Gleeble Systems Physical Simulation

合集下载

Modeling and simulation of Physical systems.ppt

Modeling and simulation of Physical systems.ppt

???????
Next Chapter: System and Control
Department of Mechanical and Electrical Engineering
Xiamen University
3. Laplace transforms
• What Are Laplace Transforms • Why to use Laplace • Calculation • How Do You Transform an Differential Equation • A few Examples
variables and to obtain a mathematical model. Because the systems are dynamic in nature, the descriptive equations are usually differential equations, if they can be linearized, then Laplace transform can be used to simplify the method of solution.
Xiamen University
Edited by Zhu QY
What is Mechatronics System? Why is the Model Must Needed? Laplace transforms Modeling of Mechatronics Simulation and Block Diagrams
Lcf (t) g(t)= cL f (t)+ Lg(t), L1 cF (s) G(s)= cL1 F (s)+ L-1 G(s)

无人机飞行控制半实物仿真系统设计与实现

无人机飞行控制半实物仿真系统设计与实现

ISSN 1002-4956 CN11-2034/T实验技术与管理Experimental Technology and M a n a g e m e n t第38卷第3期202丨年3月Vol.38 N o.3Mar. 2021D O I:10.16791/j.c n k i.s j g.2021.03.031无人机飞行控制半实物仿真系统设计与实现吕永玺,屈晓波,史静平(西北工业大学自动化学院,陕西省飞行控制与仿真技术重点实验室,陕西西安710072 )摘要:为保证无人机飞行试验的安全性,提升无人机飞控系统设计的可靠性,自主研发了无人机飞行控制半实物仿真系统。

结合准确的无人机6自由度非线性数学模型和x P C实时系统模块模拟生成无人机飞行状态信息,根据地面站控制指令、传感器故障模注人指令解算获得不同飞行模式和飞行状态下的舵面偏转量,实现了实时系统闭环反馈控制,并驱动舵面偏转检验控制系统的响应速度。

该系统不仅能验证飞控系统的逻辑性和实时性,而且借助虚拟现实技术和航迹地图显示,具备在线整定控制律参数的功能。

该系统模块化程度高,相关硬件和软件对无人机平台和飞控计算机通用性广,依据多平台实验和多架次试飞的实验流程实用性强,为无人机飞控系统开发提供了切实可行、高效可靠的途径。

关键词:飞行控制;实时系统;虚拟现实;在线调参;故障注人中图分类号:V249文献标识码:A文章编号:1002-4956(2021)03-0153-05Design and realization of hardware-in-the-loop simulationsystem for UAV flight controlLYU Yongxi,〇U Xiaobo,SHI Jingping(S h a a n x i P r o v i n c e K e y L a b o r a t o r y o f Flight Control a n d S i m u lation T e c h n o l o g y, S c h o o l o f A u t o m a t i o n,N o r t h w e s t e r n Polytechnical University, X i'a n 710072, C h i n a)Abstract: T o e n s u r e the safety o f U A V flight test a n d i m p r o v e the reliability o f U A V flight control s y s t e m design,the U A V flight control h a r d w a r e-i n-t h e-l o o p s i m u l a t i o n s y s t e m is i n d e p e n d e n t l y d e v e l o p e d.T h e flight statei n f o r m a t i o n o f U A V is g e n e r a t e d b y c o m b i n i n g the a c c u r a t e 6-D O F n o n l i n e a r m a t h e m a t i c a l m o d e l o f U A V a n dx P C real-time s y s t e m m o d u l e. A c c o r d i n g to the g r o u n d station control c o m m a n d a n d s e n s o r fault m o d e injectionc o m m a n d, the deflection o f the control surfaces u nde r different flight m o d e s a n d flight states c a n b e obtained. T h ec l o s e d-l o o p f e ed b a c k control o f the real-time s y s t e m is realized, a n d the control surfaces are d r i v e n to test ther e s p o n s e s p e e d o f the control s y s t e m. T h e s y s t e m c a n not o n l y verify the logic a n d real-time p e r f o r m a n c e o f theflight control s y s t e m,b u t also h a s the function o f onli n e t u n i n g control l a w p a r a m e t e r s w i t h the h e l p o f virtualreality t e c h n o l o g y a n d track m a p display. T h e s y s t e m h a s a h i g h d e g r e e o f m o d u l a r i z a t i o n, a n d the related h a r d w a r ea n d s o f t w a r e are w i d e l y u s e d for the U A V p l a t f o r m a n d flight control c o m p u t e r.A c c o r d i n g to the e x p e r i m e n t a lp r o c e s s o f m a n y p l a t f o r m e x p e r i m e n t s a n d flight tests, the s y s t e m is practical, efficient a n d reliable for thed e v e l o p m e n t o f U A V flight control s y s t e m.Key words: flight control; real t i m e s y s t e m; virtual reality; o n line p a r a m e t e r a d j u s t m e n t; fault injection随着信息技术的发展和社会需求的增长,无人机 目标侦查与打击[4_5]等领域。

一种修正的Norton-Hoff本构模型及实验验证

一种修正的Norton-Hoff本构模型及实验验证

一种修正的N o r t o n ‐H o f f 本构模型及实验验证王巧玲 唐炳涛 郑 伟山东建筑大学,济南,250101摘要:针对B 1500H S 硼钢,采用G l e e b l e ‐1500D 热模拟试验机,通过单轴拉伸试验对其在温度为550~850℃㊁应变速率为0.1~10s-1范围内的本构关系进行了研究㊂根据硼钢流动应力曲线的特点,对N o r t o n ‐H o f f 模型进行了修正,将修正后的模型与B r o s i u s 提出的N o r t o n ‐H o f f 模型和T o n g‐W a h l e n 模型进行比较,并通过预测值偏离实验值的程度进行评估㊂与实验结果对比后发现:修正的N o r t o n ‐H o f f 模型能更好地预测B 1500H S 硼钢的流动应力㊂关键词:本构模型;硼钢;流动应力;N o r t o n ‐H o f f 模型;T o n g‐W a h l e n 模型中图分类号:T G 115.5 D O I :10.3969/j.i s s n .1004132X.2015.14.023A M o d i f i e dN o r t o n ‐H o f fC o n s t i t u t i v eM o d e l a n dE x pe r i m e n t a lV e r if i c a t i o n W a ng Q i a o l i n g T a n g B i n g t a o Zh e n g We i S h a n d o n g J i a n z h uU n i v e r s i t y,J i n a n ,250101A b s t r a c t :I no r d e r t o e s t a b l i s hc o n s t i t u t i v e d e s c r i p t i o n s f o rB 1500H Sb o r o ns t e e l ,i tw a s s u b je c t e d t o i s o t h e r m a l u n i a x i a l t e n s i l e t e s t i n g o naG l e e b l e1500t h e r m o m e c h a n i c a l s i m u l a t o ra t t e m pe r a t u r e s r a n g i n gf r o m550℃t o 850℃a n d s t r a i n r a t e s r a ng i n g f r o m0.1s -1t o 10s -1.A c c o r d i n g t o t h e c h a r a c -t e r i s t i c s o f t h e f l o ws t r e s s c u r v e o f b o r o ns t e e l ,N o r t o n ‐H o f fm o d e lw a sm o d i f i e d .T h e p r e d i c t e d f l o ws t r e s s e s u s i n g t h em o d i f i e dm o d e lw e r e c o m p a r e dw i t hT o n g ‐W a h l e nm o d e l ,N o r t o n ‐H o f fm o d e l p r o -p o s e db y B r o s i u s ,a n d e v a l u a t e db y t h ed e g r e eo f t h e p r e d i c t e dv a l u ed e v i a t i o n f r o mt h e e x pe r i m e n t a l v a l u e s .B y c o m p a r i s o nw i t h t h e e x pe r i m e n t a l r e s u l t s ,i t s h o w s t h a t t h em o d if i e dN o r t o n ‐H o f fm o d e l i s b e t t e r t o p r e d i c t t h e f l o ws t r e s s o fB 1500H Sb o r o ns t e e l .K e y w o r d s :c o n s t i t u t i v e e q u a t i o n ;b o r o n s t e e l ;f l o ws t r e s s ;N o r t o n ‐H o f fm o d e l ;T o n g ‐W a h l e nm o d -e l收稿日期:20141008基金项目:国家自然科学基金资助项目(51375280);教育部新世纪优秀人才支持计划资助项目(N C E T ‐12‐1028);山东省自然科学基金资助重点项目(Z R 2013E E Z 003)0 引言随着汽车行业的快速发展,汽车轻量化和防撞性能的提升成为行业发展的趋势之一㊂超高强度钢在汽车领域的应用,可以在满足轻量化的同时提升汽车安全性能㊂目前,国外已经开始大批量使用含硼热冲压用钢,并且热冲压成形后的零件具有很多优良特性,拥有广阔的应用前景[1‐2]㊂高温成形过程中硼钢的热变形行为和高温本构关系模型在硼钢的数值模拟㊁热冲压成形技术的应用等方面起着重要作用㊂目前,对于金属材料而言,存在两种类型的本构关系㊂一种类型称为唯象模型,该模型并不涉及材料变形的微观机制,并且只考虑宏观变形参数(变形温度㊁应变速率和应变)对流动应力的影响㊂唯象模型只能从实验观察得到数据,缺乏深层次的理论依据及应用范围㊂由于该模型具有容易获得参数的优点,故被广泛采用㊂常见的模型包括J o h n s o n ‐C o o k 方程[3‐5]㊁Z e r i l l i ‐A r m -s t r o n g 方程[6]㊁A r r h e n i u s 方程[7‐8]及V o c e ‐K o c k s 方程[9]㊂另一种类型是基于物理的模型,该模型不仅考虑宏观变形参数,而且考虑高温塑性变形的物理机制,如位错运动㊁位错滑移等㊂与唯象模型相比,基于物理的模型中有更多的参数,所以建立的过程比较复杂,但它具有更高的精确度和更大的适用范围㊂本文利用G l e e b l e ‐1500D 热模拟试验机对硼钢奥氏体试样进行单向拉伸试验,考虑应变量㊁应变速度㊁温度㊁变形强化等因素,在N o r t o n ‐H o f f本构关系的基础上,提出了一种新的模型用于描述硼钢的热力学行为,用构建的本构方程计算硼钢在高温环境下拉伸试验的流动应力,并与B r o -s i u s 提出的N o r t o n ‐H o f f 模型和T o n g ‐W a h l e n 模型进行了对比,验证了预测结果的可靠性㊂1 实验设备及方法利用G l e e b l e ‐1500D 热模拟试验机对厚度为1.6m m 的B 1500H S 试样进行了系列单向热拉伸㊂拉伸试样的结构尺寸及热电偶丝位置如图1所示㊂㊃8791㊃Copyright ©博看网. All Rights Reserved.图1 B1500H S热拉伸试样及热电偶焊接位置(T C1,T C2,T C3)试样以16℃/s的速度加热至930℃并保温5m i n以充分奥氏体化,然后以50℃/s的速度冷却至指定温度(850℃㊁800℃㊁750℃㊁700℃㊁650℃㊁600℃㊁550℃),在指定温度下保温10s,恒温下利用G l e e b l e热模拟试验机进行拉伸试验,应变速率ε㊃分别取0.1s-1㊁1.0s-1㊁10s-1,获得不同温度下的拉伸应力应变曲线㊁热电偶测得的温度曲线㊁位移力关系曲线㊂2 修正的N o r t o n‐H o f f模型B r o s i u s等在文献[10]中描述过N o r t o n‐H o f f模型,N o r t o n‐H o f f模型是唯象本构模型的一种,大多数本构模型运用经验分析方法,表达流动应力的应变㊁温度㊁应变速率的相互影响,原N o r t o n‐H o f f模型为σy(εp,ε㊃p,θ)=KεKε㊃Kθ=K e x p(β/θ)εn pε㊃m p(1)其中,εp为应变;ε㊃p为应变速率;n为应变硬化指数;m为应变速率敏感指数;β㊁K为待定系数㊂为了精确地描述原始屈服应力,以及温度θ对Kε㊁Kε㊃的影响,将式(1)的参数n㊁m变为温度的函数, B r o s i u s提出了以下N o r t o n‐H o f f本构模型:σy(εp,ε㊃p,θ)=K(b+εp)n0e x p(-c n(θi-θ0))ε㊃m0e x p(c m(θi-θ0))e x p(β/θ)(2)其中,n0㊁c n㊁m0㊁c m㊁b㊁β为待定系数,θ0为室温,θi 为试验温度㊂图2所示为B r o s i u s提出的N o r t o n‐H o f f模型预测值与实验值的比较,可以发现真实应力‐应变曲线是动态回复型,变形初始阶段,应力随加载的进行而增大,当增大到材料的屈服应力后开始出现塑性流动,当材料出现稳定的亚结构后,流动应力趋于稳定值[11]㊂从图2a可以看出,温度为650℃㊁应变速率为0.1~10s-1时,应变在0~0.3范围内,应力的预测值与实验值相比,预测值偏大,应变在0.45~0.8的范围内预测值曲线呈现上升趋势,而实验曲线趋于稳定,B r o s i u s提出的N o r t o n‐H o f f模型的软化效果不明显㊂从图2b 可以看出,当应变速率为1s-1㊁温度为550℃时,模型的预测值在应变为0~0.1时大于实验值,在应变为0.1~0.3时小于实验值;温度为600℃时,模型应力明显小于实验值;温度为650~850℃㊁应变大于0.45时,B r o s i u s提出的N o r t o n‐H o f f 模型软化效果不明显㊂上述分析说明,在大范围的应变条件下,B r o s i u s提出的N o r t o n‐H o f f模型对应变的考虑欠缺,使模型对实验值预测的精确度降低㊂(a)温度为650℃(b)应变速率为1s-1图2 B r o s i u s提出的N o r t o n‐H o f f模型预测值与实验值比较针对B r o s i u s提出的N o r t o n‐H o f f模型在应变较大时软化不明显的缺点,在大应变范围内考虑应变对流动应力的影响,本文提出了一种修正的N o r t o n‐H o f f模型,在B r o s i u s提出的N o r t o n‐H o f f模型的基础上增加了一项e x p(pεp)(p是常数),代表材料的软化行为,p变大,代表软化加剧[12],该修正的N o r t o n‐H o f f模型为σy(εp,ε㊃p,θ)=K(b+εp)n0e x p(-c n(θi-θ0))ε㊃m0e x p(c m(θi-θ0))㊃e x p(β/θ)e x p(pεp)(3)3 模型对比及实验验证3.1 与B r o s i u s提出的N o r t o n‐H o f f模型的比较图3所示为修正的N o r t o n‐H o f f模型拟合结果与B r o s i u s提出的N o r t o n‐H o f f模型拟合结果的对比,由图3a可以看出,温度为650℃㊁各应变速率下,在应变为0~0.15范围内,B r o s i u s提出的N o r t o n‐H o f f模型的曲线与实验曲线相比偏高,而修正后模型的曲线更接近实验曲线㊂当应㊃9791㊃Copyright©博看网. All Rights Reserved.变为0.1㊁应变速率为10s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型与修正后模型的应力分别比实验数据增大12.51%和7.97%;当应变速率为1s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型与修正后模型的应力分别比实验数据增大7.74%和3.44%;应变速率为0.1s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型与修正后模型的应力分别比实验数据增大9.22%和4.91%㊂在应变为0.15~0.5范围内,B r o s i u s 提出的N o r t o n ‐H o f f 模型的曲线与实验曲线相比偏低,而修正后模型的曲线更接近实验曲线㊂在应变为0.4情况下,应变速率为10s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型与修正后模型的应力分别比实验数据减小5.02%和1.57%;应变速率为1s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型的应力比实验数据减小1.34%,而修正后模型的应力比实验数据增大2.3%;应变速率为0.1s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型与修正后模型的应力分别比实验数据减小6.6%和3.12%㊂应变超过0.5以后,B r o s i u s 提出的N o r t o n ‐H o f f 模型应力明显仍在增大,而修正后模型符合原始曲线的趋势趋于平稳㊂如图3b 所示,应变速率为1s -1㊁温度为550~850℃时,修正后模型的拟合效果普遍好于B r o s i u s 提出的N o r t o n ‐H o f f 模型,但是在温度为(a )温度为650℃(b )应变速率为1s-1图3 修正的N o r t o n ‐H o f f 模型拟合结果与B r o s i u s提出的N o r t o n ‐H o f f 模型拟合结果对比600℃时,两个方程的拟合效果都不理想,预测值与实验值相比,预测值偏低;温度为850℃时,预测值与实验值相比,预测值偏高,可能是由实验的误差造成的㊂由以上分析可以看出,本文提出的修正的N o r t o n ‐H o f f 本构模型比B r o s i u s 提出的N o r t o n ‐H o f f 本构模型精确度高,对由拉伸试验获得的数据的拟合效果好㊂3.2 与T o n g‐W a h l e n 模型的比较T o n g‐W a h l e n 模型是同时考虑基于物理和经验参数的模型,在Z e n e r ‐H o l l o m o n 参数Z (Z是温度补偿应变速率因子)的基础上,W a h l e n等[13]提出了关于应变速率㊁温度和应力的关系模型:Z =ε㊃pe x p (Q /(R θ))=K σn(4)其中,Q 是变形激活能;R 是摩尔气体常数,R =8.314472J /(m o l ㊃K ),求解式(4)中的σ,得σy =K-1/n [ε㊃e x p (Q /(R θ))]1/n =A [ε㊃e x p (Q /(R θ))]m (5)为了显示应变对流动应力的影响以及回复和再结晶对软化效果的影响,T o n g 等[14]提出了以下模型:σy (εp ,ε㊃p ,θ)=A [ε㊃p ex p (Q /(R θ))]m㊃[1+αe x p (-c (εp -ε0)2)][1-βe x p (-N εn p )](6)式(6)等号右边第2项考虑了回复和再结晶导致的软化效果,增加的第3项(H o c k e t t ‐S h e r b y 型方程)考虑了应变强化效果㊂由于实验数据显示流动应力没有显著减小,故将第2项忽略以简化模型,并且因为随温度增长,应变速率敏感性增大,B u r k h a r d t [15]定义应变速率指数m 为温度的线性函数,T o n g‐W a h l e n 模型为σy =A [ε㊃m 1(θ-θ0)pe x p (m 2Q /(R θ))][1-βe x p (-N εn p )](7)其中,A ㊁m 1㊁m 2㊁β㊁N ㊁n ㊁θ0为待定系数㊂对于B 1500H S ,Q =280k J /m o l ㊂将修正的N o r t o n ‐H o f f 模型与T o n g‐W a h l e n 模型进行比较,如图4所示㊂从图4a 可以看出,温度为750℃㊁应变在0~0.3之间时,T o n g‐W a h l e n 模型的预测值与实验值相比明显偏大㊂例如,当应变为0.1㊁应变速率为0.1s -1时,T o n g‐W a h l e n 模型的应力比实验数据大11.84%,而修正后模型的应力比实验数据小5.78%㊂应变为0.3~0.8时,T o n g‐W a h l e n 模型的预测值与实验值相比明显偏小㊂例如,当应变为0.6㊁应变速率为0.1s -1时,T o n g‐W a h l e n 模型与修正后模型的应力分别比实验数据小11.87%和7.27%㊂从图4b 可以看出,应变速率㊃0891㊃Copyright ©博看网. All Rights Reserved.为1s-1时,T o n g‐W a h l e n模型除了在温度为650℃时拟合效果较好以外,其他温度条件下拟合效果都不好,尤其是温度在700~850℃之间时,T o n g‐W a h l e n模型的预测值在应变为0~0.3时的应力预测值远远偏离实验值,比实验值高㊂从以上分析可以看出,修正的N o r t o n‐H o f f模型能较好地弥补T o n g‐W a h l e n模型的缺点,满足实验拟合精度的要求㊂(a)温度为750℃(b)应变速率为1s-1图4 修正的N o r t o n‐H o f f模型拟合结果与T o n g‐W a h l e n模型拟合结果的对比4 结论(1)本文针对硼钢B1500H S热变形行为进行了研究,提出了修正的N o r t o n‐H o f f模型㊂通过与B r o s i u s提出的N o r t o n‐H o f f模型的比较,发现修正后的模型比B r o s i u s提出的N o r t o n‐H o f f 模型更接近实验值,偏离实验值的百分比低于B r o s i u s提出的N o r t o n‐H o f f模型,并且修正的模型弥补了B r o s i u s提出的N o r t o n‐H o f f模型在拉伸试验后期应变较大时软化效果不明显的缺点,能更好地与真实应力‐应变曲线进行拟合㊂(2)在真实应力‐应变曲线的基础上,对修正的N o r t o n‐H o f f模型与T o n g‐W a h l e n模型的应力数据进行比较,发现在较大应变范围内,修正的N o r t o n‐H o f f模型比T o n g‐W a h l e n模型更为接近实验数据,尤其是在700~850℃的范围内,修正后模型的拟合效果更好㊂参考文献:[1] 徐虹,沈永波,孟佳,等.热冲压成形车门防撞梁组织和性能研究[J].锻压技术,2011,36(6):24‐27.X u H o n g,S h e n Y o n g b o,M e n g J i a,e ta l.S t u d y o nM i c r o s t r u c t u r e a n d P r o p e r t i e s o f H o t S t a m p i n gD o o rA n t i‐i m p a c tB e a m[J].F o r g i n g&S t a m p i n gT e c h n o l o g y,2011,36(6):24‐27.[2] 徐伟力,艾健,罗爱辉,等.钢板热冲压新技术介绍[J].塑性工程学报,2009,16(4):39‐43.X u W e i l i,A i J i a n,L u o A i h u i,e ta l.I n t r o d u c t i o no fS h e e tM e t a lH o t‐f o r m i n g[J].J o u r n a lo fP l a s t i c i t yE n g i n e e r i n g,2009,16(4):39‐43.[3] J o h n s o nGR,C o o kW H.F r a c t u r eC h a r a c t e r i s t i c s o fT h r e e M e t a l sS u b j e c t e dt o V a r i o u sS t r a i n s,S t r a i nR a t e s,T e m p e r a t u r e sa n dP r e s s u r e s[J].E n g i n e e r i n gF r a c t u r eM e c h a n i c s,1985,21(1):31‐48.[4] 刘丽娟,吕明,武文革.T i‐6A l‐4V合金的修正本构模型及其有限元仿真[J].西安交通大学学报,2013, 47(7):73‐79.L i uL i j u a n,LüM i n g,W uW e n g e.A n I m p r o v e dC o n-s t i t u t i v e M o d e la n d F i n i t eE l e m e n tS i m u l a t i o nf o rM a c h i n i n g T i‐6A l‐4V A l l o y[J].J o u r n a lo fX i’a nJ i a o t o n g U n i v e r s i t y,2013,47(7):73‐79. [5] 王金鹏,曾攀,雷丽萍.2024A l高温高应变率下动态塑性本构关系的实验研究[J].塑性工程学报,2008, 15(3):101‐104.W a n g J i n p e n g,Z e n g P a n,L e iL i p i n g.D y n a m i cP l a s-t i c E x p e r i m e n t s a n d C o n s t i t u t i v e M o d e lo f2024A l u m i n u m u n d e r H i g h T e m p e r a t u r e a n d H i g hS t r a i n R a t e[J].J o u r n a lo fP l a s t i c i t y E n g i n e e r i n g, 2008,15(3):101‐104.[6] L i n Y o n g c h e n g,C h e n X i a o m i n.A C o m b i n e dJ o h n-s o n‐C o o k a n d Z e r i l l i‐A r m s t r o n g M o d e lf o r H o tC o m p r e s s e dT y p i c a lH i g h‐s t r e n g t hA l l o y S t e e l[J].C o m p u t a t i o n a lM a t e r i a l sS c i e n c e,2010,49(3):628‐633.[7] T a n g B i n g t a o,Y u a nZ h e n g j u n,C h e n g G a n g,e ta l.E x p e r i m e n t a lV e r i f i c a t i o no fT a i l o r W e l d e dJ o i n i n gP a r t n e r s f o rH o t S t a m p i n g a n dA n a l y t i c a lM o d e l i n go f TW B s R h e o l o g i c a l C o n s t i t u t i v e i n A u s t e n i t i cS t a t e[J].M a t e r i a l s S c i e n c ea n d E n g i n e e r i n g:A, 2013,585:304‐318.[8] 曹淑芬,张立强,郭鹏程,等.22M n B5热变形行为研究及本构方程建立[J].中国机械工程,2014,25(9): 1256‐1260.C a oS h u f e n,Z h a n g L i q i a n g,G u oP e n g c h e n g,e ta l.㊃1891㊃Copyright©博看网. All Rights Reserved.S t u d y o n H o t D e f o r m a t i o n B e h a v i o r a n d F l o wS t r e s sC o n s t i t u t i v eM o d e l o f22M n B5a tH i g hT e m-p e r a t u r e[J].C h i n aM e c h a n i c a l E n g i n e e r i n g,2014,25(9):1256‐1260.[9] N a d e r iM,D u r r e n b e r g e rL,M o l i n a r iA,e t a l.C o n s t i-t u t i v eR e l a t i o n s h i p sf o r22M n B5B o r o n S t e e lD e-f o r m e d I s o t h e r m a l l y a tH ig hT e m p e r a t u r e s[J].M a-t e r i a l sS c i e n c ea n dE n g i n e e r i n g:A,2008,478:130‐139.[10] B r o s i u sA,K a r b a s i a nH,T e k k a y aAE,e t a l.M o d e-l l i e r u n g u n d S i m u l a t i o n d e r W a r m b l e c h u m f o r-m u n g:A k t u e l l e rS t a n du n dZ u kün f t i g e rF o r s c h u n-g s b e d a r f[C]//E r l a n g e r W o r k s h o p W a r m b l e c h u m-f o r m u n g.E r l a ng e n,2007:37‐58.[11] 周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述[J].机械科学与技术,2005,24(2):212‐215.Z h o uJ i m i n g,Q iL e h u a,C h e n G u o d i n g.I n v e s t i g a-t i o no nt h eC o n s t i t u t i v eR e l a t i o n s h i p o f M a t e r i a l sF o r m i n g i nH i g hT e m p e r a t u r e[J].M e c h a n i c a l S c i-e n c e a n dT e c h n o l o g y,2005,24(2):212‐215.[12] Z h a n g C h a o,L iX i a o q i a n g,L iD o n g s h e n g,e ta l.M o d e l i z a t i o na n dC o m p a r i s o no fN o r t o n‐H o f f a n dA r r h e n i u sC o n s t i t u t i v eL a w s t oP r e d i c tH o tT e n-s i l eB e h a v i o r o fT i‐6A l‐4V A l l o y[J].T r a n s a c t i o n so fN o n f e r r o u s M e t a l sS o c i e t y o fC h i n a,2012,22(Z2):457‐464.[13] W a h l e n A,F e u r e r U,R e i s s n e rJ.C o m p u t e rC o n-t r o l l e d M e a s u r e m e n ta n d A n a l y t i c a l M o d e l l i n g o fF l o wS t r e s s e s d u r i n g H o tD e f o r m a t i o no f t h eC o p-p e r A l l o y C u Z n42M n2[J].J o u r n a lo f M a t e r i a l sP r o c e s s i n g T e c h n o l o g y,1997,63(1/3):233‐237.[14] T o n g L,S t a h e lS,H o r aP.M o d e l i n g f o rt h eF E‐s i m u l a t i o n o f W a r m M e t a l F o r m i n g P r o c e s s e s[C]//P r o c e e d i n g s o f t h e6t hI n t e r n a t i o n a lC o n f e r-e n c e a n dW o r k s h o p o nN u m e r i c a l S i m u l a t i o n o f3DS h e e tM e t a l F o r m i n g P r o c e s s e s.D e t r o i t,2005:625‐629.[15] B u r k h a r d tL.E i n e M e t h o d i k Z u r V i r t u e l l e n B e-h e r r s c h u n g T h e r m o‐m e c h a n i s c h e r P r o d u k t i o n-s p r o z e s s e B e i d e r K a r o s s e r i e h e r s t e l l u n g[D].Zür i c h:E i d g e n o s s i s c h e T e c h n i s c h e H o c h s c h u l eZür i c h,2008.(编辑 陈 勇)作者简介:王巧玲,女,1990年生㊂山东建筑大学工程力学研究所硕士研究生㊂主要研究方向为超高强钢热成形过程本构模型㊂唐炳涛,男,1976年生㊂山东建筑大学工程力学研究所副教授㊂郑 伟,男,1982年生㊂山东建筑大学工程力学研究所讲师㊂ 中国创新论坛之走进天津”活动举行 2015年6月27日上午,中国机械工程学会和天津市科学技术协会主办,由天津市机械工程学会㊁天津百利装备集团承办的 中国创新论坛之走进天津”活动在天津大礼堂隆重召开㊂中国工程院院长㊁中国机械工程学会理事长周济院士出席论坛并做主旨报告㊂天津市副市长何树山出席论坛并致辞㊂会议由天津市科协主席㊁中国科学院院士饶子和主持㊂出席会议的还有天津市科协㊁天津市工业和信息化委员会等相关行业的领导㊂中国机械工程学会十届八次常务理事(扩大)会议的代表及天津市科技工作者近400人参加了此次论坛㊂在主旨报告会上,首先由周济院长作了题为 智能制造 中国制造2025’的主攻方向”的报告㊂报告提到,实施 中国制造2025”,主题是创新驱动发展,主线是工业化和信息化两化深度融合,主攻方向是智能制造㊂智能制造 制造业数字化网络化智能化是新一轮工业革命的核心技术,应该作为制造业创新驱动㊁转型升级的制高点㊁突破口和主攻方向㊂推进智能制造工程,要采取 总体规划㊁分步实施㊁重点突破㊁全面推进”的发展策略, 十年规划,两个阶段”,分阶段实现工业2.0㊁3.0㊁4.0的同步发展㊂中国工程院院士陈予恕作了题为 机械运载装备的安全运行与机械动力学 轨道车辆和航空发动机”的报告㊂他指出, 中国制造2025”作为我国制造业未来十年的行动纲领,对 行业基础和共性关键技术研发”项目给予了极大的重视和安排,而机械动力学及其控制技术是许多行业的基础和共性关键技术㊂陈院士就我国轨道交通车辆和航空发动机领域影响安全运行的动力学问题的研究现状㊁已取得成果和存在问题作了介绍㊂天津市工业和信息化委员会党组书记㊁主任李朝兴作了题为 加快推进京津冀产业协同发展打造全国先进制造研发基地”的报告㊂报告从天津制造业所面临的机遇以及承担的使命角度出发,对其规划体系,发展目标㊁重点㊁路径和布局问题进行了深入阐述,并就如何落实的相关政策和措施进行了解读㊂中国创新论坛之走进地方系列活动是由中国机械工程学会策划并组织的服务区域经济,促进地方装备制造业发展的系列活动㊂从2009年起,已经分别举行了 走进包头”㊁ 走进山东”㊁ 走进德阳”㊁ 走进长春”㊁ 走进银川”㊁ 走进山西”㊁ 走进黑龙江”㊁ 走进辽宁”等活动,取得了良好的社会效果㊂(工作总部)㊃2891㊃Copyright©博看网. All Rights Reserved.。

Gleeble 3500热机模拟试验仪的介绍

Gleeble 3500热机模拟试验仪的介绍

热裂纹敏感性评价
冷裂纹敏感性评价 脆断倾向评价 焊接工艺优化
电弧焊焊接过程模拟
焊接热影响区Biblioteka 局部脆性区和热循环过程模拟电弧焊焊接过程模拟
Rykalin-2D生成的系列峰值温度曲线
激光焊焊接过程模拟
ISO-TTM等温淬火装置和模拟的热循环曲线
T.C. Water in Water in
1350 CX1s
O

T/ C
O
t/s
CCT/SHCCT图的建立
微分法确定转变点-CCT软件包
CCT/SHCCT图的建立
CCT/SHCCT图的绘制-CCT软件包
Gleeble系统安全提示

液压伺服系统的性能曲线
HYDRAULIC MAXIMUM FORCE vs. STROKE VELOCITY
100
0.7 R.A. Test SICO Test
Reduction of Area (% )
90
0.6
80
0.5
70
0.4
900 1000 1100 1200 1300
X axis title
Critical Strain, ln (d 0/d)
焊接过程模拟
电弧焊焊接热循环过程模拟 激光焊焊接热循环过程模拟

TMCP后的力学性能测试
热成形过程模拟

热塑性试验
On-heating PDT
D u ctility in R .A .
T e m p e ra tu re
On-cooling
(a) On-heating
(b) On-cooling
5%
DRT NDT NST
Time

静电悬浮磁盘的水平系统仿真外文翻译、中英文翻译、外文文献翻译

静电悬浮磁盘的水平系统仿真外文翻译、中英文翻译、外文文献翻译

System Level Simulation of an Electrostatically Levitated DiskMichael Kraft and Alan EvansUniversity of Southampton, Highfield, Southampton, SO17 1BJABSTRACTThis paper describes the derivation of a system-level model for a micromachined disk which is levitated by electrostatic forces. Such a system has many potential applications for inertial sensors, micro-motors, microfluidic and micro-optical devices. As a simulation tool Matlab/Simulink was used since it can easily handle different domains such as electrical and mechanical without special arrangements. Multi-axis electro-mechanical sigmadelta modulators were chosen to control the various degrees of freedom of the levitated disk. Of special interest is the power-up phase at the end of which the control system has to ensure that the disk is centred between the top andbottom electrodes.Keywords: Electrostatic levitation, inertial sensors, systemlevel simulation.1 INTRODUCTIONElectrostatic forces are commonly used for actuation of micromachined devices e.g. force-balanced inertial sensors, microfluidic valves and micro-optical mirrors. However, in all these devices a mechanical connection exists between the actuated part and the substrate, the properties of which are subject to considerable process tolerances and cannot be changed easily once the device has been manufactured. In this paper a micromachined disk is suggested which is levitated by electrostatic forces. This has many potential applications such as accelerometers with online dynamic characteristics tuning, gyroscopes if the disk is spun and the precession of the disk induced by the Coriolis force is measured, microfluidic mixers and pumps, frictionless bearings for micro-motors and micro-optical light choppers. Surprisingly little work has been undertaken in this direction .The system, as shown in fig.1, consists of a nickel disk manufactured by electroplating which is encaged by sets of electrodes on top and bottom and electroplated pillars at the sides. The manufacturing process will be described elsewhere in detail. Each set of electrodes forms five capacitors which are used forboth sensing the position of the disk as well as actuating it in such a way that it is maintained at or close to the centre position.In this work the system level simulation of such a levitated disk is presented. Simulink was chosen as a simulation tool since it is ideal for the simulation of a micromachined system because it easily can handle different domains such as electrical and mechanical without special arrangements. The system is unstable in the openloop configuration, consequently, the control strategy has to be considered with great care. Here, multi-axis electromechanical sigma-delta modulators are used [3] to control the various degrees of freedom of the disk. This prevents the possibility of electrostatic latch-up [4] and also results in an inherently digital system.2 DERIVATION OF THE MODELIn order to derive a model capturing the governing features of the system the following building blocks have to be considered:- The dynamic behaviour of the disk,- conversion from the mechanical to the electrical domain, i.e. the position measurement interface,- the multi-axis electromechanical sigma-delta modulator,- the compensator,- the reset mechanism, i.e. conversion from the feedback voltage to the electrostatic forces and moments including the effects of the current position of the disk.2.1 Disk DynamicsThe dynamic behaviour of the levitated disk is characterized by three second order differential equations:where m is the mass of the disk, z the displacement from the mid-positionbetween the electrodes,and the angular deflections about the x and y axis of the disk, bz, b and b the damping coefficient in z,and directionrespectively, Ix and Iy the moments of inertia of the disk about the corresponding axis and Fext,z, Mext,x and Mext,y the external force and moments in the corresponding directions.The main difference to the usual dynamic equations describing a micromachined proof mass is that a mechanical spring force term is missing. The effective spring constant of the disk is entirely controlled by the external electrostatic forces and moments. As a drawback it obvious that the system cannot operate in an open loop mode, as usually possible for inertial sensors. A further building block is required to simulate the physical constraint of the disk, this is achieved by saturation blocks.2.2 Position Measuring InterfaceThe position of the disk, characterized by its z,and coordinates, has to be measured. This is achieved by measuring the differential capacitance of the four outer, pieshaped electrodes. The system level model does not simulate an electronic implementation, however, it is envisaged to apply an excitation voltage to the round,middle electrodes and sense the currents from the outer electrodes from which it possible to measure the four differential capacitances between the corresponding top and bottom electrodes.The information about z,and deflections is encoded in the differential capacitance values. Two possible control approaches are therefore possible. Firstly,one could extract the position information at this point of the control loop which would result in a three-axis sigma-delta modulator control scheme. Secondly, a sigma-delta loop with four paths is possible, one for each differential capacitance. The information about disk position and external inertial forces and moments is then encoded in the digital bitstream providing the output signals of the system. This approach was chosen here since the decoding of the position information can then be undertaken in the digital domain with obvious advantages. For the system level model an analytical expression for the capacitance between the pie-shaped electrodes and the disk has to be derived. The expression for this geometry is very lengthy and it was decided to use an approximation for a square electrode. As an example the expression for the top-right segment is given:whereε0 is the dielectric constant of vacuum (assumed to be the same as for air), R is the disk radius, z0the nominal distance between disk and electrodes when the disk is at mid-position.Furthermore, small angular displacements are assumed so that the usual approximation of parallel-plate capacitors is made. The expressions for the other electrodes can be derived by symmetry considerations. The use of the equation is illustrated in fig. 2a. This square plate approximation is justified by the fact that in the forward path of the sigma-delta modulator control system an ideal comparator is located whose output is not determined by a numerical exact solution but rather governed by the sign of its input signal.It should be noted that the expression for the capacitance has a singularity at= 0 or= 0, which causes a simulation error at zero deflection and incorrect numerical results for very small angles due to numerical noise. This problem can be overcome by using a linearized version of eq. (2) around = 0 and= 0, both expressions are then implemented in the model, depending on the magnitude of the angular displacements either the linerized or full expression is used.2.3 Sigma-delta Modulator and CompensatorThe building blocks for the sigma-delta modulator can be easily simulated by a relay and a sample and hold. The preceding compensator is required to stabilize the loop and ensure a high-frequency limit cycle in the unforced condition by adding a zero at a frequency at approximately 1/10 of the sampling frequency.2.4 Feedback ArrangementIn the feedback path, each of the eight top and bottom electrodes is either energized by the feedback voltage or held at zero potential, depending on the output state of the four comparators. The control system has to ensure that the electrode further away from the disk is energized,consequently forces and moments are generated to move the disk back to the mid-position parallel to the top and bottom electrodes.Provided the disk is held at zero potential (which is assumed here) the magnitude of the electrostatic force inthe z-direction can be calculated and is given by:for the top right electrode, where Vfb is the feedback voltage which is either a fixed voltage or zero depending on the state of the comparator output. The result of using the equation is illustrated in fig. 2b.As a minimum value the electrostatic force must at least be able to counterbalance the gravitational force on the disk, however, any larger inertial forces would make the disk touch the electrodes, hence the system momentarily inoperative. Simple force calculation reveal that a feedback voltage of 40 V can counterbalance approximately 100 g inertial force for a disk with a thickness of 200m and a radius of 0.5 mm, which is believed to be sufficient.The magnitude of the moment generated by the feedback voltage can be calculated and is given by:for the moment about the y-axis for the top right electrode. The result of using the equation is illustrated infig.2c.Both the expressions for the force and moments sufferfrom the same singularity as the capacitance equation causing numerical problems. The same method as described for the capacitance was chosen to circumvent the problem.Since the expression for the moments contain a squared2.5 Overall ModelFig. 3 shows the overall model implemented in Simulink. The nonlinear expressions have been directly implemented as function blocks. One sampling period is divided in a position measuring phase and a actuation phase, the delay between andthe length are important parameters determining the loop stability since they add further lag.3 RESULTSSimulations with initial conditions assuming the disk already at the mid-position show the expected behaviour;the four output signals from the comparators are repetitive sequences of two high periods and two low periods, i.e. a stable (2,2) mode which is the lowest possible mode for a second order sigma-delta modulator . Of special interest is the power-up phase, at the beginning of which the disk lies flat on one set of electrodes, i.e. initial conditions z = z0,= 0 and = 0. For a system with R = 500 m, z0 = 2 m and a disk thicknessof 200mmthe simulation result is shown in Fig. 4. It is obvious that the disk is forced to the centre position between the electrodes and the tilt angles are zeroed as well. This simulation does not take into account any surface forces which might cause stiction of the disk to the electrodes. Such a behaviour is extremely difficult to describe analytically and will be investigated in the hardware implementation. Since the disk will be fabricated from electroplated nickel the surface roughness will be considerable hence will reduce the contact area between disk and electrode which it is believed to alleviate the problem.4 CONCLUSIONSFor any control system comprising a sigma-delta modulator system levelsimulation is often the only way to predict its behaviour since a complete analytical description is extremely difficult if not impossible. Consequently, the model for the levitated disk has proved to be a valuable aid for the design of the proposed system. Although the model presented here does not consider all effects which could be included, it still describes the governing features of the system. Especially the parameters that determine the geometry, capacitance, sigma-delta modulator dynamics and stability etc. can be assessed and optimised. A trade-off between the degree of realism and the simulation time is also important. A typical simulation run of the presented model takes about 10-20 minutes on a modern PC.Further work will concentrate on the inclusion of the behaviour of lateral deflections and simulation of spinning the disk about its main axis.REFERENCES[1] Fukatsu,K,et.al.,“Electrostatically levitated micro motor for inertia measurement system,” Transducer …99,3P2.16, 1999.[2] Torti, R, et. al., “Electros tatically suspended and sensed micromechanical rate gyroscope,” SPIE, Vol 2200,pp 27-38, 1994.[3] Lemkin, M.A. and Boser, B.E., “A 3-axis micromachined accelerometer witha CMOS position-sense interface and digital offset-trim electrodes.” IEEE J. of Solid-State Circuits, Vol. 34, No. 4, pp. 456-468, 1999.[4] Kraft, M., “Closed loop accelerometer employing over sampling conversion.” Coventry Uni., Ph.D. dissertation, 1997.[5] Boser, B. E. and Howe, R. T., “Surface micromachined accelerometers,” IEEE J. of Solid-State Circuits, Vol. 31, No. 3, pp. 336-375, 1996.静电悬浮磁盘的水平系统仿真Michael Kraft ,Alan Evans南安普顿大学摘要本论文叙述了一个微机械磁盘的水平系统模型的来历,这个磁盘是受静电力而悬浮起来的。

SUS304不锈钢高温力学性能的物理模拟.

SUS304不锈钢高温力学性能的物理模拟.

304 不锈钢高温力学性能的物理模拟关小霞田建军杨健指导教师:杨庆祥胡宏彦博士燕山大学材料科学与工程学院摘要:采用Gleeble-3500热模拟试验机对304 不锈钢的高温力学性能进行了物理模拟。

对模拟结果中应力-应变曲线进行分析,并结合断口附近组织形貌的观察,得出结论:金属的极限应力随温度升高呈下降趋势;在δ-Fe向γ-Fe转变的某一温度,金属塑性急剧下降;对断口附近金相组织及SEM分析,推测晶界处可能存在着元素偏聚或析出相现象。

关键词:304不锈钢;力学性能;物理模拟1.前言:双辊铸轧不锈钢薄带技术是目前冶金及材料领域的前沿技术之一[1],是直接用钢水制成2-5mm厚薄带的工艺过程。

该技术可以大大简化薄带钢的生产流程,降低生产成本,并形成低偏析、超细化的凝固组织,从而使带材具有良好的性能,被公认为钢铁工业的革命性技术[2、3]。

但是,不锈钢经铸轧后,薄带表面会形成宏观的裂纹,从而降低不锈钢薄带的力学性能,影响其质量[4-6]。

国内外在双辊铸轧不锈钢薄带技术上已经开展了一些研究工作。

文献[7]对比了铸轧铁素体和奥氏体不锈钢薄带;文献[8、9]对铸轧304不锈钢薄带过程中高温铁素体的溶解动力学进行了研究;文献[10]对不锈钢薄带铸轧过程中凝固热参数和组织进行了研究;文献[11-14]对不锈钢薄带铸轧过程中的流场和温度场进行了数值模拟;文献[15]对铸轧304不锈钢薄带的力学性能进行了研究。

文献[16]对304不锈钢在加热过程中的高温铁素体形核与长大和夹杂物在固-液界面的聚集进行了原位观察;文献[17]对薄带铸轧溶池液面进行了物理模拟;文献[18]对铸轧不锈钢薄带过程的凝固组织、流场、温度场及热应力场进行了数值模拟。

但是,缺少对铸轧不锈钢薄带表面与内部裂纹的生成机理、演变规律以及预防措施方面的研究。

在高温性能物理模拟方面,国内外也有不少研究。

文献[19]应用THERMECMASTOR-Z热加工模拟机对奥氏体不锈钢的高温热变形进行了模拟试验;文献[20]利用Gleeble-1500试验机对铸态奥氏体不锈钢在1000-1200℃温度区间进行了热压缩试验;文献[21]从位错理论角度出发,对高钼不锈钢热加工特征与综合流变应力模型进行了研究。

加州大学圣地亚哥分校可申请课程目录

加州大学圣地亚哥分校可申请课程目录

加州大学圣地亚哥分校可申请课程目录1500字加州大学圣地亚哥分校(University of California San Diego)拥有丰富多样的课程目录,涵盖了广泛的学科领域。

以下是一些可申请的课程目录:1. 电子工程学(Electrical Engineering)- 电路设计与分析(Circuit Design and Analysis)- 控制系统(Control Systems)- 信号处理(Signal Processing)- 微电子学(Microelectronics)- 通信网络(Communication Networks)2. 生物工程学(Bioengineering)- 生物医学器械(Biomedical Instrumentation)- 生物材料科学(Biomaterials Science)- 细胞工程学(Cellular Engineering)- 生物药物工程(Biopharmaceutical Engineering)- 分子工程学(Molecular Engineering)3. 计算机科学与工程(Computer Science and Engineering)- 算法设计与分析(Algorithm Design and Analysis)- 数据结构与算法(Data Structures and Algorithms)- 人工智能(Artificial Intelligence)- 计算机图形学(Computer Graphics)- 分布式系统(Distributed Systems)4. 材料科学与工程(Materials Science and Engineering)- 材料结构与性能(Materials Structure and Properties)- 材料制备与加工(Materials Preparation and Processing) - 材料表征与分析(Materials Characterization and Analysis) - 纳米材料科学(Nanomaterials Science)- 能源材料(Energy Materials)5. 心理学(Psychology)- 认知心理学(Cognitive Psychology)- 社会心理学(Social Psychology)- 发展心理学(Developmental Psychology)- 临床心理学(Clinical Psychology)- 行为神经科学(Behavioral Neuroscience)6. 经济学(Economics)- 宏观经济学(Macroeconomics)- 微观经济学(Microeconomics)- 产业组织经济学(Industrial Organization Economics)- 国际经济学(International Economics)- 行为经济学(Behavioral Economics)7. 政治学(Political Science)- 国际关系(International Relations)- 公共管理与政策(Public Administration and Policy)- 公民学(Civic Studies)- 比较政治学(Comparative Politics)- 美国政治学(American Politics)8. 化学(Chemistry)- 有机化学(Organic Chemistry)- 无机化学(Inorganic Chemistry)- 物理化学(Physical Chemistry)- 分析化学(Analytical Chemistry)- 生物化学(Biochemistry)以上仅为加州大学圣地亚哥分校的部分课程目录,学生可以根据自己的兴趣和学习目标选择适合的课程进行申请。

Gleeble3500功能详解

Gleeble3500功能详解
© 2014 Dynamic Systems, Inc.
Welding Simulation
No cracks, 1050C, 0.41, 3/s, Bottom layer
Some cracks, 1050C, 0.41, 3/s, Top layer
Many cracks, 1050C, 0.41, 3/s, Bottom layer
© 2014 Dynamic Systems, Inc.
© 2014 Dynamic Systems, Inc.
Gleeble Specimen Thermal Profiles
Axial Thermal Gradient Control
1200
1000
Temperature (°C)
800
Hot Grips
600
Half Contact Grips
Full Contact Steel Grips
400
Full Contact Copper Grips
AISI 1080 Steel
200
1Байду номын сангаасmm Diameter Round
Specimen
-20 -15 -10 -5 0 0
51
1
2
Free Span (mm) 0
© 2014 Dynamic Systems, Inc.
3.采用HAZ(热影响区)软件进行HAZ模拟
试样:11mm方碳钢棒,71mm长,10mm自由跨度(夹块间距离 ),使用全接触铜夹具
过程:采用HAZ软件形成一个峰值温度为1100°C的HAZ热循环 ,示范运行HAZ模拟时HAZ软件的使用。数据采集系统记录温度 时间曲线,并绘制打印温度时间数据。

7050铝合金锻造过程动态再结晶元胞自动机模拟(优秀硕博学位论文)

7050铝合金锻造过程动态再结晶元胞自动机模拟(优秀硕博学位论文)
应用计算机数值模拟方法对动态再结晶过程的研究在国内外都处于起步阶12热加工模拟技术国内外发展现状121物理模拟技术在材料加工变形领域中的应用过去在材料科学研究中为了评价工艺方案对材料性能或产品质量的影响多采用反复试验方法这种单凭重复试验的经验性方法不仅消耗大量时间人力和财力而且无法全面认识材料在工艺过程中的变化规律
topology deformation and coupling deformation parameters and exact
forging.
Combined with fundamental theory of physical metallurgy and
experimental results,2D multi-scale simulation platform of forging
process
was
Байду номын сангаас
established
using
CA
method.Dynamic
recrystallization(DRX)behavior of aluminum alloy 7050 during hot
forging process was simulated using the developed platform.The main
作者签名:趣墟嗍碎年工月靶日
关于学位论文使用授权说明 本人了解中南大学有关保留、使用学位论文的规定,即:学校有 权保留学位论文,允许学位论文被查阅和借阅;学校可以公布学位论 文的全部或部分内容,可以采用复印、缩印或其它手段保存学位论文; 学校可根据国家或湖南省有关部门规定送交学位论文。
日期:盈丑年王月
中南人学硕士学位论文
第一章绪论

不同型号Gleeble热模拟试验机比对试验

不同型号Gleeble热模拟试验机比对试验

Com parison Tests of G leeble Therm al Sim ulation Testing M achine with Different M odels
ZHANG Yucheng MENG Zhensheng SHI Xuexing JU Xinhua CAI Ning MENG Yang
Gleeble 系 列 (1500、2000、3500 和 3800 等型号 )热 模 拟 试 验 机 是 美 国 DSI公 司研 制 开 发 的具 有快 (慢 )速 加热 、恒 定保 温 、急 (慢 ) 速 冷 却 并 能 给 试 样 以 各 种 速 率 变 形 (拉 、压 ) 的 多功 能 模 拟 试 验 仪 器 。 其 可 以 进 行 工 艺 模 拟 (如 焊接 、连铸 、热 轧 和锻 造 等 ) 以及材 料 研 究 模 拟 ,如 热 拉 仲 、热 压 缩 、轴 向变 形 、平 面 变 形 、应变 诱导 裂纹 、熔化 与凝 固 、热 处理 以及 相 转变 (动态 CCT (过 冷奥 氏体连续冷却转 变曲线 ) 和静态 CCT)等 J,是研 究材料 在加 热 、冷却 及
l 凌鎏 囊 垂

垂 鎏 纂模 拟 试 验 机 比对 试 验
张玉成 孟 振生 史学星 鞠新华 蔡 宁 孟 杨
(首铜 集 团有 限公 司技 术研 究 院)
摘 要 采 用 集 团 有 限 公 _占j技 术 研 究 院 Gieeble 2000D 型 热 模 拟 试 验 机 和 中 国 钢 研 科 技 集 团 有 限 公 司 Gleeble 1500型 和 Gleeble 3800型 热 模 拟 试 验 机 进 行 r动 态 再 结 晶 、静 念 再 结 晶 和 相 变 比对 试 验 。结 果 表 明 ,采用 Gleeble 2000D型热模拟 试验机测得的静念再结 晶 曲线存 在波动 和形态异 常现象 ,但 其与 Gleeble 1500 和 Gleeble 3800型 热 模 拟 试 验 机 测得 的 动 态再 结 晶 和 静 态 再 结 晶 试验 规 律 一 致 ;无 论 动 态 相 变 还 是 静 念 相 变 ,采 川 Gleeble 3800型 热 模 拟 试 验 机 测 得 的 卡H变 温 度 均 高 于 Gleeble 2000D型 热 模 拟 试 验 机 。 关键 词 动 态 再 结 晶 静 态 再 结 晶 Gleeble热模 拟试 验机 比 对 试验

最新-Gleeble全面介绍精品文档

最新-Gleeble全面介绍精品文档

(b) in-situ m elted, and reheated
Tim e
(c) reheated
铸造图开发
连铸过程模拟
铸造图开发
连铸过程模拟
Ductility (%)
90 75 60 45
300
III
II
I
600
900
1200
Temperature (C)
1500
铸造图开发
连铸过程模拟
C o n tro lled C o olin g
T im e
热加工过程模拟
液压锲系统性能
热加工过程模拟
6道次热轧过程模拟
F o rc e (k g )
-1 0 0 0 0 -8 0 0 0
H o t R o llin g P ro c e s s S im u la tio n
A IS I 1 0 1 8 S te e l
基础材料研究
熔化/凝固 超塑性 加工硬化 / 软化 再结晶 / 回复 析出 超细晶粒材料 纳米材料
材料试验
热塑性/热加工性/应变诱导裂纹开裂 轴向 / 平面应变压缩 动态和静态 CCT / CHT / TTT 焊接性能 / 零强温度 / 零塑性温度 /
12
283°C/mm 10
AISI 304 Stainless Steel Test Temp: 1100°C
Stroke Rate: 50mm/s
8
72°C/mm
9°C/mm
6
力 (kN)
4
2
0 0
10
20
30
40
50
位移 (mm)
热塑性试验

System Modeling and Simulation

System Modeling and Simulation

System Modeling and Simulation System modeling and simulation are two key concepts in the field of engineering and technology. They are used to design, analyze, and optimize complex systems in various industries such as aerospace, automotive, and manufacturing. In this essay, we will discuss the importance of system modeling and simulation, the benefits they offer, and the challenges associated with their implementation.System modeling is the process of creating a mathematical representation of a system. It involves identifying the inputs, outputs, and components of the system and defining their relationships. Simulation, on the other hand, is the process of using the model to predict how the system will behave under different conditions. By combining these two processes, engineers can create virtual prototypes of complex systems and test them before they are built.One of the main benefits of system modeling and simulation is that they allow engineers to identify and correct design flaws early in the development process. By simulating the behavior of a system, engineers can test various scenarios and evaluate the performance of the system under different conditions. This helps to reduce the risk of costly errors and delays during the manufacturing and testing phases of the project.Another benefit of system modeling and simulation is that they enable engineers to optimize the performance of a system. By analyzing the simulation results, engineers can identify areas where the system can be improved and make the necessary adjustments. This can lead to significant cost savings and improved efficiency in the final product.System modeling and simulation also offer benefits in terms of safety. By simulating the behavior of a system, engineers can identify potential safety hazards and take steps to mitigate them. This is particularly important in industries such as aerospace and automotive, where safety is a critical concern.Despite the many benefits of system modeling and simulation, there are also challenges associated with their implementation. One of the main challenges is the complexity of the systems being modeled. As systems become more complex, the models required to simulate their behavior become more complex as well. This canmake it difficult to create accurate models and can increase the time and resources required to complete the simulation.Another challenge is the availability of data. In order to create an accurate model, engineers need access to data on the behavior of the system under different conditions. This data can be difficult to obtain, particularly in industries where the systems being modeled are new or proprietary.In conclusion, system modeling and simulation are critical tools for engineers and designers in a variety of industries. They offer numerous benefits, including the ability to identify and correct design flaws early in the development process, optimize system performance, and improve safety. However, there are also challenges associated with their implementation, including the complexity of the systems being modeled and the availability of data. Despite these challenges, the benefits of system modeling and simulation make them an essential part of modern engineering and design.。

Gleeble物理模拟在钢铁材料领域的运用幻灯片PPT

Gleeble物理模拟在钢铁材料领域的运用幻灯片PPT
Using the ISO - TTM Anvils
Temp
TMCP过程模拟
单轴压缩均匀变形的实现
TMCP过程模拟
单轴压缩均匀变形组织
10 mm dia. specimen after 60% reduction at 1000oC (x100)
TMCP过程模拟
单轴压缩多道次变形的实现-液压楔系统
电弧焊焊接过程模拟
焊接热影响区的局部脆性区和热循环过程模拟
电弧焊焊接过程模拟
热循环曲线的产生----HAZ软件包
电弧焊焊接过程模拟
HAZ软件包------Rykalin-2D
电弧焊焊接过程模拟
HAZ软件包------Rykalin-2D
电弧焊焊接过程模拟
Rykalin-2D生成的系列峰值温度曲线
……………………
物理模拟技术的运用领域
材料根底研究 材料性能实验 材料加工过程模拟
材料根底研究
熔化 /凝固 固态相变 / 临界点/等温转变/连续冷却转变
沉淀相粒子行为/析出/粗化/回溶 加工硬化 /软化 形变组织的动静态回复 /再结晶 材料热塑性/超塑性 组织细化/超细晶和纳米晶块材 裂纹敏感性 热膨胀与热收缩行为
100
90
80
70
60
50
RECOMMENDED OPERATING
REGION 40
30
20
10
0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Stroke Velocity (m/s)
DSI-YSU JOINT LAB
Involved in basic materials studies by dealing with:

大型滑坡长期演变的地质力学行为及成灾模式研究年度报告

大型滑坡长期演变的地质力学行为及成灾模式研究年度报告

科技资讯2016 NO.18SCIENCE & TECHNOLOGY INFORMATION 科技报告导读173 科技资讯 SCIENCE & TECHNOLOGY INFORMATION 大型滑坡长期演变的地质力学行为及成灾模式研究年度报告苏立君1 苏志满1 李新坡1 岳宗玉2 林锋3(1.中国科学院水利部成都山地灾害与环境研究所;2.中国科学院遥感应用研究所;3.成都理工大学)摘 要:该年度投入了大量的人力和物力开展文献资料总结和野外调查工作,初步将西部山区大型滑坡地质结构类型划分为“弱面”控制型、“关键块体”型、“软弱基座”型和“采空区”控制型四大类。

将滑坡成灾模式划分为变形体-潜在威胁模式、滑坡-随动破坏模式、滑坡-高速碎屑流模式、滑坡-堰塞坝堵江模式和滑坡-高涌浪模式等5个模式。

完成了对贵州习水县程寨滑坡、贵州关岭县岗乌镇大寨滑坡和重庆武隆鸡尾山滑坡地质结构类型及成灾模式的详细调查分析工作。

获取了滑坡岩土体物性参数,为后续研究打下了基础。

在滑坡的启动和运动机理研究方面,主要完成了模型试验设备的设计和加工,基于连续介质力学和离散元的滑坡动力过程模拟,针对声波液化模型在大型滑坡中的应用及滑坡模拟中物质状态方程的替代问题的研究和采用大型模型槽及离散元方法对大型滑坡产生的碎屑流运动特征的研究等工作。

该年度所取得的研究成果有助于加深人们对大型滑坡地质结构类型和成灾模式的认识和理解,拓宽现有的对大型滑坡启动和运动的模拟方法,推动大型滑坡成因机理研究向前发展。

关键词:大型滑坡 地质结构 物理模型试验 数值模拟2013 Annual Report for "Geological and MechanicalBehaviour and Disaster Modes of Large Scale Landslides "Su Lijun 1 Su Zhiman 1 Li Xinpo 1 Yue Zongyu 2 Lin Feng 3(1.Institute of Mountain Hazards and Environment,CAS;2.Institute of Remote Sensing Applications,Chinese Academy of Sciences;3.Chengdu University of Technology)Abstract : Large amount of man power and resourses were used to carry out literature review and site investigation, this year.The characteristics of large scale landslides in west China were preliminarily divided to four groups, which are weak interface controled, key block controled, weak foundation controled and goaf controled landslides, respectively. The disaster modes of large scale landslides were divided into five types, including deformation body-potential threats mode, landslide-follow-up damage mode, landslide-high speed dry debris folw mode, landslide-dammed lake mode and landslide-surge mode. Detail investigation and analyses were conducted on types of geological structure and disater modes of Gui zhou Xi shui landslide,Gui zhou Guan ling landslide and Chong qing Wu long Ji wei shan landslide. The physical and mechanical parameters of rock and soil mass of the landslides were obtained for future research. Facilities for physical modeling of landslides were designed and manufactured. Numerical simulation of landslides based on continuum mechanics and discrete elements were conducted.The application of Acoustic liquefaction model and principle of equation of state substitution in simulation of landslides were also carried out. Large scale flume tests of dry debris flow were simulated by discontinuous deformation analysis method. The achievement we obtained this year will enhance our knowledge and understanding of the characteristics of geological structure and disaster modes for large scale landslides, broaden numerical simulations methods for the iniation and movement of large scale landslides and push the development of research on mechanism of large scale lnadslides. One SCI paper that was supported by this project was published and four more papers were submitted to international journals.Key Words : Large landslides; Geological structure; Physical model tests; Numerical simulation阅读全文链接(需实名注册):/xiangxiBG.aspx?id=50588&flag=. All Rights Reserved.。

岩石与岩体力学参数估算虚拟仿真实验

岩石与岩体力学参数估算虚拟仿真实验

实 验 技 术 与 管 理 第38卷 第1期 2021年1月Experimental Technology and Management Vol.38 No.1 Jan. 2021ISSN 1002-4956 CN11-2034/TDOI: 10.16791/ki.sjg.2021.01.028岩石与岩体力学参数估算虚拟仿真实验张鹏海,朱万成,牛雷雷,杨天鸿,刘洪磊(东北大学 资源与土木工程学院,金属矿山岩石力学与安全开采虚拟仿真教学实验中心,辽宁 沈阳 110819)摘 要:根据岩石力学的基本原理开发了岩石与岩体力学参数估算的虚拟仿真实验软件,为学生提供虚拟仿真实验。

学生通过该软件可进行岩石力学实验、岩石试件物理力学参数分析、岩体结构面识别、岩体力学参数分析的虚拟仿真实验,进而掌握岩石及岩体力学参数的估算方法。

该虚拟仿真实验不仅是传统室内岩石力学实验的有益补充,也是对岩体力学参数测定试验的尝试性拓宽,有利于提高学生的学习效果。

关键词:岩石力学;参数估算;虚拟现实;实验教学中图分类号:G642.0 文献标识码:A 文章编号:1002-4956(2021)01-0131-04Virtual simulation experiment for rock and rockmass mechanics parameter estimationZHANG Penghai, ZHU Wancheng, NIU Leilei, YANG Tianhong, LIU Honglei(Virtual Simulation Teaching Experimental Center of Rock Mechanics and Safety Mining in Metal Mine, School ofResources and Civil Engineering, Northeastern University, Shenyang 110819, China)Abstract: Based on the basic principle of rock mechanics, a virtual simulation software for rock and rock mass mechanics parameter estimation is developed. Through this software, students can conduct virtual simulation experiments of rock mechanics, physical and mechanical parameter analysis of rock specimen, rock mass structural plane identification, and rock mass mechanical parameter analysis to master the estimation methods of rock and rock mass mechanics parameters. The virtual simulation experiment is not only a useful supplement to the traditional indoor rock mechanics experiment, but also an attempt to broaden the testing of rock mechanics parameters, which is beneficial for improving the students’ learning effect.Key words: rock mechanics; parameter estimation; virtual reality; experimental teaching岩石与岩体力学参数估算是采矿工程、岩土工程等专业的基础实验课程,其教学目的是使学生深刻认识到将岩石力学基本原理应用于岩石工程问题的重要性,了解岩石力学实验过程、岩体力学性质的影响因素,掌握岩石及岩体力学参数的计算方法,为将岩石力学应用于工程实践打下坚实基础。

Gleeble3500热模拟试验机

Gleeble3500热模拟试验机

Gleeble3500热模拟试验机Gleeble 3500热模拟试验机在本科⽣教学实验中的应⽤特⾊与创新热模拟试验机是⼀个材料热机械加⼯性能分析系统, 具有急(慢)速升温降温、急(慢)速拉压变形、同时记录温度、⼒、应⼒、应变等参数变化曲线,可对⾦属材料的冶炼、铸造、锻压、成形、热处理及焊接⼯艺等各个制备阶段的⼯艺与材料性能的变化之间的关系进⾏精确的模拟。

利⽤该设备既可进⾏单⼀性能测试,⼜可进⾏多种综合性、设计性、创新性实验。

据了解,⽬前国内在本科⽣中利⽤热模拟试验机开设实验的⾼校只有清华⼤学,采⽤的设备型号为Gleeble1500,本实验采⽤的型号为Gleeble 3500,功能更丰富。

由于本实验室在为各科题组研究服务⼯作中已积累了⼤量经验,结合科研项⽬能设计出具有交⼤特⾊的实验⽅案,可为学⽣进⾏综合性、设计性、创新性实验提供技术⽀持。

特⾊实验⼀⾦属材料⾼温强度的测定特⾊实验⼆钢连续冷却转变图(CCT曲线)的测定特⾊实验⼀⾦属材料⾼温强度的测定⼀.实验⽬的(1)了解典型⾦属材料的⾼温强度与塑性及其随温度的变化规律。

(2)掌握⽤材料加⼯物理模拟设备即动态热-⼒学模拟试验机Gleeble3500测定材料抗拉强度、屈服强度和塑性的原理。

(3)掌握Gleeble 3500试验机的简单操作与编程.并了解其⼀般应⽤。

(5)测定不同钢种如20、45、40Cr和1Crl8Ni9不锈钢的拉伸强度及其塑性随温度的变化井进⾏⽐较;测定并分析变形速度对强度的影响规律。

⼆.概述材料的⼒学性能在科学研究和⼯程应⽤中具有⾮常重要的作⽤。

例如,数值模拟研究必须以⼒学性能为依据;负载结构的设计和材料加⼯艺⽅案(如焊接、锻压、热处理、表⾯改性等⼯艺)的制定必须以⼒学性能为基础等等。

温度对材料的⼒学性能功能影响很⼤。

⾼温强度和塑性是材料⾼温使⽤和热加⼯时需要考虑的重要⼒学性能指标,了解其测试⽅法及其随温度的变化规律,是对⾼温结构材料进⾏科学研究和应⽤的基础。

Gleeble试验机的应用范围

Gleeble试验机的应用范围

什么是物理模拟?
材料加工的物理模拟包括在实验室中热和机械条件的精确复制,使原材料符合最终用途的实际需要。

一个简单例子是应用在物理模拟。

材料遵从一定的热和力的特性,故可以控制整个加工过程,使材料达到最终要求。

如果可以模拟环境,其结果将非常有效。

精确地模拟之后,结果将会从实验室毫无偏差地转移到产品生产
更多»
Gleeble型号
∙Gleeble3500
∙Gleeble3800
∙Gleeble3180
∙Hydrawedge
∙MaxStrain
∙Hot Torsion System
Gleeble应用
材料测试
∙热压缩试验
∙单轴向压力
∙平面变形压力
∙应变诱导裂纹
∙熔融和凝固
∙零强度
∙热循环和热处理
∙膨胀相变点
∙加热和制冷
∙应力松弛研究
∙蠕变裂纹
∙疲劳
∙热疲劳
∙热/机械疲劳
∙液化脆性
∙固液体分界面
过程模拟
∙连铸
∙固液两相区过程
∙热轧
∙锻造
∙挤压
∙HAZ焊接循环
∙电阻对接焊
∙扩散结合
∙连续淬火
∙热处理
∙淬火
∙粉末冶金学、烧结。

基于Matlab的飞艇控制半物理实时仿真系统设计

基于Matlab的飞艇控制半物理实时仿真系统设计

基于Matlab的飞艇控制半物理实时仿真系统设计姜达郁;李中健【摘要】As the large airship inertia, long response times, low mobility, a method based on linear matrix inequality (LMI) technology was adopted to design the control law algorithm and to improve its mobility. In order to verify the performance of the airship control law, a semi-physical simulation platform was built on the basis of the XPC real-time simulation platform in Matlab, and the reflective memory network composed of the serial port and the reflected optic filler between the host/target and the flight control computer/ground station to achieve the information communication between the host/target and the flight control computer/ground stations. The real-time simulation results show that the system can intuitively and effectively verify the performance of various control law algorithms. It provides a useful reference for engineering applications of the flight control algorithms.%由于飞艇惯性大,响应时间长,机动性低,为了提高机动性,采用基于LMI线性矩阵不等式的方法设计控制律算法,为了验证飞艇控制律的性能,在Matlab的XPC实时仿真平台基础上,搭建半物理仿真平台,研究了宿主/目标机和飞控计算机及地面操作站之间通过串口和反射光纤组成的反射内存网实现宿主/目标机和飞控计算机及地面操作站之间的信息通讯.系统实时仿真的结果表明,该系统能直观有效地验证各种控制律算法的性能,为飞控算法移植到工程应用中提供了有益的参考.【期刊名称】《现代电子技术》【年(卷),期】2012(035)012【总页数】4页(P130-133)【关键词】LMI;无人飞艇;实时仿真;XPC【作者】姜达郁;李中健【作者单位】西北工业大学自动化学院,陕西西安 710129;西北工业大学自动化学院,陕西西安 710129【正文语种】中文【中图分类】TN911-340 引言由于飞艇耗能低、造价低、经济性好;可长时间悬停留空或浮空飞行,续航时间很长;具有垂直起降功能,无须占用跑道,机动性能好;可以大型化、载荷能力强;噪声小,隐身性好,安全性能好等因素,飞艇及其应用技术得到了突飞猛进的发展,同时对飞艇控制技术提出了更高要求[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Why Physical Simulation
Industrial Applications
Computer Modelling
Physical Simulation
Gleeble Applications on Metals Handbook
Applications of Physical Simulation Technologies
Floating/ Specimn Fixed End
Rotation End
Digital Control System:
The Hot Torsion System / HTS
Instant Speed-up: < 5msec to reach 1,000 rpm Free Coupler for Minimal Strain Error during Acceleration and Free Unloading Environment Control: Inert gas or vacuum In-situ Quenching
Con-Casting Process Simulation

Slab Casting Process Simulation
Con-Casting Process Simulation


Diffusion Bonding
Process Simulation

Heat Treatment (Annealing, Normalizing, Quenching, Tempering, ...) Strip Annealing Powder Metallurgy / Sintering / HIPping Synthesis (SHS) ....
Yoke
Stop Specimen loader Jaw transducer
Digital Control System: The Hydrawedge System
Separate yet Synchronized Control of Strain and Strain Rate No Over-Travel at A High Speed Multiple Compression at Different Values of Strain, Strain Rate and Temperature
o
Gleeble Test Principle
grip/specimen contact free span
Grips
AC current flow
jaw/grip contact
Axial Thermal Gradient Control
TENSION / COMPRESSION Bulk Heat Gain: I2RE Bulk Heat Loass: -(A/RT)dT/dL I = electric current RE = electric resistance RT = thermal resistance A = cross section area T = temperature L = length of conduction path R1 R2 R3 R4 R5 COMPRESSION
Free Span (mm)
Gleeble Specimen Thermal Profile

Radial Thermal Gradient Control
Surface to Center Temp Difference (°C)
60 60
Specimen size: 10mm diameter
0
1300
Test Temperature (°C)
Development of Gleeble Thermal Mechanical Simulators


Hydrawedge System
Hot Torsion System: HTS-50 Deformation Simulator:
Multi-Axis
Furnace
Heating
Induction Bulk
Heating
Heating
Laboratory Heating
Comparison of Heating Methods Furnace Heat Transfer Heating Rate Temp. Uniformity Thermal Mass Testing Efficiency Radiation and Convection Slow at ~1 C/sec Uniform after soaking Large Low

Materials Testing

Creep / Stress Rupture
Plane Strain Fracture Toughness / CTOD ......
Process Simulation Casting / Foundry Semi-Solid Processing TMCP (Rolling, Forging and Extrusion) Welding: HAZ cycling, Weld metal, Laser welding, Electron beam welding, Upset butt welding, Friction stir welding ...

Basic Materials Studies Melting /Solidification Superplasticity Work Hardening / Softening Recrystallization / Recovery Precipitation Ultra-Fine Grain Materials Nanometer Materials
MAXStrain System
HDS-V40
SimCast System
Series 3 Digital Control System: The Gleeble 3500
Since 1995
Gleeble 3500 Specifications
Max. speed: 1,000mm/s Loading capacity: 10 metric tons in tension and compression Max. heating rate: 10,000C/sec

Digital Control System:
The Hot Torsion System / HTS
Servo Hydraulic Control System Combined Torsion and Tension/Compression Control during Torsion Rapid Resistance Heating and Cooling Thermocouple or Pyrometer Control Uniform Temp. within Gauge Length
50
Helium Carbon Steel
50
40
Argon Carbon Steel Vacuum Carbon Steel Argon Stainless Steel With Flexible Thermal Sleeve
40
30
30
20
2010100800 900 1000 1100 1200
Gleeble Systems: Physical Simulation Technology
Todd A. Bonesteel
Dynamic Systems Inc. Poestenkill, NY 12140 U.S.A.
Outline

History of DSI of Physical Simulation
o
Induction Heating Eddy Current Heating Medium at 200 C/sec Uniform after soaking Medium Medium
o
Bulk Heating Joule Heating Fast: 10,000 C/s Uniform during heating Small High

Digital Control System: The Hydrawedge System
Since 1990
Digital Control System: The Hydrawedge System
Mechanism
of the Hydrawedge System
Anvils
Load cell

Axial Thermal Gradient Control
1200
1000
Temperature ( 癈 )
800
Copper Jaw Full-contact
600
Half-contact Hot Jaw
400
AISI 1018 Steel
200
10 m m Diam eter
0 -20 -15 -10 -5 0 5 10 15 20

Materials Testing
Hot Ductility / Hot Workability / SICO Uniaxial / Plane Strain Compression Dynamic and Static CCT / CHT / TTT Weldability / NST / NDT / BTR / RDR Thermal and/or Mechanical Fatigue Superplasticity / Elongation Elastic Modulus / Yield Stress / UTS
相关文档
最新文档