由图知在轴正半轴上,在轴负半轴上,则>,<..已知△三顶点()、()、(),为中点,为中点,则中位线所在直线方程为( ).+-=.-+=.+-=.--=[解析]点的坐标为(),点的坐标为(),由两点式方程得=,即+-=..如果直线过(-,-)、()两点,点(,)在直线上,那么的值为( )....[解析]根据三点共线,得=,得=..两直线-=与-=的图象可能是图中的哪一个( )[解析]直线-=化为=-,直线-=化为=-,故两直线的斜率同号,故选..已知、两点分别在两条互相垂直的直线=和+=上,且线段的中点为(,),则直线的方程为( ).=-+.=-.=+.=--[解析]依题意,=,().设()、(-,),则由中点坐标公式,得(\\(-=+=)),解得(\\(==)),所以()、(-).由直线的两点式方程,得直线的方程是=,即=+,选..过(,-)且在坐标轴上截距相等的直线有( ).条.条.条.条[解析]解法一:设直线方程为+=(-)(≠).令=得=,令=得=--.由题意,=--,解得=-或=-.因而所求直线有两条,∴应选.解法二:当直线过原点时显然符合条件,当直线不过原点时,设直线在坐标轴上截距为(),(,),≠,则直线方程为+=,把点(,-)的坐标代入方程得=.∴所求直线有两条,∴应选.二、填空题.已知点(--)在经过(,-)、(-)两点的直线上,则=[解析]解法一:的直线方程为:=,即+-=,代入(--)得=.解法二:、、三点共线,∴=,解得=..(~·衡水高一检测)已知直线的斜率为,且在两坐标轴上的截距之和为,则此直线的方程为-+=[解析]设:=+,令=得=-.由条件知+=,∴=.∴直线方程为=+.解法:设直线:+=,变形为=-+.由条件知(\\(-()=,+=,))解得(\\(=,=-)).∴直线方程为+=.即-+=.三、解答题.求分别满足下列条件的直线的方程:()斜率是,且与两坐标轴围成的三角形的面积是;()经过两点()、();()经过点(,-),且在两坐标轴上的截距的绝对值相等.[解析]()设直线的方程为=+.令=,得=-,∴·(-)=,=±.。
高二数学必修2第一次月考试题及答案
高二数学第一次月考试题一、选择题:(每小题4分,共40分). 1. 下列命题正确的是A . 经过三点确定一个平面.B . 两两相交且不共点的三条直线确定一个平面.C . 经过一条直线和一个点确定一个平面.D . 四边形确定一个平面.2. 垂直于同一条直线的两条直线的位置关系是A.平行B. 相交C. 异面D. A 、B 、C 均有可能 3. 如果直线a ∥平面α,那么直线a 与平面α内的A. 任意一条直线不相交B.一条直线不相交C. 无数条直线不相交D.两条直线不相交4.如图所示的一个几何体,在图中是该几何体的俯视图的是( )5.不同直线,m n 和不同平面,αβ,给出下列命题① ////m m αββα⎫⇒⎬⊂⎭② //////m n n m ββ⎫⇒⎬⎭③ ,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ④//m m αββα⊥⎫⇒⊥⎬⎭ 其中假命题有:( )A 、0个B 、1个C 、2个D 、3个6.若直线a 与平面α不垂直,那么在平面α内与直线a 垂直的直线A. 只有一条B. 有无数条C. 是平面α的所有直线D. 不存在7.设 P 是△ABC 所在平面外一点,P 到△ABC 各顶点的距离相等,而且点 P 到△ABC 各边的距离也相等,那么△ABC 是( ) A .是任意三角形 B. 是等边三角形C. 是等腰直角三角形D. 是非等腰直角三角形 8.正方体的内切球和外接球的半径之比为( )A3:3 B 2:3 C3:2 D 3:19.若圆锥的侧面展开图是圆心角为1200,半径为l 的扇形,则这个圆锥的表面积与侧面积的比是( )A 3:2B 2:1C 4:3D 5:310.若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A21倍 B 42倍 C 2倍 D 2倍 第Ⅱ卷(非选择题 共100分)二、填空题:请把答案填在题中横线上(每小题5分,共25分). 11.正方体ABCD -A 1B 1C 1D 1中与A 1B 是异面直线的棱有_______条。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修2试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)答题表题给出的四个选项中,只有一项是符合要求的)1.下列推理不.正确的是( ) A .A ∈b ,A ∈β,B ∈b ,B ∈β⇒b ⊂βB .M ∈α,M ∈β,N ∈α,N ∈β⇒α∩β=直线MNC .直线m 不在α内,A ∈m ⇒A ∉αD .A 、B 、C ∈α,A 、B 、C ∈β,且A 、B 、C 不共线⇒α与β重合解析:由空间中点、线、面的位置关系知选C. 答案:C2.直线3ax -y -1=0与直线⎝ ⎛⎭⎪⎫a -23x +y +1=0垂直,则a 的值是( )A .-1或13B .1或13C .-13或-1D .-13或1解析:由题意得3a ⎝ ⎛⎭⎪⎫a -23+(-1)=0.∴a =1或a =-13.答案:D3.在△ABC 中,AB =2,BC =1.5,∠ABC =120°(如图),若将△ABC 以直线BC 为轴旋转一周,则所形成的旋转体的体积是( )A.92πB.72πC.52πD.32π 解析:如图,易得OA =3,OB =1,所求旋转体的体积为V 圆锥CO -V 圆锥BO=13π·OA 2·OC -13π·OA 2·OB =52π-π=32π.答案:D4.在棱长为1的正方体AC 1中,对角线AC 1在六个面上的正投影长度总和为( )A .6 3B .6 2C .6D .3 6解析:对角线AC 1在各面上的正投影长度相等,均为 2.所以AC 1在六个面上的正投影长度总和为6 2.答案:B5.已知圆锥的母线长为20,母线与轴的夹角为30°,则圆锥的体积是( )A .10003π B.10033πC.1000π3D.10003π3解析:圆锥高为103,底半径为10, ∴V =π3×102×103=10003π3.答案:D6.关于直线a 、b 和平面α、β,有四个命题: ①当a =α∩β,a ∥b 时,b ∥α且b ∥β; ②若a 、b ⊂α,且a ∥β、b ∥β,则α∥β; ③当m ⊥n ,m =α∩β时,则n ⊥α或n ⊥β; ④若a ∥α,b ⊂α,则a ∥b . 其中正确的个数是( ) A .0个 B .1个 C .2个D .3个解析:①②③④都不对.答案:A7.(2010·北京卷)如图,正方体ABCD-A1B1C1D1的棱长为2,动点E,F在棱A1B1上,动点P,Q分别在棱AD,CD上.若EF =1;A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关解析:由于点Q到直线A1B1的距离为22,EF=1,故△EFQ 的面积为定值,所以这个三角形的面积与x,y无关,由于点P到平面EFQ的距离等于点P到平面A1B1CD的距离,这个距离等于点P到直线A1D的距离,等于22z,故四面体PEFQ的体积为13×12×1×22×22z=13z,故四面体PEFQ的体积只与z有关,与x,y无关.答案:D8.一圆过圆x2+y2-2x=0和直线x+2y-3=0的交点,且圆心在y轴上,则这个圆的方程是()A .x 2+y 2-4x -4y +6=0B .x 2+y 2+4y -6=0C .x 2+y 2-2x =0D .x 2+y 2+4x -6=0解析:设所求圆方程为x 2+y 2-2x +λ(x +2y -3)=0, ∴x 2+(λ-2)x +y 2+2λy -3λ=0.圆心为⎝ ⎛⎭⎪⎫2-λ2,-λ且圆心在y 轴上, ∴λ=2,∴x 2+y 2+4y -6=0即为所求方程. 答案:B9.过点M (2,1)的直线与x 轴、y 轴分别交于P 、Q 两点,且|MP |=|MQ |,则l 的方程是( )A .x -2y +3=0B .2x -y -3=0C .2x +y -5=0D .x +2y -4=0解析:l 过M (2,1)且|MP |=|MQ |,则k l =-12,由直线的点斜式方程得l :y -1=-12(x -2),即x +2y -4=0.答案:D10.圆x 2+y 2+Dx +Ey -3=0的半径为2,圆心在坐标轴上,则当D >E 时,D 的值是( )A .2B .0C .2或0D .±2解析:由题意知2=D 2+E 2+122,即D 2+E 2=4,当D =0时,E =-2,当E =0时,D =2,故选C.答案:C11.常数c ≠0,则圆x 2+y 2+2x +2y +c =0与直线2x +2y +c =0的位置关系是( )A .相交B .相切C .相离D .随c 值变化解析:d =|-2-2+c |4+4=|c -4|22,r =4+4-4c2=2-cd 2-r 2=(c -4)28-(2-c )=c28>0,∴d >r ,相离,故选C.答案:C12.已知ab ≠0,M (a ,b )是圆O :x 2+y 2=r 2内一点,直线m 是以M 为中点的弦所在的直线,直线l 的方程是ax +by =r 2,则下列结论正确的是( )A .m ∥l ,且l 与圆相交B .l ⊥m ,且l 与圆相切C .m ∥l ,且l 与圆相离D .l ⊥m ,且l 与圆相离 解析:∵k OM =b a ,∴k m =-ab , ∴直线m 为y -b =-ab (x -a ),即ax +by -b 2-a 2=0,其斜率k m =-ab =k l .∴m ∥l .又∵d =r 2a 2+b 2>r (a 2+b 2<r 2), ∴l 与圆相离. 答案:C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,请把答案填写在题中横线上)13.圆柱的侧面展开图是长12cm、宽8cm的矩形,则这个圆柱的体积为____________________.解析:设半径为r,当长为12 cm的边是底面周长时,则2πr=12 cm,∴r=6πcm.V=πr2×8=8π×36π2=288πcm3.当长为8cm的边是底面周长时,则2πr=8cm,∴r=4πcm,V=πr2×12=π×16π2×12=192πcm3.答案:192πcm3或288πcm314.在长方体ABCD-A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为________.解析:由已知易求得C1(0,2,3),所以|AC1|=42+22+32=29.答案:2915.(2010·四川卷)直线x-2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=________.解析:圆心到直线x-2y+5=0的距离为d=51+4=5,则|AB|=28-5=2 3.答案:2 316.已知m、l是直线,α、β是平面,给出下列命题:①若l 垂直于α内的两条相交直线,则l ⊥α; ②若l 平行于α,则l 平行α内所有直线; ③若m ⊂α,l ⊂β,且l ⊥m ,则α⊥β; ④若l ⊂β,且l ⊥α,则α⊥β; ⑤若m ⊂α,l ⊂β,且α∥β,则m ∥l .其中正确命题的序号是________(把你认为正确的命题的序号都填上).解析:通过正方体验证. 答案:①④三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知△ABC 三边所在直线方程为AB :3x +4y +12=0,BC :4x -3y +16=0,CA :2x +y -2=0.求AC 边上的高BD 所在的直线方程.解:由⎩⎪⎨⎪⎧3x +4y +12=04x -3y +16=0,解得交点B (-4,0),∵BD ⊥AC ,∴k BD =-1k AC =12,∴AC 边上的高线BD 的方程为 y =12(x +4),即x -2y +4=0. 18.(本小题满分12分)据说伟大的阿基米德死了以后,敌军将领马塞拉斯给他建了一块墓碑,以此纪念.在墓碑上刻了一个球内切于圆柱的图案,还在图案中刻了一个圆锥(如图所示).这样,圆柱的底面直径与其高度相等,也与圆锥的高度相等.试计算出图形中圆锥、球、圆柱的体积比.解:设圆柱的底面半径为r ,高为h ,则V 圆柱=πr 2h , 图中圆锥的底面半径为r ,高为h ,则V 圆锥=13πr 2h ,球的半径为r ,且h =2r ,所以V 球=43πr 3,所以V 圆锥∶V 球∶V 圆柱=⎝ ⎛⎭⎪⎫13πr 2h ∶⎝ ⎛⎭⎪⎫43πr 3∶(πr 2h )=⎝ ⎛⎭⎪⎫23πr 3∶⎝ ⎛⎭⎪⎫43πr 3∶(2πr 3)=1∶2∶3. 19.(本小题满分12分)求以圆C 1:x 2+y 2-12x -2y -13=0与圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆的方程.解:联立两圆方程得⎩⎪⎨⎪⎧x 2+y 2-12x -2y -13=0x 2+y 2+12x +16y -25=0, 相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎪⎨⎪⎧x 2+y 2-12x -2y -13=04x +3y -2=0,解得两圆的交点坐标A (-1,2)、B (5,-6). ∵所求圆以AB 为直径,∴所求圆的圆心是AB 的中点M (2,-2),圆的半径为r =12|AB |=5.于是所求圆的方程为(x-2)2+(y+2)2=25.20.(本小题满分12分)某几何体的三视图如图所示,P是正方形ABCD对角线的交点,G是PB的中点.(1)根据三视图,画出该几何体的直观图;(2)在直观图中,①证明:PD∥面AGC.②证明:平面PBD⊥平面AGC.解:(1) 几何体的直观图如图所示.(2)证明:如图,①连接AC,BD交于点O,连接OG,因为G 为PB的中点,O为BD的中点,所以OG∥PD.又OG⊂平面AGC,PD⊄平面AGC,所以PD∥平面AGC.②连接PO,由三视图,PO⊥平面ABCD,所以AO⊥PO.又AO⊥BO,BO∩PO=O,所以AO⊥平面PBD.因为AO⊂平面AGC,所以平面PBD⊥平面AGC.21.(本小题满分12分)如图所示,已知PA⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45°,求证:MN⊥平面PCD.解:(1)要证明MN∥平面PAD,需证MN平行于平面PAD内某一条直线.如图所示,注意到M,N分别为AB,PC的中点,可取PD的中点E,从而只需证明MN∥AE即可,证明如下:取PD的中点E,连接AE、EN,则EN綊12CD,因为CD綊AB,M为AB的中点,AM=12AB,所以EN綊AM,故四边形AMNE为平行四边形,所以MN∥AE. 因为AE⊂平面PAD,MN⊄平面PAD,所以MN∥平面PAD.(2)要证MN⊥CD,可证MN⊥AB.由(1)知,需证AE⊥AB.因为PA⊥平面ABCD,所以PA⊥AB,又因为AD⊥AB,AD∩PA=A,所以AB⊥平面PAD,所以AB⊥AE,即AB⊥MN.又因为CD∥AB,所以MN⊥CD.(3)由(2)知,MN⊥CD,即AE⊥CD,再证AE⊥PD即可.因为PA⊥平面ABCD,所以PA⊥AD.又因为∠PDA=45°,E为PD的中点,所以AE⊥PD,即MN⊥PD.又因为MN⊥CD,CD∩PD=D,所以MN⊥平面PCD.22.(本小题满分14分)已知半圆x2+y2=4(y≥0),动圆与此半圆相切且与x轴相切.(1)求动圆的圆心的轨迹方程,并画出其轨迹图形;(2)是否存在斜率为14的直线l,它与(1)中所得的轨迹图形从左到右顺次交于A、B、C、D四点,且满足|AD|=53|BC|.若存在,求出l的方程;若不存在,说明理由.解:(1)设动圆的圆心坐标为M(x,y),作MN⊥x轴交x轴于N,①如图(1)若动圆与半圆外切,则|MO|=|MN|+2.∴x 2+y 2=y +2,整理得y =14x 2-1(y >0);②如图(2)若动圆与半圆内切, 则|MO |=2-|MN |. ∴x 2+y 2=2-y , 整理得y =-14x 2+1(y >0),综上①和②可得动圆的圆心的轨迹方程是: y =14x 2-1(y >0)及y =-14x 2+1(y >0). 图象为两条抛物线位于x 轴上方的部分.(2)假设直线l 存在,则设直线l 的方程为 y =14x +b 依题意可得直线l 与曲线y =14x 2-1(y >0)交于A 、D 点,与曲线y =-14x 2+1(y >0)交于B 、C 点,则⎩⎪⎨⎪⎧y =14x +by =14x 2-1与⎩⎪⎨⎪⎧y =14x +by =-14x 2+1,∴x 2-x -4b -4=0与x 2+x +4b -4=0. ∴|AD |=1+k 2|x A -x D |=17417+16b |BC |=1+k 2|x B -x C |=17417-16b∵|AD |=53|BC |∴17417+16b =53·17417-16b 解得b =12.将b =12代入x 2-x -4b -4=0得x A =-2,x D =3∵曲线y =14x 2-1(y >0)中横坐标x 的取值范围为(-∞,-2)∪(2,+∞)∴这样的直线l 不存在.。