年高考数学二轮复习第二部分专题一常考小题点13程序框图题专项练理
高考数学(理科)二轮复习模拟试卷及答案
(1)当 a= 1, b=- 1 时,求使 f(x)≥ 2 2的 x 的取值范围; (2)若 f (x)≥ 312恒成立,求 a- b 的取值范围.
答案及解析
1. 解析: 选 B.由题意得 A
=
y
log
1 22
≤
y≤
log
24
= { y|- 1≤ y≤ 2} = [- 1, 2],又
B= { x|
x≤2} = [0,4] ,
所以 cos α=
2 22 +(
= 2 = 6, 2) 2 6 3
所以 cos 2α= 2cos2 α-1
2
= 2×
6 3
-
1=
1 3.
故选 D.
4. 解析: 选 A. 满足题意时,椭圆上的点 P(acos θ,bsin θ)到圆心 O(0, 0)的距离:
d2= (acos θ-0) 2+ (bsin θ - 0)2> r 2= a2- b2,
D.
13 π+ 4
22
1
8.函数 f(x)= x+ x ln |x|图象的大致形状为 (
)
9.已知一次函数 f(x)=kx+ b 的图象经过点 P(1,2)和 Q(- 2,- 4),令 an= f(n)f(n+ 1),
n∈ N *,记数列
1 an 的前
n 项和为
Sn,当 Sn= 265时, n 的值等于 (
故 B 正确; C 显然错误;
对于
D ,周期
T=2π= π,g
3π =-
2,
2
8
2
故图象不关于点 38π, 0 对称.
7.解析: 选 A. 由三视图可知, 该几何体是由四分之三圆锥和一个三棱锥组成的组合体, 其中:
高考数学第二轮复习 算法与程序框图专题测试
2009届高考数学第二轮复习算法与程序框图专题测试(一)典型例题讲解:例1、写出求1+2+3+4+5+6的一个算法。
分析:可以按逐一相加的程序进行,也可以利用公式()1 123......2n nn+ ++++=进行,也可以根据加法运算律简化运算过程。
解:算法1:S1:计算1+2得到3;S2:将第一步中的运算结果3与3相加得到6;S3:将第二步中的运算结果6与4相加得到10;S4:将第三步中的运算结果10与5相加得到15;S5:将第四步中的运算结果15与6相加得到21。
算法2:S1:取n=6;S2:计算2)1(+nn;S3:输出运算结果。
算法3:S1:将原式变形为(1+6)+(2+5)+(3+4)=3×7;S2:计算3×7;S3:输出运算结果。
小结:算法1是最原始的方法,最为繁琐,步骤较多,当加数较大时,比如1+2+3+…+10000,再用这种方法是行不通的;算法2与算法3都是比较简单的算法,但比较而言,算法2最为简单,且易于在计算机上执行操作。
例2、已知x=4,y=2,画出计算w=3x+4y的值的程序框图。
解:程序框如下图所示:输入4,2 4和2分别是x 和y小结:此图的输入框旁边加了一个注释框它的作用是对框中的数据或内容进行说明,它可以出现在任何位置。
例3、编写程序,计算一个学生数学、语文、英语三门课的平均成绩。
分析:先写出算法,画出程序框图,再进行编程。
算法: 程序:例4、如图,四边形OABC 是单位正方形,现准备在该正方形内随机均匀取点),(y x P , 并统计点落在扇形区域内的个数,由此计算 π 的近似值,试画出一个算法的流程图,并写出伪代码。
(提示:随机函数Rand 可产生[0,1]内的随机数)解:设共取点n 个,其中有j 个点落在扇形区域内,由几何概型计算公式414ππ==≈OABCOAC S S nj 正扇,所以可计算得:nj4=π。
算法流程图和伪代码分别如下:O ABCxyRead n j ←0For i from 1 to nx ←randy ←randif 122<+y x then 1+←j jEnd if End fornjPai 4←Print Pai(二)巩固练习一,选择题1.下面对算法描述正确的一项是( )A .算法只能用伪代码来描述B .算法只能用流程图来表示C .同一问题可以有不同的算法D .同一问题不同的算法会得到不同的结果2.将两个数2,1==b a 交换,使1,2==b a ,下面语句正确的是( )A .a b b a ←←,B .b a a b ←←,C .a b b c c a ←←←,,D .c a a b b c ←←←,, 3.条件语句表达的算法结构为( ) A .顺序结构 B .选择结构 C .循环结构 D .以上都可以 4.下面的程序执行后的结果是( )ba prb a b ba ab a ,int 31-←+←←←A .3,1B .1,4C .0,0D .0,65.关于for 循环说法错误的是( )A .在for 循环中,循环表达式也称为循环体B .在for 循环中,步长为1,可以省略不写,若为其它值,则不可省略C .使用for 循环时必须知道终值才可以进行D .for 循环中end 控制结束一次循环,开始一次新循环 6.当3=x 时,下面程序段输出的结果是( )A .9B .3C .10D .67.普通高中新课程标准实验教科书(数学必修3)知识结构框图如下,则空白的框内应该填入( )系C .相关关系、分层抽样、相关系数D .相关系数、相关关系、分层抽样8.计算下列各式中的S 的值,能设计算法求解的是( )①100321++++= S ;② +++=321S ;③)2(321N ∈≥++++=n n n S 且 A .①② B .①③ C .②③ D .①②③ 9.用辗转相除法计算60和48的最大公约数时,需要做的除法次数是( ) A .1 B .2 C .3 D .410.对于一元n 次多项式,0111)(a x a x a x a x f n n n n ++++=-- 可以通过一次式的反复计算,逐步得到高次多项式值的方法,称为秦九韶算法。
(完整版)高考算法程序框图真题练习及答案详解
高中算法程序框图一 •选择题(共18小题)1 •如图给出了一个算法程序框图,该算法程序框图的功能是( )A .求输出a , b , c 三数的最大数 C .将a , b , c 按从小到大排列3. (2012?三明模拟)如图给出一个算法的程序框图,该程序框图的功能是(A .找出a 、b 、c 三个数中最大的数 C .找出a 、b 、c 三个数中第二大的数 4. 程序框图表示的算法的运行结果是(B .找出a 、b 、c 三个数中最小的数 D .把c 的值赋给a)A .求a , b , c 三数的最大数 C .将a , b , c 按从小到大排列2. 如图给出一个算法的程序框图,该程序框图的功能是(B .求 a , D .将 a , )b ,c 三数的最小数 b , c 按从大到小排列CMB .求输出a , b , c 三数的最小数 D .将a , b , c 按从大到小排列)5•程序框图中所表示的算法是(A . 3B . 7C . 157. (2013?合肥二模)如图所示,程序框图(算法流程图)的输出结果是(B . 6B .求x 的相反数C •求x 的平方根 6. (2014?泉州一模)运行图中所示程序框图所表达的算法,输出的结果是(D .求x 的算术平方根)D .31)A .求x 的绝对值 •帕J&阅读如图所示的程序框图,运行相应的程序,输出的结果为(9•阅读如图所示的程序框图,运行相应的程序,输出的结果是(A . 1B . 2C . 310 . (2014?福建)阅读如图所示的程序框图,运行相应的程序,输出的「我] 启~I/•is/IA . 18B . 20C . 2111. (2014?北京)当m=7, n=3时,执行如图所示的程序框图,输出的S 的值为(D . 40)B . 26S 的值等于(口 w fl 十142 C . 21012.(2013?辽宁)执行如图所示的程序框图,若输入 n=10,则输出的S=()GE®/输A/i /72 5513.(2012?天津)阅读程序框图,运行相应的程序,当输入 x 的值为-25时,输出x 的值为()B . 10C. 3&D . _[H 五55A .14. (2012?福建)阅读如图所示的程序框图,运行相应的程序,输出15 . (2012?广东)执行如图所示的程序框图,若输入 n 的值为6,则输出s 的值为( )A . 105B . 16C . 15D .116 . (2012?辽宁)执行如图所示的程序框图,则输出的 S 的值是( )3^:B . - 10s 值等于( )A.4B .::C .::D . - 12 317. (2011?北京)执行如图所示的程序框图,若输入A . 2B . 318.(2011?北京)执行如图所示的程序框图,输出的 s 值为(20 .有如图程序框图,则该程序框图表示的算法功能是 _一A 的值为2,则输入的P 值为( )A . — 3.填空题(共9小题)21 •如图所示的程序框图,其算法功能是_____________________24 •某算法的程序框图如图所示,则程序输出y的值是________________26. (2014?惠州模拟)如图所示,程序框图(算法流程图)的输出结果为27 •阅读如图所示的程序框图,运行相应的程序,则输出的三•解答题(共1小题)s值等于________________参考答案与试题解析一•选择题(共18小题)1 •如图给出了一个算法程序框图,该算法程序框图的功能是()A .求a, b, c三数的最大数B •求a, b,c三数的最小数C.将a, b, c按从小到大排列 D .将a, b, c按从大到小排列考点:设计程序框图解决实际问题.专题:操作型.分析:逐步分析框图中的各框语句的功能,第一个条件结构是比较a, b的大小,并将a, b中的较小值保存在变量a中,第二个条件结构是比较a, c的大小,并将a, c中的较小值保存在变量a中,故变量a的值最终为a, b, c中的最小值.由此不难推断程序的功能.解答:解:逐步分析框图中的各框语句的功能,第一个条件结构是比较a, b的大小,并将a, b中的较小值保存在变量a中,第二个条件结构是比较a, c的大小,并将a, c中的较小值保存在变量a中,故变量a的值最终为a, b, c中的最小值. 由此程序的功能为求a, b, c三个数的最小数.故答案选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视•要判断程序的功能就要对程序的流程图(伪代码)逐步进行分析,分析出各变量值的变化情况,特别是输出变量值的变化情况,就不难得到正确的答案.2 •如图给出一个算法的程序框图,该程序框图的功能是()c®CiteA •求输出a , b , c 三数的最大数 C •将a , b , c 按从小到大排列B •求输出a , b , c 三数的最小数 D •将a , b , c 按从大到小排列考点:程序框图. 专题:算法和程序框图.分析:根据框图的流程判断,第一个环节的功能是输出的a 是a ,b 之间的最大数,第二个环节功能是输出 a , c之间的最大数,由此可得答案.解答:解:由程序框图知:第一个环节是比较a ,b ,输出的a 是a , b 之间的最大数;第二个环节是比较 a, c ,输出的a 是a , c 之间的最大数. •••算法的功能是输出a , b , c 三数的最大数. 故选:A .点评:本题考查了排序程序框图,根据框图的流程判断算法的功能是关键.3. (2012?三明模拟)如图给出一个算法的程序框图,该程序框图的功能是( )考点: 程序框图• 专题: 阅读型•分析: 再输入了三个实数 a 、b 、c 后,首先对其中的两个数 a 、b 的大小加以判断,二者取小的数,然后再比较取 得的数与c 的大小,再取小的数输出•解答: 解:输入框中输入了三个实数a 、b 、c ,然后首先判断a 与b 的大小,若a >b 成立,则用b 替换a ,若a 哉不进仃替换,这样再用两者之间的小的数和c 比较,右a >c ,用c 替换a ,输出a ,否则,直接输出小的数a 所以程序框图的功能是找出a 、b 、c 三个数中最小的数•故选B •点评: 本题考查了程序框图中的条件结构,条件结构有两个路径,满足条件执行一个路径,不满足条件,执行另A .找出a 、b 、c 三个数中最大的数 C .找出a 、b 、c 三个数中第二大的数B .找出a 、b 、c 三个数中最小的数 D .把c 的值赋给a一个路径,解答本题时,一定要注意 =”的意义,是用后者替换前者.考点:程序框图. 专题:计算题.分析:由判断框可知:只要 s€0,则程序就执行 是”,否则就跳出循环程序,执行否”并输出i .据此可得出答案.解答:解:由判断框可知:只要 s €0,则程序就执行 是”否则就跳出循环程序,执行否”并输出i .当s=1+2+3+4+5=15 V 20,应继续执行 是”贝U s=15+6=21 >20,此时i=6+仁7,要跳出循环,输出 7. 故选C .点评:理解循环结构的工作原理并会计算s 与i 是解决问题的关键.5•程序框图中所表示的算法是( )考点:选择结构. 专题:图表型.分析:写出经过选择结构得到的结果,得到求的 y 的值的形式,即可判断出框图的功能.解答:解:逐步分析框图中的各框语句的功能,fig该程序框图表示算法的功能是求函数 y= '沁的值,即 y=|x|, 故选A .点评:本题考查解决程序框图中的选择结构时,常采用写出前几次选择的结果,找规律.6. (2014?泉州一模)运行图中所示程序框图所表达的算法,输出的结果是( )B .求x 的相反数C •求x 的平方根D •求x 的算术平方根4 •程序框图表示的算法的运行结果是(A .求x 的绝对值考点:循环结构. 专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算 并输出满足条件 S >20的第一个i 值,模拟程序的运行过程,用表格将程序运行过程中变量 况进行分析,不难给出答案.解答:解:程序在运行过程中各变量的值如下表示:s i 是否继续循环 循环前 1 1/第一圈 1 2 是第二圈23是C . 15D . 31考点:程序框图. 专题:算法和程序框图.分析:由算法的程序框图,计算各次循环的结果,满足条件,结束程序. 解答:解:根据算法的程序框图知,第一次循环得 a=2X1+1=3, 第二次循环得 a=2X 3+1=7,第三次循环得a=2X7+1=15,结束循环, 故选C ,点评:本题考查了应用程序框图进行简单的计算问题,是基础题.7. (2013?合肥二模)如图所示,程序框图(算法流程图)的输出结果是(i 值,k 的值的变化情A . 6第三圈 6 4 是故最后输出的i 值为:5,图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与 择恰当的数学模型 ③解模.&阅读如图所示的程序框图,运行相应的程序,输出的结果为( )A . 676考点: 循环结构.专题:图表型.分析: 根据已知中的流程图,我们模拟程序的运行结果,看变量 不满足时执行循环,满足时退出循环,即可得到输出结果.a 的值是否满足判断框的条件,当判断框的条件解答:解:a=1,满足条件a v 15,执行循环, a=2,满足条件a v 15,执行循环, a=5,满足条件a v 15,执行循环, a=26,不满足条件a v 15,退出循环, 执行输出语句,输出 a=26.故选B .点评:本题主要考查的知识点是程序框图,模拟循环的执行过程是解答此类问题常用的办法,属于基础题.9.阅读如图所示的程序框图,运行相应的程序,输出的结果是( )第四圈24 5 否 点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是: :①分析流程运算的数据比较多,也可使用表格对数据进行分析管理) ?②建立数学模型,根据第一步分析的结果,选 B . 26故选B .A . 1B . 2C . 3D . 4考点:程序框图. 专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算 重新为2时变量n 的值,并输出,模拟程序的运行过程,即可得到答案.解答: 解:程序在运行过程中各变量的值如下表示:S n 是否继续循环循环前 2 1/ 第一圈-1 2是 第二圈 丄3是 第三圈 2 4否则输出的结果为4故选D点评:本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.10. (2014?福建)阅读如图所示的程序框图,运行相应的程序,输出的叠—考点:循环结构.S 的值等于( )A . 18B . 20C . 21D . 40总三刃十L专题:计算题;算法和程序框图.分析:算法的功能是求 S=21+22+・・+2n +1+2+・・+ n 的值,计算满足条件的 S 值,可得答案.解答:解:由程序框图知:算法的功能是求S=21+22+ ..+2n +1+2+ -+n 的值,12123S =2 +2 +1+2=2+4+1+2=9 V 15, S=2 +2 +2 +1+2+3=2+4+8+1+2+3=20 昌5.•••输出 S=20. 故选:B .点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.11. (2014?北京)当m=7, n=3时,执行如图所示的程序框图,输出的 S 的值为( )考点:循环结构.专题:计算题;算法和程序框图.分析:算法的功能是求 S=7>6X ・・・kx 的值,根据条件确定跳出循环的 k 值,计算输出S 的值.解答: 解:由程序框图知:算法的功能是求S=7>6 >•••>的值,当 m=7 , n=3 时,m - n +1=7 - 3+仁5 , •跳出循环的k 值为4, •输出 S=70X5=210 . 故选:C .点评:本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.12 . (2013?辽宁)执行如图所示的程序框图,若输入 n=10,则输出的S=( )(幵晞J丄/输心/1i=2------ 1 -------青r-l/ S H .'ISS7工i=i+2B . 42C . 210D . 840Iwn * 少 IA . 7B .」11C . _557255考点:循环结构.专题:计算题;图表型.分析:框图首先给累加变量S和循环变量i分别赋值0和2,在输入n的值为10后,对i的值域n的值大小加以判断,满足i韦, 执行二$十一,i=i+2,不满足则跳出循环,输出S.-1解答:解:输入n的值为10,框图首先给累加变量S和循环变量i分别赋值0和2,判断2<10 成立,执行S二。
2022高考数学(文)二轮复习高考小题标准练(二) Word版含答案
温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word 文档返回原板块。
高考小题标准练(二)满分75分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x ∈Z|2<2x+2≤8},B={x ∈R|x 2-2x>0},则A ∩(R B)所含的元素个数为( )A.0B.1C.2D.3【解题提示】求出A 中不等式的解集,找出解集中的整数解确定出A ,求出B 中不等式的解集,确定出B ,求出B 的补集,找出A 与B 补集的交集,即可确定出元素个数.【解析】选C.由集合A 中的不等式变形得:21<2x+2≤23,得到1<x+2≤3, 解得:-1<x ≤1,且x 为整数,所以A={0,1};由集合B 中的不等式变形得:x(x-2)>0,解得:x>2或x<0,即B=(-∞,0)∪(2,+∞),所以R B=[0,2],所以A ∩(R B)={0,1},即元素有2个.2.设i 是虚数单位,a 为实数,复数z=1+ai i为纯虚数,则z 的共轭复数为( )A.-iB.iC.2iD.-2i 【解析】选B.由于z=1+ai i=(1+ai)i i 2=−a+i −1=a-i ,由于z 为纯虚数,故a=0,所以z=-i , 则z ̅=i.3.甲乙两人在一次赛跑中,从同一地点动身,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先动身B.乙比甲跑的路程多C.甲,乙两人的速度相同D.甲比乙先到达终点【解析】选D.由图形可知甲,乙两人从同一时间动身,且路程相同,甲用的时间短,故甲比乙先到达终点.4.某高校进行自主招生,先从报名者中筛选出400人参与笔试,再按笔试成果择优选出100人参与面试.现随机调查了24名笔试者的成果,如表所示:分数段 [60,65) [65,70) [70,75) [75,80) [80,85) [85,90)人数234951据此估量允许参与面试的分数线大约是( )A.75B.80C.85D.90【解析】选B.由于参与笔试的400人中择优选出100人,故每个人被择优选出的概率P=100400=14,由于随机调查24名笔试者,则估量能够参与面试的人数为24×14=6,观看表格可知,分数在[80,85)有5人,分数在[85,90)的有1人,故面试的分数线大约为80分,故选B.5.已知等比数列{a n}中,a3=2,a4a6=16,则a10−a12a6−a8的值为( )A.2B.4C.8D.16【解题提示】结合已知条件得到q4=4,再利用等比数列的性质即可. 【解析】选B.由于a3=2,a4a6=16,所以a4a6=a32q4=16,即q4=4,则a10−a12 a6−a8=q4(a6−a8)a6−a8=q4=4.6.当m=6,n=3时,执行如图所示的程序框图,输出的S值为( )A.6B.30C.120D.360【解题提示】模拟执行程序框图,依次写出每次循环得到的S,k的值,当k=3时,满足条件k<m-n+1=4,退出循环,输出S的值为120.【解析】选C.模拟执行程序框图,可得m=6,n=3,k=6,S=1,不满足条件k<m-n+1=4,S=6,k=5;不满足条件k<m-n+1=4,S=30,k=4;不满足条件k<m-n+1=4,S=120,k=3;满足条件k<m-n+1=4,退出循环,输出S的值为120. 7.实数x,y满足{x≥1,y≤a,a>1,x−y≤0,若目标函数z=x+y取得最大值4,则实数a的值为( )A.4B.3C.2D.32【解析】选C.画出可行域得直线y=-x+z过(a,a)点时取得最大值,即2a=4,a=2.8.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( )A.83B.43C.4√3D.2√3【解析】选A.结合三视图,借助正方体想象该棱锥的直观图,如图所示.该棱锥是四棱锥P-ABCD.其底面ABCD为一个底边长为2√2和2的矩形,面积S=4√2,高是P点到底面ABCD的距离,即h=√2,故此棱锥的体积V=13Sh=83.9.设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e x+x-3,则f(x)的零点个数为( )A.1B.2C.3D.4【解题提示】先由函数f(x)是定义在R上的奇函数确定0是一个零点,再令x>0时的函数f(x)的解析式等于0转化成两个函数,转化为推断两函数交点个数问题,最终依据奇函数的对称性确定答案.【解析】选C.由于函数f(x)是定义域为R的奇函数,所以f(0)=0,所以0是函数f(x)的一个零点.当x>0时,令f(x)=e x+x-3=0,则e x=-x+3,分别画出函数y=e x,和y=-x+3的图象,如图所示,有一个交点,所以函数f(x)在x>0时有一个零点,又依据对称性知,当x<0时函数f(x)也有一个零点.综上所述,f(x)的零点个数为3,故选C.【加固训练】函数f(x)=2x3-6x2+7在(0,2)内零点的个数为( )A.0B. 1C.2D.4 【解析】选B.由于f′(x)=6x2-12x=6x(x-2),由f′(x)>0,得x>2或x<0;由f′(x)<0得0<x<2.所以函数f(x)在(0,2)上是减函数,而f(0)=7>0,f(2)=-1<0,由零点存在定理可知,函数f(x)=2x3-6x2+7在(0,2)内零点的个数为1.10.已知二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标为(−b2a,−14a),与x轴的交点P,Q位于y轴的两侧,以线段PQ为直径的圆与y轴交于F1(0,4)和F2(0,-4),则点(b,c)所在曲线为( )A.圆B.椭圆C.双曲线D.抛物线【解析】选B.结合二次函数的顶点坐标为(−b2a,4ac−b24a),依据题意可得Δ=b 2-4ac=1,①,二次函数图象和x轴的两个交点分别为(−b+12a,0)和(−b−12a,0),利用射影定理即得:-(−b+12a×−b−12a)=16 1-b2=64a2,结合①先求出a和c之间的关系,代入①可得到,(b,c)所在的曲线为b2+c24=1,表示椭圆.二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知a=(1,2),b=(4,2),设a,b的夹角为θ,则cosθ= .【解析】由平面对量的夹角公式得,cosθ==1212√x1+y1·√x2+y2=√5×√20=45.答案:45【加固训练】已知向量a=(1,√3),b=(3,m).若向量b在a方向上的投影为3,则实数m= .【解析】依据投影的定义:|b|·cos<a,b>==3+√3m2=3;解得m=√3. 答案:√312.已知函数f(x)={x 3+1,x ≥0,x 2+2,x <0,若f(x)=1,则x= .【解析】若x ≥0则x 3+1=1,所以x=0,若x<0则x 2+2=1无解,所以x=0.答案:013.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b-c)(sin B+ sin C)=(a-√3c)·sinA ,则角B 的大小为 .【解题提示】由正弦定理化简已知等式可得c 2+a 2-b 2=√3ac ,由余弦定理可求 cos B ,结合B 的范围即可得解.【解析】由正弦定理,可得sinB=b2R,sin C=c2R,sinA=a2R, 所以由(b-c)(sin B+sin C)=(a-√3c)·sin A 可得(b- c)(b+c)=a(a-√3c),即有c 2+a 2-b 2=√3ac ,则cos B=a 2+c 2−b 22ac=√32,由于0°<B<180°,则B=30°. 答案:30°14.已知三棱锥S-ABC 的全部顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=π3,则球O 的表面积为 .【解析】三棱锥S-ABC 的全部顶点都在球O 的球面上,由于SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=60°,所以BC=√1+4−2×1×2×cos60°=√3,所以∠ABC=90°. 所以△ABC 截球O 所得的圆O ′的半径r=12AC=1,所以球O 的半径R=√12+(2√32)2=2,所以球O 的表面积S=4πR 2=16π. 答案:16π15.已知直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3),则b 的值为 . 【解题提示】由于切点在直线与曲线上,将切点的坐标代入两个方程,得到关于a ,b ,k 的方程,再求出在点(1,3)处的切线的斜率的值,即利用导数求出在x=1处的导函数值,结合导数的几何意义求出切线的斜率,再列出一个等式,最终解方程组即可得,从而问题解决.【解析】由于直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3), 所以{k +1=3,1+a +b =3,①又由于y=x 3+ax+b ,所以y ′=3x 2+a ,当x=1时,y ′=3+a 得切线的斜率为3+a ,所以k=3+a , ②所以由①②得:b=3. 答案:3关闭Word 文档返回原板块。
高三数学 数学《程序框图习题课》复习课件 新人教A版
第一步:用自然语言表述算法步骤. 第二步:确定每一个算法步骤所包含的逻辑结构,并 用相应的程序框图表示,得到该步骤的程序框图.
第三步:将所有步骤的程序框图用流程线连接起 来, 并加上终端框,得到表示整个算法的程序框图.
2020/5/1
1
14
P19)设计一个用有理指数幂逼近无理指数幂 5 2的算法,并 估计 5 2 的近似值,画出算法的程序框图.
2020/5/1
a 300?
直到型循环结构
1
7
开始
n 2005
a 200
t 0.05a
aat
n n1
否
a 300?
是
输出 n
结束
2020/5/1
直 到 型 循 环 结 构
当 型 循 环 结 构
1
开始 n 2005 a 200
n n1
aat
a 300?
否
输出 n
结束
t 0.05a
是
2020/5/1
1
1
知识回顾
1、顺序结构
由若干个依次执行的步骤组成的结构.它是任何 一个算法都离不开的结构.
步骤n
步骤n+1
2020/5/1
1
2
知识回顾
(2)条件结构
满足条件?
是
步骤A
否
步骤B
满足条件? 否
是
步骤A
2020/5/1
1
3
知识回顾
(3)循环结构
循环结构分为当型循环结构和直到型循环结构
含零点的区间为 [m,b].将新得到的含零点的区间仍记为[a,b].
第五步:判断 [a,b] 的长度是否小于d或f(m)是否等于0. 若是,则m是方程的近似值;否则,返回第三步.
(全国通用版)2019版数学大二轮复习-第二部分 高考22题各个击破 专题一 常考小题点 2.1.4 平面向量题专项
A.1
B.2
C.3
D.5
∵|a+b|= 10, ∴(a+b)2=10. ∴|a|2+|b|2+2a·b=10.
∵|a-b|= 6, ∴(a-b)2=6. ∴|a|2+|b|2-2a·b=6. 由A ①-②得 a·b=1,故选 A.
关闭
① ②关闭
解析 答案
一、选择题 二、填空题
3.(2018 全国卷 1,理 6)在△ABC 中,AD 为 BC 边上的中线,E 为 AD 的
������������=(-x, 3-y),������������=(-1-x,-y),������������=(1-x,-y).
所以������������ + ������������=(-2x,-2y).
所以������������ ·(������������ +
������������ )=2x2-2y(
c∥(2a+b),则λ=
.
关闭
2a+b=2(1,2)+(2,-2)=(4,2),c=(1,λ),由 c∥(2a+b),得 4λ-2=0,得 λ=12.
1
关闭
2
解析 答案
一、选择题 二、填空题
14.已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=
.
关闭
因为|a+2b|2=(a+2b)2=|a|2+4·|a|·|b|·cos 60°+4|b|2=22+4×2×1× 12+4×1=12, 所以|a+2b|= 12=2 3.
又直线 OA 为 y= 3x,点 E 为(2,0),
高考数学(文)二轮复习(32)程序框图作业(1)及答案
衡水万卷作业卷三十二文数程序框图作业专练姓名:__________班级:__________考号:__________一、选择题(本大题共15小题,每小题5分,共75分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(四川高考真题)执行如图所示的程序框图,输出S的值为( )(A)(B(C)- (D)2.(新课标2高考真题)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为14,18,则输出的为()3.执行如图所示的程序框图,输出S的值为()A. 0 B.﹣1 C.﹣ D.﹣4.执行如图所示的程序框图,如果输入的N的值是6,那么输出的p的值是()A.15 B.105 C.120 D.7205.当3n=时,执行如右图所示的程序框图,输出的S值为A. 30B.14C. 8D. 66.(•上海模拟)某流程图如图所示,现输入如下四个函数,则可以输出的函数是()A. f(x)=x2 B. C. D.7.阅读右侧程序框图,如果输出5=i,那么在空白矩形框中应填入的语句为A. iS*=2 B. 12-*=iS C. 22-*=iS D. 42+*=iS8.右图中,321,,xxx为某次考试三个评阅人对同一道题的独立评分,p为该题的最终得分,当5.8,9,621===pxx时,3x等于A.11 B.8.5 C.8 D.79.执行如右图所示的程序框图,若输入的n值等于7,则输出的s的值为A.15B.16C.21D.2210.如图是一个算法的程序框图,该算法所输出的结果是( )A.34B.23C.12D.451 21 2,a b a A.0 B.2 C.4 D.1411.执行如图所示的程序框图,当输出值为4时,输入x 的值为A .2B .2±C .-2或-3D .2或-312.如图1是某县参加2014年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1,A 2,…,A 10(如A 2表示身高(单位:cm )在[150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~185cm (含160cm ,不含185cm )的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <9B .i <8C .i <7D .i <613.如果执行下图所示的框图,输入5N =,则输出的数等于( )A .2542 B .2521 C .1921D.22114.根据右边框图,对大于2的整数N ,得出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=15.如图所示,程序框图(算法流程图)的输出结果是( )(A)34 (B)55 (C)78 (D)89二、填空题(本大题共5小题,每小题5分,共25分)16.执行如图所示的程序框图,则输出的结果是;17.(•泰州一模)执行如图所示的流程图,则输出的n为.18. 如右图所示的程序框图的输出值,则输入值。
2023高考数学二轮复习专项训练《导数在解决实际问题中的应用》(含答案)
2023高考数学二轮复习专项训练《导数在解决实际问题中的应用》一、单选题(本大题共8小题,共40分)1.(5分)若z=−1+√3i,则zzz−−1=()A. −1+√3iB. −1−√3iC. −13+√33i D. −13−√33i2.(5分)命题“∀x∈R,∃x∈N,使得n⩾x2+1”的否定形式是()A. ∀x∈R,∃x∈N,使得n<x2+1B. ∀x∈R,∀x∈N,使得n<x2+1C. ∃x∈R,∃x∈N,使得n<x2+1D. ∃x∈R,∀x∈N,使得n<x2+13.(5分)已知函数y=f(x)的周期为2,当x∈[0,2]时,f(x)=(x−1)2,如果g(x)= f(x)−log5|x−1|,则函数的所有零点之和为()A. 8B. 6C. 4D. 104.(5分)执行如图所示的程序框图,若输入的x为整数,且运行四次后退出循环,则输入的x的值可以是()A. 1B. 2C. 3D. 45.(5分)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,DF⊥AB于点F,且AE=8,AB=10.在上述条件下,给出下列四个结论:①DE=BD;②ΔBDF≌ΔCDE;③CE=2;④DE2=AF⋅BF,则所有正确结论的序号是()A. ①②③B. ②③④C. ①③④D. ①②④6.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π2)的图象如图所示,则()A. 函数f(x)的最小正周期是2πB. 函数f(x)在区间(π2,π)上单调递减C. 函数f(x)的图象与y轴的交点为(0,−12)D. 点(7π6,0)为函数f(x)图象的一个对称中心7.(5分)213,log26,3log32的大小关系是A. 213<log26<3log32 B. 213<3log32<log26C. 3log32<213<log26 D. 3log32<log26<2138.(5分)设函数y=ax2与函数y=|ln x+1ax|的图象恰有3个不同的交点,则实数a的取值范围为()A. (√33e,√e) B. (−√33e,0)∪(0,√33e)C. (0,√33e) D. (√e1)∪{√33e}二、填空题(本大题共5小题,共25分)9.(5分)设A,B是非空集合,定义:A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A={x|0<x<2},B={x|x⩾0},则A⊗B=__________.10.(5分)某中学组织了“党史知识竞赛”活动,已知该校共有高中学生2000人,用分层抽样的方法从该校高中学生中抽取一个容量为50的样本参加活动,其中高一年级抽取了6人,则该校高一年级学生人数为 ______.11.(5分)某几何体的三视图如图所示,则该几何体的表面积是______.12.(5分)记S n为等比数列{a n}的前n项和,若a1=12,a42=a6,则S4=______.13.(5分)已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点为F,过F的一条倾斜角为30°的直线与C在第一象限交于点A,且|OF|=|OA|,O为坐标原点,则该双曲线的离心率为______.三、解答题(本大题共6小题,共72分)14.(12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?15.(12分)在ΔABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3csinB=4asinC.(Ⅰ)求cosB的值;(Ⅱ)求sin(2B+π6)的值.16.(12分)如图,ΔABC中,AC=2,BC=4,∠ACB=90°,D、E分别是AC、AB的中点,将ΔADE沿DE折起成ΔPDE,使面PDE⊥面BCDE,H、F分别是边PD和BE的中点,平面BCH与PE、PF分别交于点I、G.(Ⅰ)求证:IH//BC;(Ⅱ)求二面角P−GI−C的余弦值.17.(12分)设等比数列{a n}的前n项和为S n,a2=18,且S1+116,S2,S3成等差数列,数列{b n}满足b n=2n.(1)求数列{a n}的通项公式;(2)设c n=a n⋅b n,若对任意n∈N∗,不等式c1+c2+⋯+c n⩾12λ+2S n−1恒成立,求λ的取值范围.18.(12分)已知椭圆x2a2+y2b2=1(a>b>0)的离心率e=√32,椭圆上任意一点到椭圆的两个焦点的距离之和为4,设直线l与椭圆相交于不同的两点A,B,点A的坐标为(−a,0).(Ⅰ)求椭圆的标准方程;(Ⅰ)若|AB|=4√2,求直线l的倾斜角.519.(12分)已知a为实数,函数f(x)=a ln x+x2−4x.(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;,e],使得f(x0)⩽g(x0)成立,求实数a的取值范围.(2)设g(x)=(a−2)x,若∃x0∈[1e答案和解析1.【答案】C;【解析】解:∵z =−1+√3i ,∴z ·z −=|z|2=(√(−1)2+(√3)2)2=4, 则zzz −−1=−1+√3i 4−1=−13+√33i. 故选:C.由已知求得z ·z −,代入zzz −−1,则答案可求.此题主要考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.【答案】D;【解析】解:因为全称命题的否定是特称命题,所以“∀x ∈R ,∃x ∈N ,使得n ⩾x 2+1”的否定形式为∃x ∈R ,∀x ∈N ,使得n <x 2+1”. 故选:D.直接利用特称命题的否定是全称命题写出结果即可.此题主要考查命题的否定.特称命题与全称命题的否定关系,基本知识的考查.3.【答案】A; 【解析】该题考查函数的零点,考查数形结合的数学思想,正确作出函数的图象是关键. 分别作出函数y =f(x)、y =log 5|x −1|的图象,结合函数的对称性,即可求得结论.解:当x ∈[0,2]时,f(x)=(x −1)2,函数y =f(x)的周期为2,图象关于y 轴对称的偶函数y =log 5|x|向右平移一个单位得到函数y =log 5|x −1|, 则y =log 5|x −1|关于x =1对称,可作出函数的图象:函数y =g(x)的零点,即为函数图象交点横坐标, 当x >6时,y =log 5|x −1|>1,此时函数图象无交点,又两函数在(1,6]上有4个交点,由对称性知它们在[−4,1)上也有4个交点,且它们关于直线x=1对称,所以函数y=g(x)的所有零点之和为:4×2=8,故选:A.4.【答案】A;【解析】解:依题意,S随着x的增大而增大,当x⩾2时,第一次循环时S⩾4,第二次循环时S⩾4+42=20,第三次循环时S⩾20+82=84⩾64,脱离循环,故x<2,故选:A.根据S和x的关系,S随着x的增大而增大,验证当x⩾2时的情况,即可得到结果.此题主要考查了程序框图,考查了循环结构.属于基础题.本题的难点在于逆推x的值,需要借助不等式来完成.5.【答案】B;【解析】解:∵∠BAC的平分线为AD,DE⊥AC,DF⊥AB,∴DE=DF,DC=DB,∴ΔBDF≌ΔCDE,所以①不正确,②正确;∵∠BAC的平分线为AD,DE⊥AC,DF⊥AB,∴AE=AF=8.又∵ΔBDF≌ΔCDE,∴CE=BF=AB−AF=10−8=2,故③正确;∵AB是直径,∴∠ADB=90°.又∵DF⊥AB,∴ΔDBF∽ΔADF,∴DFAF =BFDF,即DF2=AF⋅BF,∴DE2=AF⋅BF,故④正确;故选:B.利用角平分线的性质和全等三角形的判定可以判断①②的正误;利用排除法可以判断③④的正误.此题主要考查了相似三角形的判定与性质.解题时,利用了角平分线的性质和圆周角定理,难度不大.6.【答案】D;【解析】解:由函数图可象知T4=5π12−π6=π4,所以T=π,因为T=2πω,∴ω=2,所以最小正周期为π,故A错误;又函数过点(5π12,1),所以f(5π12)=sin(2×5π12+φ)=1,所以5π6+φ=π2+2kπ,(k∈Z),解得φ=−π3+2kπ,(k∈Z),∵|φ|<π2,所以φ=−π3,所以f(x)=sin(2x−π3),当x∈(π2,π),所以2x−π3∈(2π3,5π3),因为y=sinx在x∈(2π3,5π3)上不单调,故B错误;令x=1,则f(0)=sin(−π3)=−√32,所以与y轴交点为(0,−√32),故C错误;若点(7π6,0)为函数f(x)图象的一个对称中心,则f(7π6)=0,当x=7π6时,f(7π6)=sin(2×7π6−π3)=sin2π=0,所以点(7π6,0)为函数f(x)图象的一个对称中心,故D正确,故选:D.根据函数图像求出函数解析式,再结合选项一一判断即可.此题主要考查了三角函数的图象与性质的应用问题,也考查了数形结合与函数思想,属于中档题.7.【答案】B;【解析】此题主要考查了指数函数与对数函数的大小比较问题,属于基础题.首先根据单调性,将指数值与32比较,其次根据对数函数的递增性质得到两个对数值与2、32大小关系,答案易得.解:213<212<32,3log32=32log34>32,3log32=log38<log39=2,log26>log24=2,所以213<3log32<log26.故选B.8.【答案】C;【解析】解:令ax2=|ln x+1ax|得a2x3=|ln x+1|,显然a>0,x>0.作出y=a2x3和y=|ln x+1|的函数图象,如图所示:设a=a0时,y=a2x3和y=|ln x+1|的函数图象相切,切点为(x0,y0),则{3a02x02=1x0a02x03=ln x0+1,解得x0=e−23,y0=13,a0=√3e3.∴当0<a<√3e3时,y=a2x3和y=|ln x+1|的函数图象有三个交点.故选:C.令ax2=|ln x+1ax|得a2x3=|ln x+1|,作出y=a2x3和y=|ln x+1|的函数图象,利用导数知识求出两函数图象相切时对应的a0,则0<a<a0.此题主要考查了函数图象的交点个数判断,借助函数图象求出临界值是关键.9.【答案】{x|x=0或x⩾2};【解析】此题主要考查集合的新定义,是基础题由集合A={x|0<x<2},B={x|x⩾0},可得A∪B={x|x⩾0},A∩B={x|0<x<2},则A⊗B={x|x=0或x⩾2}.10.【答案】240;【解析】解:设该校高一年级学生人数为n,则6n =502000,即n=240,故答案为:240.由分层抽样方法,按比例抽样即可.此题主要考查了分层抽样方法,重点考查了阅读能力,属基础题.11.【答案】16+8√2;【解析】解:由三视图知:几何体为直三棱柱削去一个三棱锥,如图:其中直棱柱的侧棱长为8,底面为直角三角形,且AB=BC=2,SA=2,SB=2√2,AC=2√2,∴几何体的表面积S=12×2×2+12×2×2√2+4+22×2√2+4+22×2+4×2=16+8√2.故答案为:16+8√2.几何体为直三棱柱削去一个三棱锥,结合直观图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.此题主要考查了由三视图求几何体的表面积,判断几何体的形状及数据所对应的几何量是解答此类问题的关键.12.【答案】152;【解析】解:∵a1=12,a42=a6,∴(12q3)2=12q5,解可得,q=2,则S4=12(1−24)1−2=152.故答案为:152.由已知结合等比数列的通项公式可求公比,然后结合等比数列的求和公式即可求解.这道题主要考查了等比数列的公式及求和公式的简单应用,属于基础试题.13.【答案】√3+1;【解析】解:过F的一条倾斜角为30°的直线与C在第一象限交于点A,且|OF|=|OA|=c,∠AOx=60°,则A(c2,√3c 2)所以c 24a2−3c24b2=1,c2 4a2−3c24(c2−a2)=1,可得e 24−3e24e2−4=1,可得e4−8e2+4=0.解得e=1+√3.故答案为:√3+1.利用已知条件求出A的坐标,代入双曲线方程,结合离心率公式,求解即可.此题主要考查双曲线的定义和性质,主要是离心率的求法,注意运用三角形的中位线定理和勾股定理,考查运算能力,属于中档题.14.【答案】解:设空调机、洗衣机的月供应量分别是x、y台,总利润是P,则P=6x+8y,由题意有30x+20y⩽300,5x+10y⩽110,x⩾0,y⩾0,x、y均为整数由图知直线y=−34x+18P过M(4,9)时,纵截距最大,这时P也取最大值P max=6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元.;【解析】此题主要考查找出约束条件与目标函数,准确地描画可行域,再利用图形直线求得满足题设的最优解.用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用.15.【答案】解:(Ⅰ)在三角形ABC中,由正弦定理得bsinB =csinC,所以bsinC=csinB,又由3csinB=4asinC,得3bsinC=4asinC,即3b=4a,又因为b +c =2a ,得b =4a 3,c =2a3,由余弦定理可得cosB =a 2+c 2−b 22ac=a 2+49a 2−169a 22⋅a⋅23a=−14;(Ⅱ)由(Ⅰ)得sinB =√1−co s 2B =√154,从而sin2B =2sinBcosB =−√158, cos2B =cos 2B −sin 2B =−78,故sin (2B +π6)=sin2Bcos π6+cos2Bsin π6=−√158×√32−78×12=−3√5+716.; 【解析】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力,属于中档题. (Ⅰ)根据正余弦定理可得;(Ⅱ)根据二倍角的正余弦公式以及和角的正弦公式可得.16.【答案】证明:(Ⅰ)∵D ,E 分别是边AC 和AB 的中点,∴DE ∥BC , ∵BC ⊄平面PED ,ED ⊂平面PED , ∴BC ⊂平面BCH , ∴IH ∥BC .解:(Ⅱ)如图,建立空间右手直角坐标系,由题意得:D (0,0,0),E (2,0,0),P (0,0,1),F (3,12,0),C (0,1,0),H (0,0,12),∴EP →=(-2,0,1),EF →=(1,12,0),CH →=(0,-1,12),HI →=12DE →=(1,0,0), 设平面PGI 的一个法向量为n →=(x ,y ,z ),则{EP →.n →=−2x +z =0EF →.n →=x +12y =0,令x=1,解得y=-2,z=2,∴n →=(1,-2,2), 设平面CHI 的一个法向量为m →=(a ,b ,c ),则{CH →.m →=−b +12c =0HI →.m →=a =0,取b=1,得m →=(0,1,2), 设二面角P-GI-C 的平面角为θ, 则cosθ=|m →.n →||m →|.|n →|=3×√5=2√1515.∴二面角P-GI-C的余弦值为2√1515.;【解析】(Ⅰ)推导出DE//BC,从而BC⊂平面BCH,由此能证明IH//BC.(Ⅱ)以D为原点,DE,DC,DP为x,y,z轴,建立空间右手直角坐标系,利用向量法能求出二面角P−GI−C的余弦值.该题考查线线平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.17.【答案】解:(1)设公比为q的等比数列{ an}的前n项和为S n,a2=18,且S1+116,S2,S3成等差数列,所以:{a1q=182S2=S1+116+S3,解得:a1=14,q=12,所以S n=14(1−12n)1−12=12(1−12n),故a n=14.(12)n−1=(12)n+1,(2)由于:a n=(12)n+1,数列{b n}满足b n=2n.则:C n=a n b n=n2n,则:T n=12+222+323+⋯+n2n①,1 2T n=122+223+324+⋯+n2n+1②,①−②得:12T n=(121+122+⋯+12n)−n2n+1,解得:T n=2−2+n2n,由于S n=14(1−12n)1−12=12(1−12n),所以不等式c1+c2+⋯+c n⩾12λ+2S n−1恒成立,即2−2+n2n ⩾1−12n+12λ−1,则2−n+12n⩾12λ恒成立,令f(n)=n+12n,则f(n +1)−f(n)=n+22n+1−n+12n=−n2n+1<0,所以f(n)关于n 单调递减, 所以(2−n+12n )min=2−1+12,则2−22⩾12λ 解得:λ⩽2.故:λ的取值范围为(−∞,2].;【解析】此题主要考查的知识要点:数列的通项公式的求法及应用,错位相减法在数列求和中的应用,恒成立问题的应用,主要考查学生的运算能力和转化能力,属于较难题.(1)直接利用递推关系式和建立的方程组进一步求出数列的通项公式;(2)利用(1)的结论,进一步利用错位相减法求出数列的和,最后利用恒成立问题求出参数的取值范围.18.【答案】解:(1)∵椭圆x 2a2+y 2b 2=1(a >b >0)的离心率e=√32,椭圆上任意一点到椭圆的两个焦点的距离之和为4, ∴a=2,c=√3,b=1, ∴椭圆的标准方程:x 24+y 21=1,(2)∵设直线l 与椭圆相交于不同的两点A ,B ,点A 的坐标为(-a ,0). ∴点A 的坐标为(-2,0), ∴直线l 的方程为:y=k (x+2),(Ⅱ)(i )由(Ⅰ)可知点A 的坐标是(-2,0). 设点B 的坐标为(x 1,y 1),直线l 的斜率为k . 则直线l 的方程为y=k (x+2).于是A 、B 两点的坐标满足方程组{y =k(x +2)x 24+y 21=1消去y 并整理,得(1+4k 2)x 2+16k 2x+(16k 2-4)=0. 由-2x 1=16k 2−41+4k 2,得x 1=2−8k 21+4k 2.从而y 1=4k1+4k 2. 所以|AB|=4√1+k 21+4k 2 由|AB|=4√25,得4√1+k 21+4k 2=4√25整理得32k 4-9k 2-23=0,即(k 2-1)(32k 2+23)=0,解得k=±1. 所以直线l 的倾斜角为π4或3π4.;【解析】(1)椭圆x 2a 2+y 2b 2=1(a >b >0)根据a 2=b 2+c 2,ca =√32,2a =4,求解.(2)联立方程组{y =k(x +2)x 24+y 21=1消去y 并整理,得(1+4k 2)x 2+16k 2x +(16k 2−4)=0,运用韦达定理,弦长公式求解.此题主要考查了椭圆和直线的位置关系,联立方程组结合弦长公式求解.19.【答案】解:(1)函数f (x )定义域为(0,+∞),f′(x )=ax +2x-4=2x 2−4x +ax假设存在实数a ,使f (x )在x=1处取极值,则f′(1)=0,∴a=2,…(2分) 此时,f′(x )=2(x−1)2x,当x >0时,f′(x )≥0恒成立,∴f (x )在(0,+∞)递增.…(4分) ∴x=1不是f (x )的极值点.故不存在实数a ,使得f (x )在x=1处取极值.…(5分) (2)由f (x 0)≤g (x 0) 得:(x 0-ln x 0)a≥x 02-2x 0 …(6分) 记F (x )=x-lnx (x >0),∴F′(x )=x−1x(x >0),.…(7分)∴当0<x <1时,F′(x )<0,F (x )递减;当x >1时,F′(x )>0,F (x )递增. ∴F (x )≥F (1)=1>0.…(8分) ∴a≥x 02−2x 0x0−ln x 0,记G (x )=x 2−2xx−lnx ,x ∈[1e ,e]∴G′(x )=(2x −2)(x−lnx )−(x−2)(x−1)(x−lnx )2=(x−1)(x−2lnx +2)(x−lnx )2…(9分)∵x ∈[1e,e],∴2-2lnx=2(1-lnx )≥0,∴x-2lnx+2>0∴x ∈(1e ,1)时,G′(x )<0,G (x )递减;x ∈(1,e )时,G′(x )>0,G (x )递增…(10分)∴G (x )min =G (1)=-1∴a≥G (x )min =-1.…(11分) 故实数a 的取值范围为[-1,+∞). …(12分); 【解析】(1)求出函数f(x)定义域,函数的导函数f′(x),假设存在实数a ,使f(x)在x =1处取极值,则f′(1)=0,求出a ,验证推出结果.(2)由f (x 0)⩽g(x 0) 得:(x 0−ln x 0)a ⩾x 02−2x 0,记F(x)=x −ln x(x >0),求出F′(x),推出F(x)⩾F(1)=1>0,转化a ⩾x 02−2x 0x 0−ln x 0,记G(x)=x 2−2x x−ln x,x ∈[1e,e]求出导函数,求出最大值,列出不等式求解即可.该题考查函数的动手的综合应用,函数的最值的求法,极值的求法,考查转化思想以及计算能力.。
高考数学二轮复习专练二中档小题(五)
中档小题(五)1.(2013·洛阳市统一考试)在△ABC 中,D 为边BC 上任意一点,AD →=λAB →+μAC →,则λμ的最大值为( )A .1 B.12C.13D.14 2.以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等关系不一定成立的是( ) A .2a 3>3a 4 B .5a 5>a 1+6a 6 C .a 5+a 4-a 3<0 D .a 3+a 6+a 12<2a 73.(2013·洛阳市统一考试)若函数f (x )=2x -k ·2-x2x +k ·2-x(k 为常数)在定义域内为奇函数,则k的值为( )A .1B .-1C .±1D .0 4.(2013·高考辽宁卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C+c sin B cos A =12b ,且a >b ,则∠B =( )A.π6B.π3C.2π3D.5π6 5.(2013·高考大纲全国卷)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1 6.(2013·陕西省质量检测试题)如果执行如图所示的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.12(A +B )为a 1,a 2,…,a N 的算术平均数 C .A 和B 分别是a 1,a 2,…,a N 中的最小数和最大数 D .A 和B 分别是a 1,a 2,…,a N 中的最大数和最小数7.(2013·石家庄市教学质量检测)在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为( )A.14B.13C.12D.32 8.(2013·江西省七校联考)定义在R 上的偶函数f (x ),当x ≥0时,f (x )=2x ,则满足f (1-2x )<f (3)的x 的取值范围是( )A .(-1,2)B .(-2,1)C .[-1,2]D .(-2,1] 9.(2013·高考山东卷)函数y =x cos x +sin x 的图象大致为( )10.(2013·浙江省名校第一次联考)已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM→|=1,且OM →²PM →=0,则当|PM →|取得最小值时的点P 到双曲线C 的渐近线的距离为( )A.95B.125 C .4 D .5 11.(2013·武汉市武昌区高三年级联合考试)已知|a |=1,|b |=2,a 与b 的夹角为60°,则a +b 在a 方向上的投影为________.12.已知由样本数据点集合{(x i ,y i )|i =1,2,…,n }求得的回归直线方程为y ^=1.5x +0.5,且x =3.现发现两个数据点(2.2,2.9)和(3.8,7.1)误差较大,去除后重新求得的回归直线l 的斜率为1.2,那么,当x =4时,y 的估计值为________.13.(2013·江西省七校联考)已知实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≥0x +2y -8≤0x ≤3,若(3,52)是使ax -y 取得最小值的唯一的可行解,则实数a 的取值范围为________.14.(2013·高考课标全国卷Ⅱ)设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ=________.备选题 1.(2013·石家庄市教学质量检测)如图是两个全等的正三角形,给定下列三个命题:①存在四棱锥,其正视图、侧视图如图;②存在三棱锥,其正视图、侧视图如图;③存在圆锥,其正视图、侧视图如图.其中真命题的个数是( )A .3B .2C .1D .0 2.(2013·浙江省名校第一次联考)设f (x )在(0,+∞)上是单调递增函数,当n ∈N *时,f (n )∈N *,且f [f (n )]=2n +1,则( )A .f (1)=3,f (2)=4B .f (1)=2,f (2)=3C .f (2)=4,f (4)=5D .f (2)=3,f (3)=43.若不等式|2a -1|≤|x +1x|对一切非零实数x 恒成立,则实数a 的取值范围为________.4.(2013·济南市高考模拟考试)下列命题正确的序号为________. ①函数y =ln(3-x )的定义域为(-∞,3];②定义在[a ,b ]上的偶函数f (x )=x 2+(a +5)x +b 的最小值为5;③若命题p :对∀x ∈R ,都有x 2-x +2≥0,则命题綈p :∃x ∈R ,有x 2-x +2<0;④若a >0,b >0,a +b =4,则1a +1b的最小值为1.答案:1.【解析】选D.依题意得,λ+μ=1,λμ=λ(1-λ)≤(λ+1-λ2)2=14,当且仅当λ=1-λ,即λ=12时取等号,因此λμ的最大值是14.2.【解析】选D.由S 5>S 6,得a 6<0,即a 1+5d <0,选项A ,B ,C 都能化成a 1+5d <0,所以D 错.3.【解析】选C.依题意,f (-x )=2-x -k ·2x 2-x +k ·2x =-2x -k ·2-x 2x+k ·2-x ,即(2-x -k ·2x )(2x +k ·2-x )=(2-x +k ·2x )(-2x +k ·2-x ),∴k 2=1,k =±1.4.【解析】选A.由正弦定理可得sin A sin B cos C +sin C ²sin B cos A =12sin B ,又因为sinB ≠0,所以sin A cosC +sin C cos A =12,所以sin(A +C )=sin B =12.因为a >b ,所以∠B =π6.5.【解析】选C.由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.6.【解析】选D.由图易知,该程序框图的功能是选择A 的最大数,选择B 的最小数.7.【解析】选C.如图,设圆的半径为r ,圆心为O ,AB 为圆的一条直径,CD 为垂直AB 的一条弦,垂足为M ,若CD 为圆内接正三角形的一条边,则O 到CD 的距离为r2,设EF 为与CD 平行且到圆心O 距离为r2的弦,交直径AB 于点N ,所以当过AB 上的点且垂直AB 的弦的长度超过CD 时,该点在线段MN 上变化,所以所求概率P =r 2r =12.8.【解析】选A.依题意得,函数f (x )在[0,+∞)上是增函数,且f (x )=f (|x |),不等式f (1-2x )<f (3)⇔f (|1-2x |)<f (3)⇔|1-2x |<3⇔-3<1-2x <3⇔-1<x <2.9.【解析】选D.当x =π2时,y =1>0,排除C.当x =-π2时,y =-1,排除B ;或利用y =x cos x +sin x 为奇函数,图象关于原点对称,排除B.当x =π时,y =-π<0,排除A.10.【解析】选B.由OM →²PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125.11.【解析】由题意知a +b 在a 方向上的投影为(a +b )·a |a |=a 2+|a |·|b |cos 60°|a |=2.【答案】212.【解析】回归直线方程为y ^=1.5x +0.5,x =3,故样本点的中心为(3,5),又由于除去(2.2,2.9)和(3.8,7.1)这两个数据点后,x ,y 的值没有改变,所以样本点的中心也没有改变,设新的回归直线l 方程为y ^=1.2x +b ,将样本点的中心(3,5)代入解得b =1.4,当x =4时,y 的估计值为6.2.【答案】6.213.【解析】记z =ax -y ,注意到当x =0时,y =-z ,即直线z =ax -y 在y 轴上的截距是-z .在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,满足题意的实数a 的取值范围为a <-12.【答案】(-∞,-12)14.【解析】∵tan(θ+π4)=12,∴1+tan θ1-tan θ=12,解得tan θ=-13.∴(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ²cos θsin 2θ+cos 2θ=tan 2θ+2tan θ+1tan 2θ+1=19-23+119+1=25. ∵θ为第二象限角,tan θ=-13,∴2k π+3π4<θ<2k π+π,∴sin θ+cos θ<0,∴sin θ+cos θ=-105.【答案】-105备选题 1.【解析】选 A.对于①,存在斜高与底边长相等的正四棱锥,其正视图与侧视图是全等的正三角形.对于②,存在如图所示的三棱锥S -ABC ,底面为等腰三角形,其底边AB 的中点为D ,BC 的中点为E ,侧面SAB 上的斜高为SD ,且CB =AB =SD =SE ,顶点S 在底面上的射影为AC 的中点,则此三棱锥的正视图与侧视图是全等的正三角形.对于③,存在底面直径与母线长相等的圆锥,其正视图与侧视图是全等的正三角形.所以选A.2.【解析】选B.由f [f (n )]=2n +1,得f [f (1)]=3,f [f (2)]=5,∵当n ∈N *时,f (n )∈N *,若f (1)=3,则由f [f (1)]=3得,f (3)=3,与f (x ) 在(0,+∞)上单调递增矛盾,故选项A 错;若f (2)=4,则f (4)=5,4<f (3)<5,与f (3)∈N *矛盾,故选项C 错;若f (2)=3,则由f [f (2)]=5得f (3)=5,故选项D 错,故选项B 正确.3.【解析】|x +1x |=|x |+|1x |≥2,当且仅当|x |=1时,|x +1x|min =2.要使不等式恒成立,只要|2a -1|≤2即可,-2≤2a -1≤2,得-12≤a ≤32.【答案】[-12,32]4.【解析】命题①中,函数的定义域是(-∞,3),故命题①不正确;命题②中,若已知函数是偶函数,则必有a =-5,b =5,即函数f (x )=x 2+5,x ∈[-5,5],其最小值为5,命题②正确;全称命题的否定是特称命题,命题③正确;命题④中,1a +1b =14(a +b )(1a +1b)=14(2+b a +a b )≥14(2+2b a ²a b )=1(当且仅当a =b =2时,等号成立),命题④正确. 【答案】②③④。
高考数学二轮复习 考点二十算法与框图课件 理
揭秘解题绝招
试题体验应用
限时规范训练
类型一 类型二 类型五 类型四 类型三
第六页,共22页。
考题 ●解法类编
类型二 求运算计数(jì shù)变量
例题(lìtí)精编
例 2:(2013·高考天津卷)阅读 如图所示的程序框图,运行相应 的程序,则输出 n 的值为( ) A.7 B.6 C.5 D.4
例题(lìtí)精编
例 3:(2013·高考福建卷)阅读如图
所示的程序框图,运行相应的程
序.如果输入某个正整数 n 后,
输出的 S∈(10,20),那么 n 的值
为( )
A.3
B.4
C.5
D.6
考题解法类编
揭秘解题绝招
通性通法 名师推荐 探究演练
【解析】先读出框图的计算功能,再结合等比
数列求和公式求解.框图功能为求和,
例题(lìtí)精编
例 1:(2013·高考辽宁卷)
执行如图所示的程序框图,
若输入 n=8,
则输出 S=( )
A.49
B.67
C.89
D.1101
考题解法类编
揭秘解题绝招
通性通法 创新发现 探究演练
试题体验应用
第三页,共22页。
限时规范训练
类型一 类型二 类型五 类型四 类型三
考题 ●解法类编
类型(lèixíng)一 求运算输出结果
例题(lìtí)精编
例 3:(2013·高考福建卷)阅读如图
所示的程序框图,运行相应的程
序.如果输入某个正整数 n 后,
输出的 S∈(10,20),那么 n 的值
为( )
A.3
B.4
C.5
D.6
高考数学(文)二轮复习(33)程序框图作业专练(2)及答案
衡水万卷作业卷三十三文数程序框图作业专练姓名:__________班级:__________考号:__________一 、选择题(本大题共11小题,每小题6分,共66分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为( )A.7B.9C.10D.112.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S= (A )4 (B )5 (C )6 (D )73.执行如图1所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )A.[]6,2--B.[]5,1--C.[]4,5-D.[]3,6-4.执行如图所示的程序框图,如果输出,那么判断框内应填入的条件是( )A. B. C. D.5.某程序框图如图所示,若该程序运行后输出的值是59,则 A.4=a B.5=a C. 6=a D.7=a6.执行如题(5)图所示的程序框图,则输出的k 的值是(A )3 (B )4 (C )5 (D )67.执行右面的程序框图,如果输入的,那么输出的( )(A ) (B ) (C ) (D ) 3s =6k ≤7k ≤8k ≤9k ≤4N =S =1111234+++1111232432+++⨯⨯⨯111112345++++111112324325432++++⨯⨯⨯⨯⨯⨯开始输入N k=1,S=0,T=1T=TKS=S+TK =K +1K>N输出S结束否8.如右图程序,如果输入x 的值是-2,则运行结果是 ( )INPUT X IF X<0 THEN (/2)3y x π=⨯+ ELSEIF x ≥0 THEN(/2)5y x π=-⨯+END IF P RINT Y ENDA .3+B .3-C .π-5D .-π-59.右边程序运行后输出的结果为( )A. 50B. 5C. 25D. 010.阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为A.22S i =⨯-B.21S i =⨯-C.2S i =⨯D.24S i =⨯+11.根据下列算法语句, 当输入x 为60时, 输出y 的值为(A) 25 (B) 30 (C) 31 (D) 61二 、填空题(本大题共4小题,每小题6分,共24分)12.图1是某工厂9月份10个车间产量统计条形图,条形图从左到右表示各车间的产量依次记为A 1,A 2…,A 10(如A 3表示3号车间的产量为950件)。
高考数学二轮复习客观题满分限时练2理
限时练2(时间:45分钟,满分:80分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2022北京,1)已知全集U={x|3<x<3},集合A={x|2<x≤1},则∁U A=()A.(2,1]B.(3,2)∪[1,3)C.[2,1)D.(3,2]∪(1,3)2.(2023全国甲,理2)若复数(a+i)(1a i)=2,则a=()A.1B.0C.1D.23.(2023全国甲,理6)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为()A.0.8B.0.6C.0.5D.0.44.(2023四川泸州三模)执行下图所示的程序框图,若输入N的值为8,则输出S的值为()A. B. C.0 D.5.(2023江西南昌二模)已知函数f(x)=2sin x,命题p:∃x1,x2∈(0,π),使得f(x1)+f(x2)=2,命题q:∀x1,x2∈(),当x1<x2时,都有f(x1)<f(x2),则下列命题中为真命题的是()A.p∨qB.p∧qC.p∧( q)D.( p)∧( q)6.(2023河南郑州三模)若向量a,b满足|a|=|b|=|a+b|,则向量b与向量ab的夹角为()A.30°B.60°C.120°D.150°7.(2023安徽黄山二模)先后掷两次骰子,落在水平桌面后,记正面朝上的点数分别为x,y,设事件A=“x+y为奇数”,事件B=“x,y满足x+y<6”,则概率P(B|A)=()A. B. C. D.8.(2023山东泰安一模)若的二项展开式中x6的系数是16,则实数a的值是()A.2B.1C.1D.29.(2023河南郑州一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知角C=,b sin(+A)a sin(+B)=c,则角B=()A. B. C. D.10.在直三棱柱ABCA1B1C1中,已知AB⊥BC,AB=BC=2,CC1=2,则异面直线AC1与A1B1所成的角为()A.30°B.45°C.60°D.90°11.(2023河北张家口一模)已知实数a,b,c满足log a2=e,b=,ln c=,则()A.log c a>log a bB.a c1>b a1C.log a c<log b cD.c a>b c12.已知F1,F2分别为双曲线C:=1(a>0,b>0)的左、右焦点,点P在第二象限内,且满足|F1P|=a,()·=0,线段F1P与双曲线C交于点Q,若|F1P|=3|F1Q|,则C的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分.13.(2023宁夏银川一中一模改编)已知函数f(x)=对任意x1,x2∈R,且x1≠x2,都有>0成立,则a的取值范围是.14.在△ABC中,a,b,c分别是角A,B,C的对边,且2sin A sin C=1+2cos A cos C,a+c=3sin B,则b的最小值为.15.(2022浙江,17)设点P在单位圆的内接正八边形A1A2…A8的边A1A2上,则+…+的取值范围是.16.(2023河北邯郸二模)已知O为坐标原点,椭圆C:=1(a>b>0)的右焦点为F,上顶点为B,线段BF的中垂线交C于M,N两点,交y轴于点P,=2,△BMN的周长为16,则椭圆的标准方程为.限时练21.D解析∵U={x|3<x<3},∴∁U A=(3,2]∪(1,3),故选D.2.C解析由(a+i)(1a i)=2,可得a+i a2i+a=2,即2a+(1a2)i=2,所以解得a=1.故选C.3.A解析从该校的学生中任取一名学生,记A表示事件:“取到的学生爱好滑冰”,B表示事件:“取到的学生爱好滑雪”.由题设知P(A)=0.6,P(B)=0.5,P(A∪B)=0.7.由P(A∪B)=P(A)+P(B)P(AB),得P(AB)=P(A)+P(B)P(A∪B)=0.6+0.50.7=0.4.所求的概率为P(A|B)==0.8.4.C解析程序运行可得S=sin+sin+sin+sin+sin+sin+sin+sin+1++01+0=0.故选C.5.A解析命题p:当0<x<π时,0<sin x≤1,所以1<2sin x≤2,即1<f(x)≤2,则∀x1,x2∈(0,π),f(x1)+f(x2)>2,故命题p为假命题;命题q:当<x<时,由复合函数的单调性得f(x)=2sin x在()上是增函数,所以当<x1<x2<时,f(x1)<f(x2),故命题q为真命题.则命题p∨q为真,故A正确;命题p∧q为假,故B错误;命题p∧( q)为假,故C错误;命题( p)∧( q)为假,故D错误.故选A. 6.D解析由题意|a+b|2=(a+b)2=|a|2+2a·b+|b|2=|a|2=|b|2,所以2a·b=|a|2,所以|ab|=|a|.b(ab)=|b||ab|cos<b,ab>=|a|2cos<b,ab>,又b(ab)=b·ab2=|a|2|a|2=|a|2,所以|a|2cos<b,ab>=|a|2,cos<b,ab>=,又0°≤<b,ab>≤180°,所以<b,ab>=150°.故选D.7.B解析用(x,y)表示先后掷两次骰子分别得到的点数,基本事件的个数为6×6=36.记事件C=“x+y为奇数,且x+y<6”,所以事件A包含的基本事件的个数为3×3×2=18,事件C包含的基本事件个数为(1,2),(1,4),(2,3),(2,1),(4,1),(3,2),共6个,根据古典概率公式知,P(A)=,P(C)=P(AB)=,P(B|A)=故选B.8.D解析(x)8的二项展开式的通项公式为T r+1=x8r·()r=(a)r x82r,0≤r≤8,r∈N*.令82r=6,得到r=1.由x6的系数是16,得到(a)1=16,解得a=2.故选D.9.C解析由题意及正弦定理,得sin B·sin(+A)sin A sin(+B)=sin C,整理得(sin B cos A sin A cos B)=,即sin(BA)=1.因为A,B∈(0,),所以BA∈(),所以BA=又B+A=,所以B=故选C.10.C解析由题画图(图略),连接AC1,BC1,又AB∥A1B1,则∠BAC1为异面直线AC1与A1B1所成的角或其补角.∵AB⊥BC,且三棱柱为直三棱柱,∴AB⊥CC1,BC∩CC1=C,∴AB⊥平面BCC1B1,∴AB⊥BC1,又AB=BC=2,CC1=2,∴BC1==2,∴tan∠BAC1=,∴∠BAC1=60°.故选C.11.D解析由log a2=e,得a e=2,∴a=又b=,函数y=2x在R上是增函数,∴a<b<20=1.由ln c=>0,得c>1,∴c>1>b>a>0,∴y=log c x在(0,+∞)上是增函数,y=log a x在(0,+∞)上是减函数,故log c a<log c1=0,log a b>log a1=0,∴log c a<log a b,A错;由c1>0,得a c1<1.∵a1<0,∴b a1>1,故a c1<b a1,B错;∵log a c=,log b c=,且log c a<log c b<0,,即log a c>log b c,C错;∵c a>c0=1,b c<b0=1,故c a>b c,D对.故选D.12.C解析取线段F1P的中点E,连接F2E,因为()=0,所以F2E⊥F1P,所以△F1F2P是等腰三角形,且|F2P|=|F1F2|=2c,在Rt△F1EF2中,cos∠F2F1E=,连接F2Q,又|F1Q|=,点Q在双曲线C上,由|F2Q||F1Q|=2a,则|F2Q|=,在△F1QF2中,cos∠F2F1Q=,整理得12c2=17a2,所以离心率e=故选C.13.(1,2]解析因为对任意x1≠x2,都有>0成立,所以f(x)在定义域内是增函数,所以解得1<a≤2,即a的取值范围是(1,2].14解析因为2sin A sin C=1+2cos A cos C,整理可得cos(A+C)=因为A+B+C=π,所以cos B=又因为0<B<π,所以B=由余弦定理可得b2=a2+c2ac=(a+c)23ac,又因为a+c=3sin B=,所以b2=3ac3()2=,当且仅当a=c=时等号成立,所以b的最小值为15.[12+2,16]解析如图,以圆心为原点,A3A7所在直线为x轴,A1A5所在直线为y轴建立平面直角坐标系,则A1(0,1),A2(),A3(1,0),A4(,),A5(0,1),A6(,),A7(1,0),A8().设P(x,y),则+…+=8(x2+y2)+8.因为cos22.5°≤|OP|≤1,所以x2+y2≤1,故所求取值范围为[12+2,16].16=1解析设椭圆的半焦距为c.如图,由=2,得点P在线段BO上,且|BP|=b,|PO|=b.连接PF,由点P在线段BF的中垂线上,得|BP|=|PF|.在Rt△POF中,由勾股定理得|OP|2+|OF|2=|PF|2,所以(b)2+c2=(b)2,整理得b2=3c2,所以a2c2=3c2,即a2=4c2,所以a=2c.在Rt△BOF中,cos∠BFO=,所以∠BFO=设直线MN交x轴于点F',交BF于点H,在Rt△HFF'中,有|FF'|==a=2c,所以F'为椭圆C的左焦点.又|MB|=|MF|,|NB|=|NF|,所以△BMN的周长等于△FMN的周长.又△FMN的周长为4a,所以4a=16,解得a=4,所以c=2,b2=a2c2=12.故答案为=1.。
2018-2019年最新最新高考总复习数学(理)二轮复习模拟试题及答案解析
高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.765.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=211.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.16.曲线+=1与两坐标轴所围成图形的面积是.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.63520.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数代数形式的乘除运算化简得答案.解答:解:∵=,又复数z与的对应点关于虚轴对称,则z=2﹣i.故选:B.点评:本题考查了复数的代数表示法及其几何意义,考查了复数代数形式的乘除运算,是基础题.3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由通项公式和求和公式可得a1和d的方程组,解方程组可得.}的公差为d,解答:解:设等差数列{an∵a7=8,前7项和S7=42,∴a1+6d=8,7a1+d=42,解得a1=4,d=故选:D点评:本题考查等差数列的通项公式和求和公式,属基础题.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c 的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:A.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.5.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数与指数函数、三角函数的单调性即可得出.解答:解:∵a=log3π>1,0<b=logπ3<1,c=cos3<0,∴a>b>c.故选:D.点评:本题考查了对数函数与指数函数、三角函数的单调性,属于基础题.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.解答:解:作出不等式组对应的平面区域如图:z=的几何意义为区域内的点到定点D(﹣1,0)的斜率,由图象知AD的斜率最大,BD的斜率最小,由,解得,即A(,),此时z==,由,解得,即B(),此时z==,故z=的取值范围是[,],故选:B.点评:本题主要考查线性规划的应用,利用目标函数的几何意义以及直线斜率公式是解决本题的关键.8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:计算题;作图题;空间位置关系与距离.分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为三棱柱与三棱锥的组合体.解答:解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种考点:计数原理的应用.专题:应用题;排列组合.分析:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,即可得出结论.解答:解:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,所以球队胜、平、负(包括顺序)的情况共有++1=19种,故选:D.点评:本题考查计数原理的运用,考查学生的计算能力,比较基础.10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.11.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.2考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用;导数的综合应用.分析:先对两个函数分析可知,函数f(x)与g(x)都是奇函数,且f(x)是反比例函数,g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;从而作出函数的图象,由图象求方程的根的个数即可.解答:解:由题意知,函数f(x)=﹣在[﹣3π,3π]是奇函数且是反比例函数,g(x)=xcosx﹣sinx在[﹣3π,3π]是奇函数;g′(x)=cosx﹣xsinx﹣cosx=﹣xsinx;故g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;故作函数f(x)与g(x)在[﹣3π,3π]上的图象如下,结合图象可知,有6个交点;故选:B.点评:本题考查了导数的综合应用及函数的图象的性质应用,同时考查了函数的零点与方程的根的关系应用,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]考点:椭圆的简单性质.专题:平面向量及应用.分析:通过确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:如图,连结OM交圆于点D.∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA=AB≤2,又∵MD≤MA,OD=1,∴OM≤3,即点M到原点距离小于等于3,∴t2+4≤9,∴≤t≤,故选:C.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.16.曲线+=1与两坐标轴所围成图形的面积是.考点:定积分.专题:导数的概念及应用.分析:首先由题意,画出图象,然后利用定积分表示面积解答:解:曲线+=1,即y=(1﹣)2即图象与两坐标轴围成的图形如图阴影部分其面积为(1﹣)2dx=(1﹣2+x)dx=(+x)|=;故答案为:点评:本题考查了利用定积分求曲边梯形的面积;关键是正确利用定积分表示面积,然后计算.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.考点:直线与平面所成的角;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(Ⅰ)取PD边中点E,连接AE,EM,根据MN⊥CD 容易得到CD⊥AE,而根据已知条件可以说明PO⊥平面ABCD,从而得到CD⊥PO,这样CD就垂直于平面PAD内两条相交直线,由线面垂直的判定定理从而得到AD⊥CD;(Ⅱ)取BC中点F,连接OF,由(Ⅰ)便可知道OA,OF,OP三条直线两两垂直,从而可分别以这三条直线为x,y,z轴,可设AB=2,这样即可求得图形中一些点的坐标.从而求出向量的坐标,这时候设平面PBD的法向量为,根据即可求出的坐标,若设MN和平面PBD所成角为θ,从而根据sinθ=即可求得答案.解答:解:(Ⅰ)证明:如图,取PD中点E,连AE,EM,则EM∥AN,且EM=AN;∴四边形ANME是平行四边形,MN∥AE;∵MN⊥CD,∴AE⊥CD,即CD⊥AE;取AD中点O,连PO,△PAD是等边三角形,则PO⊥AD;又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD;∴PO⊥平面ABCD,PO⊥CD,即CD⊥PO;故CD⊥平面PAD,AD⊂平面PAD;∴CD⊥AD,即AD⊥CD;(Ⅱ)由AB=AD,AD⊥CD,得▱ABCD是正方形;取BC边的中点F,连接OF,则分别以OA,OF,OP所在直线为x,y,z轴建立如图所示空间直角坐标系;设AB=2,则A(1,0,0),B(1,2,0),D(﹣1,0,0),P(0,0,),E(﹣,0,);=(2,2,0),=(1,0,);设平面PBD的法向量,则:;∴;∴,取z=1,∴;==(,0,﹣);设直线MN与平面PBD所成的角为θ,则:sinθ=|cos<,>|==.点评:考查面面垂直的性质定理,线面垂直的判定定理,以及建立空间直角坐标系,利用向量解决直线和平面所成角的问题,能求空间点的坐标,注意线面角和直线和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.635考点:独立性检验的应用.专题:应用题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)按分层抽样得到的12家中,中小企业分别为3家和9家.X 的可能取值为90,130,170,210,求出相应的概率,即可求出X的分布列和期望.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中小企业家数之比为1:3,按分层抽样得到的12家中,中小企业分别为3家和9家.设9家获得奖励的企业中,中小企业分别为m家和n家,则(m,n)可能为(0,9),(1,8),(2,7),(3,6).与之对应,X的可能取值为90,130,170,210.…(6分)P(X=90)=,P(X=130)=,P(X=170)=,P(X=210)=,…(10分)分布列表如下:X 90 130 170 210P期望EX=90×+130×+170×+210×=180.…(12分)点评:本题考查独立性检验的应用,考查X的分布列和期望,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.考点:抛物线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),代入直线方程,由条件结合二次方程的韦达定理,再由判别式为0,即可判断.解答:解:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x ﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0(1),x2+4kx﹣4ka+4=0(2),由△1=0得k2﹣ka﹣1=0,>0得k2+ka﹣1>0,由△2故有2k2﹣2>0,得k2>1,即k<﹣1,或k>1.(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),则(y1+1)(y2+1)=λ(y0+1)2.将y1+1=﹣k(x1﹣a),y2+1=﹣k(x2﹣a),y0+1=k(x0﹣a)代入上式,得(x1﹣a)(x2﹣a)=λ(x0﹣a)2,即x1x2﹣a(x1+x2)+a2=λ(x0﹣a)2.由(2)得x1+x2=﹣4k,x1x2=﹣4ka+4,由(1)得x0=2k,代入上式,得4+a2=λ(4k2﹣4ka+a2).又△1=0得k2﹣ka﹣1=0,即4k2﹣4ka=4,因此4+a2=λ(4+a2),λ=1.故存在常数λ=1,使得|AC|•|AD|=λ|AB|2.点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式和韦达定理,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.考点:利用导数求闭区间上函数的最值;函数零点的判定定理;利用导数研究函数的单调性.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)利用已知函数g(x)的解析式,分别计算g(),g(x),可得两者相等;再利用g′(x)求得最大值;(Ⅱ)利用f′(x)可得f(x)的最小值h(a)=t++(﹣t)lnt=g(t),由(Ⅰ)可知g()<0,g(1)>0,利用函数零点的判定定理即得结论.解答:解:(Ⅰ)∵g()=+x+(x﹣)ln=x++(﹣x)lnx,∴g(x)=g(),则g′(x)=﹣(1+)lnx,当x∈(0,1)时,g′(x)>0,g(x)单调递增;当x∈(1,+∞)时,g′(x)<0,g(x)单调递减.所以g(x)的最大值为g(1)==2.(Ⅱ)∵f(x)=x++alnx,∴f′(x)=1﹣+=.令f′(x)=0,即x2+ax﹣1=0,则△=a2+4>0,不妨取t=>0,由此得:t2+at﹣1=0或写为:a=﹣t.当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.从而f(x)的最小值为f(t)=t++alnt=t++(﹣t)lnt,即h(a)=t++(﹣t)lnt=g(t)(或h(a)=+aln).由(Ⅰ)可知g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(0,1)和d∈(1,+∞),使得g(c)=g (d)=0,且cd=1,因为a=﹣t(t>0)是t的减函数,所以y=h(a)有两个零点a1=﹣d和a2=﹣c,又﹣d+﹣c=﹣(c+d)=0,所以y=h(a)有两个零点且互为相反数.点评:本题考查利用导数判断函数的单调性及零点判定定理,考查转化与化归思想、运算求解能力、数据处理能力和推理论证能力.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacos θ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。
(通用版)2020版高考数学大二轮复习专题一常考小题点1.3程序框图题专项练课件文
”中 n 依次加 2 可保证其为偶数,故选 D.
关闭
D
解析-11- 答案
一、选择题 二、填空题
10.阅读程序框图,如果输出的函数值在区间
11 4,2
内,则输入的实数
x的取值范围是( )
A.(-∞,-2]
B.[-2,-1]
C.[-1,2]
D.[2,+∞)
关闭
该程序的作用是计算分段函数 f(x)= 2������ ,������∈[-2,2],
A.13
B.12
关闭
由 因C题 为.23 知 |x|+框|y图|=的2 意与义y=D是x.343在均|x关|+于|y原|≤2点内中取心点对(x称,y,)故满概足率y≤为x312的,故概选率B..
关闭
B
解析-10- 答案
一、选择题 二、填空题
9.下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在
输出
s=1+12+…+216
=
1-217 1-12
=2-216
.故选
C.
关闭
C
解析-4-
答案
一、选择题 二、填空题
3.某地区乘坐出租车收费办法如下:不超过2千米收7元,超过2千米 时,每车收燃油附加费1元,并且超过的里程每千米收2.6元(其他因
素不考虑),计算收费标准的框图如图所示,则①处应填( )
A.y=2.0x+2.2 B.y=0.6x+2.8 C.y=2.6x+2.0 D.y=2.6x+2.8
关闭
当满足条件x>2时,即里程超过2千米,超过2千米时,每车收燃油附加费1元,
并且超过的里程每千米收2.6元,则y=2.6(x-2)+7+1=8+2.6(x-2),即整理可得
高考数学大二轮复习刷题第一部分刷考点考点五程序框图(理科)
考点五 程序框图一、选择题1.(2019·全国卷Ⅰ)如图是求12+12+12的程序框图,图中空白框中应填入( )A .A =12+AB .A =2+1AC .A =11+2AD .A =1+12A答案 A解析 对于选项A ,A =12+A .当k =1时,A =12+12,当k =2时,A =12+12+12,故A 正确;经验证选项B ,C ,D 均不符合题意.故选A.2.(2019·湖北八校第二次联考)如图程序中,输入x =ln 2,y =log 32,z =12,则输出的结果为( )A .xB .yC .zD .无法确定答案 A解析 图中程序的功能是输出x ,y ,z 的最大值,因为ln 3>1,所以y =log 32=ln 2ln 3<ln2=x ,x =ln 2>ln e =12=z ,所以输出x .3.(2019·全国卷Ⅲ)执行如图所示的程序框图,如果输入的 为0.01,则输出s 的值等于( )A .2-124B .2-125C .2-126D .2-127答案 C解析 =0.01,x =1,s =0,s =0+1=1,x =12,x <不成立;s =1+12,x =14,x <不成立; s =1+12+14,x =18,x <不成立; s =1+12+14+18,x =116,x <不成立; s =1+12+14+18+116,x =132,x <不成立; s =1+12+14+18+116+132,x =164,x <不成立; s =1+12+14+18+116+132+164,x =1128,x <成立, 此时输出s =2-126.故选C.4.(2019·山东临沂三模)秦九韶,中国古代数学家,对中国数学乃至世界数学的发展做出了杰出贡献.他所创立的秦几韶算法,直到今天,仍是多项式求值比较先进的算法.用秦九韶算法将f (x )=2019x2018+2018x2017+2017x2016+…+2x +1化为f (x )=(…((2019x +2018)x +2017)x +…+2)x +1再进行运算,计算f (x 0)的值时,设计了如图所示的程序框图,则在◇和▭中可分别填入( )A .n ≥2和S =Sx 0+nB .n ≥2和S =Sx 0+n -1C .n ≥1和S =Sx 0+nD .n ≥1和S =Sx 0+n -1答案 C解析 由题意可知,当n =1时程序循环过程应该继续进行,n =0时程序跳出循环,故判断框中应填入n ≥1,由秦九韶算法的递推关系可知矩形框中应填入的递推关系式为S =Sx 0+n ,故选C.5.(2019·河南八市重点高中联考)相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.“三分损益”包含“三分损一”和“三分益一”,用现代数学的方法解释如下,“三分损一”是在原来的长度减去一分,即变为原来的三分之二;“三分益一”是在原来的长度增加一分,即变为原来的三分之四,如图的程序是与“三分损益”结合的计算过程,若输入的x 的值为1,输出的x 的值为( )A .6481B .3227 C .89 D .1627答案 B解析 由题意,执行循环结构的程序框图,可得 第1次循环:x =23,i =2,不满足判断条件;第2次循环:x =89,i =3,不满足判断条件;第3次循环:x =3227,i =4,满足判断条件,输出结果3227,故选B.6.(2019·辽宁丹东质量测试(一))计算机在数据处理时使用的是二进制,例如十进制数1,2,3,4的二进制数分别表示为1,10,11,100,二进制数…dcba 化为十进制数的公式为…dcba =a ·20+b ·21+c ·22+d ·23+…,例如二进制数11等于十进制数1·20+1·21=3,又如二进制数101等于十进制数1·20+0·21+1·22=5,如图是某同学设计的将二进制数11111化为十进制数的程序框图,则判断框内应填入的条件是( )A .i >4B .i ≤4C .i >5D .i ≤5答案 B解析 在将二进制数11111化为十进制数的程序中循环次数由循环变量i 决定,∵11111共有5位,因此要循环4次才能完成整个转换过程,∴退出循环的条件根据程序框图和答案选项,应设为i ≤4,故选B.7.(2019·黑龙江哈尔滨三中二模)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .i <20,S =S -1i,i =2iB .i ≤20,S =S -1i,i =2iC .i <20,S =S2,i =i +1D .i ≤20,S =S2,i =i +1答案 D解析 根据题意可知,截取1天后S =12,所以满足S =S 2,不满足S =S -1i ,故排除A ,B ,由框图可知,计算截取20天后的剩余时,有S =S2,且i =21,所以循环条件应该是i ≤20.故选D.8.(2019·湖北重点中学高三起点考试)美索不达米亚平原是人类文明的发祥地之一.美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的.程序框图如图所示,若输入a ,n ,ξ的值分别为8,2,0.5,每次运算都精确到小数点后两位,则输出的结果为( )A .2.81B .2.82C .2.83D .2.84答案 D解析 输入a =8,n =2,ξ=0.5,m =82=4,n =4+22=3,|4-3|=1>0.5;m =83≈2.67,n ≈2.67+32≈2.84,|2.67-2.84|=0.17<0.5,输出的结果为2.84. 二、填空题9.执行如图所示的程序框图,若输出的结果为12,则输入的实数x 的值是________.答案2解析 因为输出的结果为12,所以有⎩⎪⎨⎪⎧log 2x =12,x >1或⎩⎪⎨⎪⎧x -1=12,x ≤1.解得x = 2.所以输入的实数x的值为 2.10.(2019·辽宁沈阳育才学校八模)我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与古希腊的算法——“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入a=288,b=123时,输出的a=________.答案 3解析解法一:按照程序框图运行程序,输入:a=288,b=123,则r=42,a=123,b=42,不满足r=0,循环;则r=39,a=42,b=39,不满足r=0,循环;则r=3,a=39,b=3,不满足r=0,循环;则r=0,a=3,b=0,满足r=0,输出a=3.解法二:程序框图的功能为“辗转相除法”求解两个正整数的最大公约数,因为288与123的最大公约数为3,所以a=3.11.(2019·安徽A10联盟最后一卷)《九章算术》中有如下问题:“今有牛、羊、马食人苗,苗主责之粟五斗,羊主曰:‘我羊食半马.’马主曰:‘我马食半牛.’今欲衰偿之,问各出几何?”翻译为:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说“我马吃的禾苗只有牛的一半”打算按此比率偿还,问:牛、马、羊的主人各应赔偿多少粟?已知1斗=10升,针对这一问题,设计程序框图如图所示,若输出k的值为2,则m=________.答案507解析 运行该程序,第一次循环,S =50-m ,k =1;第二次循环,S =50-3m ,k =2;第三次循环,S =50-7m ,此时要输出k 的值,则50-7m =0,解得m =507.12.(2019·湖北七校联盟期末)设a 是一个各位数字都不是0且没有重复数字的三位数,将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =746,则I (a )=467,D (a )=764),阅读如图所示的程序框图,运行相应的程序,若输入的a 为123,则输出的b 为________.答案 495解析 由程序框图,知第一次循环a =123,b =321-123=198;第二次循环a =198,b =981-189=792;第三次循环a =792,b =972-279=693;第四次循环a =693,b =963-369=594;第五次循环a =594,b =954-459=495;第六次循环a =495,b =954-459=495, 满足条件a =b ,跳出循环体,输出495.一、选择题1.(2019·湖南衡阳三模)著名的“3n +1猜想”是对任何一个正整数进行规定的变换,最终都会变成1.如图的程序框图示意了“3n +1”猜想,则输出的n 为( )A.5 B.6C.7 D.8答案 B解析a=10是偶数,a=5,n=1,a>1,a=5是奇数,a=16,n=2,a>1,a=16是偶数,a=8,n=3,a>1,a=8是偶数,a=4,n=4,a>1,a=4是偶数,a=2,n=5,a>1,a=2是偶数,a=1,n=6,a≤1成立,输出n=6,故选B.2.(2019·福建高三检测)程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.120 B.84C.56 D.28答案 B解析i=0,n=0,S=0;i=1,n=1,S=1,i≥7,否;i=2,n=3,S=1+3,i≥7,否;i=3,n=6,S=1+3+6,i≥7,否;i=4,n=10,S=1+3+6+10,i≥7,否;…i=7,n=28,S=1+3+6+10+15+21+28,i≥7,是;输出S=84.3.(2019·湖南长沙高三统考)若正整数N除以正整数m后的余数为r,则记为N=r(mod m),例如10=2(mod 4).如图所示程序框图的算法源于我国古代数学名著《孙子算经》中的“中国剩余定理”,则执行该程序框图输出的i等于( )A.3 B.9C.27 D.81答案 C解析第一次执行循环体,得i=3,N=14,此时14=2(mod 3),但14≠1(mo d 7).第二次执行循环体,得i=9,N=23,此时23=2(mod 3),但23≠1(mod 7).第三次执行循环体,得i=27,N=50,此时50=2(mod 3),且50=1(mod 7),退出循环,所以输出i的值为27,故选C.4.(2019·江西九校重点中学协作体第一次联考)《九章算术》是中国古代数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”翻译成现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步;第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出更相减损术的程序图如图所示,如果输入的a=114,b=30,则输出的n为( )A.3 B.6C.7 D.8答案 C解析∵a=114,b=30,满足a,b都是偶数,则a=a2=57,b=b2=15,k=2;不满足a,b都是偶数,且不满足a=b,满足a>b,则a=57-15=42,n=1,不满足a=b,满足a>b,则a=42-15=27,n=2,不满足a=b,满足a>b,则a=27-15=12,n=3,不满足a=b,不满足a>b,则c=12,a=15,b=12,则a=15-12=3,n=4,不满足a=b,不满足a>b,则c=3,a=12,b=3,则a=12-3=9,n=5,不满足a=b,满足a>b,则a=9-3=6,n =6,不满足a=b,满足a>b,则a=6-3=3,n=7,满足a=b,结束循环,输出n=7,故选C.5.(2019·江西新八校第二次联考)如图所示的程序框图所实现的功能是( )A.输入a的值,计算(a-1)×32021+1B.输入a的值,计算(a-1)×32020+1C.输入a的值,计算(a-1)×32019+1D.输入a的值,计算(a-1)×32018+1答案 B解析由程序框图,可知a1=a,a n+1=3a n-2,由i的初值为1,末值为2019,可知,此递推公式共执行了2019+1=2020次,又由a n+1=3a n-2,得a n+1-1=3(a n-1),得a n-1=(a-1)×3n-1,即a n=(a-1)×3n-1+1,故a2021=(a-1)×32021-1+1=(a-1)×32020+1,故选B.6.(2019·四川泸州第二次质量诊断)某班共有50名学生,其数学学业水平考试成绩记作a i(i=1,2,3,…,50),若成绩不低于60分为合格,则如图所示的程序框图的功能是( )A.求该班学生数学学业水平考试的不合格人数B.求该班学生数学学业水平考试的不合格率C.求该班学生数学学业水平考试的合格人数D.求该班学生数学学业水平考试的合格率答案 D解析执行程序框图,可知输入50个学生成绩a i,k表示该班学生数学成绩合格的人数,程序结束时i=51,输出的ki-1为该班学生数学学业水平考试的合格率,故选D.7.如果每对兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同),且每对小兔子刚出生的前两个月没有生育能力,但从出生后的第三个月开始便能每月生一对小兔子.假定这些兔子都不发生死亡现象,现有一对刚出生的兔子,那么从这对兔子刚出生开始,到第十个月会有多少对兔子呢?同学A据此建立了一个数列模型,设F(0)=0,第n个月兔子的对数为F(n),由此得到F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).如图是同学B根据同学A的数列模型设计的程序框图,求该数列的前10项和,则在空白框内分别填入的语句是( )A.P=M;n≤9?B.N=P;n≤9?C.P=M;n≤10?D.N=P;n≤10?答案 B解析F(1)=1,F(2)=1,F(3)=2,F(4)=3,F(5)=5,F(6)=8,F(7)=13,F(8)=21,F(9)=34,F(10)=55,输出的S=F(0)+F(1)+F(2)+…+F(10).由程序框图可知,当n=2时,S=0+1,P=0+1=1,S=1+1,M=1,N=1;当n=3时,S=0+1+1+2,则处理框内应填入“N=P”,排除A,C;又最终输出S时,n=10,所以判断框内应填入“n≤9?”,故选B.8.(2019·河北邯郸一模)我国古代数学名著《九章算术》里有一道关于买田的问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”其意思为:“今有好田1亩价值300钱;坏田7亩价值500钱.今合买好、坏田1顷,价值10000钱.问好、坏田各有多少亩?”已知1顷为100亩,现有下列四个程序框图,其中S的单位为钱,则输出的x,y分别为此题中好、坏田的亩数的是( )答案 B解析 由题意得,田的价值S =300x +5007y ,可排除C ,亩数x +y =100.由⎩⎪⎨⎪⎧300x +5007y =10000,x +y =100,解得⎩⎪⎨⎪⎧x =12.5,y =87.5,若初始变量x =0.5,则累加变量x =x+3满足题意,故选B.二、填空题9.(2019·湘赣十四校第一次联考)执行如图所示的程序框图,则输出n 的值为________.答案 23解析 当n =7时,可知n =2×7+1=15,又i =1+1=2<3,循环;当n =15时,可知n =15-4=11,又i =2+1=3,循环;当n =11时,可知n =2×11+1=23,又i =3+1=4>3,输出n ,则n =23.10.(2019·广西南宁第一次适应性考试)元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示.若将“没了壶中酒”改为“剩余原壶中13的酒量”,即输出值是输入值的13,则输入的x =________.答案2123解析 i =1时,x =2x -1;i =2时,x =2(2x -1)-1=4x -3;i =3时,x =2(4x -3)-1=8x -7;i =4时,退出循环.此时,8x -7=13x ,解得x =2123.11.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n 值为________.(参考数据:3≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)答案 24解析 由程序框图,n ,S 值依次为:n =6,S ≈2.598;n =12,S =3;n =24,S ≈3.1056,此时满足S ≥3.10,输出n =24.12.(2019·山东德州一模)在《九章算术》中记载着一道关于“持金出关”的题目,大意是:“在古代出关要交税.一天,某人拿钱若干出关,第1关交所拿钱数的12,第2关交所剩钱数的13,第3关交所剩钱数的14,…”.现以这则故事中蕴含的数学思想,设计如图所示的程序框图,则运行此程序,输出n 的值为________.答案 6解析 n =1,a =72,S =0,S <60,是;S =0+11×2×72=36,n =2,S <60,是; S =36+12×3×72=48,n =3,S <60,是; S =48+13×4×72=54,n =4,S <60,是;S=54+14×5×72=57.6,n=5,S<60,是;S=57.6+15×6×72=60,n=6,S<60,否;输出n=6.。