初三(下)--期末数学模拟3 (修复的)
初三数学下期末模拟试卷带答案
一、选择题1.如图是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c22.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)3.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变4.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.6.如图,PA,PB分别与⊙O相切于A,B两点,延长PO交⊙O于点C,若60APB∠=︒,6PC=,则AC的长为()A.4 B.22C.23D.337.如图,以O为圆心,任意长为半径画弧,与射线OA交于点B,再以B为圆心,BO长为半径画弧,两弧交于点,C画射线OC,则tan AOC∠的值为()A.12B.3C.3D.38.如图,已知第一象限内的点A在反比例函数2yx=的图象上,第二象限的点B在反比例函数kyx=的图象上,且OA⊥OB,tanA=2,则k的值为()A.4 B.8 C.-4 D.-89.如图,在4×5的正方形网格中,每个小正方形的边长都是1,ΔABC的顶点都在这些小正方形的顶点上,那么cos∠ACB值为()A.355B.175C.35D.4510.如图,正方形ABCD的边长为1,点A与原点重合,B在y轴正半轴上,D在x轴负半轴上,将正方形ABCD绕着点A逆时针旋转30至AB C D''',CD与B C''相交于点E,则E坐标为()A.31,3⎛⎫- ⎪⎪⎝⎭B.11,2⎛⎫-⎪⎝⎭C.31,2⎛⎫-⎪⎪⎝⎭D.21,3⎛⎫- ⎪⎝⎭11.已知四个数2,3,m,3成比例的线段,那么m的值是()A.3B.23C.2D.2312.如图,函数y=kx(k>0)与函数2yx=的图象相交于A,C两点,过A作AB⊥y轴于B,连结BC,则三角形ABC的面积为()A.1 B.2 C.k2D.2k2二、填空题13.一个几何体是由一些大小相同的小正方块摆成的,从正面看与从上面看得到的形状图如图所示,则组成这个几何体的小正方体的个数n的所有可能值的和是______________14.一个几何体由几个大小相同的小正方体搭成,这个几何体的俯视图和左视图如图所示,则这个几何体中小正方体的个数最少是________个.15.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG 中,12,18EF cm EG cm ==,45EFG ∠=︒,则AB 的长为_____cm .参考答案16.如图,点O 为正八边形ABCDEFGH 的中心,连接DA 、DB ,则=ADB ∠______度;若4OA =,则该正八边形的面积为______.17.如图,梯形ABCD 是拦水坝的横断面图,(图中1:3i =是指坡面的铅直高度DE 与水平宽度CE 的比),60B ∠=,6AB =,4=AD ,拦水坝的横断面ABCD 的面积是________(结果保留三位有效数字,参考数据:3 1.732=,2 1.414=)18.如图,在直角坐标系xOy 中,已知点A (0,1),点P 在线段OA 上,以AP 为半径的⊙P 周长为1.点M 从A 开始沿⊙P 按逆时针方向转动,射线AM 交x 轴于点N (n ,0).设点M 转过的路程为m (01m <<),,随着点M 的转动,当m 从13变化到23时,点N 相应移动的路径长为___.19.在梯形ABCD 中,//AD BC ,两条对角线AC 、BD 相交于点O ,:1:9AODCOBSS=,那么BOC DOC S S =△△:__________.20.如图,反比例函数y =kx(x >0)经过A ,B 两点,过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作轴BE ⊥x 于点E ,连接AD ,已知AC =2,BE =2,S 矩形BEOD =16,则S △ACD =_____.三、解答题21.用若干大小相同的小立方块搭成一个几何体,使得从正面和从上面看到的这个几何体的形状图如图所示.请你画出从左面看到的这个几何体的形状图的可能结果(要求画出不少于三种形状图).22.如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体:(1)图中有_____个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图和左视图.23.已知:如图所示,ABC 在直角坐标平面内,三个顶点的坐标分别()0,3A ,()3,4B ,()2,2C ,(正方形网格中每个小正方形的边长是一个单位长度).()1画出ABC 关于x 轴对称的111A B C △,点1C 的坐标是____;tan _____.BAC ∠=()2以点B 为位似中心,在网格内画出222A B C△,使222A B C △与ABC 位似,且位似比为2:1,点2C 的坐标是_____;()2223A B C 的周长为_______ .24.已知:E 是矩形ABCD 的边AB 上一个动点,直线EF DE ⊥交BC 于点F .(1)求证:ADE ∽BFE △;(2)若直线EF 经过C 点,且3AD =,10AB =,是否存在这样的点E ,使ADE 和BFE △相似?若存在,请求出AE 的长度;若不存在,请说明理由.(3)连结DF ,若3AD =,2AE =,当ADE 和EFD △相似时,则AB =______. 25.已知:如图,一次函数的图象与反比例函数ky x=的图象交于A 、B 两点,且点B 的坐标为.(1)求反比例函数ky x=的表达式; (2)点在反比例函数ky x=的图象上,求△AOC 的面积; (3)在(2)的条件下,在坐标轴上找出一点P ,使△APC 为等腰三角形,请直接写出所有符合条件的点P 的坐标.26.如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需绕行B 地.已知B 地位于A 地北偏东67︒方向,距离A 地390km ,C 地位于B 地南偏东30方向.若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长.(结果保留整数,参考数据:12sin 6713︒≈,5cos6713︒≈,12tan 675︒≈,3 1.73≈).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D【分析】由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2故选:D.【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.2.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.3.D解析:D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.4.B解析:B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.5.C解析:C 【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线.6.C解析:C 【分析】如图,设CP 交⊙O 于点D ,连接OA 、AD .由切线的性质易证△AOP 是含30度角的直角三角形,所以该三角形的性质求得半径=2;然后在等边△AOD 中得到AD=OA=2;最后通过解直角△ACD 来求AC 的长度. 【详解】解:如图,设CP 交⊙O 于点D ,连接OA 、AD .设⊙O 的半径为r .∵PA 、PB 是⊙O 的切线,∠APB=60°, ∴OA ⊥AP ,∠APO=12∠APB=30°. ∴OP=2OA ,∠AOP=60°, ∴PC=2OA+OC=3r=6,则r=2,易证△AOD 是等边三角形,则AD=OA=2, 又∵CD 是直径, ∴∠CAD=90°, ∴∠ACD=30°,∴AC=tan 30?AD3故选:C . 【点睛】本题考查了切线的性质,圆周角定理.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.D解析:D【分析】由题意可以得到∠AOC的度数,再根据特殊角的锐角三角函数值可以得解.【详解】解:如图,连结BC,则由题意可得OC=OB,CB=OB,∴OC=OB=BC,∴△BOC是等边三角形,∴∠AOC=60°,∴tan∠AOC=tan60°=3,故选D.【点睛】本题考查尺规作图与三角形的综合应用,由尺规作图的作法得到所作三角形是等边三角形是解题关键.8.D解析:D【分析】过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,易证△AOC∽△OBD,则根据相似三角形的性质可得214AOCBODS OAS OB⎛⎫==⎪⎝⎭△△,再根据反比例函数系数k的几何意义即可求出k的值.【详解】解:过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,则∠ACO=∠BDO=90°,∠OAC+∠AOC=90°,∵OA⊥OB,tan∠BAO=2,∴∠AOC+∠BOD=90°,OA:OB=1:2,∴∠OAC=∠BOD,∴△AOC∽△OBD,∴221124 AOCBODS OAS OB⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭△△,∵1212AOCS⨯==,12BODS k=△,∴11142k=,∴8k=,∵k<0,∴k=﹣8.故选:D.【点睛】本题考查了反比例函数系数k的几何意义、相似三角形的判定和性质以及三角函数的定义等知识,熟练掌握所学知识、明确解答的方法是解题的关键.9.C解析:C【分析】如图,过点A作AH BC⊥于H.利用勾股定理求出AC即可解决问题.【详解】解:如图,过点A作AH BC⊥于H.在Rt ACH∆中,4AH=,3CH=,2222435AC AH CH∴=+=+=,3cos5CHACHAC∴∠==,故选:C.【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10.A解析:A【分析】连接AE,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=12∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】如图:连接AE∵将边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB C D ''',∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt △ADE 和Rt △A B′E 中,∵AD AB AE AE '=⎧⎨=⎩∴Rt △ADE ≌Rt △AB′E (HL ),∴∠DAE=∠B′AE=12∠B ′AD=30°, ∴DE=ADtan ∠DAE=1×33=33∴点E 的坐标为(-13 故选:A【点睛】本题考查了正方形的性质、坐标与图形旋转.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.11.B解析:B【分析】 利用比例线段的定义得到233m =::m 即可.【详解】 根据题意得233m =:: 所以33m =, 所以233m =. 故选:B .【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 a :b=c :d (即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段.12.B解析:B【分析】设点A 坐标2,x x ⎛⎫ ⎪⎝⎭,根据点A ,C 关于原点对称,可得出点C 坐标,最后根据三角形的面积计算即可.【详解】设点A 坐标2,x x ⎛⎫ ⎪⎝⎭,则点C 坐标2,x x ⎛⎫--⎪⎝⎭, ∵AB ⊥y 轴, ∴()114222ABC A C S AB y y x x=⋅-=⋅=, 故选B .【点睛】本题考查反比例函数图象上点的坐标特征,熟练掌握双曲线是关于原点对称,两个分支上的点也是关于原点对称是解题的关键.二、填空题13.11【分析】易得这个几何体共有2层由主视图和俯视图可得第一层最多正方体的个数为3块第二层最多正方体的个数为3块相加即可【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=55+6解析:11【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=5,5+6=11,故答案为:11.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案. 14.5【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由左视图可得第二层所须小正方体最少的个数相加即可得答案【详解】由俯视图和左视图可知此几何体有2层第一层有4个小正方体第二层最少有1个小正 解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层所须小正方体最少的个数,相加即可得答案.【详解】由俯视图和左视图可知此几何体有2层,第一层有4个小正方体,第二层最少有1个小正方体,∴这个几何体中小正方体的个数最少是5个,故答案为:5【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.15.【分析】作EH ⊥FG 于点H 解直角三角形求出EH 即可得出AB 的长度【详解】解:如图所示作EH ⊥FG 于点H ∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图 解析:62 【分析】 作EH ⊥FG 于点H ,解直角三角形求出EH 即可得出AB 的长度.【详解】解:如图所示,作EH ⊥FG 于点H ,∵∠EHF=90°,∠EFG=45°,∴∠EFG=∠FEH=45°,∴EH=HF=22EF , ∵12EF cm ,∴EH=62,根据三视图的意义可知,AB=EH=62故答案为:62【点睛】本题考查了三视图,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.16.225【分析】连接OAOB 由正八边形的性质求出得到过A 作于K 可证得是等腰直角三角形利用正弦的定义求出AK 由三角形面积公式即可得出答案【详解】解:连接OAOB ∵ABCDEFGH 是正八边形∴∴过A 作于K解析:22.5 322【分析】连接OA 、OB ,由正八边形的性质求出45AOB ∠=︒,得到22.5ADB ∠=︒,过A 作AK OB ⊥于K ,可证得AKO ∆是等腰直角三角形,利用正弦的定义求出AK ,由三角形面积公式即可得出答案.【详解】解:连接OA 、OB ,∵ABCDEFGH 是正八边形,∴360845AOB ∠=︒÷=︒,∴122.52ADB AOB ∠=∠=︒, 过A 作AK OB ⊥于K ,∴90AKO ∠=︒,∵45AOB ∠=︒,, ∴AKO ∆是等腰直角三角形, ∵4OA =,∴2242222AK === ∴114224222OAB S OB AK ∆=⋅=⨯⨯= ∴正八边形ABCDEFGH 8842322OAB S ∆==⨯=故答案为:22.5,322.【点睛】本题考查的是正多边形的有关计算以及锐角三角函数,掌握正多边形的中心角的计算方法、熟记锐角三角函数的定义是解题的关键.17.520【分析】过点A 作于点F 利用特殊角的锐角三角函数值和坡度求出AFBFCE 的长把整个梯形分成两个三角形和一个矩形去计算面积【详解】解:如图过点A 作于点F ∵∴∵∴故答案是:520【点睛】本题考查锐角解析:52.0【分析】过点A 作AF BC ⊥于点F ,利用特殊角的锐角三角函数值和坡度求出AF 、BF 、CE 的长,把整个梯形分成两个三角形和一个矩形去计算面积.【详解】解:如图,过点A 作AF BC ⊥于点F , 3sin 606332AF AB =⋅︒=⨯=, 1cos60632BF AB =⋅︒=⨯=, 33DE AF ==,∵3DE EC =, ∴9EC =, ∵1193333222ABF S AF BF =⋅=⨯⨯=, 11273933222CDE S CE DE =⋅=⨯⨯=, 433123ADEF S AD AF =⋅=⨯=,∴9327312330352.0ABCD S =++=≈. 故答案是:52.0.【点睛】本题考查锐角三角函数的实际应用,解题的关键是掌握利用特殊角的锐角三角函数值解直角三角形的方法.18.【分析】当m 从变化到时点N 相应移动的路经是一条线段只需考虑始点和终点位置即可解决问题当m=时连接PM 如图1点M 从点A 绕着点P 逆时针旋转了一周的从而可得到旋转角为120°则∠APM=120°根据PA=23 【分析】当m 从13变化到23时,点N 相应移动的路经是一条线段,只需考虑始点和终点位置即可解决问题.当m=13时,连接PM ,如图1,点M 从点A 绕着点P 逆时针旋转了一周的13,从而可得到旋转角为120°,则∠APM=120°,根据PA=PM 可得∠PAM=30°,在Rt △AON 中运用三角函数可求出ON的长;当m=23时,连接PM,如图2,点M从点A绕着点P逆时针旋转了一周的23,从而可得到旋转角为240°,则∠APM=120°,同理可求出ON的长,问题得以解决.【详解】解:①当m=13时,连接PM,如图1,∠APM=13×360°=120°.∵PA=PM,∴∠PAM=∠PMA=30°.在Rt△AON中,NO=AO•tan∠OAN=1×3=3.②当m=23时,连接PM,如图2,∠APM=360°-23×360°=120°,同理可得:NO=33.综合①、②可得:点N332323【点睛】本题主要考查了旋转角、等腰三角形的性质、三角函数等知识,若动点的运动路径是一条线段,常常可通过考虑临界位置(动点的始点和终点)来解决.19.3:1【分析】根据在梯形ABCD中AD∥BC易得△AOD∽△COB且S△COB:S△AOD=9:1可求=3:1则S△BOC:S△DOC=3:1【详解】解:根据题意AD∥BC∴△AOD∽△COB∵S△解析:3:1【分析】根据在梯形ABCD中,AD∥BC,易得△AOD∽△COB,且S△COB:S△AOD=9:1,可求BOOD=3:1,则S△BOC:S△DOC=3:1.【详解】解:根据题意,AD∥BC,∴△AOD∽△COB,∵S△AOD:S△COB=1:9,∴BOOD=3:1,则S△BOC:S△DOC=3:1,故答案为:3:1.【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形面积的比等于相似比的平方是解题的关键.20.6【分析】利用反比例函数比例系数k的几何意义得到S矩形BEOD=|k|=16则求出k得到反比例函数的解析式为y=再利用A点的横坐标为2可计算出A 点的纵坐标为8从而得到CD=6然后根据三角形面积公式计解析:6【分析】利用反比例函数比例系数k的几何意义得到S矩形BEOD=|k|=16,则求出k得到反比例函数的解析式为y=16x,再利用A点的横坐标为2可计算出A点的纵坐标为8,从而得到CD=6,然后根据三角形面积公式计算S△ACD.【详解】解:∵BE⊥x轴于E,BD⊥y轴于D,∴S矩形BEOD=|k|=16,而0k ,∴k=16,∴反比例函数的解析式为y=16x,∵AC⊥y轴,AC=2,∴A点的横坐标为2,当x=2时,y=16÷2=8,∴CD=OC﹣OD=8﹣2=6,∴S△ACD=12×2×6=6.故答案为6.【点睛】本题考查了反比例函数比例系数k的几何意义:在反比例函数图象y=kx中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题21.见解析【分析】根据俯视图可得底面有5个小正方体,结合主视图可得第二层“田”字上可能有2个或3个或4个或5个,进而可得答案.【详解】解:可能有以下三种情况.【点睛】本题考查了三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.22.(1)7,(2)见解析.【分析】(1)根据几何体有2层,将2层的小正方体的个数相加即可;(2)主视图有3列,每列小正方数形数目分别为1,2,1;左视图有3列,每列小正方形数目分别为2,1,1;据此可画出图形.【详解】解:(1)由图可得,图中有7个小正方体;故答案为:7;(2)如图所示:【点睛】本题考查了三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.23.(1)画图见解析;1C 的坐标是(2,-2);tan BAC ∠=1;(2)画图见解析;2C 的坐标是(1,0);(3)45210+.【分析】(1)将△ABC 关于x 轴对称得到△A 1B 1C 1,如图所示,找出所求点坐标;证明ABC 是等腰直角三角形即可求出tan BAC ∠的值;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,如图所示,找出所求点坐标即可.(3)先求出△ABC 的周长,再根据222A B C 与ABC 的位似比为2:1,即可求出222A B C 的周长.【详解】解:(1)111A B C 如图所示,点C 1的坐标是(2,-2);∵222125AC =+=,222125BC =+=,2221310AB =+=, ∴222AC BC AB +=,AC BC =,∴ABC 是等腰直角三角形,∴45BAC ∠=,∴tan BAC ∠= tan 45=1;故答案是:(2,-2);1;(2)△A 2B 2C 2如图所示,2 C 的坐标是(1,0);故答案是:(1,0);(3)∵△ABC 的周长55102510222A B C 与ABC 的位似比为2:1,∴222A B C 的周长为2(2510)=4510 故答案为:510【点睛】此题考查了作图-位似变换与对称变换及三角函数值的求法,熟练掌握位似变换与对称变换的性质是解本题的关键.24.(1)证明见解析;(2)存在,1AE =或9;(3)4或132【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)设AE x =,则10BE x =-,利用相似三角形的性质,构建方程求解即可;(3)连接DF .分两种情形:当ADE EDF ∽△时,当ADE △∽EFD △时,分别构建方程求解即可.【详解】(1)∵四边形ABCD 是矩形∴90A B ∠=∠=︒,∵EF DE ⊥∴90DEF ∠=︒,∴AED BFE ∠=∠ ∴ADE ∽BFE △;(2)设AE x =,则10BE x =-, 由题意得:3BF BC AD ===∵ADE ∽BFE △ ∴AD AE BE BF =,∴3103x x =- 解得:1x =或9经检验,1x =或9是分式方程的根, ∴1AE =或9;(3)连接DF .当ADE ∽EDF 时 则AD AE DE EF = ∴32DF AD EF AE == ∵ADE ∽BEF ∴32AD DE EB EF == ∵3AD = ∴2BE =∴224AB AE BE =+=+= 当ADE ∽EFD △时则AD AE EF DE = ∴23DE AE EF AD == ∵ADE ∽BEF∴23AD DE EB EF == ∵3AD =∴92BE = ∴913222AB AE EB =+=+= 综上所述,满足条件的AB 的值为4或132 故答案为:4或132. 【点睛】本题考查了相似三角形、矩形、分式方程的知识;解题的关键是熟练掌握相似三角形、矩形、分式方程的性质,从而完成求解.25.(1);(2)32;(3)(-1,0)、(0,0)、(0,1).【详解】(1)一次函数的图象过点B ,∴∴点B坐标为∵反比例函数kyx=的图象经过点B反比例函数表达式为(2)设过点A、C的直线表达式为,且其图象与轴交于点D ∵点在反比例函数的图象上∴∴点C坐标为∵点B坐标为∴点A坐标为解得:过点A、C的直线表达式为∴点D坐标为∴(3)①当点P在x轴上时,设P(m,0)∵2,22(1)2m++22(2)1m++∴22(1)2m++22(2)1m++22(2)1m++2,解得:m=0或-1②当点P在y轴上时,设P(0,n),∵2,221(2)n+-222(1)n+-∴221(2)n+-222(1)n+-221(2)n+-2解得:n=0或1综上所述:点P 的坐标可能为、、26.447km【分析】过点B 作BD ⊥AC 于点D ,利用锐角三角函数的定义求出AD 及CD 的长,进而可得出A 地到C 地之间高铁线路的长.【详解】解:如图所示,过点B 作BD AC ⊥于点D ,则//BD AE ,由题意得:390km AB =,30CBD ∠=︒,//BD AE ,则67ABD BAE ∠∠==︒,BD AC ⊥,∴在Rt △ABD 中,sin AD ABD AB ∠=,cos BD ABD AB∠=, 1239036013AD ∴=⨯=,539015013BD =⨯=, 又在Rt BCD 中,30CBD ∠=︒,12CD BC ∴=, 由勾股定理得:222CD BD BC +=,222150(2)CD CD ∴+=,解得:3CD =, 3 1.73≈,50 1.7387CD ∴≈⨯=,AC AD CD ∴=+36087=+447=,答:A 地到C 地之间高铁线路长为447km .【点睛】本题考查了解直角三角形的应用-方向角问题,熟记锐角三角函数的定义是解题的关键.。
九下数学期末测3及答案
数学模拟试题(时间:120分钟,满分:120分)一、选择题(每小题2分,共20分) 1.方程0322=--x x 的根的情况是( ).A .两个不相等的实数根B .有两个相等的实数根C .有一个实数根1D .没有实数根2.如图,ABCD 是⊙O 的内接四边形,AD 是直径,∠CBE =50°,则图中的圆心角∠AOC 的度数是( )A .30°B .20°C .50°D .100°3.若点(-1,2)在双曲线)0(≠=k xky 上,则双曲线在( ) A .第一、三象限 B .第二、四象限 C .第二象限 D .第四象限4.若两圆半径分别为3和5,圆心距为7,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离5.过原点的抛物线是( )A .122-=x y B .122+=x y C .x x y +=22 D .2)1(2+=x y6.随机抽查某商场五月份中5天的营业额分别如下(单位:万元) 4.4 3.9 4.0 4.1 3.6,试估计这个商场五月份的营业额大约是( ) A .4万元 B .20万元 C .120万元 D .124万元7.如图,有一个边长为2的正六边形,若要剪一张圆形纸片完全盖住这个图形,则这个圆形纸片最小半径是( )A .2B .22C .4D .328.如图,△ABC 中,∠C =90°,∠ABC =60°,D 是AC 的中点,则tan ∠DBC 的值等于( ) A .21B .23C .3D .19.一段导线,在0℃时电阻为2Ω,温度每增加1℃,电阻增加0.008Ω,那么电阻R (Ω)表示为温度t (℃)的函数关系式为( )A .R =0.008tB .R =2.008tC .R =2+0.008tD .R =2t +0.00810.某市在居民用电上,采用分段计费的方法计算电费:每月用电不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度仍按原标准收费,超过部分每度0.50月 份 一月份 二月份 三月份 用电度数 138度 80度 交费金额76元63元45元6角A .约85度B .90度C .约110度D .112度二、填空题(每小题2分,共20分)11.已知关于x 的方程032=+-c x x 的一个解是x =1,则c =_______,它的另一个解是______. 12.方程组⎩⎨⎧==+36xy y x 的解是_________.13.如图,已知ABCD 是圆的内接四边形,对角线AC 和BD 相交于E ,BC =CD =4,AE =6,AE ⊥BD ,则BD 的长等于__________.14.已知⊙1O 和⊙2O 的半径分别为2cm 和8cm ,两圆的圆心距21O O =12cm ,则一条外公切线与连心线所夹的锐角为________. 15.方程22112=-+-xx x x 的根是___________. 16.用图形表示到定点A 的距离小于或等于1cm 的点的集合_______.17.数学课上,学生动手将面积为4002cm 的正方形硬纸片围成圆柱的侧面,则此圆柱的底面直径为________cm .18.如图,已知两圆相交于C 、D 两点,AB 为两圆的外公切线,A 、B 为切点,CD 的延长线交AB 于M ,若MD =3,CD =9,则AB 的长等于_________.19.已知正数a 和b ,有下列命题:(1)若a +b =2,则1≤ab ;(2)若a +b =3,则23≤ab ;(3)若a +b =6,则3≤ab ,根据以上三个命题所提供的规律猜想:(1)若a +b =9,则≤ab ______;(2)a +b 与ab 之间的关系:_______(用“>”、“=”、“<”号填空).20.等边三角形一个顶点的坐标为)0,33(B ,且顶点C 与顶点B 关于y 轴对称,则顶点A 的坐标是__________.三、(每小题6分,共12分)21.求值:242)1)(32(23++--+a a a a a ,其中321-=a .22.当今,青少年视力水平的下降已引起全社会的关注,为了了解某中学毕业年级500分 组 频 数 频 率 3.95~4.252 0.04 6 0.12 4.55~4.85 23 4.85~5.15 5.15~5.45 1 0.02 合 计1(2)在这个问题中,样本是________________________________;(3)若视力为4.9、5.0、5.1均属正常,不需矫正,试估计该校毕业年级学生视力不正常的约为_____________;(4)若要较直观地表示出该校毕业年级学生视力的分布情况,还应______.四、(每小题7分,共21分)23.如图,ABCD 中,BD ⊥AD ,以BD 为直径作圆O ,交AB 于E ,交CD 于F ,若BD =12,AD ∶AB =1∶2,求图中阴影部分的面积.24.试利用画图和文字,说明如何测得已知高为h的小山上的铁塔AB的高度,要求:(1)简要说明测量铁塔高度的过程,指明所需测量的数据;(2)根据已知条件及测得数据列出表示塔高的代数式(写出计算过程);(3)指出在实际测量过程中应注意的事项.25.如图,AB是⊙O的直径,CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O 于F,连结AE、EF.(1)求证:AF是∠BAC的平分线;(2)试确定是否存在∠ABD的一个取值,使AB与EF平行?若存在,指出其取值并说明理由.五、(每小题8分,共16分)26.某工厂把500万元资金投入新品生产,第一年获得了一定的利润,在不抽调资金和利润(即将第一年获得的利润也作为生产资金)的前提下,继续生产,第二年的利润率(即所获利润与投入生产资金的比)比第一年的利润率增加了8%,且第二年的利润为112万元,求第一年的利润.27.(1)以边长为2cm的正六边形ABCDEF的中心为原点,建立直角坐标系,且使点A 在x轴的正半轴上,点B在第四象限.(2)求出正六边形各顶点的坐标(直接写出结果);(3)确定一个二次函数的解析式,使其经过该正六边形的三个顶点(写出计算过程).六、(9分)28.对于气温,通常有摄氏温度和华氏温度两种表示,且两者之间存在着某种函数关系,下列给出了摄氏(℃)温度x 与华氏(°F )温度y 之间对应关系. x (℃) … -10 0 10 20 30 … y (°F )…1432506886…(1)通过①描点、连线;②猜想;③求解;④验证等几个步骤,试确定y 与x 之间的函数关系式;(2)某天,沈阳的最高气温是12℃,台湾台北的最高气温是88°F ,问这一天台北的最高气温比沈阳的最高气温高多少摄氏度(结果保留整数)?七、(10分)29.如图,在△ABC 中,∠B =90°.点O 是AB 上一点,以O 为圆心,OB 为半径的半圆与AB 交于点E ,与AC 切于点D ,AD =2,AE =1,试说明AOD S ∆和BCD S ∆恰是方程05451102=+-x x 的两个根.八、(12分)30.如图①,在直角坐标系中,直线AB交y轴于点A,交x轴于点B,其解析式为243+=xy,点1O是x轴上一点,且⊙1O与直线AB切于点C,与y轴切与原点O.(1)求点C的坐标;(2)如图②,在以上条件不改变的前提下,以AO为直径作⊙2O,交直线AB于D,交⊙1O于E,连结OE并延长交CD于F,求△ODF面积.参考答案一、1.A 2.D 3.B 4.B 5.C 6.D 7.A 8.B 9.C 10.D二、11.2,x=2 12.⎪⎩⎪⎨⎧-=+=636311yx,⎪⎩⎪⎨⎧+=-=636322yx13.3414.30°15.x=-1 16.17.π2018.12 19.29,2baab+≤20.(0,1)或(0,-1)三、21.解:32+=a,原式=a-3=13-22.(1)从左到右、从上到下依次为4.25~4.55;18,50;0.46,0.36 (2)50名学生的视力(3)320 (4)绘制样本的频率直方图四、23.连结EO,过O点作OH⊥EB于H.Rt△ADB中,∵AD∶AB=1∶2 ∴∠B=30°,34=AD,∠DOE=60°,Rt△BOH中,OH=3,33=BH,∴39221=⨯⨯=∆OHBHSEOB,π66360π602=⨯=DOES扇形,32421Rt=⨯=∆BDADSABD,∴π12330)(2-=--=∆∆DOEEOBABDSSSS扇形阴24.(1)如图给6-,在平地上选择一点P ,在P 处测得B 点的仰角α,A 点的仰角β.(2)Rt △PBC 中,αtan BCPC =,Rt △P AC 中,βtan AC PC =,∴ βαtan tan x h h += ∴ h x ⋅-=ααβtan tan tan 25.(1)连结BE ,∵ AB 为⊙O 直径 ∴ ∠BEA =90°且AC ⊥CD ,∠AEC =∠ABE ∴ ∠CAE =∠BAE (2)当∠ABD =60°时,AB ∥EF ∵ ∠FDE =∠AEB =90°且∠BED =∠BAE ∴ ∠ABE =∠EBF 又∵ ∠FED =∠EBF ∴ ∠FED =ABD ∠21若∠ABD =∠EFD ,则AB ∥EF 即∠FED =EFD 21时,且∠FED +∠EFD =90° ∴ 解得∠EFD =∠ABD =60° 五、26.解:设第一年的利润率为x ,∴ 500(1+x )(x +8%)=112解得%1212.01==x ,2.12-=x (舍去) ∴ 500×12%=60 答:第一年的利润为60万元.27.(1)如图答,A (2,0),B (1,3-),C (-1,3-),D (-2,0),F (1,3),E (-1,3) (2)例如过A 、B 、E 三点的抛物线33233322--=x x y 六、28.(1)①图略 ②一次函数 ③y =1.8x +32 ④将其余三对数值分别代入③中的式子,结果等式均成立 ∴ y 与x 的关系式成立 (2)当y =88时,88=1.8x +32 ∴ x ≈31 ∴ 31-12=19℃ 答:这一天台北的最高气温比沈阳约高19℃. 七、29.∵ AB AE AD ⋅=2∴ AB =4 ∴ 23)(21=-==AE AB OE OD 又∵ ∠ABC =90° ∴ BC 为⊙O 切线 ∴ BC =CD 由222AB BC AC +=得BC =3 ∴2321Rt =⋅=∆DO AD S ADO .作BH ⊥AC 于H ,则Rt △AOD ∽Rt △ABH ∴ AB AOBH OD =∴ 512=BH ∴ 51821=⋅=∆BH CD S BCD 由根与系数知它们是已知方程的两根.八、30.(1)38=OB ,OA =2,310=AB 作CH ⊥x 轴于H ∴ CH ∥AO ∴AB BC OA CH =且AC =OA ,BC =AB -AC =34∴ 54=CH 作CG ⊥y 轴于G ,∴ CG ∥BO ∴ AB AC BO CG = ∴ 58=CG ∴ )54,58(-C (2)AD ⊥AB ∴ OA ·BO =AB ·OD ,58=OD ,5622=-=DO OA AD 且FA FD FO FE CF ⋅=⋅=2设FD =x ∴ CF =CD-FD =(AC -AD )-x =x 54,F A =AD +FD =x +56 ∴ )56()54(2x x x +=- ∴358=x ∴ 1753221=⋅=∆FD OD S ODF .。
人教版九年级数学期末模拟试卷(三)
人教版九年级数学期末模拟试卷(三)一、单选题1.如图,用剪刀沿虚线将一个正六边形纸片剪掉一个三角形,发现剩下的纸片的周长比原来的纸片的周长小,能正确解释这一现象的数学( )A .两点确定一条直线B .经过一点只有一条直线C .垂线段最短D .两点之间,线段最短2.下列各式正确的是( ) A .16=±4B .2(3)-=3C .64-=﹣8D .43﹣4=33.已知实数a 和b 在数轴上的位置关系如图所示,则结论错误是( )A .a >bB .a ﹣4>b ﹣4C .﹣4a >﹣4bD .44a b>4.()()3a b a ---化简后,正确结果( ) A .﹣b ﹣3B .b +3C .3﹣bD .b ﹣35.据3月9日《四川日报》报道,一款对新冠病毒具有消杀功能的纳米喷雾剂被四川大学的科学家研制出来,该喷雾剂不仅可以使用在口罩上,减少白色塑料的环境污染以及降低病毒二次传染,还可以用于公共卫生的大规模新冠病毒消杀.其中一种组成物——“植物多酚”分子直径为32纳米(1纳米=0.000000001米),32纳米用科学记数法表示正确的是( ) A .92810-⨯米 B .83.210⨯﹣米 C .103.210⨯﹣米D .93.210⨯﹣米6.方孔铜钱应天圆地方之说,古代入们认为天是圆的(圆形),地是方的(正方形),所以秦朝以后铸钱大多以“外圆内方”为型.如图中是一枚清代的“乾隆通宝”,“外圆”直径为a ,内方边长为b ,则这枚钱币的面积可以表示为( )A .πa 2﹣b 2B .222a b π-C .224a b π-D .228a b π-7.为推广和普及冰雪运动,某中学举办“青春梦想,活力飞Young ”冬奥知识竞赛.为了了解全校2800名学生的竞赛成绩,从中抽取了100名学生的竞赛成绩进行统计分析,以下说法正确的是( )A .抽取的100名学生是总体的一个样本B .每名学生的竞赛成绩是个体C .全校2800名学生是总体D .100名学生是样本容量8.如图,关于四边形ABCD 的4个结论正确的是( ) ①它两组对边分别相等; ②它是矩形;③它是平行四边形; ④它有一个角是直角.A .由①推出③,由③和④推出②B .由④推出②,由②推出①,由①推出③C .由②推出④,由④推出①D .由③推出④,由①和④推出② 9.在△ABC 中,AB =AC >BC ,小明按照下面的方法作图:①以B 为圆心BC 为半径画弧,交AC 于点D ;②分别以C 、D 为圆心大于12CD 为半径画弧,两弧交于点M ;③作射线BM,交AC于点E.根据小明画出的图形,判断下列说法正确的是()A.E是AC中点B.∠ABE=∠CBEC.BE⊥AC D.△ABC的内心一定在线段BE上10.如图,将边长6cm的正方形纸片沿虚线剪开,剪成两个全等梯形.已知裁剪线与正方形的一边夹角为60°,则梯形纸片中较短的底边长为()A.(3﹣3)cm B.(3﹣23)cm C.(6﹣3)cm D.(6﹣23)cm11.关于x的分式方程1122mx x+=--有增根,则(1)m﹣=()A.﹣1 B.1 C.2 D.512.如图1,小明在路灯下笔直的向远离路灯方向行走,将其抽象成如图2所示的几何图形.已知路灯灯泡距地面的距离AB等于4米,小明CD身高1.5米,小明距离路灯灯泡的正下方距离BC等于4米,当小明走到E点时,发现影子长度增加2米,则小明走过的距离CE等于()A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间13.已知,如图,⊙O的半径为6,正六边形ABCDEF与⊙O相切于点C、F,则CF的长度是()A.2πB.3πC.4πD.5π14.如图是反比例函数y1=2x和y2=4x-在x轴上方的图象,x轴的平行线AB分别与这两个函数图象交于A、B两点,点P(﹣5.5,0)在x轴上,则△P AB的面积为()A.3 B.6 C.8.25 D.16.515.已知,二次函数2y ax bx c=++图象如图所示,则下列结论正确的有()①abc<0;②2a+b=0;③4a+2b+c>0;④a+b≥m(am+b)(其中,m为任意实数)A.1个B.2个C.3个D.4个16.如图,现有A、B、C三点,在数轴上分别表示﹣2、0、4,三点在数轴上同时开始运动,点A向左运动,运动速度是2/s,点B、C都是向右运动,运动速度分别是3/s、4/s,甲、乙两名同学提出不同的观点.甲:5AC﹣6AB的值不变;乙:5BC﹣10AB的值不变.则下列选项中,正确的是()A.甲正确,乙错误B.乙正确,甲错误C.甲乙均正确D.甲乙均错误二、填空题17.已知2m=8n=4,则m=_____,2m+3n=_____.18.一个几何体的三视图如图所示,则这个几何体是_____;它的侧面积是_____cm2.19.已知,如图,Rt△ABC中,∠ABC=90°,∠BAC=60°,A(1,0),AB=2.(1)点C坐标为_____.(2)若y轴上存在点M,使得∠AMB=∠BCA,则这样的点有_____个.三、解答题20.已知关于x的不等式155a xa x-<-.(1)当a=2022时,求此不等式解集.(2)a为何值,该不等式有解,并求出其解集.21.现有甲乙两个矩形,其边长如图所示(a>0),周长分别为C甲和C乙,面积分别为S甲和S乙.(1)用含a的代数式表示C甲=;C乙=;S甲=;S乙=.(2)通过观察,小明发现“甲、乙两个矩形的周长相等,与a值无关”;小亮发现“a值越大,甲、乙两个矩形的面积之差越大”.你认为两位同学的结论都正确吗?如果不正确,请对错误同学的结论说明理由.22.为了宣传冬奥精神,普及青少年冬奥小知识,让学生知道更多的冬奥知识,某中学举行了一次“冬奥知识竞赛”,为了解这次竞赛成绩情况,抽取部分学生成绩(成绩取整数,满分为100分)作为样本,并将结果分为A、B、C、D四类,其中60分及以下为D类,61~80分为C类,81~99分为B类,100分为A类,绘制了如下的条形统计图和扇形统计图,请结合此图回答下列问题:(1)请把图1中条形统计图补充完整;(2)此样本数据的中位数落在范围内;(3)若这次竞赛成绩100分的学生可获奖,全校共1000名学生,请估计全校获奖人数约为人;(4)若甲、乙、丙、丁四名同学都为满分,现需要选取2名同学代表学校去参加全市比赛,请用树状图或表格分析甲和丙同学同时被选中的概率.23.如图,在平面直角坐标系中,点A(﹣5,m),B(m﹣3,m),其中m>0,直线y=kx﹣1与y轴相交于C点.(1)求点C坐标.(2)若m=2,①求△ABC的面积;②若点A和点B在直线y=kx﹣1的两侧,求k的取值范围;(3)当k=﹣1时,直线y=kx﹣1与线段AB的交点为P点(不与A点、B点重合),且AP<2,求m的取值范围.24.如图1,在等腰△ABC中,AB=AC=12,以AB为直径的⊙O交BC于点D,交AC于点E,点M为AC边上一点.(1)若40BAC∠︒=.求BD的长度;(2)如图2,连接DM,当DM⊥AC时,求证:DM是⊙O的切线;(3)如图3,在(2)的条件下,延长MD,交AB的延长线于N,若DN=8,求MC的长.25.新型建材(即新型建筑材料)是区别于传统的砖瓦、灰砂石等建材的建筑材料新品种,行业内将新型建筑材料的范围作了明确的界定,即新型建筑材料主要包括新型墙体材料、新型防水保温隔热密封材料和装饰装修材料三大类,某开发商承建一精密实验室,要求全部使用新型建筑材料,经调查发现:新型建筑材料总成本包括装饰装修材料成本、新型墙体材料成本和新型防水保温隔热密封材料成本,其中装饰装修材料成本固定不变为100万元,新型墙体材料成本与建筑面积x(m2)成正比,新型防水保温隔热密封材料成本与建筑面积x(m2)的平方成正比,在建筑过程中,设新型建筑材料总成本为y(万元),获得如下数据:x(单位:m2)20 50y(单位:万元)240 600(1)求新型建筑材料总成本为y(万元)与建筑面积x(m2)的函数表达式;(2)在建筑过型中,开发商测算出此时每平方米的平均成本为12万元,求此时完成的建筑面积;(3)设建设该厂房每平方米的毛利润为Q(万元)且有Q=kx+b(k≠0),已知当x=50时,Q为12.5万元,且此时开发商总纯利润W最大,求k、b的值.(纯利润=毛利润﹣成本)26.如图1,等腰直角三角形ABC中,∠A=90°,AB=AC=102cm,D为AB边上一点,tan∠ACD=15,点P由C点出发,以2cm/s的速度向终点B运动,连接PD,将PD绕点D逆时针旋转90°,得到线段DQ,连接PQ.(1)填空:BC=,BD=;(2)点P运动几秒,DQ最短;(3)如图2,当Q点运动到直线AB下方时,连接BQ,若S△BDQ=8,求tan∠BDQ;(4)在点P运动过程中,若∠BPQ=15°,请直接写出BP的长.。
2023年人教版九年级数学下册期末模拟考试及完整答案
2023年人教版九年级数学下册期末模拟考试及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2019-=()A.2019 B.-2019 C.12019D.12019-2.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a等于()A.1B.2C.3D.43.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.25cm B.45 cmC.25cm或45cm D.23cm或43cm4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=5.实数a在数轴上的对应点的位置如图所示.若实数b满足a b a-<<,则b的值可以是()A.2 B.-1 C.-2 D.-36.已知12a b+=,则代数式223a b+﹣的值是()A.2 B.-2 C.-4 D.1 32 -7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是__________.2.分解因式:2ab a -=_______.3.若式子x 2-在实数范围内有意义,则x 的取值范围是__________.4.如图,ABC ∆中,D 为BC 的中点,E 是AD 上一点,连接BE 并延长交AC 于F ,BE AC =,且9BF =,6CF =,那么AF 的长度为__________.5.如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.如果BC=4,△ABC 的面积是6,那么这个正方形的边长是__________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2(2)解方程;13223 x x=--2.先化简,再求值:2211(1)m mm m+--÷,其中m=3+1.3.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.4.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、C5、B6、B7、C8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、a(b+1)(b﹣1).3、x24、3 2;5、12 76、42.三、解答题(本大题共6小题,共72分)1、(1)72;(2)x=323、(1)略;(2)35.4、羊圈的边长AB,BC分别是20米、20米.5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是35元.。
初三数学模拟试卷三答案
一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. 2B. -3.14C. √2D. 1/2答案:C解析:无理数是不能表示为两个整数比的数,√2是无理数。
2. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 3 < b + 3D. a - 3 < b - 3答案:A解析:根据不等式的性质,两边同时加上同一个数,不等号方向不变。
3. 已知函数f(x) = 2x - 1,则f(-1)的值为()A. -3B. -1C. 1D. 3答案:A解析:将x = -1代入函数f(x) = 2x - 1,得f(-1) = 2(-1) - 1 = -3。
4. 在等腰三角形ABC中,AB = AC,且∠BAC = 60°,则∠ABC的度数是()B. 70°C. 80°D. 90°答案:A解析:在等腰三角形中,底角相等,所以∠ABC = ∠ACB = 60°。
5. 下列函数中,有最大值的是()A. y = x^2B. y = -x^2C. y = 2x + 1D. y = -2x - 1答案:B解析:二次函数y = -x^2的开口向下,有最大值。
6. 已知平行四边形ABCD中,对角线AC和BD相交于点O,若OA = 3cm,OB = 4cm,则对角线AC和BD的长度分别是()A. 6cm,8cmB. 8cm,6cmC. 7cm,5cmD. 5cm,7cm答案:B解析:平行四边形的对角线互相平分,所以AC = 2OA = 23cm = 6cm,BD = 2OB = 24cm = 8cm。
7. 下列各数中,有最小整数解的是()A. √25C. √49D. √81答案:A解析:√25 = 5,√36 = 6,√49 = 7,√81 = 9,其中最小整数解是5。
8. 在直角坐标系中,点P(2, -3)关于x轴的对称点Q的坐标是()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A解析:点P(2, -3)关于x轴的对称点Q的y坐标取相反数,所以Q的坐标是(2, 3)。
初三模拟试卷数学三答案
一、选择题(每题3分,共30分)1. 下列选项中,不是一元二次方程的是()A. x^2 - 3x + 2 = 0B. 2x^2 + 5x - 3 = 0C. x^2 - 4 = 0D. x + 2 = 0答案:D2. 若a、b、c是等差数列的前三项,且a + b + c = 12,a^2 + b^2 + c^2 = 54,则b的值为()A. 3B. 6C. 9D. 12答案:B3. 在直角坐标系中,点A(2,3)关于x轴的对称点为B,点B关于y轴的对称点为C,则点C的坐标为()A. (-2,-3)B. (-2,3)C. (2,-3)D. (2,3)答案:A4. 若函数f(x) = x^2 - 4x + 3在区间[1,3]上单调递增,则a的值为()A. -1B. 0C. 1D. 2答案:B5. 已知等比数列{an}的公比为q,若a1 = 2,a3 = 16,则q的值为()A. 2B. 4C. 8D. 16答案:B6. 在等腰三角形ABC中,AB = AC,若∠BAC = 60°,则∠ABC的度数为()A. 60°B. 120°C. 30°D. 90°答案:B7. 下列命题中,正确的是()A. 两个平行四边形一定是矩形B. 两个等腰三角形一定是等边三角形C. 两个等腰三角形一定是等腰直角三角形D. 两个等腰三角形一定是等边三角形答案:D8. 已知函数f(x) = x^3 - 3x^2 + 4x,若f(x) = 0,则x的值为()A. 0,1,2B. 0,1,-2C. 0,-1,2D. 0,-1,-2答案:B9. 在平面直角坐标系中,点P(2,3)关于直线y = x的对称点为Q,则点Q的坐标为()A. (3,2)B. (2,3)C. (-3,-2)D. (-2,-3)答案:A10. 若a、b、c是等差数列的前三项,且a^2 + b^2 + c^2 = 54,a + b + c = 12,则b的值为()A. 3B. 6C. 9D. 12答案:B二、填空题(每题5分,共20分)11. 已知一元二次方程x^2 - 5x + 6 = 0的解为x1、x2,则x1 + x2 = _______。
2022—2023年部编版九年级数学下册期末模拟考试及答案2
2022—2023年部编版九年级数学下册期末模拟考试及答案2 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23C .33D .43 4.若函数y =(3﹣m )27mx -﹣x+1是二次函数,则m 的值为( ) A .3 B .﹣3C .±3D .9 5.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤27.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )A .14B .16C .90α-D .44α-8.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°9.如图,CB =CA ,∠ACB =90°,点D 在边BC 上(与B ,C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC =FG ;②S △FAB ∶S 四边形CBFG =1∶2;③∠ABC =∠ABF ;④AD 2=FQ ·AC ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)181____________.2.因式分解:(x+2)x ﹣x ﹣2=_______.3.正五边形的内角和等于__________度.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++= (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、B5、D6、C7、A8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、32、(x+2)(x ﹣1)3、5404、85、40°6、2.5×10-6三、解答题(本大题共6小题,共72分)1、2x =2、(1)详见解析(2)k 4=或k 5=3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)略;(2)略.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
2023年部编版九年级数学下册期末模拟考试(及参考答案)
2023年部编版九年级数学下册期末模拟考试(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( ) A .3B .13C .13-D .3-2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( )A .﹣4B .4C .﹣2D .23.如果23a b -=,那么代数式22()2a b ab a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( ) A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________. 2.因式分解:a 3-a =_____________.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加__________m.5.如图,反比例函数y=kx的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_________.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311xx x x +=--2.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根. (1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值; (3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G . (1)证明:ADG DCE ∆∆≌; (2)连接BF ,证明:AB FB =.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有 人,在扇形统计图中,m 的值是 ; (2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、A4、C5、D6、B7、B8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、a(a-1)(a + 1)3、20204、-45、-36、12三、解答题(本大题共6小题,共72分)1、x=32、(1)k≤58;(2)k=﹣1.3、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m,1,2.4、(1)略;(2)略.5、(1)50、30%.(2)补图见解析;(3)35.6、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。
2022—2023年部编版九年级数学下册期末模拟考试附答案
2022—2023年部编版九年级数学下册期末模拟考试附答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-=( )A .2019B .-2019C .12019D .12019- 2.已知x+1x =6,则x 2+21x =( ) A .38B .36C .34D .32 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-35.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣27.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A .15B .18C .21D .248.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,在平行四边形ABCD 中,E 是DC 上的点,DE :EC=3:2,连接AE 交BD 于点F ,则△DEF 与△BAF 的面积之比为( )A .2:5B .3:5C .9:25D .4:25二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.分解因式:33a b ab -=___________.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =2BD =,求OE 的长.4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.5.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D 、C 、B 、A 四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、B5、A6、D7、A8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、ab(a+b)(a﹣b).3、x≥-3且x≠24、10.5、406、3三、解答题(本大题共6小题,共72分)1、x=﹣3.2、(1)k≤58;(2)k=﹣1.3、(1)略;(2)2.4、(1)二次函数的表达式为:213222y x x=--;(2)4;(3)2或2911.5、(1)2、45、20;(2)72;(3)1 66、(1)4元或6元;(2)九折.。
2020-2021初三数学下期末模拟试卷及答案(3)
2020-2021初三数学下期末模拟试卷及答案(3)一、选择题1.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm2.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米 3.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D . 4.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠D .3x ≠-且1x ≠ 5.2-的相反数是( ) A .2- B .2 C .12 D .12- 6.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)7.如图,是一个几何体的表面展开图,则该几何体是( )A.三棱柱B.四棱锥C.长方体D.正方体8.下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣32a)3=﹣398a9.估6的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折11.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18二、填空题13.如图,⊙O是△ABC的外接圆,∠A=45°,则cos∠OCB的值是________.14.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.15.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为___.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.18.正六边形的边长为8cm,则它的面积为____cm2.19.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.20.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.三、解答题21.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.22.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?23.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.24.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?26.先化简(31a +-a +1)÷2441a a a -++,并从0,-1,2中选一个合适的数作为a 的值代【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.2.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD∴AB=AD+BD=100(故选D.本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.3.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.4.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.5.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 7.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.8.C解析:C【解析】【分析】根据同底数幂的乘法运算可判断A;根据同底数幂的除法运算可判断B;根据合并同类项可判断选项C;根据分式的乘方可判断选项D.【详解】A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=-a2b,符合题意;D、原式=-278a,不符合题意,【点睛】此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.9.C解析:C【解析】【分析】 先化简后利用的范围进行估计解答即可.【详解】 =6-3=3, ∵1.7<<2, ∴5<3<6,即5<<6, 故选C .【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.10.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 11.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB ∥CD ,∴∠BAD=∠D=40°.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC从而可得cos ∠OCB的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC由勾股定理得BC=OC∴cos ∠OCB=故答案为【点睛】解析:2 2【解析】【分析】根据圆周角定理可得∠BOC=90°,易求2OC,从而可得cos∠OCB的值.【详解】∵∠A=45°,∴∠BOC=90°∵OB=OC,由勾股定理得,BC=2OC,∴cos∠OCB=22OCBC OC==.故答案为2 2.【点睛】本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.3【解析】【分析】分别延长AEBF交于点H易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA解析:【解析】试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.16.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.17.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2 240解得:x=2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x=2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴O E=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆19.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.20.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.三、解答题21.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.22.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y1、y2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y1=3,y2=1,∵y1﹣y2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大. (3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程. 23.(1)213y x x 222=--;(2)D的坐标为2⎛ ⎝⎭,2⎛ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫-⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解.【详解】(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12 x 2﹣32x ﹣2. (2)当x =0时,y =12x 2﹣32x ﹣2=﹣2, ∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),,BC=AB =5.∵AC 2+BC 2=25=AB 2,∴∠ACB=90°.过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC,∴△AD 1M 1∽△ACB.∵S △DBC =35S ABC ∆, ∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0),∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0),将B (4,0),C (0,﹣2)代入y =kx+c ,得:402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72. 联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩, ∴点D 的坐标为(2,2),(,2),(1,﹣3)或(3,﹣2). (3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,设直线AC 的解析设为y =mx+n (m≠0),将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2.∵AC⊥BC,OF 1⊥BC,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y x y x =-⎧⎪⎨=-⎪⎩ , 解得:4585x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点F 1的坐标为(45,﹣85 );②当点E不和点O重合时,在线段AB上取点E,使得EB=EC,过点E作EF2⊥BC于点F2,过点E作EF3⊥CE,交直线BC于点F3,则△CEF2∽△BAC∽△CF3E.∵EC=EB,EF2⊥BC于点F2,∴点F2为线段BC的中点,∴点F2的坐标为(2,﹣1);∵BC=25,∴CF2=12BC=5,EF2=12CF2=52,F2F3=12EF2=5,∴CF3=554.设点F3的坐标为(x,12x﹣2),∵CF3=554,点C的坐标为(0,﹣2),∴x2+[12x﹣2﹣(﹣2)]2=12516,解得:x1=﹣52(舍去),x2=52,∴点F3的坐标为(52,﹣34).综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(45,﹣8 5),(2,﹣1)或(52,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D 且与直线BC 平行的直线的解析式;(3)分点E 与点O 重合及点E 与点O 不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F 的坐标.24.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=. 原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.25.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x 档次的产品,根据单件利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.26.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.。
【浙教版】初三数学下期末模拟试卷带答案
一、选择题1.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.52.下图是一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的最多个数是()A.9 B.8 C.7 D.63.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.4.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是45.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯之间的距离是()A .24 mB .25 mC .28 mD .30 m 6.如图,在O 中,E 是直径AB 延长线上一点,CE 切O 于点E ,若2CE BE =,则E ∠的余弦值为( )A .35B .45C .34D .437.下列说法中,正确的有( )个①a 为锐角,则1sina cosa +>;②314172︒+︒=︒cos cos cos ﹔③在直角三角形中,只要已知除直角外的两个元素,就可以解这个三角形﹔④坡度越大,则坡角越大,坡越陡;⑤1302==︒sinA ; ⑥当Rt ABC ∆的三边长扩大为2倍时,则sinA 的值也相应扩大2倍. A .1 B .2 C .3 D .48.在Rt △ABC 中,∠ACB =90°,AB =5,tan ∠B =2,则AC 的长为 ( ) A .1 B .2 C .5 D .259.在ABC 中,(2sinA-1)2+1cos 2B -=0,则ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .无法确定 10.如图,在扇形OAB 中,120AOB ∠=︒,点P 是弧AB 上的一个动点(不与点A 、B 重合),C 、D 分别是弦AP ,BP 的中点.若33CD =,则扇形AOB 的面积为( )A .12πB .2πC .4πD .24π11.已知P ,Q 是线段AB 的两个黄金分割点,且AB=10,则PQ 长为( )A .5(5-1)B .5(5+1)C .10(5-2) -D .5(3-5) 12.如图,菱形ABCD 的边AD y ⊥轴,垂足为点E ,顶点A 在第二象限,顶点B 在y轴的正半轴上,反比例函数k y x= (0k ≠,0x >)的图像同时经过顶点C 、D ,若点D 的横坐标为1,3BE DE =.则k 的值为( )A .52B .3C .154D .5二、填空题13.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.14.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.15.一个几何体由几个大小相同的小正方体搭成,这个几何体的俯视图和左视图如图所示,则这个几何体中小正方体的个数最少是________个.16.如图,在ABC 中,6AB BC ==,点O 为BC 中点,点P 是射线AO 上的一个动点,且 60AOC ∠=︒.要使得BCP 为直角三角形,CP 的长为 ________ .17.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为3,则AH=__.18.如图,△ABC是等边三角形,AB=3,点E在AC上,AE23=AC,D是BC延长线上一点,将线段DE绕点E逆时针旋转90°得到线段FE,当AF∥BD时,线段AF的长为____.19.如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN43=NF;③38BMMG=;④S四边形CGNF12=S四边形ANGD.其中正确的结论的序号是___________.20.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=3x经过点D,则正方形ABCD的面积是_____.三、解答题21.一个几何体的三种视图如图所示.(1)这个几何体的名称是 __,其侧面积为 __;(2)画出它的一种表面展开图;(3)求出左视图中AB的长.22.把边长为1的10个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积(包括向下的面);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多..可以再添加 个小正方体. 23.如图,△ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径.求证:△ABE ~△ADC .24.如图,已知函数()0k y x x =>的图象经过点,,A B 点A 的坐标为()1,2.过点A 作//AC y 轴,1AC =(点C 位于点A 的下方),过点C 作//CD x 轴,与函数的图象交于点D ,过点B 作BE CD ⊥,垂足E 在线段CD 上,连接,OC OD .()1求OCD ∆的面积;()2当12BE AC =时,求CE 的长. 25.如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为40°,若DE =3米,CE =2米,CE 平行于江面AB ,DE ⊥CE ,迎水坡BC 的坡度i =1:0.75,坡长BC =10米,求此时AB 的长.(小数点后面保留一位,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)26.25864sin453︒【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.2.A解析:A【分析】根据俯视图可看出最底层小正方体的个数及形状,再从左视图看出每一层小正方体可能的数量,并再俯视图中标出个数,即可得出答案.【详解】根据左视图在俯视图中标注小正方形最多时的个数如图所示:1+1+2+2+2+1=9,故选A.【点睛】本题考查根据三视图判断小正方形的个数,根据左视图在俯视图中标注小正方形的个数是关键,需要一定的空间想象力.3.C解析:C【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4.A解析:A【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选A.【点睛】本题主要考查三视图的画法,关键在于正面方向.5.D解析:D【解析】由题意可得:EP∥BD,所以△AEP∽△ADB,所以AP EPAP PQ BQ BD=++,因为EP=1.5,BD=9,所以1.59220AP AP =+,解得:AP =5,因为AP=BQ ,PQ =20,所以AB=AP+BQ+PQ =5+5+20=30,故选D. 点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.6.B解析:B【分析】连接OC ,则∠OCE=90°,设OC=OB=x ,22CE BE k ==,根据勾股定理即可列出方程222(2)()x k x k +=+,解得32x k =,再根据余弦的定义即可求得答案. 【详解】 解:如图,连接OC ,∵CE 切O 于点E ,∴∠OCE=90°,设OC=OB=x ,22CE BE k ==,∵在Rt OCE △中,222OC CE OE +=,∴222(2)()x k x k +=+,解得32x k =, ∴52OE OB BE k =+=, ∴24cos 552CE k E OE k ===, 故选:B .【点睛】本题考查了切线的性质、勾股定理以及锐角三角函数,熟练掌握切线的性质以及勾股定理是解决本题的关键.7.B解析:B【分析】①根据三角函数的定义判断;②函数值不是简单度数相加;③至少已知一条边能解直角三角形;④根据坡度的性质即可判定④对;⑤只能说∠A=30°;⑥角度数不变,函数值就不变.【详解】①在Rt △ACB 中,设c 为斜边,∠α的对边、邻边分别为a ,b ,那么s inα+cosα=1a b c+>,所以①对; ②不对,函数值是角与边的关系,不是简单度数相加;③不对,只知道角不知道边也不能解直角三角形;④垂直高度与水平距离之比即坡度所以④对;⑤也不对,sinA=1302=︒,是明显错误; ⑥不对,角度数不变,函数值就不变.综上,①④正确,共2个,故选:B .【点睛】 本题主要考查了解直角三角形以及锐角三角函数.学生学这一部分知识时要细心去理解文字所表达的意思.关键是熟练掌握有关定义和性质.8.B解析:B【分析】根据正切的定义得到BC=12AC ,根据勾股定理列式计算即可. 【详解】在Rt △ABC 中,∠ACB=90°,tan ∠B=2, ∴AC BC=2, ∴BC=12AC ,由勾股定理得,AB 2=AC 2+BC 22=AC 2+(12AC )2, 解得,AC=2,故选B .【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A 的对边a 与邻边b 的比叫做∠A 的正切是解题的关键.9.C解析:C【分析】根据非负数的性质可得sinA和cosB的值,进而可得∠A和∠B的度数,即可知△ABC的形状.【详解】解:∵(2sinA-1)2+1cos2B =0,∴2sinA-1=0,cosB-12=0,∴sinA=12,cosB=12,∴∠A=30°,∠B=60°,∴∠C=180°-∠A-∠B=90°,故△ABC为直角三角形.故选C.【点睛】本题主要考查了非负数的性质和特殊角的三角函数值,根据两个非负数的和为零,则这两个数都为零求出sinA和cosB的值是解决此题的关键.10.A解析:A【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63∵OH⊥AB,∴BH=AH=33∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH =AH AO,∴AO=336sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.C解析:C【分析】画出图像,根据黄金分割的概念写出对应线段的比值,求出AQ、PB的长度,再根据PQ=AQ+PB-AB即可求出PQ的长度.【详解】解:如图,根据黄金分割点的概念,可知51PB AQAB AB-==∴AQ=PB,AB=10,∴AQ=PB5110555-=,∴PQ=AQ+PB-AB=555555101052010(52)+-==.故选:C.【点睛】本题主要考查黄金分割的概念,熟记黄金分割的概念并根据黄金分割的比值列式是解题关键.12.C解析:C【分析】过点D作DF⊥BC于点F,设BC=x,在Rt△DFC中利用勾股定理列方程即可求出x,然后设OB=a,即可表示出C,D的坐标,再代入kyx=可求出a,k的值.【详解】解:过点D作DF⊥BC于点F,∵点D 的横坐标为1,∴BF =DE =1,∴DF =BE =3DE =3,设BC =x ,则CD =x ,CF =x -1,在Rt △DFC 中,由勾股定理得:222DF CF CD +=,∴2223(1)x x +-=,解得:x =5.设OB =a ,则点D 坐标为(1,a +3),点C 坐标为(5,a ),∵点D 、C 在双曲线上∴1×(a +3)=5a∴a =34, ∴点C 坐标为(5,34), ∴k =154. 故选:C.【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,根据勾股定理列出方程求出BC 的长度是本题的关键.二、填空题13.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几 解析:6【分析】根据主视图和俯视图判断几何体的底层的正方体的个数,根据主视图和左视图判断几何体的第二和第三层的正方体的个数,计算即可.【详解】解:从主视图和俯视图可知,几何体的底层有4个正方体,从主视图和左视图可知,几何体的第二和第三层各一个正方体,则搭成这个几何体的小正方体的个数为:4+1+1=6,故答案为:6.【点睛】本题考查的是由三视图判断几何体,掌握几何体的主视图、左视图和俯视图的概念是解题的关键.14.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=615.5【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由左视图可得第二层所须小正方体最少的个数相加即可得答案【详解】由俯视图和左视图可知此几何体有2层第一层有4个小正方体第二层最少有1个小正解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层所须小正方体最少的个数,相加即可得答案.【详解】由俯视图和左视图可知此几何体有2层,第一层有4个小正方体,第二层最少有1个小正方体,∴这个几何体中小正方体的个数最少是5个,故答案为:5【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16.或3或【分析】利用分类讨论①当∠BPC=90°时情况一:如图1利用直角三角形斜边的中线等于斜边的一半得出PO=BO易得△BOP为等边三角形利用锐角三角函数可得CP的长;情况二:如图2利用直角三角形斜解析:333或37【分析】利用分类讨论,①当∠BPC=90°时,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO,易得△BOP为等边三角形,利用锐角三角函数可得CP的长;情况二:如图2,利用直角三角形斜边的中线等于斜边的一半可得结论.②当∠CBP=90°时,如图3,由对顶角的性质可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP的长,利用勾股定理可得CP的长.【详解】解:①当∠CPB=90°时,情况一:(如图1),∵点O为BC中点,∴AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=6,∴CP=CB•sin60°=6×3=33;2情况二:如图2,∵点O为BC中点,∴AO=BO,∵∠CPB=90°,∴PO=BO=CO,∵∠AOC=60°,∴△COP为等边三角形,∴CP=CO=3,②当∠CBP=90°时,如图3,∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP=33 tan303OB==︒,在直角三角形CBP中,CP=22226(33)37BC BP+=+=故答案为:33或3或37.【点睛】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.17.1【分析】连接BH证明Rt△ABH≌△Rt△EBH(HL)得出∠ABH=30°在Rt△ABH中解直角三角形即可【详解】解:连接BH如图所示:∵四边形ABCD 和四边形BEFG是正方形∴∠BAH=∠AB解析:1【分析】连接BH,证明Rt△ABH≌△Rt△EBH(HL),得出∠ABH =30°,在Rt△ABH中解直角三角形即可.【详解】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=12∠ABE=30°,∴AH=AB•tan∠ABH=33⨯=1,故答案为:1.【点睛】本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、解直角三角形.能正确作出辅助线得出Rt△ABH≌△Rt△EBH,从而求得∠ABH =30°是解题关键.18.1【分析】过点E作EM⊥AF于M交BD于N根据30°直角三角形的性质求出AM=1再根据∠60°的三角函数值求出EN的长再依据△EMF≌△DNE(AAS)得出MF=EN据此可得当AF∥BD时线段AF的解析:13 +.【分析】过点E作EM⊥AF于M,交BD于N,根据30°直角三角形的性质求出AM =1,再根据∠60°的三角函数值求出EN的长,再依据△EMF≌△DNE(AAS)得出MF=EN32=,据此可得,当AF∥BD时,线段AF的长为13 +.【详解】如图过点E作EM⊥AF于M,交BD于N.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ACB=60°.∵AE23=AC,∴AE=2,EC=1.∵AF∥BD,∴∠EAM=∠ACB=60°.∵EM⊥AF,∴∠AME=90°,∴∠AEM=30°,∴AM12=AE=1.∵AF∥BD,EM⊥AF,∴EN⊥BC,∴EN=EC•sin60°=∵∠EMF=∠END=∠FED=90°,∴∠MEF+∠MFE=90°,∠MEF+∠DEN=90°,∴∠EFM=∠DEN.∵ED=EF,∴△EMF≌△DNE(AAS),∴MF=EN=∴AF=AM+MF=1.故答案为:1.【点评】本题主要考查了直角三角形的性质、特殊角的三角函数值和全等三角形的判定的综合运用,解题的关键是作辅助线构造直角三角形和全等三角形,熟记特殊角的三角函数值. 19.①③【分析】①易证△ABF≌△BCG即可解题;②易证△BNF∽△BCG即可求得的值即可解题;③作EH⊥AF令AB=3即可求得MNBM的值即可解题;④连接AGFG根据③中结论即可求得S四边形CGNF和解析:①③【分析】①易证△ABF≌△BCG,即可解题;②易证△BNF∽△BCG,即可求得BNNF的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF和S四边形ANGD,即可解题.【详解】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF 和△BCG 中,90AB BC ABF BCG BF CG ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABF ≌△BCG ,∴∠BAF=∠CBG ,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF ⊥BG ;①正确;②∵在△BNF 和△BCG 中,90CBG NBF BCG BNF ︒∠=∠⎧⎨∠=∠=⎩, ∴△BNF ∽△BCG , 32BN BC NF CG ∴==, BN 32NF =,②错误; ③作EH ⊥AF ,令AB=3,则BF=2,BE=EF=CF=1,2213AF AB BF =+=1122ABF AF BN AB BF S ∆=⋅=⋅, 6132413N B 3NF BN ===3AN 9113AF NF =∴=-, ∵E 是BF 中点,∴EH 是△BFN 的中位线,313213NH EH ==∴BN ∥EH , 111313AH AN MN AH EH∴==,,解得:MN=2713143, ∴BM=BN-MN=31311MG=BG-BM=81311 38BM MG ∴=,③正确;④连接AG ,FG ,根据③中结论,则NG=BG-BN=71313, 11142712213S 13CFG GNF CGNF S S CG CF NF NG ∆∆=+=⋅+⋅=+=四边形, 11633512226213ANG ADG ANGD S S S AN GN AD DG ∆∆=+=⋅+⋅=+=四边形, S 12CGNF S ≠四边形,④错误; 故答案为 ①③.【点睛】 本题考查了正方形的性质,全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3求得AN ,BN ,NG ,NF 的值是解题的关键.20.12【解析】设D (aa )∵双曲线y=经过点D ∴a2=3解得a=∴AD=2∴正方形ABCD 的面积=AD2=(2)2=12故答案为12解析:12【解析】设D (a ,a ),∵双曲线y=3x经过点D , ∴a 2=3,解得3,∴3∴正方形ABCD 的面积=AD 2=(32=12.故答案为12.三、解答题21.(1)正三棱柱,72;(2)见解析;(3)3【分析】(1)由三视图可知,该几何体为正三棱柱,再根据正三棱柱侧面积计算公式计算可得; (2)画出正三棱柱的展开图即可;(3)在EFG ∆中,作EH FG ⊥于点H ,根据勾股定理求出EH ,即可得到AB .【详解】解:()1由三视图可知,该几何体为正三棱柱;这个几何体的侧面积为36472⨯⨯=;故答案为:正三棱柱;72.()2展开图如下:()3在EFG ∆中,作EH FG ⊥于点H ,则2FH =,224223EH =-=.AB ∴长23.【点睛】本题考查三视图、几何体的侧面展开图等知识,解题的关键是理解三视图、看懂三视图,属于中考常考题型.22.(1)见解析;(2)38;(3)4.【分析】(1)根据三视图的画法画出三视图即可;(2)分别求出前后左右上下一共有几个面,再计算它们的和即可;(3)保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,再计算放置小正方体的和即可.【详解】(1) 该几何体的主视图、左视图、俯视图如图所示:(2)该几何体表面积为6+6+6+6+7+7=38;(3) 要保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,所以可放置小正方体的个数为1+2+1=4.【点睛】本题考查组合体的三视图,解题的关键是计算出当左视图和俯视图不变时,可以在每一层上放置的小正方体数.23.见解析.【分析】根据∠AEB =∠ACB (同弧所对的圆周角相等)和AD 是△ABC 的高,AE 是⊙O 的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB =∠ACB (同弧所对的圆周角相等),∵AE 为直径,∴∠ABE =90°(直径所对的圆周角是直角),又∵AD ⊥BC ,即∠ADC =90°,∴∠ABE =∠ADC ,∴△ABE ∽△ADC .【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB =∠ACB ,然后即可得出结论.24.(1)12;(2)13 【分析】(1)根据点A 坐标求出函数表达式及点C 坐标,再求出点D 坐标,然后根据坐标计算面积即可;(2)先求出BE 得到点B 的纵坐标,再利用表达式求出横坐标,从而计算即可.【详解】解:(1)∵函数()0k y x x =>的图象经过点A(1,2), ∴21k =,即2k =, ∴2y x=,∵//AC y 轴,1AC =,∴点C 的坐标为(1,1),∵//CD x 轴,点D 在函数图象上,∴点D 的坐标为(2,1),∴CD=1, ∴111122OCD S =⨯⨯=△; (2)∵12BE AC =, ∴12BE =, ∵BE CD ⊥,∴点B 的纵坐标是32, ∴点B 的横坐标是43, ∴41133CE =-=. 【点睛】本题考查了反比例函数的应用,熟练掌握待定系数法求表达式及特殊点的坐标特征是解题的关键.25.5.1米【分析】延长DE 交AB 延长线于点P 、作CQ AP ⊥于点Q ,根据矩形的判定和性质可得CE PQ 2==、CQ PE =,由坡度1:0.75i =,可设CQ 4x =、BQ 3x =,根据勾股定理可列出关于x 的方程、解方程即可求得x 的值,即由线段的和差可知11DP =,最后解Rt ADP 、线段的和差可求得答案.【详解】解:如图,延长DE 交AB 延长线于点P ,作CQ AP ⊥于点Q ,如图:∵//CE AP ,DE CE ⊥∴DP AP ⊥∴四边形CEPQ 为矩形∴CE PQ 2==,CQ PE = ∵140.753CQ i BQ === ∴设CQ 4x =、BQ 3x =∴在Rt BCQ 中, 222BQ CQ BC +=∴()()2224310x x += ∴12x =或22x =-(舍去)∴48CQ PE x ===,36BQ x ==∴DP DE PE 11=+=∵测得江面上的渔船A 的俯角为40︒∴40A ∠=︒∴在Rt ADP 中,1113.1tan 0.84DP AP A =≈≈∠ ∴13.162 5.1AB AP BQ PQ =--=--= ∴此时AB 的长为5.1米.故答案是:5.1米【点睛】本题考查了俯角、坡度、锐角三角函数、矩形的判定和性质、勾股定理、一元二次方程、线段的和差等,解题的关键在于通过添加辅助线构造出直角三角形.26.【分析】先代入特殊角三角函数值和进行二次根式的混合运算,再进行合并即可得到结果.【详解】4sin 45︒=42⨯==【点睛】此题考查了二次根式的混合运算以及特殊角三角函数值,在进行此类运算时,一般先把二次根式化为最简二次根式的形式再运算.。
新初三数学下期末模拟试题附答案
新初三数学下期末模拟试题附答案一、选择题1.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥2.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+C .22y x =+D .22y x =-3.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣14.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为( )A .①②B .②③C .①②③D .①③5.如图,下列关于物体的主视图画法正确的是( )A .B .C .D .6.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =;②当0<x <3时,12y y ; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .47.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.58.下列计算错误的是( ) A .a 2÷a 0•a 2=a 4 B .a 2÷(a 0•a 2)=1C .(﹣1.5)8÷(﹣1.5)7=﹣1.5D .﹣1.58÷(﹣1.5)7=﹣1.59.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折D .9折10.cos45°的值等于( ) A 2B .1C 3D 2 11.下列各式化简后的结果为2 的是( ) A 6B 12C 18D 3612.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .18二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.15.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____.16.若a ,b 互为相反数,则22a b ab +=________.17.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号).18.计算:82-=_______________.19.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______. 20.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .三、解答题21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量). (1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.如图1,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD=23.过点D 作DF ∥BC ,交AB 的延长线于点F . (1)求证:DF 为⊙O 的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积; (3)若43AB AC =,DF+BF=8,如图2,求BF 的长.23.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++24.如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y =x﹣3的图象l交于点E(m ,﹣5).(1)m=__________;(2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x 轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:个数x150≤x<170170≤x<185185≤x<190x≥190男生5852女生38a3两组数据的极差、平均数、中位数、众数如表所示:极差平均数中位数众数男生55178b c女生43181184186(1)请将上面两个表格补充完整:a=____,b=_____,c=_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.26.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.考点:由三视图判定几何体.2.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.3.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-g=21xx-故选B. 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.D解析:D 【解析】 如图,连接BE ,根据圆周角定理,可得∠C=∠AEB , ∵∠AEB=∠D+∠DBE , ∴∠AEB>∠D , ∴∠C>∠D ,根据锐角三角形函数的增减性,可得, sin ∠C>sin ∠D ,故①正确; cos ∠C<cos ∠D ,故②错误; tan ∠C>tan ∠D ,故③正确; 故选D .5.C解析:C 【解析】 【分析】根据主视图是从正面看到的图形,进而得出答案. 【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C . 【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.6.C解析:C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误; 当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.7.B解析:B 【解析】 【分析】 【详解】解:∵∠ACB =90°,∠ABC =60°, ∴∠A =30°, ∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°, ∴∠A =∠ABD , ∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3. 故选B .8.D解析:D 【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可. 详解:∵a 2÷a 0•a 2=a 4, ∴选项A 不符合题意; ∵a 2÷(a 0•a 2)=1, ∴选项B 不符合题意; ∵(-1.5)8÷(-1.5)7=-1.5, ∴选项C 不符合题意; ∵-1.58÷(-1.5)7=1.5, ∴选项D 符合题意.点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.9.B解析:B 【解析】 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.10.D解析:D 【解析】 【分析】将特殊角的三角函数值代入求解. 【详解】解:cos45° 故选D . 【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.11.C解析:C 【解析】A 不能化简;BC ,故正确;D ,故错误; 故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.12.C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BA E+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:415.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得解析:﹣2≤a <﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式x ﹣a >0,得:x >a ,解不等式1﹣x >2x ﹣5,得:x <2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a <﹣1,故答案为:﹣2≤a <﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.17.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确 解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 18.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.19.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.三、解答题21.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.22.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到»»BD CD=,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt△DBP中得到,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由»»BD CD=得到CD=BD=△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12BD=3,PB=3PD=3,在Rt△DEP中,∵PD=3,DE=7,∴PE=22(7)(3)-=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:7,∴AE=57,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)2π⨯⨯-+⨯=932π-;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即23323x=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.23.11; 12x--【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-, ()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.24.(1)-2;(2);(3)≤a≤或3≤a≤6. 【解析】【分析】(1)根据点E 在一次函数图象上,可求出m 的值;(2)利用待定系数法即可求出直线l 1的函数解析式,得出点B 、C 的坐标,利用S 四边形OBEC =S △OBE +S △OCE 即可得解; (3)分别求出矩形MNPQ 在平移过程中,当点Q 在l 1上、点N 在l 1上、点Q 在l 2上、点N 在l 2上时a 的值,即可得解.【详解】解:(1)∵点E (m ,−5)在一次函数y =x−3图象上,∴m−3=−5,∴m =−2;(2)设直线l 1的表达式为y =kx +b (k≠0),∵直线l 1过点A (0,2)和E (−2,−5),∴ ,解得,∴直线l 1的表达式为y =x +2,当y =x +2=0时,x=∴B 点坐标为(,0),C 点坐标为(0,−3),∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;(3)当矩形MNPQ的顶点Q在l1上时,a的值为;矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),∴a的值为+2=;矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),∴a的值为4+2=6,综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.25.(1)a=6,b=179,c=188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.26.(1)见解析3【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形BFDE 是平行四边形,∵BD 是△ABC 的角平分线,∴∠EBD=∠DBF ,∵DE ∥BC ,∴∠EDB=∠DBF ,∴∠EBD=∠EDB ,∴BE=ED ,∴平行四边形BFDE 是菱形;(2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD 平分∠ABC ,∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-= ∴菱形BFDE 的面积=12×EF •BD =12×12×33 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.。
【人教版】初三数学下期末模拟试卷(含答案)
一、选择题1.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图2.如图是某个几何体的三视图,则该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥3.如图,在平整的地面上,有若干个完全相同的边长为 2cm 的小正方体堆成的一个几何体.如果在这个几何体的表面喷上红色的漆(贴紧地面的部分不喷),这个几何体喷漆的面积是( )A.30cm2B.32cm2C.120cm2D.128cm24.从上面看下图能看到的结果是图形()A.B.C.D.5.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时6.如图,这是某市政道路的交通指示牌,BD 的距离为5m ,从D 点测得指示牌顶端A 点和底端C 点的仰角分别是60°和45°,则指示牌的高度,即AC 的长度是( )A .53mB .52mC .()5352m -D .()535m - 7.国家电网近来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问题,电力公司在 改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD 的平台BC 上(如图),测得52.5,5AED BC ︒∠==米,35CD =米,19DE =米,则铁塔AB的高度约为( )(参考数据:52.50.79,52.50.61,52.5 1.30sin cos tan ︒︒︒≈≈≈)A .7.6 米B .27.5 米C .30.5 米D .58.5 米 8.在正方形网格中,小正方形的边长均为1,∠ABC 如图放置,则sin ∠ABC 的值为( )A 5B 5C 3D .19.在ABC 中,(2sinA-1)21cos 2B -=0,则ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .无法确定 10.某兴趣小组想测量一座大楼 AB 的高度.如图,大楼前有一段斜坡BC ,已知 BC 的长为 12 米它的坡度3i =.在离 C 点 40 米的 D 处,用测量仪测得大楼顶端 A 的仰角为 37度,测角仪DE 的高度为 1.5米,求大楼AB 的高度约为( )米(sin 370.60,cos370.80,tan 370.75,3 1.73︒=︒=︒==)A .39.3B .37.8C .33.3D .25.711.若点C 为线段AB 的黄金分割点,且AC BC >,则下列各式中不正确的是( ). A .::AB AC AC BC =B .352BC AB -= C .512AC AB += D .0.618AC AB ≈ 12.下列函数中,y 总随x 的增大而减小的是( )A .4y x =-B .4y x =-C .4y x =D .4y x=- 二、填空题13.如图,是由一些相同的小正方体构成的立体图形的三视图这些相同的小正方体的个数是______.14.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要_____块正方体木块,至多需要_____块正方体木块.15.如图,在A 时测得某树的影长为4米,在B 时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.16.如图,在ABC 中,6AB BC ==,点O 为BC 中点,点P 是射线AO 上的一个动点,且 60AOC ∠=︒.要使得BCP 为直角三角形,CP 的长为 ________ .17.在Rt △ABC 中,∠C =90°,如果tan ∠A =33,那么cos ∠B =_____. 18.已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________.19.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB =2m ,它的影子BC =1.5m ,木竿PQ 的影子有一部分落在了墙上,PM =1.2m ,MN =0.8m ,则木竿PQ 的长度为_______m .20.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0k y x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.三、解答题21.如图1,国庆期间某广场旗杆附近搭建了一座花篮.图2为从该场景抽象出的数学模型,已知花篮高度5=AB m ,某一时刻花篮在阳光下的投影3BC m =.(1)请你用尺规作图法在图2中作出此时旗杆DE 在阳光下的投影EF ;(不写作法,保留作图痕迹)(2)在测量AB 的投影时,同时测出旗杆DE 在阳光下的投影6EF m =,请你计算DE 的长.22.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来;(2)该几何体的表面积(含下底面)为________.23.计算:()301911223(60)tan π-+---︒24.如图,一次函数y =ax +b 的图象与反比例函数的图象交于A (﹣4,2)、B (2,n )两点,且与x 轴交于点C .(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB 的面积;(3)根据图象写出一次函数的值<反比例函数的值x 的取值范围.25.如图,在平面直角坐标系中,矩形ABCO 的边6,12AB BC ==,直线32y x m =-+与y 轴交于点P ,与边BC 交于点E ,与边OA 交于点D .(1)已知矩形ABCO 为中心对称图形,对称中心(点F )为对角线AC OB ,的交点,若直线32y x m =-+恰好经过点F ,求点F 的坐标和m 的值﹒ (2)在(1)的条件下,过点P 的一条直线绕点P 顺时针旋转时,与直线BC 和x 轴分别交于点,N M 、试问是否存在ON 平分CNM ∠的情况.若存在,求线段AM 的长,若不存在,说明理由﹒(3)将矩形ABCO 落在(1)条件下的直线32y x m =-+折叠,若点О落在边CB 上,求出该点坐标,若不在边CB 上,请你说明将(1)中的直线32y x m =-+沿y 轴进行怎样的平移,使矩形ABCO 沿平移后的直线折叠,点O 恰好落在边CB 上.26.黄金分割为“最美丽”的几何比率,广泛应用于图案设计,下图是一个包装盒的俯视图,线段AB 是这个俯视图的中轴线.某公司想在中轴线AB 上找到黄金分割点,安装视频播放器.(1)请你用尺规作图的方式找出这个点(作出一点即可,保留作图痕迹); (2)请证明你找到的点是黄金分割点.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用结合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:主视图由原来的三列变为两列;俯视图由原来的三列变为两列;左视图不变,依然是两列,左起第一列是两个小正方形,第二列底层是一个小正方形.故选:C.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题的关键.2.B解析:B【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选B.3.D解析:D【分析】根据露出的小正方体的面数,可得几何体的表面积.【详解】解:露出表面的面一共有32个,则这个几何体喷漆的面积为32×4=128cm2,故答案为:D.【点睛】本题考查了几何体的表面积,关键是观察出小正方体露出表面的面的个数.4.D解析:D【分析】先细心观察原立体图形中的圆锥体和长方体的位置关系,结合四个选项选出答案.【详解】从上面往下看到左边一个长方形,右边一个圆,因此只有D的图形符合这个条件.故选:D.【点睛】本题考查了三视图的知识,解题的关键是熟知俯视图是从上面往下的视图.5.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长. 可知影子最长的时刻为上午8时.故选A .【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.6.D解析:D【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°,∴BD=BC=5,设AC=x m ,则AB=(x +5)m ,在Rt △ABD 中,tan60°=AB BD ,则55x +=解得:5x =,即AC 的长度是()5m ;故选:D .【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 7.C解析:C【分析】延长AB 交ED 于G ,过C 作CF ⊥DE 于F ,得到GF=BC=5,设DF=3k ,CF=4k ,解直角三角形得到结论.【详解】解:延长AB 交ED 于G ,过C 作CF ⊥DE 于F ,则四边形BGFC 是矩形∴GF=BC=5,∵山坡CD的坡度为1:0.75,∴设DF=3k,CF=4k,∴CD=5k=35,∴k=7,∴DF=21,BG=CF=28,∴EG=GF+DF+DE=5+21+19=45,∵∠AED=52.5°,∴AG=EG•tan52.5°=45×1.30=58.5,∴AB=AG-BG=30.5米,答:铁塔AB的高度约为30.5米.故选:C.【点睛】本题考查了解直角三角形的应用-坡度坡角问题和解直角三角形的应用-坡度坡角问题,难度适中,通过作辅助线,构造直角三角形,利用三角函数求解是解题的关键.8.B解析:B【分析】作AD⊥BC于D,由勾股定理得出BC=2231+=10,AB=2211+=2,由△ABC的面积求出AD=10,由三角函数定义即可得出答案.【详解】解:作AD⊥BC于D,如图所示:由勾股定理得:BC2231+10,AB2211+2,∵△ABC的面积=12BC×AD=12×3×1−12×1×1,∴12×AD=12×3×1−12×1×1,解得:AD=5,∴sin∠ABC=ADAB;故选:B.【点睛】本题考查了解直角三角形、勾股定理以及三角函数定义;熟练掌握勾股定理和三角函数定义是解题的关键.9.C解析:C【分析】根据非负数的性质可得sinA和cosB的值,进而可得∠A和∠B的度数,即可知△ABC的形状.【详解】解:∵(2sinA-1)2=0,∴2sinA-1=0,cosB-12=0,∴sinA=12,cosB=12,∴∠A=30°,∠B=60°,∴∠C=180°-∠A-∠B=90°,故△ABC为直角三角形.故选C.【点睛】本题主要考查了非负数的性质和特殊角的三角函数值,根据两个非负数的和为零,则这两个数都为零求出sinA和cosB的值是解决此题的关键.10.C解析:C【分析】延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H,在Rt△BCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角△AEH中利用三角函数求得AF的长,进而求得AB的长.【详解】解:延长AB 交直线DC 于点F ,过点E 作EH ⊥AF ,垂足为点H .∵在Rt △BCF 中,BF CF =1:3i =, ∴设BF=k ,则CF=3k ,BC=2k .又∵BC=12,∴k=6,∴BF=6,CF=63,∵DF=DC+CF ,∴DF=40+63,∵在Rt △AEH 中,tan ∠AEH=AH EH, ∴AH=tan37°×(40+63)≈37.785(米),∵BH=BF-FH ,∴BH=6-1.5=4.5.∵AB=AH-HB ,∴AB=37.785-4.5≈33.3.故选C .【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.11.C解析:C【分析】根据黄金分割点的定义逐项排除即可.【详解】解:∵点C 为线段AB 的黄金分割点,且AC BC >,∴2AC BC AB =⋅,∴::AB AC AC BC =,则选项A 正确;∵点C 为线段AB 的黄金分割点,且AC BC >,∴510.618AC AB -=≈,则选项C 错误;选项D 正确;=-=-=,则选项B正确.BC AB AC AB AB AB故选:C.【点睛】本题考查了成比例线段,熟练掌握黄金分割的定义成为解答本题关键.12.A解析:A【分析】根据正比例函数的性质,可判断A;根据一次函数的性质,可判断B;根据反比例函数的性质,可判断C、D.【详解】A选项:y随x的增大而减小,符合题意,故A正确;B选项:y随x的增大而增大,不符合题意,故B错误;C选项:在每个象限内y随x的增大而减小,不符合题意,故C错误;D选项:在每个象限内y随x的增大而增大,不符合题意,故D错误.故选:A.【点睛】本题主要考查了反比例函数的增减性,关键是要注意反比例函数在叙述增减性时必须强调在每个象限内.二、填空题13.5【解析】试题分析:根据三视图可得这个立体图形有5个小正方体考点:几何体的三视图解析:5【解析】试题分析:根据三视图可得这个立体图形有5个小正方体.考点:几何体的三视图14.616【解析】试题分析:由物体的主视图和左视图易得第一层最少有4块正方体最多有12块正方体;第二层最少有2块正方体最多有4块正方体故总共至少有6块正方体至多有16块正方体考点:几何体的三视图解析:6 16【解析】试题分析:由物体的主视图和左视图易得,第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.考点:几何体的三视图.15.6【解析】【分析】根据题意画出示意图易得:Rt△EDC∽Rt△CDF进而可得代入数据可得答案【详解】如图在中米米易得即米故答案为:6【点睛】本题通过投影的知识结合三角形的相似求解高的大小是平行投影性解析:6【解析】【分析】根据题意,画出示意图,易得:Rt △EDC ∽Rt △CDF ,进而可得ED CD CD FD =,代入数据可得答案.【详解】如图,在EFC ∆中,90,9ECF ED ︒∠==米,4FD =米,易得~ EDC Rt CDF ∆∆, ED CD CD FD ∴=,即94CD CD =, 6CD ∴=米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用.16.或3或【分析】利用分类讨论①当∠BPC=90°时情况一:如图1利用直角三角形斜边的中线等于斜边的一半得出PO=BO 易得△BOP 为等边三角形利用锐角三角函数可得CP 的长;情况二:如图2利用直角三角形斜解析:333或37【分析】利用分类讨论,①当∠BPC=90°时,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO ,易得△BOP 为等边三角形,利用锐角三角函数可得CP 的长;情况二:如图2,利用直角三角形斜边的中线等于斜边的一半可得结论.②当∠CBP=90°时,如图3,由对顶角的性质可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP 的长,利用勾股定理可得CP 的长.【详解】解:①当∠CPB=90°时,情况一:(如图1),∵点O为BC中点,∴AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=6,∴CP=CB•sin60°=6×3=33;2情况二:如图2,∵点O为BC中点,∴AO=BO,∵∠CPB=90°,∴PO=BO=CO,∵∠AOC=60°,∴△COP为等边三角形,∴CP=CO=3,②当∠CBP=90°时,如图3,∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP=tan30OB==︒,在直角三角形CBP中,==故答案为:3或【点睛】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.17.【分析】直接利用特殊角的三角函数值得出∠A=30°进而得出∠B的度数进而得出答案【详解】∵tan∠A=∴∠A=30°∵∠C=90°∴∠B=180°﹣30°﹣90°=60°∴cos∠B=故答案为:【点解析:12【分析】直接利用特殊角的三角函数值得出∠A=30°,进而得出∠B的度数,进而得出答案.【详解】∵tan∠A∴∠A=30°,∵∠C=90°,∴∠B=180°﹣30°﹣90°=60°,∴cos∠B=12.故答案为:12.【点睛】此题主要考查了特殊角的三角函数值,正确理解三角函数的计算公式是解题关键.18.【分析】由直角三角形中30°角所对的直角边等于斜边的一半可求出30°角对应的直角边再由勾股定理可知求出另一直角边进而求出斜边上的高【详解】解:如下图所示BC=4∠B=30°∠C=60°由直角三角形中【分析】由直角三角形中30°角所对的直角边等于斜边的一半,可求出30°角对应的直角边,再由勾股定理可知求出另一直角边,进而求出斜边上的高.【详解】解:如下图所示,BC=4,∠B=30°,∠C=60°由直角三角形中,30°角所对的直角边等于斜边的一半知:AC=12BC=2由勾股定理知:2222=422 3.-=-=AB BC AC在Rt△ABH中,AH=12AB=3.故答案为:3.【点睛】本题考查了直角三角形中30°角所对的直角边等于斜边的一半、勾股定理等相关知识,熟练掌握直角三角形的性质是解题的关键.19.24【分析】过N点作ND⊥PQ于D先根据同一时刻物高与影长成正比求出QD的影长再求出PQ即可【详解】解:如图过N点作ND⊥PQ于D∴又∵AB=2BC=15DN=PM=12NM=08∴∴QD=16∴P解析:2.4【分析】过N点作ND⊥PQ于D,先根据同一时刻物高与影长成正比求出QD的影长,再求出PQ即可.【详解】解:如图,过N点作ND⊥PQ于D,∴BC DN AB QD=,又∵AB=2,BC=1.5,DN=PM=1.2, NM=0.8,∴1.5 1.22QD=,∴QD=1.6,∴PQ=QD+DP=QD+NM=1.6+0.8=2.4(m ).故答案为:2.4.【点睛】在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.20.【分析】根据矩形的性质已知条件可得均为等腰直角三角形进而根据点在坐标系中的位置设并过点作于再根据点与点之间的相对位置反比例函数的解析式用含表示出然后利用反比例函数的解析式得到关于的方程解方程即可得解 解析:15【分析】根据矩形的性质、已知条件可得ADE 、ABE △、BCE 均为等腰直角三角形,进而根据点在坐标系中的位置设(),0E x ,并过D 点作DHAE ⊥于H ,再根据点与点之间的相对位置、反比例函数的解析式用含x 、k 表示出,k A x x ⎛⎫ ⎪⎝⎭、7436,55x x F ++⎛⎫ ⎪⎝⎭,然后利用反比例函数的解析式得到关于k 的方程,解方程即可得解.【详解】∵AD AE =,90ADE ∠=︒∴ADE 为等腰直角三角形∴45DAE ∠=︒ ∴9045BAE DAE ∠=︒-∠=︒∴ABE △为等腰直角三角形∴45ABE ∠=︒∴45CBE ∠=︒∴BCE 为等腰直角三角形设(),0E x ,则,k A x x ⎛⎫ ⎪⎝⎭,过D 点作DH AE ⊥于H ,如图:∴()1112222DH AE BE x ===+∴()132222x DH OE x x ++=++= ∴322,22x x D ++⎛⎫ ⎪⎝⎭ ∵4AF FD =∴点F 的横坐标为32217422415x x x +++-⋅=+、纵坐标为2213622145x x x ++++⋅=+ ∴7436,55x x F ++⎛⎫ ⎪⎝⎭∵,k A x x⎛⎫ ⎪⎝⎭ ∴2k AE x x ==+ ∴()2k x x =+∴()7436255x x k x x ++=⋅=⋅+ ∴()()()7436252x x x x ++=+∴3x =或2x =-(不合题意舍去)∴()()233215k x x =+=⨯+=.【点睛】本题考查了反比例函数、矩形的性质、等腰直角三角形的判定和性质等,能够表示出点F 坐标是解题的关键.三、解答题21.(1)见解析;(2)10m【分析】(1)根据投影定义作图即可;(2)根据(1)的图形,证明△ABC ∽△DEF ,列得AB DE BC EF=,代入数值求解即可. 【详解】解:(1)如图EF 就是DE 的投影.(2)由作图可知//AC DF ,ACB DFE ∴∠=∠,90ABC DEF ∠=∠=︒,∴△ABC ∽△DEF, AB DE BC EF ∴=,即536DE =, 10()DE m ∴=.答:DE 的长为10m .【点睛】此题考查相似三角形的实际应用,相似三角形的判定及性质,平行投影的画法及应用,正确理解平行投影是解题的关键.22.(1)见解析;(2)34【分析】(1)从正面看得到从左往右4列正方形的个数依次为1,3,1,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右,4列正方形的个数依次为2,1,,1,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的面积之和,然后加上2个三视图中没看到的面,计算表面积之和,即可;【详解】解:(1)如下图:(2)(5×2+7×2+4×2+2)×(1×1)=(10+14+8+2)×1=34×1=34故答案为:34.【点睛】考查了作图-三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错. 23.-5.【分析】根据实数的运算法则,特殊角的三角函数值,算术平方根的运算分别化简各数,然后再按运算顺序进行计算即可.【详解】原式131=-+--=-1+3-1-6=-5.【点睛】本题考查了实数的运算,涉及了零指数幂,特殊角的三角函数值等,牢记特殊角的三角函数值,掌握实数的运算性质是解题的关键.24.(1)反比例函数8y x -=,一次函数y=-x-2;(2)6AOB S ∆=;(3)-4<x <0或x >2.【分析】(1)先根据点A 的坐标求出反比例函数的解析式,再求出B 的坐标是(2,-4),利用待定系数法求一次函数的解析式;(2)求出C 点坐标,再利OC 把△AOB 的面积分成两个部分求解;(3)当一次函数的值<反比例函数的值时,直线在双曲线的下方,直接根据图象得出x 的取值范围.【详解】解:(1)设反比例函数的解析式为k y x =,因为经过A (-4,2), ∴k=-8,∴反比例函数的解析式为8y x -=. 因为B (2,n )在8y x -=上, ∴842n ,∴B 的坐标是(2,-4)把A (-4,2)、B (2,-4)代入y=ax+b ,得4224a b a b -+=⎧⎨+=-⎩, 解得:12a b =-⎧⎨=-⎩, ∴y=-x-2;(2)y=-x-2中,当y=0时,x=-2;∴直线y=-x-2和x 轴交点是C (-2,0), ∴OC=2∴112422622AOB S ∆=⨯⨯+⨯⨯=; (3)由图象可知-4<x <0或x >2时一次函数的值<反比例函数的值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数综合.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.25.(1)F (6,3),m=12;(2)存在,1243+或1243-;(3)不在,需将直线3122y x =-+沿y 轴向下平移94个单位长度. 【分析】(1)由题意得矩形的中心F 坐标为(6,3),代入32y x m =-+,得m=12; (2)分,M N 在y 轴左、右两侧两种情况,证明MON ∆是等边三角形即可得到结论; (3)假设沿直线3122y x =-+将矩形ABCO 折叠,点O 落在边AB 上O′处.连接PO′,OO′.则有PO′=OP ,由(1)得AB 垂直平分OP ,所以PO′=OO′,则△OPO′为等边三角形.则∠OPE=30°,则(2)知∠OPE >30°所以沿直线3122y x =-+将矩形ABCO 折叠,点O 不可能落在边AB 上.设沿直线32y x a =-+将矩形ABCO 折叠,点O 恰好落在边AB 上O′处.连接P′O′,OO′.则有P′O′=OP′=a ,则由题意得:AP′=a -6,∠OPE=∠AO′O ,Rt △OPE 中,OE OA OP AO '=,即8612AO =所以AO′=9,在Rt △AP′O′中,由勾股定理得:(a-6)2+92=a 2解得:394a =,所以将直线3122y x =-+沿y 轴向下平移94单位得直线,将矩形ABCO 沿直线折叠,点O 恰好落在边AB 上. 【详解】()1四边形ABCO 是矩形,6,12,AB BC ==()()()12,012,6,,0,6A B C ∴,F 是,AC OB 的交点,FO ∴是OB 的中点,()6,3P ,将()6,3F 代入32y m =-+, 得:363,2m -⨯+= 解得12,m = ∴点F 的坐标为()6,3,m 的值为12.(2)存在,①当,M N 在y 轴左侧时,如图1,直线3122y x =-+与y 轴交于点P , (),0,1212,P OP ∴=,PC OC MG ∴==过M 点作MG BC ⊥交BC 的延长线于点,G,,MNG PNC PCN MGN PC GM ∠=∠∠=∠=,()MGN PCN AAS ∴∆≅∆,,PN MN ∴=点N 是PM 的中点,1,2ON PM MN ∴== ON 平分,//,CNM BC AM ∠,MNO CNO NOM ∴∠=∠=∠MON ∴∆是等边三角形,60,NMO ∴∠=︒4333MO ∴=== 4312AM MO OA ∴=+=+.②当,M N 在y 轴右侧时,如图2,同理可得3,OM =1243,AM AO OM ∴=-=-综上所述,线段AM 的长为123+1243-()3不在,理由如下:假设沿直线y=-32x+12将矩形ABCO折叠,点O落在边AB上O′处.连接PO′,OO′,则有PO′=OP,由(1)得AB垂直平分OP,所以PO′=OO′,则△OPO′为等边三角形.则∠OPE=30°,则(2)知∠OPE>30°,所以沿直线y=-32x+12将矩形ABCO折叠,点O不可能落在边AB上.设沿直线y=-32x+a将矩形ABCO折叠,点O恰好落在边AB上O′处.连接P′O′,OO′.则有P′O′=OP′=a,则由题意得:AP′=a-6,∠OPE=∠AO′O,在Rt△OPE中,tanOEOPEOP∠=,在Rt△OAO′中,tanOAAO OAO'∠=',所以OE OAOP AO'=,即8612AO=',所以AO′=9,在Rt△AP′O′中,由勾股定理得:(a-6)2+92=a2解得:a=394,所以将直线y=-32x+12沿y轴向下平移94单位得直线y=-32x+394,将矩形ABCO沿直线y=-32x+394折叠,点O恰好落在边AB上.【点睛】主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数图象上点的意义和相似三角形的性质来表示相应的线段之间的关系,再结合具体图形的性质求解.试题中贯穿了方程思想和数形结合的思想,请注意体会.26.(1)图见解析;(2)见解析【分析】(1)过点B 作AB 的垂线,并用圆规在垂线上截取BC ,使BC=12AB ,连接AC ,以C 为圆心,BC 为半径画弧,交AC 于点D ,以A 为圆心,AD 为半径画弧,交AB 于E ,则点E 即为线段AB 的黄金分割点;(2)设BC=a ,则AB=2a ,AC=225AB BC a +=,通过计算证明2AE BE AB =⋅即可解决问题.【详解】(1)如图:点E 即为所求;(2)设BC=a ,则AB=2a ,∴225AB BC a +=,∵CD=BC=a ,∴5a -a ,∵2222(5625)AE a a a a =-=-,222(25)625AB BE a a a a a a ⋅=⋅+=-, ∴2AE BE AB =⋅,∴点E 是线段AB 的黄金分割点.【点睛】此题考查黄金分割,黄金分割的作图,勾股定理,正确掌握黄金分割的知识并熟练应用解决问题是解题的关键.。
九年级数学下学期模拟试题(三)(2021年整理)
广东省南雄市2017届九年级数学下学期模拟试题(三)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省南雄市2017届九年级数学下学期模拟试题(三))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省南雄市2017届九年级数学下学期模拟试题(三)的全部内容。
广东省南雄市2017届九年级数学下学期模拟试题(三)一、选择题(本大题10小题,每小题3分,共30分)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.如图所示,由三个相同的小正方体组成的立体图形的主视图是()A.B.C.D.3.某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为()A.0。
1×10﹣8s B.0。
1×10﹣9s C.1×10﹣8s D.1×10﹣9s 4.如图,a∥b,则∠A的度数是()A.22°B.32°C.68°D.78°5.若一个多边形的每个内角都等于108°,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形6.下列运算正确的是()A.3x2÷x=2x B.(x2)3=x5 C.x3•x4=x12D.2x2+3x2=5x27.三张完全相同的卡片上,分别画有圆、等边三角形、平行四边形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为()A.B.C.D.18.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()A.4cm B.5cm C.6cm D.13cm9.如图,P是等边三角形△ABC内的一点,连接PB、PC.若将△PBC绕点B旋转到△P′BA,则∠PBP′的度数是()A.45°B.60°C.90°D.120°10.甲、乙两同学同时从400m环形跑道上的同一点出发,同向而行,甲的速度为6m/s,乙的速度为4m/s,设经过x(单位:s)后,跑道上两人的距离(较短部分)为y(单位:m),则y 与x(0≤x≤300)之间的函数关系可用图象表示为( )A. B.C. D.二、填空题(本大题6小题,每小题4分,共24分)11.因式分解:a2+3a=______.12.计算:2﹣1+50=______.13.解分式方程: =.解得X=14.如图,已知⊙O的直径AB=3cm,C为⊙O上的一点,sinA=,则BC=______ cm.15.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于______度.16.在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=DC.若AB=10,BC=12,则图中阴影部分的面积为______.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程组:18.化简求值:(1+)÷,其中x=2.19.如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.四、解答题(二)(本大题3小题,每小题7分,共21分)20.为了推动课堂教学改革,打造“高效课堂”,我市某中学对该校八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图,请根据图中提供的信息,回答下列问题:(1)本次调查的八年级部分学生共有______名;请补全条形统计图;(2)若该校八年级学生共有540人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?21.如图,平行四边形ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若DE=AE,求证:四边形EBFD是菱形.22.如图,一个农户要建一个矩形猪舍ABCD,猪舍的一边AD利用长为12米的住房墙,另外三边用25米长的建筑材料围成.为了方便进出,在CD边留一个1米宽的小门.(1)若矩形猪舍的面积为80平方米,求与墙平行的一边BC的长;(2)若与墙平行的一边BC的长度不小于与墙垂直的一边AB的长度,问BC边至少应为多少米?五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线AM,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)求点A的坐标;(3)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上确定一点P,使PA+PB最小.求点P的坐标.24.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)求证:△BED∽△BCA;(3)若AE=7,BC=6,求AC的长.25.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.(1)b=______,c=______;(2)点E是Rt△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.2017年中考数学模拟试卷(三)参考答案一、选择题(本大题10小题,每小题3分,共30分)DBDAB DB C B C二、填空题(本大题6小题,每小题4分,共24分)11.a(a+3) .12.. 13.x=﹣3, 14.. 15.30 . 16.35 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程组:原方程组的解是.18.化简求值:(1+)÷,其中x=2.原式=•=x+1,当x=2时,原式=3.19.(略)四、解答题(二)(本大题3小题,每小题7分,共21分)20.(1)54(人),(2)480(人),21.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵E、F分别是AB、CD的中点,∴AE=BE=AB,DF=CD,∴BE=DF.∴四边形EBFD是平行四边形;(2)证明:∵AE=BE,DE=AE,∴BE=DE,∴四边形EBFD是菱形.22.(1)设B C的长为xm,依题意得:(25+1﹣x)x=80,解得:x1=10,x2=16(舍去),答:矩形猪舍的面积为80平方米,求与墙平行的一边BC的长为10m;(2)依题意得:,解得≤x≤12,所以x最小=.五、解答题(三)(本大题3小题,每小题9分,共27分)23.解:(1)∵△OAM的面积为1,∴|k|=1,解得:k=±2∵第一象限内有反比例函数图象,∴反比例函数的解析式为y=(2)一次函数与反比例函数解析式:,解得:或(舍去).∴点A的坐标为(2,1).(3)令反比例函数y=中x=1,则y==2,∴点B的坐标为(1,2).作点A关于x轴的对称点A′,连接A′B交x轴于点P,连接AP,如图所示.则点P即是所要找的使PA+PB最小得点,∵点A、A′关于x轴对称,且点A的坐标为(2,1),∴点A′的坐标为(2,﹣1).设直线A′B的解析式为y=ax+b,将点A′(2,﹣1)、B(1,2)代入到y=ax+b中得:,解得:,∴直线A′B的解析式为y=﹣3x+5,令y=﹣3x+5中y=0,则0=﹣3x+5,解得:x=.∴点P的坐标为(,0).故在x轴上确定一点P,点P的坐标为(,0),此时PA+PB最小.24.(1)证明:如图,连接OD.∵AB=AC,∴∠B=∠C,∵OD=OC,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴OD⊥DF,∵点D在⊙O上,∴直线DF与⊙O相切;(2)证明:∵∠BED=∠C,∠B=∠B,∴△BED∽△BCA;(3)解:∵四边形ACDE是⊙O的内接四边形,∴∠AED+∠ACD=180°,∵∠AED+∠BED=180°,∴∠BED=∠ACD,∵∠B=∠B,∴△BED∽△BCA,∴,∵OD∥AB,AO=CO,∴BD=CD=BC=3,又∵AE=7,∴,∴BE=2,∴AC=AB=AE+BE=7+2=9.25.解:(1)b=﹣2,c=﹣3;(2)∵直线A B:y=px+q,经过点A(﹣1,0),B(4,5),∴,解得:,∴直线AB的解析式为:y=x+1,∵二次函数y=x2﹣2x﹣3,∴设点E(t,t+1),则F(t,t2﹣2t﹣3)广东省南雄市2017届九年级数学下学期模拟试题(三)∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t ﹣)2+,∴当t=时,EF的最大值=,∴点E 的坐标为(,);(3)存在,分两种情况考虑:(ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3),则有:m2﹣2m﹣3=,解得:m1=,m2=,∴P1(,),P2(,);(ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3),则有:n2﹣2n﹣3=﹣,解得:n1=,n2=(与点F重合,舍去),∴P3(,﹣),综上所述:所有点P的坐标:P1(,),P2(,),P3(,﹣),能使△EFP 组成以EF为直角边的直角三角形.故答案为:﹣2;﹣3;P1(,),P2(,),P3(,﹣)11。
2022年沪科版九年级数学下册期末模拟考 卷(Ⅲ)(含答案详解)
2022年沪科版九年级数学下册期末模拟考 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列四个图案中,是中心对称图形但不是轴对称图形的是( ) A .B .C .D . 2、往直径为78cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽72cm AB ,则水的最大深度为( )A .36 cmB .27 cmC .24 cmD .15 cm3、如图,点P 是等边三角形ABC 内一点,且PA =3,PB =4,PC =5,则∠APB 的度数是( ). ·线○封○密○外A .90°B .100°C .120°D .150°4、如图,在AOB 中,4OA =,6OB =,AB =AOB 绕原点O 逆时针旋转90°,则旋转后点A 的对应点A '的坐标是( )A .()4,2-B .()-C .()-D .(- 5、如图,O 是△ABC 的外接圆,已知25ABO ∠=︒,则ACB ∠的大小为( )A .55°B .60°C .65°D .75°6、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为( )A .16B .13 C .14 D .12 7、在ABC 中,45B ∠=︒,6AB =,给出条件:①4AC =;②8AC =;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC 的长唯一.可以选取的是( )A .①B .②C .③D .①或③ 8、已知菱形ABCD 的对角线交于原点O ,点A的坐标为()-,点B的坐标为(1,-,则点D 的坐标是( ) A.( B.()1- C.()- D.(2, 9、若120︒的圆心角所对的弧长是2π,则此弧所在圆的半径为( ) A .1 B .2 C .3 D .4 10、如图,O 的半径为6,将劣弧沿弦AB 翻折,恰好经过圆心O ,点C 为优弧AB 上的一个动点,则ABC 面积的最大值是( ) A.B.C.D.第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、两直角边分别为6、8,那么Rt ABC 的内接圆的半径为____________. 2、如图,在⊙O 中,∠BOC =80°,则∠A =___________°. ·线○封○密·○外3、在Rt△ABC 中,∠ACB =90°,AC =AB ,点E 、F 分别是边CA 、CB 的中点,已知点P 在线段EF 上,联结AP ,将线段AP 绕点P 逆时针旋转90°得到线段DP ,如果点P 、D 、C 在同一直线上,那么tan∠CAP =_______.4、如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,旋转角为()090αα︒<<︒.若1110∠=︒,则α的大小为________(度).5、如图,PA 是⊙O 的切线,A 是切点.若∠APO =25°,则∠AOP =___________°.三、解答题(5小题,每小题10分,共计50分)1、在ABC 中,AB AC =,90BAC ∠=︒,过点A 作BC 的垂线AD ,垂足为D ,E 为线段DC 上一动点(不与点C 重合),连接AE ,以点A 为中心,将线段AE 逆时针旋转90°得到线段AF ,连接BF ,与直线AD 交于点G .(1)如图,当点E 在线段CD 上时,①依题意补全图形,并直接写出BC 与CF 的位置关系;②求证:点G 为BF 的中点.(2)直接写出AE ,BE ,AG 之间的数量关系.2、某商家销售一批盲盒,每一个看上去无差别的盲盒内含有A ,B ,C ,D 四种玩具中的一种,抽到玩具B 的有关统计量如表所示:(1)估计从这批盲盒中任意抽取一个是玩具B 的概率是 ;(结果保留小数点后两位) (2)小明从分别装有A ,B ,C ,D 四种玩具的四个盲盒中随机抽取两个,请利用画树状图或列表的方法,求抽到的两个玩具恰为玩具A 和玩具C 的概率.3、如图所示,AB 是⊙O 的一条弦,⊥OD AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上. (1)若52AOD ∠=︒,求DEB ∠的度数.(2)若3OC =,5OA =,求AB 的长. 4、在平面直角坐标系xOy 中,⊙O 的半径为1,对于直线l 和线段AB,给出如下定义:若将线段AB 关于直线l 对称,可以得到⊙O 的弦A ´B ´(A ´,B ´分别为A ,B 的对应点),则称线段AB 是⊙O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是⊙O 的关于直线l 对称的“关联线·线○封○密·○外段”.(1)如图2,11,2233,,,,A B A B A B 的横、纵坐标都是整数.①在线段11,2233,A B A B A B 中,⊙O 的关于直线y =x +2对称的“关联线段”是_______;②若线段11,2233,A B A B A B 中,存在⊙O 的关于直线y =-x +m 对称的“关联线段”,则 m = ;(2)已知直线+(0y x b b =>)交x 轴于点C ,在△ABC 中,AC =3,AB =1,若线段AB 是⊙O 的关于直线+(0y x b b =>)对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.5、在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于r (r 为常数),到点O 的距离等于r 的所有点组成图形G , ABC 的平分线交图形G 于点D ,连接AD ,C D .求证:AD =C D . -参考答案- 一、单选题 1、D 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】 解:A 、不是轴对称图形,不是中心对称图形,故此选项不符合题意; B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;·线○封○密○外C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C【分析】连接OB,过点O作OC AB⊥于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.【详解】解:连接OB,过点O作OC AB⊥于点D,交O于点C,如图所示:则136()2BD AB cm==,O的直径为78cm,39()OB OC cm∴==,在Rt OBD△中,15()OD cm,391524()CD OC OD cm∴=-=-=,即水的最大深度为24cm,故选:C .【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键. 3、D【分析】将BPC ∆绕点B 逆时针旋转60︒得BEA ∆,根据旋转的性质得4BE BP ==,5AE PC ==,60PBE ∠=︒,则BPE ∆为等边三角形,得到4PE PB ==,60BPE ∠=︒,在AEP ∆中,5AE =,3AP =,4PE =,根据勾股定理的逆定理可得到APE ∆为直角三角形,且90APE ∠=︒,即可得到APB ∠的度数. 【详解】 解:ABC ∆为等边三角形, BA BC ∴=, 可将BPC ∆绕点B 逆时针旋转60︒得BEA ∆, 如图,连接EP , 4BE BP ∴==,5AE PC ==,60PBE ∠=︒, BPE ∴∆为等边三角形, 4PE PB ∴==,60BPE ∠=︒, 在AEP ∆中,5AE =,3AP =,4PE =,·线○封○密○外222AE PE PA ∴=+,APE ∴∆为直角三角形,且90APE ∠=︒,9060150APB ∴∠=︒+︒=︒.故选:D .【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4、C【分析】过点A 作AC ⊥x 轴于点C ,设OC a = ,则6BC a =- ,根据勾股定理,可得2222AB BC OA OC -=-,从而得到2OC = ,进而得到∴AC =,可得到点(2,A ,再根据旋转的性质,即可求解.【详解】解:如图,过点A 作AC ⊥x 轴于点C ,设OC a = ,则6BC a =- ,∵222AC OA OC =- ,222AC AB BC =-,∴2222AB BC OA OC -=-, ∵4OA =,AB =∴(()222264a a --=- , 解得:2a = , ∴2OC = ,∴AC ,∴点(2,A , ∴将AOB 绕原点O 顺时针旋转90°,则旋转后点A 的对应点A ''的坐标是()2-, ∴将AOB 绕原点O 逆时针旋转90°,则旋转后点A 的对应点A '的坐标是()-. 故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A 的坐标,属于中考常考题型. 5、C 【分析】 由OA=OB ,25ABO ∠=︒,求出∠AOB =130°,根据圆周角定理求出ACB ∠的度数. 【详解】 解:∵OA=OB ,25ABO ∠=︒, ∴∠BAO =25ABO ∠=︒. ·线○封○密·○外∴∠AOB=130°.∴ACB∠=12∠AOB=65°.故选:C.【点睛】此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.6、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是41 164=.故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.7、B【分析】画出图形,作AD BE⊥,交BE于点D.根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断①②;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意.【详解】如图,45ABE ∠=︒,6AB =,点C 在射线AE 上.作AD BE ⊥,交BE 于点D .∵45ABE ∠=︒,∴ABD △为等腰直角三角形,∴4BD AD AB ===>, ∴不存在4AC =的三角形ABC ,故①不符合题意; ∵6AB =,=AD AC =8, 而AC >6, ∴存在8AC =的唯一三角形ABC , 如图,点C 即是. ∴8AC =,使得BC 的长唯一成立,故②符合题意;∵4AD =>,68AB =<, ∴存在两个点C 使ABC 的外接圆的半径等于4,两个外接圆圆心分别在AB 的上、下两侧,如图,点C和C '即为使ABC 的外接圆的半径等于4的点. ·线○封○密○外故③不符合题意.故选B.【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质.利用数形结合的思想是解答本题的关键.8、A【分析】根据菱形是中心对称图形,菱形ABCD的对角线交于原点O,则点D与点B关于原点中心对称,根据中心对称的点的坐标特征进行求解即可【详解】解:∵菱形是中心对称图形,菱形ABCD的对角线交于原点O,∴D与点B关于原点中心对称,点B的坐标为(1,-,∴点D的坐标是(故选A【点睛】本题考查了菱形的性质,求关于原点中心对称的点的坐标,掌握菱形的性质是解题的关键.9、C【分析】先设半径为r ,再根据弧长公式建立方程,解出r 即可【详解】设半径为r ,则周长为2πr , 120°所对应的弧长为120222π3603r r ππ︒⨯==︒ 解得r =3 故选C 【点睛】 本题考查弧长计算,牢记弧长公式是本题关键. 10、C 【分析】 如图,过点C 作CT ⊥AB 于点T ,过点O 作OH ⊥AB 于点H ,交⊙O 于点K ,连接AO 、AK ,解直角三角形求出AB ,求出CT 的最大值,可得结论. 【详解】 解:如图,过点C 作 CT ⊥AB 于点T ,过点O 作OH ⊥AB 于点H ,交⊙O 于点K ,连接AO 、AK , ·线○封○密·○外由题意可得AB 垂直平分线段OK ,∴AO =AK ,OH =HK =3,∵OA =OK ,∴OA =OK =AK ,∴∠OAK =∠AOK =60°,∴AH =OA ×sin ∵OH ⊥AB ,∴AH =BH ,∴AB =2AH∵OC +OH ⩾CT ,∴CT ⩽6+3=9,∴CT 的最大值为9,∴△ABC 的面积的最大值为192⨯故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT 的最大值,属于中考常考题型.二、填空题1、5【分析】直角三角形外接圆的直径是斜边的长.【详解】解:由勾股定理得:AB, ∵∠ACB =90°, ∴AB 是⊙O 的直径, ∴这个三角形的外接圆直径是10, ∴这个三角形的外接圆半径长为5, 故答案为:5.【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等. 2、40°度 【分析】 直接根据圆周角定理即可得出结论. 【详解】 解:BOC ∠与BAC ∠是同弧所对的圆心角与圆周角,80BOC ∠=︒, 1402A BOC ∴∠=∠=︒. 故答案为:40︒. 【点睛】 ·线○封○密·○外本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.31【分析】①如图1所示,由题意知,EF为△ABC的中位线,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四点共圆,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,设AD=a,则DC=AD=a,PD=AP,tan∠CAP=CP APa+2所示,当点P在线段CD上时,同理可证:DA=DC,设AD=a,则CD=AD=a,PD,PC=a,tan∠CAP=CPAP,计算求解即可,而情形2满足要求.【详解】解:①如图1,当点D在线段PC上时,延长AD交BC的延长线于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四点共圆,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,设AD=a,则DC=AD=a,PD=APa=∴tan∠CAP=CPAPa+;②如图2中,当点P在线段CD上时,同理可证:DA=DC,设AD=a,则CD=AD=a,PD=2·线○封○密○外∴PC=aa,∴tan∠CAP=CPAPa1,∵点P在线段EF上,∴情形1不满足条件,情形2满足条件;﹣1.【点睛】本题考查了中位线,等腰三角形的判定与性质,旋转,直角三角形斜边上中线的性质,正切函数等知识点.解题的关键在于表示出正切中线段的长度.4、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD ′=90°-70°=20°,即α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.5、65 【分析】 根据切线的性质得到OA ⊥AP ,根据直角三角形的两锐角互余计算,得到答案. 【详解】 解:∵PA 是⊙O 的切线, ∴OA ⊥AP , ∴90APO AOP ∠+∠=︒, ∵∠APO =25°, ∴90902565AOP APO ∠=︒-∠=︒-︒=︒, 故答案为:65. 【点睛】 本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.三、解答题1、(1)①BC ⊥CF ;证明见详解;②见详解;(2)2AE 2=4AG 2+BE 2.证明见详解.【分析】(1)①如图所示,BC ⊥CF .根据将线段AE 逆时针旋转90°得到线段AF ,得出AE =AF ,·线○封○密○外∠EAF =90°,可证△BAE ≌△CAF (SAS ),得出∠ABE =∠ACF =45°,可得∠ECF =∠ACB +∠ACF =45°+45°=90°即可;②根据AD ⊥BC ,BC ⊥CF .可得AD∥CF ,可证△BDG ∽△BCF ,可得BD BG BC BF =,得出12BG BF =即可; (2)2AE 2=4AG 2+BE 2,延长BA 交CF 延长线于H ,根据等腰三角形性质可得AD 平分∠BAC ,可得∠BAD =∠CAD =1452BAC ∠=︒,可证△BAG ∽△BHF ,得出HF =2AG ,再证△AEC ≌△AFH (AAS ),得出EC =FH =2AG ,利用勾股定理得出22222EF AE AF AE =+=,222EF EC CF =+即22224+AE AG BE =即可.【详解】解:(1)①如图所示,BC ⊥CF .∵将线段AE 逆时针旋转90°得到线段AF ,∴AE =AF ,∠EAF =90°,∴∠EAC +∠CAF =90°,∵AB AC =,90BAC ∠=︒,∴∠BAE +∠EAC =90°,∠ABC =∠ACB =45°,∴∠BAE =∠CAF ,在△BAE 和△CAF 中,AB AC BAE CAF AE AF =⎧⎪∠=∠⎨⎪=⎩, ∴△BAE ≌△CAF (SAS ),∴∠ABE =∠ACF =45°,∴∠ECF =∠ACB +∠ACF =45°+45°=90°,∴BC ⊥CF ;②∵AD⊥BC,BC⊥CF.∴AD∥CF,∴∠BDG=∠BCF=90°,∠BGD=∠BFC,∴△BDG∽△BCF,∴BD BG BC BF=,∵AB AC=,AD⊥BC,∴BD=DC=12 BC,∴12BC BG BC BF=,∴12 BGBF=,∴12BG BF=,∴BG=GF;(2)2AE2=4AG2+BE2.延长BA交CF延长线于H,∵AD⊥BC,AB=AC,∴AD平分∠BAC,∴∠BAD=∠CAD=1452BAC∠=︒,·线○封○密○外∵BG =GF ,AG∥HF ,∴∠BAG =∠H =45°,∠AGB =∠HFB ,∴△BAG ∽△BHF , ∴12AG BG HF BF ==, ∴HF =2AG ,∵∠ACE =45°,∴∠ACE =∠H ,∵∠EAC +∠CAF =90°,∠CAF +∠FAH =90°,∴∠EAC =∠FAH ,在△AEC 和△AFH 中,ACE AHF EAC FAH AE AF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEC ≌△AFH (AAS ),∴EC =FH =2AG ,在Rt△AEF 中,根据勾股定理22222EF AE AF AE =+=,在Rt△ECF 中,222EF EC CF =+即22224+AE AG BE =.【点睛】本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键. 2、 (1)0.28; (2)16 【分析】 (1)由表中数据可判断频率在0.28左右摆动,利用频率估计概率可判断任意抽取一个毛绒玩具是优等品的概率为0.28; (2)先列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得. (1) 解:从这批盲盒中任意抽取一个是玩具B 的概率是0.28, 故答案为0.28. (2) 列表为: ·线○封○密○外由上表可知,从四种玩具的四个盲盒中随机抽取两个共有12种等可能结果,其中恰为玩具A 和玩具C 的结果有2种,所以恰为玩具A 和玩具C 的概率P=21126=. 【点睛】 本题考查了利用频率估计概率及用列表法或树状图法求概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.3、(1)26°;(2)8【分析】(1)欲求DEB ∠,又已知一圆心角,可利用圆周角与圆心角的关系求解;(2)利用垂径定理可以得到142A CBC B A ===,从而得到结论. 【详解】解:(1)OD AB ⊥,∴AD BD =, 11522622DEB AOD ∴∠=∠=⨯︒=︒. (2)∵3OC =,5OA =,且⊥OD AB ,∴4AC =,∵⊥OD AB , 142AC BC AB ∴===, 8AB ∴=.【点睛】此题考查了圆周角定理,同圆中等弧所对的圆周角相等,以及垂径定理,熟练掌握垂径定理得出4AC CB ==是解题关键. 4、(1)① A 1B 1;②2或3;(2)bBCbBC=【分析】 (1)①根据题意作出图象即可解答;②根据“关联线段”的定义,可确定线段A 2B 2存在“关联线段”,再分情况解答即可; (2)设与AB 对应的“关联线段”是A ’B ’,由题意可知:当点A ’(1,0)时,b 最大,当点A ’(-1,0)时,b 最小;然后分别画出图形求解即可; 【详解】 解:(1)①作出各点关于直线y =x +2的对称点,如图所示,只有A 1B 1符合题意; ·线○封○密·○外故答案为:A1B1;②由于直线A1B1与直线y=-x+m垂直,故A1B1不是⊙O的关于直线y=-x+m对称的“关联线段”;由于线段A3B3O的最大弦长直径=2,故A3B3也不是⊙O的关于直线y=-x+m对称的“关联线段”;A B A2B2是⊙O的关于直线y=x+2对称的“关联线段”;直线A2B2的解析式是y=-x+5,且22当A2B2是⊙O的关于直线y=-x+m对称的“关联线段”,且对应两个端点分别是(0,1)与(1,0)时,m=3,当A2B2是⊙O的关于直线y=-x+m对称的“关联线段”,且对应两个端点分别是(0,-1)与(-1,0)时,m=2,故答案为:2或3.(2)设与AB对应的“关联线段”是A’B’,由题意可知:当点A’(1,0)时,b最大,当点A’(-1,0)时,b最小;当点A’(1,0)时,如图,连接OB’,CB’,作B’M⊥x轴于点M,∴CA ’=CA =3,∴点C 坐标为(4,0),代入直线+y b =,得b∵A ’B ’=OA ’=OB ’=1,∴△OA ’B ’是等边三角形,∴OM =12,'B M =, 在直角三角形CB ’M 中,CB'=BC = 当点A ’(-1,0)时,如图,连接OB ’,CB ’,作B ’M ⊥x 轴于点M , ∴CA ’=CA =3,∴点C 坐标为(2,0),代入直线+y b =,得b∵A ’B ’=OA ’=OB ’=1, ∴△OA ’B ’是等边三角形, ·线○封○密○外∴OM=1,'B M=,2在直角三角形CB’M中,CB'=BC=综上,b BC b BC【点睛】本题是新定义综合题,主要考查了一次函数图象上点的坐标特点、圆的有关知识、等边三角形的判定和性质、勾股定理、轴对称的性质等知识,正确理解新定义的含义、灵活应用数形结合思想是解题的关键.5、见解析【分析】由题意画图,再根据圆周角定理的推论即可得证结论.【详解】证明:根据题意作图如下:∵BD 是圆周角ABC 的角平分线, ∴∠ABD =∠CBD , ∴AD CD , ∴AD =CD . 【点睛】 本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键. ·线○封○密○外。
53模拟试卷初中数学九年级下册03期末素养综合测试(二)
期末素养综合测试(二)(满分120分,限时100分钟)一、选择题(每小题3分,共30分)1.【数学文化】(2023湖北宜昌中考)我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形(“杨辉三角”“中国七巧板”“刘徽割圆术”“赵爽弦图”)中,中心对称图形是()2.【中华优秀传统文化】(2023山东枣庄中考改编)榫卯是中国古代建筑、家具及其他器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图所示的是某个部件“卯”的实物图,它的俯视图是(M9229002)()3.(2022湖南常德中考)关于x的一元二次方程x2-4x+k=0无实数解,则k的取值范围是()A.k>4B.k<4C.k<-4D.k>-44.【新独家原创】如图,A1B1是线段AB在投影面P上的正投影,AB=a,线段AB相对于投影面P的倾斜角为α,则投影A1B1的长为(M9229001)()A.asin αB.acos αC.atan αD.5.【新考法】(2023河北衡水二模)如图,点M,N,P,Q,T均为坐标系中2×2的正方形网格的格点(网格的横线都与x轴平行,纵线都与y轴平行,每个小正方形的边长为1个单位长度),点N的坐标为(2,2),在反比例函数y=(x>0)中的常数k的值从1逐渐增大到9的过程中,关于其图象l依次经过的格点的顺序,下列说法正确的是()A.点M→点P→同时经过点N,Q→点TB.点M→点N→同时经过点P,Q→点TC.点M→同时经过点P,Q→点N→点TD.点P→点M→同时经过点N,Q→点T6.(2023湖北孝感中考)如图,在☉O中,直径AB与弦CD相交于点P,连接AC,AD,BD,若∠C=20°,∠BPC=70°,则∠ADC=()A.70°B.60°C.50°D.40°7.【跨学科·物理】(2023山西晋中模拟)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其图象如图所示,则下列说法正确的是(M9226004)()A.p与S的函数关系式为p=B.当S=0.5 m2时,p=2 000 PaC.当S>2 m2时,p>50 PaD.p随S的增大而增大8.(2022江苏无锡江阴一模)如图,在平面直角坐标系xOy中,直线y=k1x+4与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO,若S△OBC=2,tan∠BOC=,则k2的值是()A.-20B.20C.-5D.59.【A字模型】(2022江苏宿迁泗阳一模)如图,在△ABC中,CH⊥AB,CH=h,AB=c,若内接正方形DEFG的边长是x,则h、c、x的数量关系为(M9227004)()A.x2+h2=c2B.x+h=cC.h2=xcD.10.(2023山东烟台中考)如图,抛物线y=ax2+bx+c的顶点A的坐标为,与x轴的一个交点位于点(0,0)和(1,0)之间,则以下结论:①abc>0;②2b+c>0;③若图象经过点(-3,y1),(3,y2),则y1>y2;④若关于x的一元二次方程ax2+bx+c-3=0无实数根,则m<3.其中正确结论的个数是() A.1 B.2 C.3 D.4二、填空题(每小题4分,共24分)11.(2023广东揭阳揭西期末)皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧.“皮影戏”中的皮影是(填写“平行投影”或“中心投影”).(M9229001)12.(2023广东深圳中考)小明从《红星照耀中国》《红岩》《长征》《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为.13.(2023湖北孝感中考)已知一元二次方程x2-3x+k=0的两个实数根为x1,x2,若x1x2+2x1+2x2=1,则实数k=.14.(2023湖南岳阳中考)2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A处用仪器测得赛场上一宣传气球顶部E处的仰角为21.8°,仪器与气球的水平距离AD为20米,且距地面高度AB为1.5米,则气球顶部离地面的高度EC是米.(结果精确到0.1米,sin 21.8°≈0.371 4,cos 21.8°≈0.928 5,tan 21.8°≈0.400 0)(M9228005)15.【半角模型】如图,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,B(2,2),函数y=(x>0)的图象与边AB、BC分别交于点D、E,连接OD、OE、DE.若∠DOE=45°,则k的值为.16.【易错题】(2023辽宁抚顺清原三模)如图,在矩形ABCD中,AB=3,BC=6,点E是射线BC上一动点,将△ABE沿AE翻折得到△AFE,延长AF交CD的延长线于点G,当BE=3EC时,线段DG的长为.三、解答题(共66分)17.[含评分细则](8分)(2022贵州贵阳中考)在初中阶段我们已经学习了一元二次方程的三种解法,它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x-1=0;②x2-3x=0;③x2-4x=4;④x2-4=0.18.[含评分细则](10分)(2023安徽马鞍山和县二模)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(-3,-1),B(-4,-4),C(-1,-3).(1)以点O为位似中心,在第一象限作出△ABC的位似图形△A1B1C1,使△ABC与△A1B1C1的相似比为1∶1;(2)以点O为旋转中心,将△ABC顺时针旋转90°后得△A2B2C2,请作出△A2B2C2;(3)直接写出cos∠BAC的值. 19.[含评分细则](10分)(2023四川内江市中二模)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(1,4)、B(4,n).(1)求这两个函数的表达式;(2)请结合图象直接写出不等式kx+b≤的解集;(3)若点P为x轴上一点,△ABP的面积为6,求点P的坐标.20.[含评分细则]【项目式学习试题】(12分)(2023浙江绍兴模拟)根据以下素材,探索完成任务.如何调整足球的发球方向某足球场的一部分如图所示,球门宽DE=CF=7 m,高CD=EF=2.51 m.小梅站在A处向门柱CD一侧发球,点A正对门柱CD(即AC⊥CF),AC=24 m,足球运动的路线是抛物线的一部分如图,当足球运动到最高点Q时,高度为4.5 m,即QB=4.5 m,此时水平距离AB=15 m,以点A为原点,直线BA为x轴,建立平面直角坐标系问题解决求足球运动的高度y(m)与水平距离x(m)之间的函数关系式,并判断此时足球能否入网小梅改变发球方向,发球时起点不变,运动路线的形状不变,判断足球能否打到远角E处入网上述任务1、任务2中球落在球门边线视同球入网21.[含评分细则](12分)(2022四川德阳中考)如图,AB是☉O的直径,CD是☉O的弦,AB⊥CD,垂足是点H,过点C 作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.(1)求证:CF是☉O的切线;(2)如果AB=10,CD=6,①求AE的长;②求△AEF的面积.22.[含评分细则]【分类讨论思想】(14分)(2022四川遂宁中考)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(-1,0),点C的坐标为(0,-3).(1)求抛物线的解析式;(2)【最短距离问题】如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,-2),求△DEF周长的最小值;(3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M 到x轴的距离为d,△AMN的面积为2d,当△AMN为等腰三角形时,求点N的坐标.答案全解全析1.D 只有选项D中图形能找到一个点,使图形绕该点旋转180°后与原来的图形重合,所以是中心对称图形.故选D.2.B 俯视图如下:故选B.3.A ∵关于x的一元二次方程x2-4x+k=0无实数解,∴Δ=(-4)2-4×1×k<0,解得k>4.故选A.4.B 如图,过点A作AH⊥BB1于点H,则四边形AHB 1A1是矩形,∴AH=A1B1,∠BAH=α.在Rt△ABH中,∵cos α=,∴AH=acos α,∴A1B1=acos α.故选B.5.C 由题得N(2,2),M(1,2),Q(1,3),T(2,3),P(3,1),∵2×2=4,1×2=2,1×3=3,2×3=6,3×1=3,2<3=3<4<6,∴常数k的值从1逐渐增大到9的过程中,图象l依次经过的格点的顺序是点M→同时经过点P,Q→点N→点T,故选C.6.D ∵∠C=20°,∠BPC=70°,∴∠BAC=∠BPC-∠C=50°=∠BDC,∵AB 是☉O的直径,∴∠ADB=90°,∴∠ADC=∠ADB-∠BDC=40°.故选D.7.A 选项A,设p=,∵点(0.2,500)在这个函数的图象上,∴500=,∴k=100,∴p与S的函数关系式为p=,原说法正确;选项B,当S=0.5 m2时,p==200 Pa,原说法不正确;选项C,当S>2 m2时,p<50 Pa,原说法不正确;选项D,p随S的增大而减小,原说法不正确.故选A. 8.D ∵直线y=k1x+4与y轴交于点C,∴点C的坐标为(0,4),∴OC=4.如图,过B作BD⊥y轴于D,∵S△OBC=2,∴BD=1,∵tan∠BOC=,∴OD=5,∴点B的坐标为(1,5),∵点B在反比例函数y=的图象上,∴k2=1×5=5.故选D.9.D 如图,设CH与GF交于点M,∵四边形DEFG是正方形,∴GF∥DE,∠GDE=∠DGF=90°,∴△CGF∽△CAB,∴.∵CH ⊥AB,∴∠DHM=90°,∴四边形DHMG是矩形,∴DG=MH,∵CH=h,正方形DEFG的边长是x,∴MH=x,CM=CH-MH=h-x,又AB=c,∴.故选D.10.C ①∵抛物线y=ax2+bx+c的顶点A 的坐标为<0,∴ab>0,又当x=0时,y=c>0,∴abc>0,故①正确,符合题意;②∵直线x=-是抛物线的对称轴,∴-,∴a=b,由图象可得x=1时,y=a+b+c<0,∴2b+c<0,故②错误,不合题意;③设(-3,y1),(3,y2)两点到直线x=-的距离分别为d1、d2,则d1=,∴d2>d1,根据图象可得,抛物线上的点距离对称轴越近,对应的函数值越大,∴y1>y2,故③正确,符合题意;④∵关于x的一元二次方程ax2+bx+c-3=0无实数根,∴Δ=b2-4a(c-3)<0,∴b2-4ac+12a<0,∴b2-4ac<-12a,∴4ac-b2>12a,∵m=,且由抛物线开口向下知a<0,∴m<3,故④正确,符合题意.故选C.11.中心投影解析“皮影戏”中的皮影是在灯光照射下形成的影子,是中心投影.12.13.-5解析∵一元二次方程x2-3x+k=0的两个实数根为x1,x2,∴x1+x2=3,x1·x2=k,∵x1x2+2x1+2x2=1,∴k+2×3=1,解得k=-5.∵方程有两个实数根,∴Δ=b2-4ac=(-3)2-4k≥0,解得k≤,∴k=-5符合题意.14.9.5解析由题意,得四边形ABCD是矩形,∴AB=CD=1.5 m.在Rt△ADE中,∵∠EAD=21.8°,AD=20 m,∴DE=AD·tan 21.8°≈20×0.400 0=8(m),∴CE=CD+DE=1.5+8=9.5(m),即气球顶部离地面的高度EC约是9.5 m.15.-4+4解析如图,延长BC至F,使得CF=AD,连接OF.∵四边形OABC是正方形,∴∠OAD=∠OCF=∠AOC=90°.在△OAD和△OCF中,CF=AD,∠OAD=∠OCF,OA=OC,∴△OAD≌△OCF(SAS),∴OF=OD,∠COF=∠AOD.∵∠DOE=45°,∴∠AOD+∠COE=45°,∴∠COF+∠COE=45°,即∠EOF=45°,∴∠EOF=∠DOE.在△DOE和△FOE 中,OD=OF,∠DOE=∠EOF,OE=OE,∴△DOE ≌△FOE(SAS),∴DE=EF.∵B(2,2),∴OA=OC=AB=BC=2.∵D、E在函数y=(x>0)的图象上,∴k=2AD=2CE,∴AD=CE.设AD=CE=x,则BE=BD=2-x,DE=2x.在Rt△BDE中,BD2+BE 2=DE2,∴2(2-x)2=(2x)2,解得x1=-2-2(不合题意,舍去),x2=-2+2.模型解读半角模型:由一个大角和它的一半小角组成的共顶点且大角两边相等的基本几何模型.常见的半角模型有“45°半角模型”“60°半角模型”,基本图形如下: 解半角模型的一般步骤:①找旋转中心(含半角的角的顶点),构造旋转;②证全等;③利用全等得到边角关系.16.或8解析如图①,当点E 在线段BC上时,设EF交AD于K.∵BC=6,BE=3EC,∴EC=,∵四边形ABCD 是矩形,∴∠ADC=∠ADG=90°,AD∥BC,∴∠DAE=∠AEB=∠AEK,∴AK=EK,设AK=EK=x,∵∠AFK=∠B=90°,AF=AB=3,FK=,∵tan∠DAG=.如图②,当点E在线段BC的延长线上时,设EF交AD于K.∵BC=6,BE=3EC,∴EC=3,EB=EF=9.∵四边形ABCD是矩形,∴∠ADC=∠ADG=90°,AD∥BC,∴∠DAE=∠AEB=∠AEK,∴AK=EK,设AK=EK=y,∵∠AFK=90°,AF=AB=3,FK=9-y,∴y2=32+(9-y)2,∴y=5,∴FK=EF-EK=4,∵tan∠DAG=,∴DG=8.易错点易忽视点E在BC的延长线上的情况.17.解析①利用公式法:x2+2x-1=0,Δ=22-4×1×(-1)=4+4=8,∴x=.∴x1=-1+.②利用因式分解法:x2-3x=0,∴x(x-3)=0.∴x1=0,x2=3.③利用配方法:x2-4x=4,两边都加上4,得x2-4x+4=8,∴(x-2)2=8.∴x-2=±2.∴x1=2+2.④利用因式分解法:x2-4=0,∴(x+2)(x-2)=0.∴x1=-2,x2=2.(注:任选两个即可,每个4分,共8分)18.解析(1)如图,△A1B1C 1为所作.3分(2)如图,△A2B2C2为所作.6分(3)cos∠BAC=.10分详解:∵AB=, ∴AB=BC.如图,取AC的中点D,则BD⊥AC,在Rt△ABD中,∵AD=, ∴cos∠BAD=.19.解析(1)把A(1,4)代入y=,得m=4,∴反比例函数的表达式为y=.2分把B(4,n)代入y=,得n=1,∴B(4,1).3分把(1,4)、(4,1)代入y=kx+b,得∴一次函数的表达式为y=-x+5.5分(2)不等式kx+b≤的解集为0<x≤1或x≥4.7分(3)如图,设直线AB与x轴交于点C,则点C的坐标为(5,0).8分∵△ABP的面积为6,∴PC×1=6,∴PC=4,9分∴点P的坐标为(1,0)或(9,0).10分20.解析任务1:由题意,得抛物线顶点坐标为,1分设抛物线解析式为y=a(x+15)2+,2分∵抛物线经过点A(0,0),∴225a+=0,解得a=-,3分∴y=-,∴足球运动的高度y(m)与水平距离x(m)之间的函数表达式为y=-.4分当x=-24时,y=-=2.88>2.51,∴足球不能入网.6分任务2:足球运动路线形状不变,连接AF,此时以点A为原点,AF所在直线为x轴,以过点A的铅垂线为y轴建立平面直角坐标系,易得抛物线的函数关系式仍为y=-.8分∵FC=7,AC=24,∠FCA=90°,∴AF==25,10分当x=-25时,y=2.5<2.51,∴能打到远角E处入网.12分21.解析(1)证明:连接OC,如图,∵AB是☉O的直径,AB⊥CD, ∴.∴∠CAB=∠DAB.∵∠COB=2∠CAB,∴∠COB=2∠BAD.∵∠ECD=2∠BAD,∴∠ECD=∠COB.2分∵AB⊥CD,∴∠COB+∠OCH=90°,∴∠OCH+∠ECD=90°,∴∠OCE=90°.∴OC⊥CF.3分∵OC是☉O的半径,∴CF是☉O的切线.4分(2)①∵AB=10,∴OA=OB=OC=5,∵AB是☉O的直径,AB⊥CD,∴CH=DH=CD=3.∴OH==4,6分∵OC ⊥CF,CH⊥OE,∴△OCH∽△OEC,∴.∴AE=OA+OE=5+.8分②过点F作FG⊥AB,交AB的延长线于点G,如图,∵∠OCF=∠FGE=90°,∠CEO=∠GEF,∴△OCE∽△FGE,∴,10分设FG=4k,则FE=5k,∴EG==3k,∵DH⊥AB,FG⊥AB,∴DH∥FG.∴,解得k=.11分∴FG=4k=5.∴△AEF的面积=×AE·FG=.12分22.解析(1)∵抛物线y=x 2+bx+c经过点A(-1,0),点C(0,-3).∴∴抛物线的解析式为y=x2-2x-3.3分(2)如图,设D1为D关于直线AB的对称点,D2为D关于直线BC的对称点,连接D1E,D2F,D1D2,DD2,CD2.由对称性可知DE=D1E,DF=D2F,△DEF的周长=D1E+EF+D2F,∴当D1,E,F,D2共线时,△DEF的周长最小,最小值为D1D2的长,4分令y=0,则x2-2x-3=0,解得x=-1或3,∴B(3,0),∴OB=OC=3,∴△BOC是等腰直角三角形,5分∵BC垂直平分DD2,且D(0,-2),C(0,-3),∴D2(1,-3),6分∵D,D1关于x轴对称,∴D 1(0,2),∴D1D 2=,∴△DEF的周长的最小值为.7分(3)如图,连接BM.∵M到x轴的距离为d,AB=4,∴S△ABM=2d,又∵S△AMN=2d,∴S△ABM=S△AMN,∴B,N到AM的距离相等,8分∵B,N在AM的同侧,∴AM ∥BN,设直线BC的解析式为y=kx+m,则有∴直线BC的解析式为y=x-3,9分∵A(-1,0),AM∥BC,∴直线AM的解析式为y=x+1,由∴M(4,5),10分∵点N在射线CB上,∴设N(t,t-3),过点M作x轴的平行线l,过点N作y 轴的平行线交x轴于点P,交直线l于点Q. ∵A(-1,0),M(4,5),N(t,t-3),∴AM=5,MN=.11分当AM=AN时,5,解得t=1±,当AM=MN时,5,解得t=6±,当AN=MN时,,解得t=,∵N在第一象限,∴t>3,∴t的值为或1+或6+,∴点N的坐标为或(1+)或(6+).14分。
辽宁省2024届九年级下学期初中学业水平模拟考试(三)数学试卷(含答案)
2024年辽宁省初中学业水平模拟考试(三) 数学试卷一.选择题(共10小题,共30分)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.如果水位上升2米记为+2米,则水位下降3米记为( )A .+3米B .﹣3 米C .+2米D .﹣2 米2.如图,以下给出的几何体中,其主视图是矩形,俯视图是圆的是( )A .B .C .D .3.一个多边形的每个外角都等于60°,则这个多边形的边数为( )A .8B .7C .6D .54.下列计算正确的是( )A .2a ×2a =8aB .(﹣2a )3=﹣6a 3C .a 2+a 2=2a 4D .(a +b )2=a 2+2ab +b 25.若关于x 的一元二次方程mx 2﹣2x ﹣1=0有两个不相等的实数根,则m 的取值范围是( )A .m >﹣1B .m <﹣2C .m ≥0且m ≠1D .m >﹣1且m ≠06.已知不等式组3x ―2<1―2x ≤4,其解集在数轴上表示正确的是( )A .B .C .D .7.关于函数y =﹣2x ﹣5,下列说法不正确的是( )A .图象是一条直线 B .y 的值随着x 值的增大而减小C .图象不经过第一象限D .图象与x 轴的交点坐标为(﹣5,0)8.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸:屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( )A x + 4.5y =x +1B x + 4.5y =x ―1C 4.5―xy =x +1D 4.5―x y =x ―19.如图,△ABC 中,∠BAC =55°,将△ABC 逆时针旋转α(0°<α<55°),得到△ADE ,DE 交AC 于F .当α=40°时,点D 恰好落在BC 上,此时∠AFE 等于( )A .80°B .85°C .90°D .95°10.如图,在矩形ABCD中,AB=42,以A为圆心,适当长为半径画弧,交AB,AD边于点M,N,分别以M,N为圆心,大于12MN长为半径画弧,两弧相交于点P,作射线AP交BC边于点E,再以A为圆心,AE长为半径画弧,交AD边于点F,将扇形EAF剪下来做成圆锥,则该圆锥底面半径为( )A.1B.32C.2D.529题10题二.填空题(共5小题,共15分)1118÷9= .12.如图,点A(2,4)与点B关于过点(3,0)且平行于y轴的直线l对称,则点B的坐标是 .13.有四张正面分别标有汉字“中”、“考”、“必”、“胜”的卡片,它们除汉字外完全相同,将四张卡片背面朝上,洗匀后随机抽取两张,取出的两张卡片上的汉字能组成“必胜”的概率是 .14.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(x>0)的图象与BC边交于点E,若S△AEF=16k时,则k= .12题14题15题15.如图,点P是在正△ABC内一点.PA=6,PB=8,PC=10,将线段AP绕点A逆时针旋转60°得到线段AP′,连接P′P,P′C,四边形APCP′的面积为 ,S△APB+S △BPC= .三.解答题(共8小题共75分)16.(10分)(1)计算(―12)﹣2﹣(π﹣3)0+|3―2|+2sin60°;(2)先化简,再求值:(x2―1x2―2x+1―1x)÷1x―1,其中x=﹣1.17.(8分)某区城曾是市里有名的积水点,为了降低该区域积水的风险,市政府计划对该区域一段长4800米的排水管道进行改造.实际施工时,每天的施工速度比原计划提高了20%,经计算,按现有速度施工,将会比原计划提前10天完成任务.(1)求实际每天改造排水管道的长度;(2)改造完排水管道总长的一半时,为了减少对市民出行的影响,施工单位决定添加人员和机械设备加快施工进度,确保总工期不超过40天,那么接下来每天改造管道时,至少还要增加多少米?18.(9分)某校为了解七年级学生最喜爱的棋类情况,校团委通过学校公众号向七年级学生发放如图所示的调查问卷,要求如实填写并提交.调查问卷:你最喜爱的棋类是______.(只选一项)A.中国象棋B.围棋C.跳棋D.五子棋E.其他收集数据:校团委从中随机抽查了40份问卷,得到如下数据:ADABD CADEB EBCED ACADC CADDC DBDAE CECDC ADCDC整理数据:整理所收集的数据如表.最喜爱的棋类A B C D E人数8411百分比20%10%27.5%m%n%描述数据:将结果绘制成两幅不完整的统计图.根据以上信息回答下列问题:(1)补全条形统计图;(2)m= ,n= ;(3)如果该校七年级有学生400名,估计选“围棋”的学生约有多少名?19.(8分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为8元的杯子,并投放市场进行试销售,经过调查发现该产品每天的销售量y(单位:个)与销售单价x(单位:元)(不低于成本价)满足的一次函数关系如图所示.(1)求y与x的函数关系式;(2)当销售单价定为多少元时,每天销售获得的利润最大?最大利润是多少?20.(8分)图是某地下商业街的入口的玻璃顶,它是由立柱、斜杆、支撑杆组成的支架撑起的,它的示意图.经过测量,支架的立柱AB与地面垂直(∠BAC=90°,AB=2.7米,点A、C、M在同一水平线上,斜杆BC与水平线AC的夹角∠ACB=33°,支撑杆DE⊥BC,垂足为E,该支架的边BD与BC的夹角∠DBE=66°,又测得CE=2.2米.(1)求该支架的边BD的长;(2)求支架的边BD的顶端D到地面AM的距离.(结果精确到1米)(参考数据:sin33°≈0.54,sin66°≈0.91,cos33°≈0.84,cos66°≈0.40,tan33°≈0.65,tan66°≈2.25)21.(8分)如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,过点C作⊙O的切线交AB 延长线于点D,OF⊥BC于点E,交CD于点F.(1)求证:∠BCD=∠BOE;(2)若sin∠CAB=35,AB=10,求BD的长.22.(12分)【发现问题】“速叠杯”是深受学生喜爱的一项运动,杯子的叠放方式如图1所示:每层都是杯口朝下排成一行,自下向上逐层递减一个杯子,直至顶层只有一个杯子,小丽发现叠放所需杯子的总数y随着第一层(最底出)杯子的个数x的变化而变化.【提出问题】叠放所需杯子的总数y与第一层杯子的个数x之间有怎样的函数关系?【分析问题】小丽结合实际操作和计算得到下表所示的数据:第一层杯子的个数x12345…杯子的总数y1361015…然后在平面直角坐标系中,描出上面表格中各对数值所对应的点,得到图2,小丽根据图2中点的分布情况,猜想其图象是二次函数图象的一部分,为了验证自己的猜想,小丽从“形”的角度出发,将要计算总数的杯子用黑色圆表示(如图3),再借助“补”的思想.补充相同数量的白色圆,使每层圆的数量相同,进而求出y与x的关系式.【解决问题】(1)直接写出y与x的关系式;(2)现有36个杯子,按【发现问题】中的方式叠放,求第一层杯子的个数;(3)如图4所示,O处为点光,ND,MA分别为杯子上,下底面圆的半径,OA=24cm,OD=15cm,MA=4cm.将这样足够数重的杯子按【发现问题】中的方式叠放.但受桌面长度限制,第一层摆放杯子的总长度不超过80cm.求:①杯子最多能叠放多少层和此时杯子的总数;②此时叠放达到的最大高度.23.(12分)【问题初探】:(1)数学活动课上,刘老师给出如下问题:如图1,在四边形ABCD中,AB=AC=CD,∠ACD+∠BAC=180°,CE⊥AD,垂足为E.求证:BC=2CE.①如图2,小涵同学从∠ACD+∠BAC=180°,这个条件出发,给出如下解题思路:得出∠BAC=2∠CAD,作AF平分∠BAC交BC于点F,将∠ACD+∠BAC=180°转化为∠CAF与∠CAD之间的数量关系.②如图3,小慧同学从结论的角度出发给出如下的解题思路:延长CE至点G,使CE=EG,连接AG,将线段CE与BC之间的数量关系转化为线段CG与BC之间的数量关系.请你选择一名同学的解题思路,写出证明过程.【类比分析】:(2)刘老师发现之前两名同学都运用了转化思想,证明一条线段是另一条线段的2倍,将长的线段平分或将短的线段倍长,从而转化为证明两条线段相等.为了帮助学生更好地感悟转化思想,刘老师提出了下面的问题,请你解答.如图4,在△ABC 中,AC =BC ,∠ACB =90°,D 是AB 边上一点,连接CD ,过点B 作BE ⊥CD 于点E ,在BE 上截取EF =CE ,连接AF 交CD 于点G .求证:BF =2EG .【学以致用】:(3)如图5,在△ABC 中,AB =AC ,sinB =45,D 是BC 中点,点E 在线段BD 上,连接AE ,延长AC 至点F ,使CF =BE ,连接DF ,若∠CDF =∠BAE .求DE AB的值.参考答案一.选择题(共10小题)1.B .2.C .3.C .4.D .5.D .6.B .7.D .8.B .9.B .10.A .二.填空题(共5小题)112.12.(4,4).13.16.14.4.15.93+24;163+24.三.解答题(共8小题)16.(1)5;(2)x 2+1x,―2.17.解:(1)设原计划每天改造排水管道x 米,则实际每天改造排水管道(1+20%)x 米,根据题意得:4800x―4800(1+20%)x=10,解得:x =80,经检验,x =80是所列方程的解,且符合题意,∴(1+20%)x =(1+20%)×80=96.答:实际每天改造排水管道96米;(2)改造完排水管道总长的一半所需时间为4800÷2÷96=25(天).设接下来每天改造管道时,还要增加y 米,根据题意得:(96+y )(40﹣25)≥4800÷2,解得:y ≥64,∴y 的最小值为64.答:接下来每天改造管道时,至少还要增加64米.18.解:(1)根据统计给出的数据知喜欢五子棋有12人,喜欢其他有5人,补全统计图如下:(2)m%=1240×100%=30%,即m =30,n%=540×100%=12.5%,即n=12.5,故答案为:30,12.5;(3)400×10%=40,故七年级400名学生中,估计选“围棋”的学生约有40人.19.解:(1)设函数解析式为y=kx+b,∵一次函数过(10,200)和(15,150),∴10k+b=20015k+b=150,解得:k=―10b=300,∴y=﹣10x+300,∵x>8且﹣10x+300>0,∴8<x<30,∴y与x的函数关系式y=﹣10x+300(8<x<30);(2)设每天的利润为w元,根据题意,得:w=(x﹣8)y=(x﹣8)(﹣10x+300)=﹣10x2+380x﹣2400=﹣10(x﹣19)2+1210,∵﹣10<0,∴当x=19时,w最大,最大值为1210,∴售价定为19元时,每天销售获得的利润最大,最大利润是1210元.20.解:(1)由题意得,∠BAC=90°,AB=2.7 米,∠ACB=33°,∠DBE=66°,CE=2.2 米,DE⊥BC,在Rt△ABC中,∠BAC=90°,sin∠ACB=AB BC,即BC=ABSin33°=2.70.54=5 (米),∴BE=BC﹣CE=5﹣2.2=2.8 (米),在Rt△BED中,∠BED=90°,cos∠DBE=BE BD,即BD=BEcos66°≈2.80.40=7 (米),答:该支架的边BD的长7米;(2)过点D作DH⊥AM,垂足为H,过点B作BF⊥DH,垂足为F,∵BF∥AM,∴∠FBC=∠ACB,∵∠ACB=33°,∴∠FBC=33°,∵∠DBE=66°,∴∠DBF=33°,在Rt△DBF中,∠DFB=90°,sin∠DBF=DF BD,即DF=BD•sin∠ACB≈7×0.54=3.78 (米),∵FH=AB=2.7 (米),∴DH=DF+FH=3.78+2.7=6.48≈6 (米),答:支架的边BD的顶端D到地面AM的距离为6米.21.(1)证明:连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠OCB+∠BCD=90°,∵OF⊥BC,∴∠BEO=90°,∴∠BOE+∠OBE=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠BCD=∠BOE;(2)解:过B作BH⊥CD于H,∵AB为⊙O的直径,∴∠ACB=90°,∵sin∠CAB=BCAB=35,AB=10,∴BC=6,∵OF⊥BC,∴AC ∥OF ,∴∠BOE =∠CAB ,∵∠BCD =∠BOE ,∴∠BAC =∠BCD ,∴sin ∠CAB =sin ∠DCB =BH BC =35,∴BH =185,∵OC ⊥CD ,BH ⊥CD ,∴BH ∥OC ,∴△BDH ∽△ODC ,∴BH OC=BD OD,∴1855=BDBD +5,解得BD =907,故BD 的长为907.22.解:(1)依题意得:y =12(x +1)x =12x 2+12x ;(2)当y =36时,12x 2+12x =36,解得:x 1=8,x 2=﹣9(舍去),答:第一层杯子的个数为8个;(3)①∵第一层杯子的个数x 个,且第一层摆放杯子的总长度不超过80cm ,∴4×2x ≤80,解得x ≤10,x 取最大值为10,即第一层摆放杯子的个数是10,杯子的层数也是10,∴杯子的总数为y =12(10+1)×10=55( 个);答:杯子最多能叠放10层和此时杯子的总数为55个;②在图4Rt △OMA 中,OA =24cm ,MA =4cm ,∴OM=OA2―MA2=242―42=435(cm),∵ND∥MA,∴△OND∽△OMA,∴ONOM=ODOA=1524=58,∴ON=58OM=5352cm,∴MN=OM﹣ON=3352cm,∴10层杯子的高度是10MN=3352×10=1535(cm),答:杯子叠放达到的最大高度是1535cm.23.(1)证明:选择小涵同学的解题思路:作AF平分∠BAC交BC于点F,如图,∵AC=CD,∴∠CAD=∠CDA.∵∠ACD+∠CAD+∠CDA=180°,∴∠ACD+2∠CAD=180°.又∵∠ACD+∠BAC=180°,∴∠BAC=2∠CAD.∵AF平分∠BAC,∴∠BAC=2∠CAF,∴∠CAF=∠CAD.又∵AB=AC,∴BC=2CF,AF⊥BC,∴∠AFC=90°,又∵CE⊥AD,∴∠AEC=90°,在△ACF和△ACE中,∠FAC=∠EAC∠AFC=∠AEC=90°AC=AC,∴△ACF≌△ACE(AAS),∴CF=CE,∴BC=2CE;选择小慧同学的解题思路:延长CE至G,使CE=EG,连接AG,如图,∵AC=CD,∴∠CAD=∠CDA.∵∠ACD+∠CAD+∠CDA=180°,∴∠ACD+2∠CAD=180°,又∵∠ACD+∠BAC=180°,∴∠BAC=2∠CAD,∵AE⊥CG,CE=GE,∴AE为线段CG的垂直平分线,∴AG=AC,∠CAE=∠EAG,∴∠CAG=2∠CAD,∴∠CAG=∠BAC.又∵AB=AC,∴AB=AG,在△ABC和△AGC中,AB=AG,∠BAC=∠GACAC=AC∴△ABC≌△AGC(SAS),∴BC=CG,∵CG=2CE,∴BC=2CE.(2)证明:过A作AM⊥CD交CD延长线于点M,如图,∵BE⊥CD,∴∠CEB=90°,∵∠ACB=90°,∴∠BCE+∠CBE=∠BCE+∠ACD=90°,∴∠CBE=∠ACD.在△CBE和△ACM中,∠ACM=∠CBE,∠AMC=∠BEC=90°AC=CB∴△CBE≌△ACM(AAS),∴CE=AM,∴BE=CM.∵CE=EF,∴EF=AM.在△EFG和△MAG中,∠AMG=∠FEG=90°,∠AGM=∠FGEFE=AM∴△EFG≌△MAG(AAS),∴EG=MG,∴EM=2EG.∵BE=CM,CE=EF,∴BE﹣EF=CM﹣CE,即BF=EM,∴BF=2EG;(3)解:连接AD,过F作FM∥AB交BC的延长线于点M,如图,∵AB =AC ,D 为BC 中点,∴AD ⊥BD ,∴∠ADB =90°.在Rt △ABD 中,∵sinB =AD AB =45,设AD =4a ,AB =5a ,根据勾股定理得:BD =AB 2―AD 2=(5a )2―(4a )2=3a ,∴CD =BD =3a ,BC =2BD =6a .∵FM ∥AB ,∴∠B =∠M ,∵AB =AC ,∴∠B =∠ACB ,∵∠ACB =∠FCM ,∴∠FCM =∠M ,∴FC =FM .∵CF =BE ,∴BE =FM .在△BAE 和△FDM 中,∠BAE =∠FDM∠B =∠M BE =MF,∴△BAE ≌△FDM (AAS ),∴AB =DM =5a ,∴CM =DM ﹣DC =2a .∵FM ∥AB ,∴△CAB ∽△CFM ,∴AB FM =BC CM =6a 2a=3,∴FM=53 a,∴BE=FM=53 a,∴DE=BD﹣BE=3a―53a=43a,∴DEAB=43a5a=415.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三(下)-----期末数学模拟题3
一.选择
1.如图,四边形ABCD 是菱形,对角线AC=16,DB=12,DE ⊥BC 于点E,则DE 的长为( )
A. 4.8
B. 7.2
C. 9.6
D. 12
2.使代数式4-x 3-x 有意义的x 的取值范围是( ) A.x>3 B.x ≥3 C.x>4 D.x ≥3且x ≠4
3.关于x 的方程(a-1)x 2+√a +1x+1=0是一元二次方程,则a 的取值范围是 ( )
A.a ≠1
B.a>-1且a ≠1
C.a ≥-1且a ≠1
D.a 为任意实数 4.若2a=3b=4c,且abc ≠0, 则的值是( )
A.2
B.-2
C.3
D.-3 5.在菱形ABCD 中,若∠ADC=120°,则BD:AC 等于( )
A.:2
B.:3
C.1:2
D.:1
6.下列二次根式: ① √11a 3; ② -2√4x ; ③√23; ④ √23; ⑤1
√2; ⑥ √4a 2+b 2; ⑦ √18x +9y , 其中是最简二次根式的有 ( )
A.2个
B.3个
C.4个
D.5个
7.方程x 2-3x-6=0配方的结果为 ( )
A.(x-3)2=334
B.(x −32)2=334
C.(x −32)2=6
D.(x −32)2=152
8.如图,在△ABC 中,点D,E,F 分别在边AB,AC,BC 上,且DE ∥BC,EF ∥AB.若AD=2BD,则
CF
BF 的值为( ) A.12 B.13 C.14 D.2
3 9. 二次根式的值是( )
A .
B .或
C .
D .
10.若m 是方程x 2+x-1=0的根,则式子m 3+2m 2+2014的值为 ( )
A.2012
B.2013
C.2014
D.2015
二.填空
11. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A,B 的坐标分别为(-3,0),(2,0),点D 在y 轴上, 则点C 的坐标是 .
3332(3)-3-33-93
12.已知点P(x,y)在函数y=1x 2+√−x 的图象上,那么点P 应在平面直角坐标系中的第 象限.
13.如果二次三项式4x 2+mx+25是一个完全平方式,则m= ______.
14.已知c
a b c b a b a c +=+=+=x ,则x 的值是___________ 15、一个平行四边形的一条边长为3,两条对角线的长分别为4和52,则它的面积为________.
16、使式子√6+x - √2x +3有意义的最小整数x 是__________.
17、如图,在一块长为22m,宽为 17m 的矩形地面上,要修建同 样宽的
两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余
部分种上草坪,使草坪面积为300m 2.设道路宽为xm, 根据题意
可列出的方程为__________.
18、
19、等边三角形的一边与这边上的高的比是____
20、在矩形ABCD 中,AD=3AB,点G,H 分别在AD,BC 上,连BG,DH,且BG ∥DH,
当 =________时,四边形BHDG 为菱形.
三.解答
21. 先化简,再求值:
x x 2−2x+1÷(x+1x 2−1+1), 22、计算()⎥⎦⎤⎢⎣⎡-+⋅++-331322728 其中x=√2+1.
AG AD
23. 如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别与BC,CD交于E,F,EH⊥AB于H.
连接FH. 求证:四边形CFHE是菱形.
24.已知一元二次方程x2-(2k+1)x+k2+k=0. (1)求证:方程有两个不相等的实数根.
(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5.
当△ABC是等腰三角形时,求k的值.
25.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD 方向到达点F处再测得自己的影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.
26、如图①,在平行四边形ABCD 中,点E 是BC 的中点,点F 是线段AE 上一点,BF 的延长线 交射线CD 于点G.若 =3,求 CG
CD 的值.
(1)尝试探究
在图①中,过点E 作EH ∥AB 交BG 于点H,则AB 和EH 的数量关系是 ,CG 和EH 的数量关系是 , CG
CD 的值是 . (2)类比延伸
如图②,在原题的条件下,若m EF AE =(m>0),则CG
CD 的值是 (用含m 的代数式表示),试写出过程. (3)拓展迁移
如图③,梯形ABCD 中,DC ∥AB,点E 是BC 的延长线上的一点.AE 和BD 相交于点F, 若a CD AB =,b BE BC =(a>0, b>0),则EF
AF 的值是 (直接用含a,b 的代数式表示).
AF EF。