苏科版八年级数学上册 初二单元练习 .12.docx
苏科版八年级数学上册 全等三角形单元综合测试(Word版 含答案)
一、八年级数学全等三角形解答题压轴题(难)1.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠D CE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2).EB=AD成立;理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=60°,∴△DBE ≌△CFD (AAS ),∴EB=DF ,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.2.(1)如图1,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两动点,且∠DAE=45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF .(1)试说明:△AED ≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE 的长;(3)如图2,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC 所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC ≌, 得到AE AF =,BAE CAF ∠=∠,45,EAD ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=EAD DAF ∠=∠,从而得到.AED AFD ≌ ()2 由△AED AFD ≌得到ED FD =,再证明90DCF ∠=︒,利用勾股定理即可得出结论. ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC ===1DH BH BD =-=或7,DH BH BD =+=求出AD 的长,即可求得2DE .试题解析:()1ABE AFC ≌,AE AF =,BAE CAF ∠=∠,45,EAD ∠=90,BAC ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=在AED 和AFD 中,{AF AEEAF DAE AD AD ,=∠=∠=.AED AFD ∴≌()2AED AFD ≌,ED FD ∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC ===1DH BH BD=-=或7,DH BH BD=+=22217AD AH DH=+=或65.22234DE AD==或130.点睛:D是斜边BC所在直线上一点,注意分类讨论.3.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC≌△DAE,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE即可得∠FAE的度数;(3)延长BF到G,使得FG=FB,易证△AFB≌△AFG,根据全等三角形的性质可得AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS证得△CGA≌△CDA,由全等三角形的性质可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,AB ADBAC DAEAC AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CGA ≌△CDA ,∴CG=CD ,∵CG=CB+BF+FG=CB+2BF=DE+2BF ,∴CD=2BF+DE .【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF 到G ,使得FG=FB ,证得△CGA ≌△CDA 是解题的关键.4.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC,D是AB中点∴CD平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF与△BDE中BE CFB DCABD CD=⎧⎪∠=∠⎨⎪=⎩∴△CDF≌△BDE(SAS)∴DE=DF(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN≌△BDM(AAS)∴DN=DM当S△ADF=2S△BDE.∴12×AF×DN=2×12×BE×DM∴|4-3x|=2x∴x1=4,x2=45综上所述:x=45或4【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.5.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F(1) 如图1,直接写出AB与CE的位置关系(2) 如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK=BK【答案】(1)AB ⊥CE ;(2)见解析.【解析】【分析】(1)由全等可得∠ECD=∠A ,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB ⊥CE. (2)延长HK 于DE 交于H ,易得△ACD 为等腰直角三角形,∠ADC=45°,易得DH=DE ,然后证明△DGH ≌△DGE ,所以∠H=∠E ,则∠H=∠B ,可得HK=BK.【详解】解:(1)∵Rt △ABC ≌Rt △CED ,∴∠ECD=∠A ,∠B=∠E ,BC=DE ,AC=CD∵∠B+∠A=90°∴∠B+ECD=90°∴∠BFC=90°,∴AB ⊥CE(2)在Rt △ACD 中,AC=CD ,∴∠ADC=45°,又∵∠CDE=90°,∴∠HDG=∠CDG=45°∵CH =DB ,∴CH+CD=DB+CD ,即HD=BC ,∴DH=DE ,在△DGH 和△DGE 中,DH=DE HDG=EDG=45DG=DG ⎧⎪∠∠⎨⎪⎩∴△DGH ≌△DGE (SAS )∴∠H=∠E又∵∠B=∠E∴∠H=∠B ,∴HK=BK【点睛】本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.6.如图,在平面直角坐标系中,A 、B 坐标为()6,0、()0,6,P 为线段AB 上的一点.(1)如图1,若P 为AB 的中点,点M 、N 分别是OA 、OB 边上的动点,且保持AM ON =,则在点M 、N 运动的过程中,探究线段PM 、PN 之间的位置关系与数量关系,并说明理由.(2)如图2,若P 为线段AB 上异于A 、B 的任意一点,过B 点作BD OP ⊥,交OP 、OA 分别于F 、D 两点,E 为OA 上一点,且PEA BDO =∠∠,试判断线段OD 与AE 的数量关系,并说明理由.【答案】(1)PM=PN ,PM ⊥PN ,理由见解析;(2)OD=AE ,理由见解析【解析】【分析】(1)连接OP .只要证明△PON ≌△PAM 即可解决问题;(2)作AG ⊥x 轴交OP 的延长线于G .由△DBO ≌△GOA ,推出OD=AG ,∠BDO=∠G ,再证明△PAE ≌△PAG 即可解决问题;【详解】(1)结论:PM=PN ,PM ⊥PN .理由如下:如图1中,连接OP .∵A 、B 坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P 为AB 的中点, ∴OP=12AB=PB=PA ,OP ⊥AB ,∠PON=∠PAM=45°, ∴∠OPA=90°,在△PON 和△PAM 中, ON AM PON PAM OP AP =⎧⎪∠=∠⎨⎪=⎩,∴△PON ≌△PAM (SAS ),∴PN=PM ,∠OPN=∠APM ,∴∠NPM=∠OPA=90°,∴PM ⊥PN ,PM=PN .(2)结论:OD=AE .理由如下:如图2中,作AG ⊥x 轴交OP 的延长线于G .∵BD ⊥OP ,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO ,∵OB=OA ,∴△DBO ≌△GOA ,∴OD=AG ,∠BDO=∠G ,∵∠BDO=∠PEA ,∴∠G=∠AEP ,在△PAE 和△PAG 中,AEP G PAE PAG AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PAE ≌△PAG (AAS ),∴AE=AG ,∴OD=AE .【点睛】考查了等腰直角三角形的性质、全等三角形的判定和性质、坐标与图形性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.7.如图,在ABC ∆中,903, 7C AC BC ∠=︒==,,点D 是BC 边上的动点,连接AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE .(1)填空:ABC ∆的面积等于 ;(2)连接CE ,求证:CE 是ACB ∠的平分线;(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.【答案】(1)212;(2)证明见解析;(3)32【解析】【分析】 (1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD +,根据CD 的长度计算出CE 的长度即可.【详解】解:(1)903, 7C AC BC ∠=︒==, ∴112137222ABC S AC BC =⨯=⨯⨯=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE 是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM 与△DEN 中,∠EMA=∠END=90°,∠AEM=∠DEN ,AE=DE∴△AEM ≌△DEN (AAS )∴ME=NE∴点E 在∠ACB 的平分线上,即CE 是ACB ∠的平分线(3)由(2)可知,点E 在∠ACB 的平分线上,∴当点D 向点B 运动时,点E 的路径为一条直线,∵△AEM ≌△DEN∴AM=DN ,即AC-CM=CN-CD在Rt △CME 与Rt △CNE 中,CE=CE ,ME=NE ,∴Rt △CME ≌Rt △CNE (HL )∴CM=CN∴CN=1()2AC CD +, 又∵∠MCE=∠NCE=45°,∠CME=90°, ∴CE=22()CN AC CD =+, 当AC=3,CD=CO=1时,CE=2(31)222+= 当AC=3,CD=CB=7时, CE=2(37)522+= ∴点E 的运动路程为:522232-=,【点睛】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.8.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.【详解】(1)∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD ,在△ABD 与△CAE 中,∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,∴△ABD ≌△CAE(AAS),∴BD=AE ,AD=CE ,∵DE=AD+AE ,∴DE=CE+BD ,故答案为:DE=CE+BD ;(2)(1)中结论还仍然成立,理由如下:∵BDA AEC BAC α∠=∠=∠=,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.9.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB ≌△CEA ,∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB ≌△CEA , BD=AE ,∠DBA =∠CAE∵△ABF 和△ACF 均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE∵BF=AF ,∴△DBF ≌△EAF∴DF=EF ,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF 为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.10.综合与实践:我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.(1)请你用所学知识判断乐乐说法的正确性.如图,已知ABC ∆、111A B C ∆均为锐角三角形,且11AB A B =,11BC B C =,1C C ∠=∠. 求证:111ABC A B C ∆∆≌.(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.【答案】(1)见解析;(2)钝角三角形或直角三角形.【解析】【分析】(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出△ABC ≌△A 1B 1C 1即可.(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证.【详解】(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒.在BDC ∆和111B D C ∆中,1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,∴111BDC B D C ∆∆≌,∴11BD B D =.在Rt BDA ∆和111Rt B D A ∆中,11AB A B =,11BD B D =,∴111Rt Rt (HL)BDA B D A ∆∆≌,∴1A A ∠=∠.在ABC ∆和111A B C ∆中,1C C ∠=∠,1A A ∠=∠,11AB A B =,∴111(AAS)ABC A B C ∆∆≌.(2)如图,当这两个三角形都是直角三角形时,∵11AB A B =,11BC B C =,190C C ∠==∠︒.∴Rt ABC ∆≌111Rt A B C ∆(HL );∴当这两个三角形都是直角三角形时,它们也会全等;如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =,再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠,再利用AAS 证明111ABC A B C ∆∆≌;∴当这两个三角形都是钝角三角形时,它们也会全等;故答案为:钝角三角形或直角三角形.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.。
苏科版初中数学八年级上册全册各章检测试卷
苏科版初中数学八年级上册全册各章检测试卷苏科版初中数学八年级上册第一章《全等三角形》检测试卷(满分:100分时间:60分钟)姓名班级得分一、选择题(每题3分,共24分)1、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长2、如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC3、如图所示,△ABC≌△EFC,AC⊥BE,垂足为C,BE=18,CF=8,则AC的长度 ( )A. 8B. 10C. 12D. 144、已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点C B.过点P作PC⊥AB于点C且AC=BC C.取AB中点C,连接PC D.过点P作PC⊥AB,垂足为C5、若△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为()A.3B.4C.5D.3或4或56、如图,D、E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48度,则∠ADP等于()度。
A.42 B.48 C .52 D.587、如图,已知:EA⊥AB,BC⊥AB,D为AB的中点,BD=BC,EA=AB,则下面结论错误的是()A.AC=ED B.AC⊥ED C.∠C+∠E=90°D.∠ADE+∠C=90°8、如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.17二、填空题:(每题3分,共18分)9、如图所示,△ABD≌△EBC,若AB=3 cm,BC=5 cm,则DE的长是 cm.10、如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若AB=10,BC=8,BD=5,则△ABD的面积为.11、如图,△ABC的三边AB,BC,AC的长分别为45,50,60,其中三条角平分线相交于点O,则S△ABO:S△BCO:S△CAO=______.12、如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)13、如图,△ABC中,∠A=60°,AB>AC,两内角的平分线CD、BE交于点O,OF平分∠BOC交BC于F,(1)∠BOC=120°;(2)连AO,则AO平分∠BAC;(3)A、O、F三点在同一直线上,(4)OD=OE,(5)BD+CE=BC.其中正确的结论是(填序号).14、如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是.三、解答题:(共58分)15、(本题10分)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.16、(本题9分)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.17、(本题10分)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.18、(本题10分)如图,有四个储运站A、B、C、D,它们分布情况是:AB//DC,AB=DC,E、F是线段AC的三等分点,现线段AC上堆满了奶酪,聪明的小老鼠哼哼和唧唧分别从B 站、D站出发,沿线段BE、DF的路径去寻找奶酪,哼哼和唧唧的速度相同,问它俩谁最先寻找到奶酪?为什么?19、(本题9分)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。
江苏省常州市武进区八年级数学上册 第一章 全等三角形练习十二(新版)苏科版
第一章全等三角形单元练习题十二1.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE.以下说法:①CE=BF ;②△ABD 和△ACD 面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( )A . 4个B . 3个C . 2个D . 1个 2.如图,AB∥DE,AC∥DF,AC =DF ,添加以下条件,不能判断 △ABC≌△DEF 的是〔 〕A . EF =BCB . AB =DEC . EF∥BCD . B = E3.如图,给出以下四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中,能使△ABC ≌△DEF 的条件共有( )A . 1组B . 2组C . 3组D . 4组4.如图,在四边形ABCD 中,对角线AC 平分∠BAD,AB >AD ,以下结论正确的选项是〔 〕A . AB AD CB CD ->- B . AB AD CB CD -=-C . AB AD CB CD -<- D . AB AD CB CD --与的大小关系不确定5.在等腰梯形ABCD 中,∠ABC =2∠ACB ,BD 平分∠ABC ,AD ∥BC ,如下图,那么图中的等腰三角形有( )A . 1个B . 2个C . 3个D . 4个6.如图,AE ∥BF ,∠E =∠F ,以下添加的条件不能..使△ADE ≌△BCF 的是〔 〕A . ∠ADE =∠BCFB . DE =CFC . AE =BFD . BD =AC7.如图,AB =A 1B 1,BC =B 1C 1,AC =A 1C 1,且∠A=110°,∠B=40°,那么∠C 1=( )A . 110°B . 40°C . 30°D . 20°8.如图,在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,PE ,PF 分别交AB ,AC 于点E ,F ,给出以下四个结论:①△APE ≌△CPF ;②AE=CF ;③△EAF 是等腰直角三角形;④S △ABC =2S 四边形AEPF ,上述结论正确的有〔 〕A . 1个B . 2个C . 3个D . 4个9.如图, ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是A.①②③ B.①②④ C.①③④ D.②③④10.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,其中全等三角形的对数是〔〕A. 5 B. 3 C. 6 D. 411.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,那么∠AEB的度数为__.12.如图,为测量B点到河对面的目标A之间的距离,他们在B点同侧选择了一点C,测得∠ABC=70°,∠ACB=40°,然后在M处立了标杆,使∠CBM=70°,∠BCM=40°,那么只需要测量______才能测得A、B之间的距离,依据是:__________________________________________;13.如图,△ABC中,CD、BE是边AB和AC上的高,点M在BE的延长线上,且BM=AC,点N在CD上,且AB=CN,那么∠MAN的度数是________.14.如图,在△AOC 和△BOC 中,假设∠AOC=∠BOC ,添加一个条件________,使得△AOC≌△BOC.15.如下图,E 为ABC 的边AC 的中点,CN ∥AB ,过E 点作直线交AB 于M 点,交CN 于N 点,假设6,4,MB cm CN cm ==那么AB =___________.16.:如图.在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD =CE ;②∠ACE +∠DBC =45°;③BD ⊥CE ;④∠BAE +∠DAC =180°. 其中正确的有______.17.如图,在△ABC 中,D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,∠B =50°.现将△ADE 沿DE 折叠,点A 落在三角形所在平面内的点为A 1,那么∠BDA 1的度数为________.18.如图,点为的角平分线上的一点,点在边上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边上取一点,使得,这时他发现与之间有一定的数量关系,请你写出与的数量关系__________.19.如图,∠3=∠4,要说明△ABC≌△DCB,〔1〕假设以“SAS〞为依据,那么需添加一个条件是________〔2〕假设以“AAS〞为依据,那么需添加一个条件是________〔3〕假设以“ASA〞为依据,那么需添加一个条件是________20.△ABC中,AB=2,∠C=40°,请你添加一个适当的条件,使△ABC的形状和大小都是确定的.你添加的条件是________________.21.为在池塘两侧的A,B两处架桥,要想测量A,B两点的距离,如下图,找一处看得见A,B的点P,连接AP并延长到D,使PA=PD,连接BP并延长到C,使.测得CD=35m,就确定了AB也是35m,说明其中的理由;22.如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.〔1〕如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;〔2〕如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断〔1〕中②的结论是否仍然成立?并证明你的判断.23.如图,BE、CF是△ABC的高且相交于点P,AQ∥BC交CF延长线于点Q,假设有BP=AC,CQ=AB,线段AP与AQ的关系如何?说明理由。
苏科版八年级数学上册全等三角形全章练习.docx
BA A ′B ′ O C初中数学试卷 鼎尚图文**整理制作全等三角形全章练习1.如图所示,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°, ∠B=50°,求∠DEF 的度数 。
2.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°得到△A ′OB ′边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为 。
3.如图所示,在△ABC 中,∠A=90°,D,E 分别是AC,BC 上的点,若△ADB ≌△EDB ≌△EDC,则∠C 的度数是 。
4.如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C,A ′B ′交AC 于点D , 若∠A ′DC=90°,则∠A= 。
D E C B AA BCF D E5.如图,在梯形ABCD 中,AD ∥BC ,AB=DC,AC=DB ,已知∠ABC=60°,求∠ADC 的度数。
6.已知,如图所示,AB=AC,AD ⊥BC 于D,且AB+AC+BC=50cm,而AB+BD+AD=40cm,则AD= .7.如图,Rt △ABC 中,∠BAC=90°,AB=AC,分别过点B ,C,作过点A 的直线的垂线BD,CE,垂足为D,E ,若BD=3,CE=2,则DE= .8.如图,AD 是△ABC 的角平分线,DE ⊥AB,DF ⊥AC,垂足分别是E,F ,连接EF,交AD 于G,AD 与EF 垂直吗?证明你的结论。
D A ECBA B DCB A DC B ' DA 'CB A9.如图,已知△ABC 中,延长AC 边上的中线BE 到G ,使EG=BE ,延长AB 边上的中线CD 到F ,使DF=CD,连接AF,AG.(1) 补全图形(2) AF 于AG 的大小关系如何?证明你的结论。
苏科版八年级数学上册《第一章 全等三角形》单元检测卷(带答案)
苏科版八年级数学上册《第一章全等三角形》单元检测卷(带答案)一、选择题1.已知图中的两个三角形全等,则∠α的度数为A. 1050B. 750C. 600D. 4502.根据下列已知条件,能唯一画出△ABC的是( )A. AB=3,BC=4,CA=8B. ∠A=60°C. AB=4,BC=3,∠A=30°D. ∠C=90°3.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是( )A. 带②去B. 带①去C. 带③去D. 三块都带去4.如图,已知AB=AC,点D、E分别在线段AB、AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD( )A. ∠B=∠CB. AE=ADC. BD=CED. BE=CD5.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC其依据是( )A. SSSB. SASC. ASAD. AAS6.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,BC=EF,∠B=∠E;③∠B=∠E,∠C=∠F,BC=EF;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有A. 1组B. 2组C. 3组D. 4组7.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )A. 50B. 62C. 65D. 688.尺规作图作∠AOB的平分线方法如下:如图,以点O为圆心,任意长为半径画弧分别交OA,OB于点C,D再CD长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根分别以点C,D为圆心,以大于12据是( )A. SASB. ASAC. AASD. SSS9.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b则斜边BD的长是( )A. √ a2−b22B. √a2+b22C. a+bD. a−b二、填空题10.如图,已知AB=DE,∠B=∠E,请你添加一个适当的条件(填写一个即可),使得△ABC≌△DEC.11.如图△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为______.12.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D②AC=DB③AB=DC其中不能确定△ABC≌△DCB的是_____(只填序号).13.如图,在△ABC中D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C是____度.14.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=3,CE=4.则两条凳子的高度之和为___________.15.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是秒.三、解答题16.已知:如图,E是BC上一点AB=EC,AB//CD,BC=CD求证:AC=ED.17.如图AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.18.如图,已知∠A=∠D=90°,E,F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF求证:△ABF≌△DCE.19.如图,在△ABC中AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足AE=CF,求证:∠ACB=90°.20.如图(1)AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm点P在线段AB上以1cm/s的速度由点A向点B 运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】【分析】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.根据全等三角形对应角相等可得∠D=∠A=60°,再根据三角形内角和定理可得答案.【解答】解:∵△ABC≌△DEF∴∠D=∠A=60°∴∠α=180°−60°−45°=75°故选:B.2.【答案】B【解析】解:A、错误∵3+4<8,不能构成三角形;B、正确.已知两角夹边,三角形就确定了;C、错误.边边角不能确定三角形;D、错误.一角一边不能确定三角形.故选:B.分析:根据三角形的三边关系以及确定三角形的条件有SAS、AAS、ASA、SSS、HL,即可判断.本题考查全等三角形的判定和性质、三角形的三边关系等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.3.【答案】C【解析】解:带③去,符合“角边角”可以配一块同样大小的三角板.故选:C.根据全等三角形的判定方法ASA即可得出结果.本题考查了全等三角形判定的应用,熟练掌握三角形全等的判定方法是解决问题的关键.4.【答案】D【解析】解:A、当∠B=∠C时,利用ASA定理可以判定△ABE≌△ACD;B、当AE=AD时,利用SAS定理可以判定△ABE≌△ACD;C、当BD=CE时,得到AD=AE,利用SAS定理可以判定△ABE≌△ACD;D、当BE=CD时,不能判定△ABE≌△ACD;故选:D.根据全等三角形的判定定理判断.本题考查的是全等三角形的判定,掌握全等三角形的判定定理是解题的关键.5.【答案】A【解析】【分析】此题主要考查学生对全等三角形判定定理的理解和掌握此题难度不大属于基础题.利用全等三角形判定定理AAS SAS ASA SSS对△MOC和△NOC进行分析即可作出正确选择.【解答】解:由题意可知OM=ON在△MOC和△NOC中{OM=ON CM=CN OC=OC,∴△MOC≌△NOC(SSS).故选A.6.【答案】C【解析】【分析】本题考查了全等三角形的判定熟记全等三角形的判定是解题关键.根据全等三角形判定的条件可得答案.【解答】解:①AB=DE BC=EF AC=DF;②AB=DE BC=EF∠B=∠E;③∠B=∠E∠C=∠F BC=EF;故选C.7.【答案】A【解析】【分析】本题考查的是全等三角形的判定的相关知识由AE⊥AB EF⊥FH BG⊥AG可以得到∠EAF=∠ABG而AE=AB∠EFA=∠AGB由此可以证明△EFA≌△ABG所以AF=BG AG=EF;同理证得△BGC≌△DHC GC=DH CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB EF⊥FH∠EAF+∠BAG=90°∴AE=AB∠EFA=∠AGB∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG AG=EF.同理证得△BGC≌△DHC得GC=DH CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50.故选A.8.【答案】D【解析】【分析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL.注意:AAA SSA不能判定两个三角形全等判定两个三角形全等时必须有边的参与若有两边一角对应相等时角必须是两边的夹角.认真阅读作法从角平分线的作法得出△OCP与△ODP的两边分别相等加上公共边相等于是两个三角形符合SSS判定方法要求的条件答案可得.【解答】解:∵以O为圆心任意长为半径画弧交OA OB于C D即OC=OD;以点C D为圆心以大于12CD长为半径画弧两弧交于点P即CP=DP;∴在△OCP和△ODP中{C=ODOP=OPCP=DP,∴△OCP≌△ODP(SSS).故选D.9.【答案】B【解析】【分析】本题主要考查正方形的面积公式以及全等三角形的判定和性质深入理解题意是解决问题的关键.过A作AN⊥CB交CB的延长线于N作AM⊥EF交EF的延长线于M过D作DR⊥BH交BH于R延长FG 交DR 于Q 则四边形CEMN 是正方形 四边形QGHR 是正方形 四边形ABDF 是正方形 利用这三个正方形之间的面积关系即可求出BD 2 进一步可求BD 的长.【解答】解:如图所示 过A 作AN ⊥CB 交CB 的延长线于N作AM ⊥EF 交EF 的延长线于M 过D 作DR ⊥BH 交BH 于R 延长FG 交DR 于Q∴△ABH △BCD △DEF △AGF 是四个全等的直角三角形∴四边形CEMN 是正方形 四边形QGHR 是正方形 四边形ABDF 是正方形∵CE =a HG =b∴正方形CEMN 的面积为a 2 正方形QGHR 的面积为b 2 正方形ABDF 的面积为BD 2故S △ABH +S △BDR +S △DFQ +S AGF =BD 2−b 2又a 2−b 2=2(S △ABH +S △BDR +S △DFQ +S AGF )即a 2−b 2=2(BD 2−b 2)得BD 2=a 2+b 22∴BD =√ a 2+b 22. 故选B10.【答案】BC =EC 或∠ACB =∠DCE 或∠A =∠D(本题答案不唯一)【解析】【分析】此题主要考查学生对全等三角形的判定这一知识点的理解和掌握 此题难度不大 属于基础题.本题要判定△ABC≌△DEC 已知AB =DE ∠B =∠E 具备了一组对边和一组对角对应相等 利用SAS 或者AAS 或ASA 即可判定两三角形全等了.【解答】解:①添加条件是:BC=EC在△ABC与△DEC中∴△ABC≌△DEC(SAS).故答案为BC=EC.②添加条件是:∠ACB=∠DCE在△ABC与△DEC中∴△ABC≌△DEC(AAS).故答案为∠ACB=∠DCE.③添加条件是:∠A=∠D在△ABC与△DEC中∴△ABC≌△DEC(ASA).故答案为∠A=∠D..故答案为:BC=ECE或∠ACB=∠DCE或∠A=∠D(本题答案不唯一三个答案任选一个) 11.【答案】45°【解析】解:∵∠B=70°∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°∵△ABC≌△ADE∴∠EAD=∠BAC=80°∴∠EAC=∠EAD−∠DAC=80°−35°=45°故答案为:45°由全等三角形的性质可得到∠BAC=∠EAD在△ABC中可求得∠BAC则可求得∠EAC.本题主要考查全等三角形的性质掌握全等三角形的对应边相等对应角相等是解题的关键.12.【答案】②【解析】解:∵已知∠ABC=∠DCB且BC=CB∴若添加①∠A=∠D则可由AAS判定△ABC≌△DCB;若添加②AC=DB则属于边边角的顺序不能判定△ABC≌△DCB;若添加③AB=DC则属于边角边的顺序可以判定△ABC≌△DCB.故答案为:②.一般三角形全等的判定方法有SSS SAS AAS ASA HL据此可逐个对比求解.本题考查全等三角形的几种基本判定方法只要判定方法掌握得牢固此题不难判断.13.【答案】30【解析】【分析】本题主要考查全等三角形的性质以及三角形内角和定理发现并利用∠ADB=∠EDB=∠EDC=60°∠DEC=∠DEB=∠A=90°是正确解决本题的关键.因为三个三角形为全等三角形则对应角相等从而得到∠ADB=∠EDB=∠EDC∠DEC=∠DEB=∠A再利用三角形内角和定理得到∠ADB=∠EDB=∠EDC=60°∠DEC=∠DEB=∠A=90°最后在△DEC中利用三角形内角和定理求得∠C的度数.【解答】解:∵△ADB≌△EDB≌△EDC∴∠ADB=∠EDB=∠EDC又∵∠ADB+∠EDB+∠EDC=180°∴∠ADB=∠EDB=∠EDC=60°在△DEC中∴∠C=30°.故答案为30.14.【答案】7【解析】【分析】此题主要考查了全等三角形的判定与性质得出△ACD≌△CBE是解题关键.利用等腰三角形的性质结合全等三角形的判定方法得出即可.【解答】解:由题意可得:∠ACD+∠BCE=90°则∠DAC=∠ECB在△ACD和△CBE中{∠CDA=∠BEC ∠DAC=∠ECB AC=CB,∴△ACD≌△CBE(AAS)故DC=BE=3则两条凳子的高度之和为:3+4=7.故答案为7.15.【答案】4【解析】【分析】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件 对应角相等 并巧妙地借助两个三角形全等 寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt △ACM≌Rt △BMD .根据题意证明∠C =∠DMB 利用AAS 证明△ACM≌△BMD 根据全等三角形的性质得到BD =AM =12米 再利用时间=路程÷速度即可.【解答】解:∵∠CMD =90°∴∠CMA +∠DMB =90°又∵∠CAM =90°∴∠CMA +∠C =90°∴∠C =∠DMB .在Rt △ACM 和Rt △BMD 中{∠A =∠B ∠C =∠DMB CM =MD∴Rt △ACM≌Rt △BMD(AAS)∴BD =AM =12米∴BM =20−12=8(米)∵该人的运动速度为2m/s∴他到达点M 时 运动时间为8÷2=4(s).故答案为4.16.【答案】证明:因为AB//CD所以∠B =∠DCE .在△ABC 和△ECD 中{AB =EC ∠B =∠DCE BC =CD所以△ABC ≌△ECD(SAS).所以AC =ED .【解析】本题考查了三角形全等的判定与性质平行线的性质比较简单求出∠B=∠DCE是证明三角形全等的关键.根据两直线平行内错角相等可得∠B=∠DCE然后利用“边角边”证明△ABC和△ECD全等再根据全等三角形对应边相等即可得证.17.【答案】(1)证明:∵∠DAE=∠BAC∴∠DAE−∠DAC=∠BAC−∠DAC∴∠1=∠CAE在△ABD和△ACE中∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE∴∠DBA=∠2∵∠2=30°∴∠DBA=30°∵∠1=25°∴∠3=∠1+∠DBA=25°+30°=55°.【解析】本题考查的是全等三角形的判定和性质以及三角形的外角性质掌握全等三角形的判定方法和适当运用三角形的外角定理是关键.(1)由∠BAC=∠DAE可得∠1=∠CAE利用SAS可证明结论;(2)由△ABD≌△ACE得到由∠DBA=∠2最后利用三角形的外角的性质即可解答.18.【答案】证明:∵BE=CF∴BE+EF=CF+EF即BF=CE∵∠A=∠D=90°∴△ABF与△DCE都为直角三角形在Rt△ABF和Rt△DCE中{BF=CE,AB=DC∴Rt△ABF≌Rt△DCE(HL).【解析】此题考查了直角三角形全等的判定解题关键是由BE=CF通过等量代换得到BF=CE.由BE=CF通过等量代换得到BF=CE结合AB=CD根据直角三角形全等的判定的方法即可证明.19.【答案】证明:如图在Rt △ACE 和Rt △CBF 中{AC =BC AE =CF∴Rt △ACE≌Rt △CBF(HL)∴∠EAC =∠BCF∵∠EAC +∠ACE =90°∴∠ACE +∠BCF =90°∴∠ACB =180°−90°=90°.【解析】先利用HL 定理证明△ACE 和△CBF 全等 再根据全等三角形对应角相等可以得到∠EAC =∠BCF 因为∠EAC +ACE =90° 所以∠ACE +∠BCF =90° 根据平角定义可得∠ACB =90°.本题主要考查全等三角形的判定 全等三角形对应角相等的性质 熟练掌握性质是解题的关键. 20.【答案】解:(1)当t =1时 AP =BQ =1又∵∠A =∠B =90°在△ACP 和△BPQ 中AP =BQ ∠A =∠B∴△ACP≌△BPQ(SAS).∴∠ACP =∠BPQ∴∠APC +∠BPQ =∠APC +∠ACP =90°.∴∠CPQ =90°即线段PC 与线段PQ 垂直.(2)①若△ACP≌△BPQ则AC =BP{3=4−t t =xt解得{t =1x =1②若△ACP≌△BQP则AC =BQ{3=xt t =4−t解得{t =2x =32综上所述 存在{t=1x=1或{t=2 x=32使得△ACP与△BPQ全等.【解析】本题主要考查了全等三角形的判定与性质注意分类讨论思想的渗透.(1)利用SAS证得△ACP≌△BPQ得出∠ACP=∠BPQ进一步得出∠APC+∠BPQ=∠APC+∠ACP= 90°得出结论即可;(2)由△ACP≌△BPQ分两种情况:①AC=BP AP=BQ②AC=BQ AP=BP建立方程组求得答案即可.。
八年级上册数学单元测试卷-第一章 全等三角形-苏科版(含答案)
八年级上册数学单元测试卷-第一章全等三角形-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,、为⊙O的切线,切点分别为A、B,交于点C,的延长线交⊙O于点D.下列结论不一定成立的是()A. 为等腰三角形B. 与相互垂直平分C.点C、B 都在以为直径的圆上D. 为的边上的中线2、如图,在▱ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,则下列结论:①CF=AE;②OE=OF;③DE=BF;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.13、下列各条件中,能判定两个三角形全等的是()A.两角一边对应相等B.两边一角对应相等C.两个直角三角形的锐角都对应相等D.两边对应相等4、如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带③去B.带②去C.带①去D.带①②去5、如图,已知点B,E,C,F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DEB.AC=DFC.∠A=∠DD.∠ACB=∠F6、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AEB.∠AEB=∠ADCC.BE=CDD.AB=AC7、如图,△ABC中,AB=AC,D为BC中点,在BA的延长线上取一点E,使得ED=EC,ED与AC交于点F,则的值为()A. B. C. D.8、如图,长方形中,点是中点,是边上的点,把沿折叠后,点恰好与点重合,则图中全等的三角形有()对。
A.1B.2C.3D.49、在如图所示的 6×6 网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数()A.3 个B.4 个C.6 个D.7 个10、通过尺规作图作一个角的平分线的理论依据是()A.SASB.SSSC.ASAD.AAS11、如图所示,△ABC中,AB=3,AC=7,则BC边上的中线AD的取值范围是()A.4<AD<10B.0<AD<10C.3<AD<7D.2<AD<512、如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则下列结论:①DF+AE>AD;②DE=DF;③AD⊥EF;④S DABD∶S DACD=AB∶AC,其中正确结论的个数是()A.1 个B.2 个C.3 个D.4 个13、如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个14、已知OP平分∠AOB,点Q在OP上,点M在OA上,且点Q,M均不与点O重合.在OB 上确定点N,使QN=QM,则满足条件的点N的个数为()A.1个B.2个C.1或2个D.无数个15、如图,等腰中,,于. 的平分线分别交,于点,两点,为的中点,延长交于点,连接.下列结论:①;②;③是等腰三角形;④.其中正确的结论个数是()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC全等的图形是________.17、如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE 上.若AD=5,BE=2,则AB的长是________.18、如图,与相交于点O,,添加条件________(写一个)后,能使.19、如图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添一个条件________.20、如图,正方形ABCD的边CD在正方形ECGF的边CE上,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH,FH,EG与FH交于点M,对于下面四个结论:①GH⊥BE;②BG=EG;③△MFG为等腰三角形;④DE:AB=1+:1,其中正确结论的序号为________.21、如图,在矩形ABCD中,AB=6,AD=4,过矩形ABCD的对角线交点O作直线分别交CD、AB于点E、F,连接AE,若△AEF是等腰三角形,则DE=________.22、如图,AB=AD,∠1=∠2,如果增加一个条件________,那么△ABC≌△ADE.23、如图,AB与CD交于点O,,,,,则的度数为________24、如图,已知于点P,,请增加一个条件,使≌不能添加辅助线,你增加的条件是________.25、如图,在菱形ABCD中,点E是AB上的一点,连结DE交AC于点O,连结BO,且∠AED =50°,则∠CBO=________度.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB= ,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA= ,BP= ,PC=1.求∠BPC度数的大小和正方形ABCD的边长.28、证明题已知:如图,点A、F、C、D在同一条直线上,AB∥DE,AB=DE,AF=DC .求证:BC=EF.29、如图已知:如图,DE⊥AC于点E,BF⊥AC于点F,CD∥AB, AB=CD。
(完整)苏科版八年级数学上册《第一章全等三角形》单元测试含答案,推荐文档
第一章全等三角形单元测试、单选题(共10题;共30 分)1.如图,已知AE=CF / AFD=/ CEB那么添加下列一个条件后,仍无法判定△A、/ A=Z CB、AD=CBC、BE='DF'D、AD// BC2.如图,D在AB上,E在AC上,且/ B=/ C,那么补充下列条件后,不能判定△A、AD=AE D、AB=ACB、BE=CD C/ AEB=/ ADC)C./ A+/ ABD=/ C+/ CBDD.AD / BC,且AD=BCABD^A ACD 的是(A.BD=DC, AB=ACB./ADB=/ ADC, BD=DC ADF^A CBE的是()ABE^A ACD 的是()C./ B=/ C,/ BAD=/ CADD./ B=/ C, BD=DC5.已知图中的两个三角形全等,则/ 1等于(9. 已知△ ABC ^A DEF,/ A=50° / B=75° 则/ F 的大小为( )A. 50 °B.55 °C.65 °D.75 ° 10. 如图,在厶ABC 和厶DEF 中,给出以下六个条件中, 以其中三个作为已知条件, 不能判断厶ABC 和厶DEF全等的是( ) ①AB=DE :② BC=EF ③ AC=DF ;④/ A=/ D ;⑤/ B=/ E ;⑥/ C=/ F.6•两组邻边分别相等的四边形叫做 筝形”如图,四边形 ABCD 是一个筝形,其中 AD=CD, AB=CB,在探究 筝形的性质时,得到如下结论:①△ ABD ^A CBD ②AC 丄BD;③四边形 ABCD 的面积=12AC?BD,其中正 C.2个 D.3个7.如图,已知△ ABE ^A ACD,Z 仁/ 2,/ B=Z C ,不正确的等式是( 确的结论有( ) A.0个 B.1个 A.AB=AC B.Z BAE=Z CAD C.BE=DC D.AD=DE ABM ^A CDN 的是(A 3^——^C EA、①⑤②B、①②③C、④⑥①D、②③④、填空题(共8题;共27 分)11. _______________________________________________________________ 如图,△ ABC^A ADE,/ B= 100 ° / BAC= 30 ° 那么/ AED= ___________________________________________12. ________________________________________________________________________________ 如图所示,已知△ ABC^A ADE , / C=/ E , AB=AD ,则另外两组对应边为 _______________________________________ ,另外两组对应角为__________ .13•如图,△ ACE^A DBF,点A、B、C D共线,若AC=5, BC=2,则CD的长度等于_________ ,就可以判定△ ABC^A ADE.14.如图,AB=AD,只需添加一个条件15.A ABC中,AB=AC=12厘米,/ B=/ C, BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△ BPD 与厶CQP 全等时,v 的值为16•如图,已知△ ABC ^^ DCB, / BDC=35°, / DBC=50°,则/ ABD=再添加的一个条件可以是ABC ^A ADC,只需三、解答题(共5题;共37 分) 19•如图,已知△ ABC ^A BAD, AC 与BD 相交于点 0,求证:0C=0D.18.如图,在△ ABC 与厶ADC 中,已知 P.若/ DEF=40; PB=PF ,贝艮20.图中所示的是两个全等的五边形,/ 3=115 ° d=5,指出它们的对应顶点?对应边与对应角,并说出图中标的a,b,c, e, a各字母所表示的值.22.已知命题:如图,点A, D, B, E在同一条直线上,且AD=BE / A=Z FDE则厶ABg A DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.23.如图,已知点 C 是线段 AB 上一点,直线 AM 丄AB ,射线CN 丄AB , AC=3, CB=2分别在直线 AM 上取一点D ,在射线 CN 上取一点E ,使得△ ABD 与厶BDE 全等,求 CE 2的 V J』 1/ 值.4, n□ ______ 丄 ~1 C3四、综合题(共1题;共10分)24•定义:我们把三角形被一边中线分成的两个三角形叫做性质:朋友三角形”的面积相等.如图1,在△ ABC 中,CD 是AB 边上的中线.那么△ ACD 和厶BCD 是 朋友三角形 ”并且ACD =&BCD .应用:如图2,在直角梯形 ABCD 中,/ ABC=90 , AD// BC, AB=AD=4, BC=6,点E 在BC 上,点F 在AD(1)求证:△ AOB 和厶AOF 是 朋友三角形”; 朋友三角形O .形”,将△ ACD 沿CD 所在直线翻折,得到△ A 。
苏科版八年级数学上册《第一章全等三角形》单元检测卷-带答案
苏科版八年级数学上册《第一章全等三角形》单元检测卷-带答案一、单选题(共10小题,满分40分)1.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的一点,若△ADE △△CFE ,则下列结论中不正确的是( )A .AD =CFB .AB //CFC .E 是AC 的中点D .AC △DF2.如图,已知CAD CBE ≌△△,若30A ∠=︒,80C ∠=︒则CEB ∠=( )A .50︒B .60︒C .70︒D .80︒3.如图,CD AB ⊥和BE AC ⊥,垂足分别为D ,E ,再添加一个条件,若仍不能证明ABE ACD ≌成立,则添加的条件是( )A .BC ∠=∠ B .AB AC = C .AD AE = D .BE CD =4.在ABC 中,AD 是BC 边上的中线,点E 在AD 的延长线上且AD DE =,则ABD ECD ≌的理由是( )A.SAS B.AAS C.ASA D.SSS5.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,则AD的取值范围是()A.3<AD<13B.1.5<AD<6.5C.2.5<AD<7.5D.10<AD<166.下列条件中不能..判断两个直角三角形全等的是()A.一个锐角和一条斜边对应相等B.一个锐角和一条直角边相等C.一条直角边和斜边对应相等D.两条直角边对应相等7.如图,在等边三角形ABC中,D,E分别是AB,AC上的点,且AD=CE,则△BCD+△CBE的度数为()A.60°B.45°C.30°D.无法确定8.已知△AOB=20°和射线MN.如图,以点O为圆心,任意长度为半径画弧分别交△AOB的两边于点P、Q,接着在射线MN上以点M为圆心,OP长为半径画弧l交射线MN于点N;以N为圆心,PQ长为半径画两段弧,分别交l于C、D两点,连MC,MD并延长.则△CMD的度数为()A.20°B.50°C.60°D.40°9.如图,已知△ABC △△ADE ,△B =80°,△C =30°,△DAC =30°,则△EAC 的度数是( )A .35°B .40°C .25°D .30°10.如图,点D 、E 分别在AB 、AC 上,BE 、CD 相交于点O ,AE=AD ,若要使△ABE△△ACD ,则添加的一个条件不能是( )A .AB="AC"B .BE="CD"C .△B=△CD .△ADC=△AEB二、填空题(共8小题,满分32分)11.茗茗用同种材料制成的金属框架如图所示,已知B E ∠=∠,=AB DE 和BF EC =,其中ABC ∆的周长为24cm ,=3CF cm ,则制成整个金属框架所需这种材料的长度为 cm .12.如图△ABC△△ADE ,若△DAE=80°,△C=30°,△DAC=35°,AC 、DE 交于点F ,则△CFE 的度数为 .13.四边形ABCD 中45ABC CAB ADC ∠=∠=∠=︒,ACD 面积为48且CD 的长为12,则BCD 的面积为 .14.如图,在ABC 中,AC=BC ,90C ∠=︒ BD 平分ABC ∠,AD BD ⊥ 则DAE ∠= ;若5BE =,则AD 的长为 .15.如图,OC 平分△AOB ,D 为OC 上一点,DE △OB 于E ,若DE =7,则D 到OA 的距离为 .16.如图ABC ADE △△≌,80BAC ∠=︒和55E ∠=︒,BC 、DE 相交于点F ,则B ∠度数为 .17.如图,若ABC DEF ≌△△,四个点B 、E 、C 、F 在同一直线上,BC=7,EC=5,则CF 的长是 .18.如图,△ACB =90°,AC =BC ,点D 在△ABC 内部,连接AD 、BD 、CD ,若AD △CD ,CD =4,则△BCD 的面积等于 .三、解答题(共6小题,每题8分,满分48分)19.如图,点E ,F 在BC 上,AB=DC ,AF=DE ,∠A=∠D.(1)证明:B C ∠=∠.(2)若3BE =,EF=6,求BC 的长.20.如图△,在Rt ABC △中90,12cm,16cm,20cm B AB BC AC ∠=︒===,现有一动点P ,从点A 出发,沿着三角形的边AB BC CA →→运动,回到点A 停止,速度为2cm /s ,设运动时间为t 秒.(1)如图△,当ABP 的面积等于ABC 面积的一半时,求t 的值:(2)如图△,点D 在BC 边上4cm CD =,点E 在AC 边上5cm,,3cm CE ED BC ED =⊥=,在ABC 的边上,若另外有一个动点Q 与点P 同时从点A 出发,沿着边AC CB BA →→运动,回到点A 停止.在两点运动过程中的某一时刻,以,,A P Q 为顶点的三角形恰好与EDC △全等,求点Q 的运动速度.21.如图,在ABC 中90ABC ∠=︒,过C 点作DC BC ⊥,垂足为C ,且AB DC =,连接BD ,交AC 于点E .(1)求证:ABC DCB △△≌; (2)若E 是AC 的中点,求证2AC BE =.22.如图,点C 、D 、E 、F 在同一条直线上90A B ∠=∠=︒,AC=BF ,CD=EF ,AE 与BD 相交于点O .(1)求证:EA DB =;(2)若55C ∠=︒,求∠BOE 的度数.23.如图(1),AB△BD 于点B ,ED△BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)24.如图,在ABC 中,AB=AC ,点D 为BC 边所在直线上的一个动点(不与点B 、C 重合),在AD 的右侧作ADE ,使得,AE AD DAE BAC =∠=∠,连接CE .(1)求证:ABD ACE ∠=∠;(2)当点D 为线段BC 的中点时,判断DE 与AC 的位置关系,并说明理由;(3)探究DAE ∠与DCE ∠的数量关系,直接写出其结果_______.参考答案1.D2.C3.A4.A5.B6.B7.A8.D9.B10.B11.4512.75︒13.2414.22.5︒ 2.515.7.16.45︒/45度17.218.819.(1)证明略;(2)BC的长为12. 20.(1)10或19(2)103cm/s或65cm/s或9043cm/s或8645cm/s21.(略22.(1)11(2)70BOE∠=︒23.(1)AC△CE;(2)AC与BE的位置关系仍成立24.(1)11;(2)DE△AC;(3)△DAE+△DCE=180°或△DAE=△DCE。
第一章 全等三角形数学八年级上册-单元测试卷-苏科版(含答案)
第一章全等三角形数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图所示,,,,,则等于()A. B. C. D.2、已知两个直角三角形全等,其中一个直角三角形的面积为4,斜边为3,则另一个直角三角形斜边上的高为()A. B. C. D.53、如图,中,,,是中线,,垂足为,的延长线交于点,若,则的度数为()A. B. C. D.4、如图,在△ABC中,点D、F分别在边BC、AC上,若BC=ED,AC=CD,AB=CE,且∠ACE=180°-∠ABC-2m,对下列角中,大小为m的角是()A.∠CDFB.∠ABCC.∠CFDD.∠CFE5、全等三角形是( )A.三个角对应相等的三角形B.周长相等的两个三角形C.面积相等的两个三角形D.三边对应相等的两个三角形6、如图,AB=AC,BE=CF,AD是△AEF的中线,则图中全等三角形的对数共有()A.1对B.2对C.3对D.4对7、如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D 作DF垂直于AC交AC的延长线于点F,若AB=8,AC=5,则CF=()A.1.5B.2C.2.5D.38、如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED =90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是()A.①③B.①②③C.②③④D.①②④9、如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△BEF=S△ABE.其中正确的有( )A.1个B.2个C.3个D.4个10、如图,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE,CD交于点F.若∠BAC=35°,则∠BFC的大小是( )A.106°B.108°C.110°D.112°11、如图,△ABC中,若AB=AC,BD=CE,CD=BF,则∠EDF=()A.90°-∠AB.180°-2∠AC.D.12、如图,已知CD⊥AB于D,现有四个条件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,那么不能得出△ADC≌△EDB的条件是()A.①③B.②④C.①④D.②③13、如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是()A.带③去B.带②去C.带①去D.带①和②去14、如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=EDB.AC=DFC.BF=ECD.∠A=∠D15、如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠CC.DB=DCD.AB=AC二、填空题(共10题,共计30分)16、如图,△ABC≌△DEF,则EF= ________.17、已知:如图,在长方形中,延长到点,使,连接,动点从点出发,以每秒2个单位长度的速度沿向终点运动,设点的运动时间为秒,当的值为________时,和全等.18、如图,已知AC=BD,∠A=∠D,请你添一个直接条件,________,使△AFC≌△DEB.19、如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是________.20、如图,△ADB≌△ECB,若∠CBD=40°,BD⊥EC,则∠D的度数为________.21、在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E 作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=________cm.22、如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确的结论是________(填序号)23、如图,作一个角等于已知角,其尺规作图的原理是________24、如图,图中有6个条形方格图,图上由实线围成的图形是全等形的有哪几对________.25、小明不慎将一块三角形的玻璃摔成如图所示的4块,你认为将其中哪一块带去玻璃点就能配一块与原来一模一样的三角形,应该带去第________块.(填写序号)三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,已知点,,,在同一条直线上,,且,.求证:.28、图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点•对应边与对应角,并说出图中标的a,b,c,e,α各字母所表示的值.29、如图,点B,E,C,F在一条直线上,AB=DE,AC =DF,BE=CF.求证:△ABC ≌△DEF;30、已知:BD=BE,CD=CE,求证:∠D=∠E.参考答案一、单选题(共15题,共计45分)1、A2、C3、D4、A5、D6、D7、A8、D9、B10、C11、C12、D13、A14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
苏科版八年级上册数学 三角形解答题单元练习(Word版 含答案)
苏科版八年级上册数学三角形解答题单元练习(Word版含答案)一、八年级数学三角形解答题压轴题(难)1.直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).(1)如图1,已知AE、BE分别是∠BAO和∠ABO的角平分线,①当∠ABO=60°时,求∠AEB的度数;②点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况:若不发生变化,试求出∠AEB的大小;(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,请直接写出∠ABO 的度数.【答案】(1)①135°②∠AEB的大小不会发生变化,∠AEB=135°,详见解析(2)∠ABO=60°或45°【解析】【分析】(1)①根据三角形内角和定理、角分线定义,即可求解;②方法同①,只是把度数转化为角表示出来,即可解答;(2)根据三角形内角和定理及一个外角等于与它不相邻的两个内角和,利用角的和差计算即可求得结果,要对谁是谁的3倍分类讨论..【详解】(1)如图1,①∵MN⊥PQ,∴∠AOB=90°,∵∠ABO=60°,∴∠BAO=30°,∵AE、BE分别是∠BAO和∠ABO的角平分线,∴∠ABE=12∠ABO=30°,∠BAE=12∠BAO=15°,∴∠AEB=180°﹣∠ABE﹣∠BAE=135°.②∠AEB的大小不会发生变化.理由如下:同①,得∠AEB=180°﹣∠ABE﹣∠BAE=180°﹣12∠ABO﹣12∠BAO=180°﹣12(∠ABO+∠BAO)=180°﹣12×90°=135°.(2)∠ABO的度数为60°.理由如下:如图2,∵∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,∴∠OAE+∠OAF=12(∠BAO+∠GAO)=90°,即∠EAF=90°,又∵∠BOA=90°,∴∠GAO>90°,①∵∠E=13∠EAF=30°,∠EOQ=45°,∠OAE+∠E=∠EOQ=45°,∴∠OAE=15°,∠OAE=12∠BAO=12(90﹣∠ABO)∴∠ABO=60°.②∵∠F=3∠E,∠EAF=90°∴∠E+∠F=90°∴∠E=22.5°∴∠EFA=90-22.5°=67.5°∵∠EOQ=∠EOM= ∠AOE= 45°,∴∠BAO=180°-(180°-45°-67.5°)×2=45°∴∠ABO=90°-45°=45°【点睛】本题考查了三角形内角和定理及外角的性质、角分线定义,解决本题的关键是灵活运用三角形内角和外角的关系.2.已知在四边形ABCD中,∠A=∠C=90°.(1)∠ABC+∠ADC=°;(2)如图①,若DE平分∠ADC,BF平分∠ABC的外角,请写出DE与BF的位置关系,并证明;(3)如图②,若BE,DE分别四等分∠ABC、∠ADC的外角(即∠CDE=14∠CDN,∠CBE=14∠CBM),试求∠E的度数.【答案】(1)180°;(2)DE⊥BF;(3)450【解析】【分析】(1)根据四边形内角和等于360°列式计算即可得解;(2)延长DE交BF于G,根据角平分线的定义可得∠CDE=12∠ADC,∠CBF=12∠CBM,然后求出∠CDE=∠CBF,再利用三角形的内角和定理求出∠BGE=∠C=90°,最后根据垂直的定义证明即可;(3)先求出∠CDE+∠CBE,然后延长DC交BE于H,再根据三角形的一个外角等于与它不相邻的两个内角的和求解即可.【详解】(1)解:∵∠A=∠C=90°,∴∠ABC+∠ADC=360°-90°×2=180°;故答案为180°;(2)解:延长DE交BF于G,∵DE平分∠ADC,BF平分∠CBM,∴∠CDE=12∠ADC,∠CBF=12∠CBM,又∵∠CBM=180°-∠ABC=180°-(180°-∠ADC)=∠ADC,∴∠CDE=∠CBF,又∵∠BED=∠CDE+∠C=∠CBF+∠BGE,∴∠BGE=∠C=90°,∴DG⊥BF,即DE⊥BF;(3)解:由(1)得:∠CDN+∠CBM=180°,∵BE、DE分别四等分∠ABC、∠ADC的外角,∴∠CDE+∠CBE=14×180°=45°,延长DC 交BE 于H ,由三角形的外角性质得,∠BHD=∠CDE+∠E ,∠BCD=∠BHD+∠CBE ,∴∠BCD=∠CBE+∠CDE+∠E ,∴∠E=90°-45°=45°【点睛】本题考查了三角形的内角和定理,四边形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键,要注意整体思想的利用.3.已知:线段AB ,以AB 为公共边,在AB 两侧分别作ABC ∆和ABD ∆,并使C D ∠=∠.点E 在射线CA 上.(1)如图l ,若ACBD ,求证:AD BC ∥; (2)如图2,若BD BC ⊥,请探究DAE ∠与C ∠的数量关系,写出你的探究结论,并加以证明; (3)如图3,在(2)的条件下,若BAC BAD ∠=∠,过点D 作DF BC ∥交射线于点F ,当8DFE DAE ∠=∠时,求BAD ∠的度数.【答案】(1)见详解;(2)DAE ∠+2C ∠=90°,理由见详解;(3)99°.【解析】【分析】(1)根据平行线的性质和判定定理,即可得到结论;(2)设CE 与BD 交点为G ,由三角形外角的性质得∠CGB=∠D+∠DAE ,由BD BC ⊥,得∠CGB+∠C=90°,结合C D ∠=∠,即可得到结论; (3)设∠DAE=x ,则∠DFE=8x ,由DF BC ∥,DAE ∠+2C ∠=90°,得关于x 的方程,求出x 的值,进而求出∠C ,∠ADB 的度数,结合∠BAD=∠BAC ,即可求解.【详解】(1)∵AC BD ,∴∠C+∠CBD=180°,∵C D ∠=∠,∴∠D+∠CBD=180°,∴AD BC ∥;(2)DAE ∠+2C ∠=90°,理由如下:设CE 与BD 交点为G ,∵∠CGB 是∆ADG 的外角,∴∠CGB=∠D+∠DAE ,∵BD BC ⊥,∴∠CBD=90°,∴在∆BCG 中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵C D ∠=∠,∴DAE ∠+2C ∠=90°;(3)设∠DAE=x ,则∠DFE=8x ,∴∠AFD=180°-8x ,∵DF BC ∥,∴∠C=∠AFD=180°-8x ,又∵DAE ∠+2C ∠=90°,∴x+2(180°-8x)=90°,解得:x=18°,∴∠C=180°-8x=36°=∠ADB ,又∵∠BAD=∠BAC ,∴∠ABC=∠ABD=12∠CBD=45°, ∴∠BAD=180°-45°-36°=99°.【点睛】本题主要考查平行线的性质和判定定理,三角形的内角和定理与外角的性质,掌握平行线的性质和三角形外角的性质,是解题的关键.4.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【答案】(1)50°;(2)①见解析;②见解析;(3)360°.【解析】【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.5.如图①,在平面直角坐标系中,点A 的坐标为()0,4,4OC OB =.① ②(1)若ABC ∆的面积为20,求点B ,C 的坐标.(2)如图①,向x 轴正方向移动点B ,使90ABC ACB ∠-∠=︒,作BAC ∠的平分线AD 交x 轴于点D ,求ADO ∠的度数.(3)如图②,在(2)的条件下,线段AD 上有一动点Q ,作AQM DQP ∠=∠,它们的边分别交x 轴、y 轴于点M ,P ,作FMG DMQ ∠=∠,试判断FM 与PQ 的位置关系,并说明理由.【答案】(1)10,03B ⎛⎫⎪⎝⎭,40,03C ⎛⎫ ⎪⎝⎭;(2)45°;(3)FM PQ ⊥ 【解析】【分析】(1)设OB=a ,根据三角形的面积公式列式求出a ,即可得到点B 、C 的坐标;(2)设ACB α∠=,根据题意得到∠ABC=90°+α,根据三角形内角和定理得到∠BAC=90°-2α,再根据角平分线的定义、三角形外角的性质即可得到答案; (3)延长FM 交QP 于H ,设∠DQP=∠AQM=α,∠FMG=∠DMQ=β,根据三角形外角的性质、三角形内角和定理求出∠2+∠DMH=90°即可得到答案.【详解】(1)设OB=a ,则OC=4a ,∴BC=3a ,由题意得,134202a ⨯⨯=, 解得:a=103, ∴OB=103,OC=403, ∴10,03B ⎛⎫ ⎪⎝⎭,40,03C ⎛⎫ ⎪⎝⎭; (2)设ACB α∠=,∵90ABC ACB ∠-∠=︒,∴90ABC α∠=︒+,∴180BAC ABC ACB ∠=︒-∠-∠()18090αα=︒-︒+-902α=︒-,∵AD 平分BAC ∠,∴1452DAC BAC α∠=∠=︒-, ∴4545ADO DAC ACB αα∠=∠+∠=︒-+=︒;(3)FM ⊥PQ ,理由如下:延长FM 交PQ 于点H ,.设∠DQP=∠AQM=α,∠FMG=∠DMQ=β,则∠DMH=∠FMG=β,∠AQM=∠QMD+∠QDM ,即α=β+45°,∴∠1=180°-∠DQP-∠ADO=90°-β,∴∠2=∠1=90°-β,∴∠2+∠DMH=β+90°-β=90°,∴∠MHQ=90°,即FM ⊥PQ.【点睛】本题考查了角平分线的定义,三角形外角的性质,三角形内角和定理,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.6.如图四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.【答案】(1)证明见解析;(2)①20°;②160°;(3)13或73【解析】【分析】(1)根据AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根据CF平分∠BCD,∠BCD=90°,可求出∠GCF的度数,由AD//BC可求出∠AEF 和∠DAB的度数,根据三角形外角的性质求出∠AFC的度数即可;②根据三角形外角性质求出即可;(3)根据M点在BP的上面和下面两种情况讨论,分别求出∠PBM和∠ABM 的值即可.【详解】(1)∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA;(2)①∵CF平分∠BCD,∠BCD=90°,∴∠GCF=45°,∵AD∥BC,∠ABC=50°,∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,∵AG平分∠BAD,∴∠BAG=∠GAD=65°,∴∠AFC=65°﹣45°=20°;②如图:∵∠AGB=65°,∠BCF=45°,∴∠AFC=∠CGF+∠BCF=115°+45°=160°;(3)有两种情况:①当M在BC的下方时,如图:∵∠ABC=50°,∠ABP=2∠PBG,∴∠ABP=(1003)°,∠PBG=(503)°,∵AG∥CH,∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,∴∠ABM=∠ABP+∠PBM=(1003+25)°=(1753)°,∴∠ABM:∠PBM=(1753)°:25°=73;②当M在BC的上方时,如图:同理得:∠ABM=∠ABP﹣∠PBM=(1003﹣25)°=(253)°,∴∠ABM:∠PBM=(253)°:25°=13;综上,∠ABM:∠PBM的值是13或73.【点睛】本题考查平行线的性质和三角形外角性质,熟练掌握平行线性质是解题关键.7.如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,在(2)中,若射线OP、CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠OPC的大小,并证明你的结论(用含n的式子表示).【答案】(1)证明见解析(2)15°(3)45 n【解析】试题分析:(1)根据AB坐标可以求得∠OAB大小,根据角平分线性质可求得∠OAC大小,即可解题;(2)根据题干中给出的∠POC=13∠AOC、∠PCE=13∠ACE可以求得∠PCE和∠POC的大小,再根据三角形外角等于不相邻两内角和即可解题;(3)解法和(2)相同,根据题干中给出的∠POC=1n∠AOC、∠PCE=1n∠ACE可以求得∠PCE和∠POC的大小,再根据三角形外角等于不相邻两内角和即可解题.试题解析:(1)证明:∵A(0,1),B(4,1),∴AB∥CO,∴∠OAB=180°-∠AOC=90°.∵AC平分∠OAB,∴∠OAC=45°,∴∠OCA=90°-45°=45°,∴∠OAC=∠OCA.(2)解:∵∠POC=∠AOC,∴∠POC=×90°=30°.∵∠PCE=∠ACE,∴∠PCE=(180°-45°)=45°.∵∠P+∠POC=∠PCE,∴∠P=∠PCE-∠POC=15°.(3)解:∠OPC=.证明如下:∵∠POC=∠AOC,∴∠POC=×90°=.∵∠PCE=∠ACE,∴∠PCE=(180°-45°)=.∵∠OPC+∠POC=∠PCE,∴∠OPC=∠PCE-∠POC=.点睛:本题考查了三角形内角和为180°的性质,考查了角平分线平分角的性质,考查了三角形外角等于不相邻两内角和的性质,本题中求∠PCE和∠POC的大小是解题的关键.8.我校快乐走班数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°)小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:.(填“能“或“不能”)(2)设AA1=A1A2=A2A3=1.则θ=度;活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.数学思考:(3)若只能摆放5根小棒,求θ的范围.【答案】(1)能.(2)θ=22.5;(3) 15°≤θ<18°.【解析】【分析】(1)根据已知条件:小棒两端能分别落在两射线上进行判断即可;(2)根据等腰三角形的性质和三角形的外角性质即得结果;(3)根据等腰三角形的性质和三角形的内角和定理可得关于θ的不等式组,解不等式组即得结果.【详解】(1)∵根据已知条件∠BAC=θ(0°<θ<90°)小棒两端能分别落在两射线上,∴小棒能继续摆下去;(2)∵A1A2=A2A3,A1A2⊥A2A3,∴∠A2A1A3=45°,∴∠AA2A1+∠θ=45°,∵∠AA2A1=∠θ,∴∠θ=22.5°;(3)如图乙,∵A2A1=A2A3,∴∠A2A3A1=∠A2A1A3=2θ°,∵A2A3=A4A3,∴∠A3A2A4=∠A3A2A4=3θ°,∵A4A3=A4A5,∴∠A4A3A5=∠A4A5A3=4θ°,根据三角形内角和定理和等腰三角形的性质,可得6θ⩾90°,5θ<90°,∴15°⩽θ<18°.【点睛】本题考查了等腰三角形的性质、三角形内角和定理和三角形的外角性质,根据题意找出规律并结合等腰三角形的性质是解题的关键.9.已知,如图甲,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC 于D.(1)试说明:∠EFD=(∠C﹣∠B);(2)当F在AE的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.【答案】(1)见详解;(2)成立,证明见详解.【解析】【分析】(1) 根据三角形内角和定理以及角平分线的定义得到∠BAE=12∠BAC=12(180°﹣∠B﹣∠C)=90°﹣12(∠B+∠C),然后根据三角形的外角的性质可以得到∠FEC=∠B+∠BAE,求得∠FEC,再根据直角三角形的两个锐角互余即可求得结论;(2)根据(1)可以得到∠AEC=90°+12(∠B﹣∠C),根据对顶角相等即可求得∠DEF,然后利用直角三角形的两个锐角互余即可求解.【详解】解:(1)∵AE平分∠BAC,∴∠BAE=12∠BAC=12(180°﹣∠B﹣∠C)=90°﹣12(∠B+∠C ), ∵∠FEC=∠B+∠BAE , 则∠FEC=∠B+90°﹣12(∠B+∠C ) =90°+12(∠B ﹣∠C ), ∵FD ⊥EC ,∴∠EFD=90°﹣∠FEC ,则∠EFD=90°﹣[90°+12(∠B ﹣∠C )] =12(∠C ﹣∠B ); (2)成立.证明:同(1)可证:∠AEC=90°+12(∠B ﹣∠C ), ∴∠DEF=∠AEC=90°+12(∠B ﹣∠C ), ∴∠EFD=90°﹣[90°+12(∠B ﹣∠C )] =12(∠C ﹣∠B ). 【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.10.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC .(1)若∠B =72°,∠C =30°,①求∠BAE 的度数;②求∠DAE 的度数;(2)探究:如果只知道∠B =∠C +42°,也能求出∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.【答案】(1)①39°;②21°;(2)21°.【解析】【分析】()1①先根据三角形内角和定理计算出BAC 78∠=,然后根据角平分线定义得到1BAE BAC 392∠∠==;②根据垂直定义得到ADB 90∠=,则利用互余可计算出BAD 90B 18∠∠=-=,然后利用DAE BAE BAD ∠∠∠=-进行计算即可;()2由B C BAC 180∠∠∠++=,B C 42∠∠=+可消去C ∠得到BAC 2222B ∠∠=-,则根据角平分线定义得到BAE 111B ∠∠=-,接着在ABD 中利用互余得BAD 90B ∠∠=-,然后利用DAE BAE BAD ∠∠∠=-进行计算即可得到DAE 21∠=.【详解】解:()1B C BAC 180∠∠∠++=①,BAC 180723078∠∴=--=, AE 平分BAC ∠,1BAE BAC 392∠∠∴==; AD BC ⊥②,ADB 90∠∴=,BAD 90B 18∠∠∴=-=,DAE BAE BAD 391821∠∠∠∴=-=-=;()2能.B C BAC 180∠∠∠++=,B C 42∠∠=+,C B 42∠∠∴=-,2B BAC 222∠∠∴+=,BAC 2222B ∠∠∴=-, AE 平分BAC ∠,BAE 111B ∠∠∴=-,在ABD 中,BAD 90B ∠∠=-,()()DAE BAE BAD 111B 90B 21∠∠∠∠∠∴=-=---=.【点睛】本题考查三角形内角和定理:三角形内角和是180.掌握角平分线和高的定义,熟练进行角度的运算.。
苏科版八年级数学上册 三角形解答题单元练习(Word版 含答案)
苏科版八年级数学上册 三角形解答题单元练习(Word 版 含答案)一、八年级数学三角形解答题压轴题(难)1.已知:线段AB ,以AB 为公共边,在AB 两侧分别作ABC ∆和ABD ∆,并使C D ∠=∠.点E 在射线CA 上.(1)如图l ,若ACBD ,求证:AD BC ∥; (2)如图2,若BD BC ⊥,请探究DAE ∠与C ∠的数量关系,写出你的探究结论,并加以证明; (3)如图3,在(2)的条件下,若BAC BAD ∠=∠,过点D 作DF BC ∥交射线于点F ,当8DFE DAE ∠=∠时,求BAD ∠的度数.【答案】(1)见详解;(2)DAE ∠+2C ∠=90°,理由见详解;(3)99°.【解析】【分析】(1)根据平行线的性质和判定定理,即可得到结论;(2)设CE 与BD 交点为G ,由三角形外角的性质得∠CGB=∠D+∠DAE ,由BD BC ⊥,得∠CGB+∠C=90°,结合C D ∠=∠,即可得到结论; (3)设∠DAE=x ,则∠DFE=8x ,由DF BC ∥,DAE ∠+2C ∠=90°,得关于x 的方程,求出x 的值,进而求出∠C ,∠ADB 的度数,结合∠BAD=∠BAC ,即可求解.【详解】(1)∵AC BD ,∴∠C+∠CBD=180°,∵C D ∠=∠,∴∠D+∠CBD=180°,∴AD BC ∥;(2)DAE ∠+2C ∠=90°,理由如下:设CE 与BD 交点为G ,∵∠CGB 是∆ADG 的外角,∴∠CGB=∠D+∠DAE ,∵BD BC ⊥,∴∠CBD=90°,∴在∆BCG 中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵C D ∠=∠,∴DAE ∠+2C ∠=90°;(3)设∠DAE=x ,则∠DFE=8x ,∴∠AFD=180°-8x , ∵DF BC ∥,∴∠C=∠AFD=180°-8x ,又∵DAE ∠+2C ∠=90°,∴x+2(180°-8x)=90°,解得:x=18°,∴∠C=180°-8x=36°=∠ADB ,又∵∠BAD=∠BAC ,∴∠ABC=∠ABD=12∠CBD=45°, ∴∠BAD=180°-45°-36°=99°.【点睛】本题主要考查平行线的性质和判定定理,三角形的内角和定理与外角的性质,掌握平行线的性质和三角形外角的性质,是解题的关键.2.如图,在△ABC 中,记∠A=x 度,回答下列问题:(1)图中共有三角形 个.(2)若 BD ,CE 为△ABC 的角平分线,则∠BHC= 度(结果用含 x 的代数式表示),并证明你的结论.(3)若 BD ,CE 为△ABC 的高线,则∠BHC= 度(结果用含 x 的代数式表示),并证明你的结论.【答案】(1)图中共有三角形 8 个;(2)(90+12x ) ;(3)(180-x ). 【解析】【分析】 本题考查的是三角形内角和定理,分析题意观察图形,根据三角形内角和为180°可知∠ABC=180-2x ,根据角平分线的性质可以求出∠BHC,根据高线的性质可知∠CDB=∠BEC=90º,再次利用三角形内角和定理可以求答案【详解】解:(1)图中共有三角形 8 个;(2)∠BHC=(90+ 12x )度.∵BD,CE 分别是∠ABC,∠ACB 的平分线,∴∠BHC=180º-∠HBC-∠HCB=180º-12(∠ABC+∠ACB)= (90+12x )度.(3)∠BHC=(180-x)度,∵BD,CE 为△ABC 的高线,∴BD⊥AC,CE⊥AB,∴∠CDB=∠BEC=90º,∵∠BEC+∠ABC+∠BCH=180°∠CDB+∠ACB+∠CBH=180°∴∠BEC+∠ABC+∠BCH+∠CDB+∠ACB+∠CBH=360°∠ABC+∠BCH+∠ACB+∠CBH=180°∵∠ABC+∠ACB=180°-∠A∠BCH+∠CBH=180°-∠BHC∴180°-∠A+180°-∠BHC=180°∴∠BHC=(180-x)度【点睛】本题的关键是掌握三角形内角和定理3.如图, A为x轴负半轴上一点, B为x轴正半轴上一点, C(0,-2),D(-3,-2).(1)求△BCD的面积;(2)若AC⊥BC,作∠CBA的平分线交CO于P,交CA于Q,判断∠CPQ与∠CQP的大小关系, 并证明你的结论.【答案】(1)3;(2)∠CPQ=∠CQP,理由见解析;【解析】【分析】(1)求出CD的长度,再根据三角形的面积公式列式计算即可得解;(2)根据角平分线的定义可得∠ABQ=∠CBQ,然后根据等角的余角相等解答;【详解】解:(1)∵点C(0,-2),D(-3,-2),∴CD=3,且CD//x轴∴△BCD面积=12×3×2=3;(2)∠CPQ=∠CQP,∵AC⊥BC,∴∠ACO+∠BCO=90°,又∠ACO+∠OAC=90°∴∠OAC=∠BCO,又BQ平分∠CBA,∴∠ABQ=∠CBQ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ(2)∠CPQ=∠CQP,∵AC⊥BC,∴∠ACO+∠BCO=90°,又∠ACO+∠OAC=90°∴∠OAC=∠BCO,又BQ平分∠CBA,∴∠ABQ=∠CBQ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ【点睛】本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质,综合题,熟记性质并准确识图是解题的关键.4.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.【答案】(1)120°;(2)β﹣α=60° 理由见解析;(3)平行,理由见解析.【解析】【分析】(1)利用四边形的内角和求出∠ABC与∠ADC的和,利用角平分线的定义以及α+β=120°推导即可;(2)由(1)得,∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBG+∠CDG=12(α+β),在△BCD中利用三角形的内角和定理得∠BDC+∠CDB =180°﹣β,在△BDG中利用三角形的内角和定理得出关于α、β的等式整理即可得出结论;(3)延长BC交DF于H,由(1)得∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBE+∠CDH=12(α+β),利用三角形的外角的性质得∠CDH=β﹣∠DHB,然后代入∠CBE+∠CDH=12(α+β)计算即可得出一组内错角相等.【详解】(1)解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°-(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,∵α+β=120°,∴∠MBC+∠NDC=120°;(2)β﹣α=60°理由:如图1,连接BD,由(1)得,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=12∠MBC,∠CDG=12∠NDC,∴∠CBG+∠CDG=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴12(α+β)+180°﹣β+30°=180°,∴β﹣α=60°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=12∠MBC,∠CDH=12∠NDC,∴∠CBE+∠CDH=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=12(α+β),∵α=β,∴∠CBE+β﹣∠DHB=12(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.【点睛】此题是三角形综合题,主要考查了平角的意义,四边形的内角和,三角形内角和,三角形的外角的性质,角平分线的意义,用整体代换的思想是解本题的关键,整体思想是初中阶段的一种重要思想,要多加强训练.5.已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE的角平分线.(1)当∠BAC=40°时,∠BPC=,∠BQC=;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC的度数.【答案】(1) 70°,125°;(2)∠BAC=60° (3) 45°【解析】分析:(1)根据三角形的外角性质分别表示出∠DBC与∠BCE,再根据角平分线的性质可求得∠CBP+∠BCP,最后根据三角形内角和定理即可求解;根据角平分线的定义得出∠QBC=12∠PBC,∠QCB=12∠PCB,求出∠QBC+∠QCB的度数,根据三角形内角和定理求出即可;(2)根据平行线的性质得到∠MBC+∠NCB=180°,依此求解即可;(3)根据题意得到∠MBC+∠NCB,再根据三角形外角的性质和三角形内角和定理得到∠BOC 的度数.详解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠DBC+∠BCE=180°+∠A=220°,∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,∴∠CBP+∠BCP=12(∠DBC+∠BCE)=110°,∴∠BPC=180°﹣110°=70°,∵BQ、CQ分别是∠PBC、∠PCB的角平分线,∴∠QBC=12∠PBC,∠QCB=12∠PCB,∴∠QBC+∠QCB=55°,∴∠BQC=180°﹣55°=125°;(2)∵BM∥CN,∴∠MBC+∠NCB=180°,∵BM、CN分别是∠PBD、∠PCE的角平分线,∴34(∠DBC+∠BCE)=180°,即34(180°+∠BAC)=180°,解得∠BAC=60°;(3)∵∠BAC=120°,∴∠MBC+∠NCB=34(∠DBC+∠BCE)=34(180°+α)=225°,∴∠BOC=225°﹣180°=45°.点睛:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.6.(1)如图1,有一块直角三角板XYZ(其中∠X=90°)放置在△ABC上,恰好三角板XYZ 的两条直角边XY,XZ分别经过B,C两点,且直角顶点X在△ABC内部.①若∠A=40°,∠ABC+∠ACB= °;∠XBC+∠XCB= °;②试判断∠A与∠XBA+∠XCA之间存在怎样数量关系?并写出证明过程.(2)如图2,如果直角顶点X在△ABC外部,试判断∠A、∠XBA、∠XCA之间又存在怎样的数量关系?(只写出答案,无需证明).【答案】(1)①140,90;②∠A+∠XBA+∠XCA=90°,证明见解析;(2)∠A+(∠XBA-∠XCA)=90°【解析】试题分析:(1)①根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=140°,∠XBC+∠XCB=180°﹣∠XBC=90°,进而可求出∠ABX+∠ACX 的度数;②根据三角形内角和定义有90°+(∠ABX+∠ACX)+∠A=180°,则可得出结论.(2)由②的解题思路可得:∠A+(∠XBA-∠XCA)=90°.(1)①若∠A=40°,∠ABC+∠ACB= 140 °;∠XBC+∠XCB= 90 °;②∠A+∠XBA+∠XCA=90°(或等式的变形也可以)证明:∵∠X=90°∴∠XBC +∠XCB=180°-∠X=90°∵∠A +∠ABC +∠ACB =180°,∴∠A +(∠XBA +∠XCA )+(∠XBC +∠XCB )=180°,∴∠A +(∠XBA +∠XCA )=180°-90°=90°,∴∠A=90°-(∠XBA +∠XCA ) (2) ∠A+(∠XBA -∠XCA ) =90°.点睛:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是熟练掌握三角形的内角和为180°以及沟通外角和内角的关系.7.如图1:ABC 中,AD 是高,AE 是BAC ∠的平分线,=40=70ABC ACB ,∠︒∠︒.(1)求EAD ∠的度数(2)当==ABC ACB αβ∠∠,,请用αβ,表示EAD ∠,并写出推导过程(3)当AE 是BAC ∠的外角FAC ∠的平分线,如图2则此时EAD ∠的度数是多少,用,αβ表示,直接写出结果.【答案】(1)15o ;(2) -2EAD βα∠=;(3) 902EAD αβ-∠=︒+【解析】【分析】(1)先根据三角形的内角和定理求得∠BAC=180°-∠B-∠C=70°,利用角平分线的定义得∠EAC=12∠BAC=35°,而∠DAC=90°-∠C=20°,通过∠EAD=∠EAC-∠DAC 即可得到结果. (2)猜想∠DAE=12(β-α),重复(1)的过程找出∠BAD 和∠BAE 的度数,二者做差即可得出结论;(3)作∠BAC 的内角平分线AE ′,根据角平分线的性质求出∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=90°,进而求出∠DAE 的度数. 【详解】解:(1)40,70,ABC ACB ∠=︒∠=︒180704070BAC ∴∠=︒-︒-︒=︒,AE 是BAC ∠的平分线,1=352BAE CAE BAC ∴∠=∠=∠︒, 在ACD Rt 中,9020CAD C ∠=︒-∠=︒,15EAD EAC CAD ∴∠=∠-∠=︒.(2),,ABC ACB αβ∠=∠=180BAC αβ∴∠=︒--, AE 是BAC ∠的平分线,1111=180--=90--2222BAE CAE BAC αβαβ∴∠=∠=∠︒︒(), 在Rt △ACD 中,90CAD β∠=︒-,-=2EAD CAE CAD βα∴∠=∠-∠. (3)902EAD αβ-∠=︒+.如图,作∠CAB 的内角平分线AE′,则∠DAE′=-2βα.因为AE 是∠ACB 的外角平分线,所以∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=12(∠CAB+∠CAF )=90°, 所以∠DAE=90°-∠DAE′=90°--2βα=902αβ-︒+. 即∠DAE 的度数为902αβ-︒+. 【点睛】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.解决(3)作辅助线是关键.8.在△ABC 中,点D 、E 分别在边AC 、BC 上(不与点A 、B 、C 重合),点P 是直线AB 上的任意一点(不与点A 、B 重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点P 在线段AB 上运动,且n=90°时①若PD∥BC,PE∥AC,则m=_____;②若m=50°,求x+y 的值.(2)当点P 在直线AB 上运动时,直接写出x 、y 、m 、n 之间的数量关系.【答案】(1)①90°,②140°;(2)详见解析.【解析】分析:(1)①证明四边形DPEC为平行四边形可得结论;②根据四边形内角和为360°,列等式求出x+y的值;(2)根据P、D、E位置的不同,分五种情况:①y-x=m+n,如图2,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;②x-y=m-n,如图3,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;③x+y=m+n,如图4,点P在线段BA上时,根据四边形的内角和为360°列等式,化简后得出结论;④x-y=m+n,如图5,同理得出结论;⑤y-x=m-n,如图6,同理得出结论.详解:(1)①如图1,∵PD∥BC,PE∥AC,∴四边形DPEC为平行四边形,∴∠DPE=∠C,∵∠DPE=m,∠C=n=90°,∴m=90°;②∵∠ADP=x,∠PEB=y,∴∠CDP=180°-x,∠CEP=180°-y,∵∠C+∠CDP+∠DPE+∠CEP=360°,∠C=90°,∠DPE=50°,∴90°+180°-x+50°+180°-y=360°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y ,∴y﹣x=m ﹣n .点睛:本题考查了三角形综合、平行四边形的判定.9.已知:△ABC 中 ∠A=64°, 角平分线BP 、CP 相交于点P .1若BP 、CP 是两内角的平分线,则∠BPC=_____(直接填数值) 求证:01902BPC A ∠=+∠. 2若BP 、CP 是两外角的平分线,则∠BPC=_____(直接填数值)3若BP 、CP 是一内角的平分线,一外角的平分线,则∠BPC=_______(直接填数值)4 由①②③的数值计算可知:∠BPC 与∠A 有着密切的数量关系,请就第②③写出你的发现【答案】(1)122°;(2)58°;(3)32°.(4).若BP 、CP 是两外角的平分线,则∠BPC=90°-12∠A ; 若BP 、CP 是一内角的平分线,一外角的平分线,则∠BPC=12∠A . 【解析】【分析】①根据三角形角平分线的性质可得,∠BPC +∠PCB =90°-12∠A ,根据三角形内角和定理可得∠BPC =90°+12∠A ; ②根据三角形外角平分线的性质可得∠BCP =12(∠A +∠ABC )、∠PBC =12(∠A+∠ACB);根据三角形内角和定理可得∠BPC=90°-12∠A;③根据BP为∠ABC的角平分线,CP为△ABC外角∠ACE的平分线,可知,∠A=180°-∠1-∠3,∠P=180°-∠4=∠5=180°-∠3-12(∠A+2∠1),两式联立可得2∠P=∠A.④根据前面的情况直接写出∠BPC与∠A的数量关系,【详解】解:(1)证明:∵在△ABC中,PB、PC分别是∠ABC、∠ACB的平分线,∠A为x°∴∠PBC+∠PCB=12(180°-∠A)=12×(180°-x°)=90°-12∠A故∠BPC=180°-(∠PBC+∠PCB)=180°-(90°-12∠A)=90°+12∠A;则∠BPC=122°;(2)理由如下:∵BP、CP为△ABC两外角∠ABC、∠ACB的平分线,∠A为x°∴∠BCP=12(∠A+∠ABC)、∠PBC=12(∠A+∠ACB),由三角形内角和定理得,∠BPC=180°-∠BCP-∠PBC,=180°-12[∠A+(∠A+∠ABC+∠ACB)],=180°-12(∠A+180°),=90°-12∠A;则∠BPC=58°;(3)如图:∵BP为∠ABC的内角平分线,CP为△ABC外角∠ACE的平分线,两角平分线交于点P,∴∠1=∠2,∠5=12(∠A+2∠1),∠3=∠4,在△ABE中,∠A=180°-∠1-∠3∴∠1+∠3=180°-∠A----①在△CPE中,∠P=180°-∠4-∠5=180°-∠3-12(∠A+2∠1),即2∠P=360°-2∠3-∠A-2∠1=360°-2(∠1+∠3)-∠A----②,把①代入②得2∠P=∠A.则∠BPC=32°;(4)若BP、CP是两外角的平分线,则∠BPC=90°-12∠A;若BP、CP是一内角的平分线,一外角的平分线,则∠BPC=12∠A.故填为:(1)122°;(2)58°;(3)32°.【点睛】此类题目考查的是三角形内角与外角的关系,角平分线的性质,三角形内角和定理,属中学阶段的常规题.10.(1)如图①∠1+∠2与∠B+∠C有什么关系?为什么?(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2_______∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2=______.(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°-(∠B+∠C+∠1+∠2)=360°-= ,猜想∠BDA+∠CEA与∠A的关系为【答案】见解析.【解析】【分析】试题分析:(1)根据三角形内角是180度可得出,∠1+∠2=∠B+∠C;(2)△ABC沿DE 折叠,∠1+∠2=∠B+∠C,从而求出当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°,(3)根据以上计算可归纳出一般规律:∠BDA+∠CEA=2∠A.试题解析:解:(1)∠1+∠2 = ∠B+∠C,理由如下:在△ADE中,∠1+∠2 = 180°- ∠A在△ABC中,∠B+∠C = 180°- ∠A∴∠1+∠2 = ∠B+∠C(2)∵∠1+∠2+∠BDE+∠CED=∠B+∠C+∠BDE+∠CED=360°,∴∠1+∠2=∠B+∠C,当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°(3)如果∠A=30°,则x+y=360°-(∠B+∠C+∠1+∠2)=360°-300°=60°,所以∠BDA+∠CEA 与∠A的关系为:∠BDA+∠CEA=2∠A.考点:1.翻折变换(折叠问题);2. 三角形内角和.【详解】请在此输入详解!。
第一章 全等三角形数学八年级上册-单元测试卷-苏科版(含答案)
第一章全等三角形数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC和△DBE中,AB=BC,DB=EB,∠ABC=∠DBE=50°.若∠BDC=25°,AD=4,DE= ,则CD的长为()A. B. C. D.22、如图,D、E分别是△ABC的边AC、BC上的点,且△ADB≌△EDB≌△EDC,则∠C的度数为()A.15ºB.20ºC.25ºD.30º3、如图,在菱形ABCD中,∠A=60°,点E,F分别为AD,DC上的动点,∠EBF=60°,点E从点A向点D运动的过程中,AE+CF的长度().A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等4、一块三角形玻璃被打碎后,店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃,能够全等的依据是()A. B. C. D.5、如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S四边形AEPF=S△ABC;④BE+CF=EF.上述结论中始终正确的有()A.4个B.3个C.2个D.1个6、如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC7、如图,已知B、E、C、F在同一条直线上,BE=CF,AB∥DE,则下列条件中,不能判断△ABC≌△DEF的是( )A. B. C. D.8、如图,中, BP平分∠ABC, AP⊥BP于P,连接PC,若的面积为3.5cm2,的面积为4.5cm2,则的面积为( ).A.0.25cm 2B.0.5 cm 2C.1cm 2D.1.5cm 29、如图,在矩形ABCD中,AD= AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①△ABE≌△ADH;②HE=CE;③H 是BF的中点;④AB=HF;其中正确的有()A.1个B.2个C.3个D.4个10、如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中不正确的是()A. B. C.点D在的平分线上 D.点D是CF的中点11、下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等12、如图,AC与BD相交于点P,AP=DP,则需要“SAS”证明△APB≌△DPC,还需添加的条件是( )A.BA=CDB.PB=PCC.∠A=∠DD.∠APB=∠DPC13、如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.2 C.5 D.414、如图,△ABC中,∠B=∠C=65°,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°15、如图,△ABC中,∠ABC=∠ACB,D为BC上一点,BF=CD,CE=BD,则∠EDF等于()A. B. C. D.二、填空题(共10题,共计30分)16、如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是________.17、如图,正方形ABCD中,点E是AD边的中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BE∶BC= ∶2;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的序号是________.18、如图,在中,,,为的中点,,则的长为________.19、在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E 作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=________cm.20、如图,已知,,点、、、在一条直线上,要证,还需添加的条件是:________.(只需添加一个条件)21、如图,BE⊥AC,垂足为D,且AD=CD,BD=ED.若∠ABC=54°,则∠E=________°.22、如图,正方形ABCD中,BE平分∠ABD交AD于E,EF⊥BD于F,FP⊥AB于P,已知正方形ABCD的边长BC=2,则AP的长是________.23、如图所示,在等腰中,,点D为射线上的动点,,且与所在的直线交于点P,若,则________.24、如图,在中,,,于点D,于点E,若,,则DE的长是________.25、已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4cm,则△DEF中的EF边等于________ cm.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、问题探究:如图①,四边形 ABCD是正方形,BE⊥BF,BE=BF,求证:△ABE≌△CBF;方法拓展:如图②,ABCD是矩形,BC=2AB,BF⊥BE,BF=2BE,若矩形ABCD的面积为40,△ABE的面积为4,求阴影部分图形的面积.28、如图,AB=12米,CA⊥AB,垂足为点A,DB⊥AB,垂足为B,动点P从点B沿BA向点A方向移动,每分钟走1m,同时,点Q从点B沿BD向点D方向移动,每分钟走2m,已知CA=4m,几分钟后,△CAP≌PBQ?说明理由.29、如图,己知∠A=∠D,CO=B0,求证:△AOC≌△DOB.30、如图,点B,E,C,F在一条直线上,AC∥DE,AC=DE,∠A=∠D,试说明:AB=DF参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、A5、B6、B7、D8、C9、C11、C12、B13、D14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。
苏科版八年级数学上册 初二单元练习 .12.docx
初中数学试卷桑水出品初二数学单元练习 2015.12命题人:孙6 审核人:彭7 考试时间:100分钟 卷面总分:120分 一.选择题(每题3分,共24分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2.为调查班级中对新班主任老师的印象,下列更具代表性的样本是( ) A.前十名学生的印象 B.后十名学生的印象 C.全体男学生的印象 D.单号学号学生的印象3.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据频数分别为2、8、15、5,则第四组数据的频数和频率分别为( )A. 20,0.4 B. 20,0.5 C. 25,0.5 D.25,0.4 4.下列事件中,属于不可能事件的是( ) A .明天某地区早晨有雾B .抛掷一枚质地均匀的骰子,向上一面的点数是6C .声音可以在真空中传播D .明天见到的第一辆公交车的牌照的末位数字将是偶数 5.下列各组数中,是勾股数的为( )A .1,1,2B .7,24,25C .1.5,2,2.5D .6,12,136.下表给出的是关于一次函数y =kx +b 的自变量x 及其对应的函数值y 的若干信息:A B C D则根据表格中的相关数据可以计算得到m 的值是( ) A .0 B .1 C .2 D .37.如图,下面不能判断是平行四边形的是( )A .∠B =∠D ,∠B AD =∠B CD ; B .AB ∥CD ,AD =BCC .∠B +∠DAB =180°,∠B +∠BCD =180° D . AB ∥CD ,AB =CD8.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是( )二、填空题(每题3分,共30分) 16__________.10.有理数54.7010⨯的有效数字有__________位.11.在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是_______.12.已知一次函数,(2)2y m x =++的值随着x 的增大而增大,则m 的取值范围是__________. 13.将函数y =3x -5的图像向上平移3个单位后,所得函数图像的解析式 __________.14.如图,在□ABCD 中,CE AB ⊥,E 为垂足,若∠A =122°,则BCE ∠=__________.15.在一个不透明的摇奖箱内装有20个形状、大小等完全相同的小球,其中只有5个球标有中奖标志,那随机抽取一个小球中奖的概率是__________.16.如图,已知函数y =3x +b 和y =ax -3的图像交于点P (-2,-5),则根据图像可得方程组⎩⎨⎧=--=-33y ax by x 的解是__________.ABCD17.如图,在□ABCD 中,用直尺和圆规作BAD ∠的平分线AG 交BC 于点E ,若12BF =,10AB =,则AE 的长为__________.18.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2015次,点P 依次落在点1P ,2P ,3P ,…,2014P ,2015P 的位置,记(),i i i P x y ,i =1,2,3,…,2014,2015,则2015P的横坐标为__________.三.解答题(共66分) 19.计算(本题8分) (1)20150131(1)()83π---+-(2)求()3464x +=-中的x20.(本题6分)如图,一木杆在离地某处断裂,木杆顶部落在离木杆底部8米处,已知木杆原长16米,求木杆断裂处离地面多少米?21.(本题6()221120x y z -++-=,求2015x2017y ++()20191z -.22.(本题8分)2015年7月31日,在马来西亚吉隆坡举行的国际奥委会 第128次全会上,国际奥委会主席巴赫宣布:中国北京获得2022年第24 届冬季奥林匹克运动会主办权.学校想知道学生对相关信息的了解程度,8米采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:类别A B C D频数30 40 24 b频率a0.4 0.24 0.06请你根据所提供的信息解答下列问题:(1)表中的a=,b=;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)我校有学生3600名,根据调查结果估计该校学生中类别为C的人数约为多少?23.(本题8分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.24.(本题8分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.ADCB24%(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.25.(本题10分)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.26.(本题12分)如图,直线3:34l y x=+交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A的坐标,点B的坐标,BC= . (2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.盐城景山中学2015年秋学期初二数学月考试卷答案12.151-8题:C D A C B C B C9、2 10、3 11、(3,-2) 12、2m >- 13、32y x =-14、32︒15、1416、{25x y =-=- 17、16 18、201419、(1)-1 (2)8x =-20、()222816x x +=-,得6x =,离地面6米 21、1x =时,原式=1-;1x =-时,原式=3- 22、(1)0.3a =,6b = (2)144︒(3)864人 23、(1)直线AB 的解析式为y=2x ﹣2. (2)点C 的坐标是(2,2)24、证明: (1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC ,又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF ∴AF=BC , 在Rt △AFE 和Rt △BCA 中,,∴△AFE ≌△BCA (HL ),∴AC=EF ;(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD ,∴∠DAB=∠DAC+∠BAC=90°∴EF ∥AD ,∵AC=EF ,AC=AD ,∴EF=AD ,∴四边形ADFE 是平行四边形25、(1)小明骑车速度:,在甲地游玩的时间是1﹣0.5=0.5(h).(2)妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(,0)代入得b2=﹣80∴y=60x﹣80…(5分)∴解得∴交点F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.(3)方法一:设从家到乙地的路程为m(km)则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10 得:,∵∴∴m=30.方法二:设从妈妈追上小明的地点到乙地的路程为n(km),由题意得:∴n=5∴从家到乙地的路程为5+25=30(km).26、(1)点A 坐标是(-4,0) ,点B 的坐标 (0,3) ,BC= 5 .(3分) (2)点P 在(1,0)时...(3分)(3)①当PQ=PB 时,可得△APQ ≌△CBP,由(2)知此时点P (1,0).(2分)②当BQ=BP 时,∠BQP=∠BPQ.由于∠BQP 是△APQ 的外角,则∠BQP>∠BAP ,又∠BPQ=∠BAO ,∴这种情况不可能. (2分)③当BQ=PQ 时,有∠QBP=∠QPB,∵∠BPQ=∠BAO ∴∠QBP=∠BAO ,即PB PA =.设(),0P x 则AP=4+x ,BP=223x +∴ 4+x=223x +,解得x=87-,此时点P 的坐标为:(87-,0)(2分) ∴综上所述,点P 的坐标为:(1,0)或(87-,0)——————————新学期新成绩新目标新方向——————————桑水。
苏科版八年级数学上册实数单元测试卷12
苏科版八年级数学上册实数单元测试卷12一、选择题(共10小题;共50分)1. 的平方根是A. C. D.2. 的立方根等于A. C.3. 下列数据是近似的为A. 《小学课本词语辞典》共有页B. 量筒里有水毫升C. 七年级数学课本下册共有页D. 世界人口已有亿4. 下列实数是无理数的是A. B. C.5. 下列木棍的长度中,最接近厘米的是A. 厘米B. 厘米C. 厘米D. 厘米6. 下列说法正确的是A. 无理数与无理数的和还是无理数B. 无理数与无理数的积还是无理数C. 无理数与有理数的积还是无理数D. 无理数与有理数的和还是无理数7. 一个正方体的水晶砖,体积为,它的棱长大约在之间之间之间之间8. 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分不可能全部写出来,但因为,即,所以可以用来表示的小数部分.如果的小数部分是,的整数部分是,那么的值是A. B. C. D.9. 关于,下列说法正确的是是底数,是幂 B. 是底数,是幂C. 是底数,是指数是底数,是指数10. 若将,,表示在数轴上,则其中能被如图所示的墨迹覆盖的数是A. C. D. 都不可能二、填空题(共6小题;共30分)11. 将用四舍五入法精确到十分位的近似数是.12. 方程,则方程的根为.13. 已知一个数的平方根为与,则这个数是.14. 已知与的小数部分分别是和,则.15. 已知,,那么.16. 已知,则的值为.三、解答题(共8小题;共104分)17. 解方程:.18. “神舟六号”飞船在太空中飞行的速度达到千米/秒,按下列要求分别取这个数的近似数:(1)精确到十分位;(2)保留四个有效数字.19. ,,,,,,(两个之间依次多一个);;;.20. 向月球发射无线电波,电波从地面达到月球再返回地面,共需秒,已知无线电波的速度为千米秒,求月球和地球之间的距离.21. 计算:(1)(精确到);(2(保留两位小数).22. 如图所示的圆柱形容器的容积为升,它的底面直径是高的倍.(取)(1)这个圆柱形容器的底面直径为多少分米?(2)若这个圆柱形容器的两个底面与侧面都是用铁皮制作的,则制作这个圆柱形容器需要铁皮多少平方分米?(不计损耗)23. 解方程:(1);(2);24. 已知是的整数部分,是它的小数部分,求的值.答案第一部分1. C2. A3. D4. A 【解析】,是有理数,是无理数.5. D【解析】;;;.,与差的最近.6. D7. A8. B9. D10. A第二部分11.12.13.【解析】根据题意得:,解得:,则这个数是.14.【解析】,;;;,.故答案为:.15.16.【解析】,,.第三部分17.18. (1)千米/秒.(2)千米/秒.19. 自然数集合:;;;.20.答:月球和地球之间的距离为千米.21. (1).(2).22. (1)设这个圆柱形容器的高为分米,则它的底面直径是分米,依题意得解得.(2)(平方分米).答:这个圆柱形容器的底面直径为分米;制作这个圆柱形容器需要铁皮平方分米.23. (1)(2)24. 根据题意,得,,。
第一章 全等三角形数学八年级上册-单元测试卷-苏科版(含答案)
第一章全等三角形数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,以图中的格点为顶点,共有( )对全等的等腰直角三角形.A.14B.15C.16D.172、如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AEB.DB=AEC.DF=EFD.DB=EC3、如图,点P在∠MAN的角平分线上,点B,C分别在AM,AN上,作PR⊥AM,PS⊥AN,垂足分别是R,S.若∠ABP+∠ACP=180°,则下面三个结论:①AS=AR;②PC∥AB;③△BRP ≌△CSP.其中正确的是()A.①②B.②③C.①③D.①②③4、如图,将平行四边形的四个角向内翻折后,恰好拼成一个无缝隙、无重叠的四边形,点、落在点处,点、落在点处,若,.则边的长为()A.20B.22C.24D.255、如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()A.4对B.5对C.6对D.7对6、如图,,,,下列条件中不能判断的是()A. B. C. D.7、如图,,其中,,则()A. B. C. D.8、已知OP平分∠AOB,点Q在OP上,点M在OA上,且点Q,M均不与点O重合.在OB上确定点N,使QN=QM,则满足条件的点N的个数为()A.1个B.2个C.1或2个D.无数个9、如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④;其中正确的结论个数是()A.1个B.2个C.3个D.4个10、两个三角形有两个角对应相等,正确的说法是()A.两个三角形全等B.如果一对等角的角平分线相等,两三角形就全等 C.两个三角形一定不全等 D.如果还有一个角相等,两三角形就全等11、如图,AC⊥BD于点P,AP=CP,增加下列一个条件:①BP=DP;②AB=CD;③∠A=∠C.其中能判定△ABP≌△CDP的条件有 ( )A.0个B.1个C.2个D.3个12、如图,△ABC≌△ADE,则下列结论错误的是()A.∠B=∠DB.DE=CBC.∠BAC=∠DAED.AB=AE13、要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角14、用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)15、如图,AD是△ABC的中线,E,P分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌OCDE;④BF∥CE;⑤CE=AE。
苏科版数学八年级数学上册第一章《全等三角形》单元试题及答案
八上第一章《全等三角形》(满分:100分时间:60分钟)一、选择题(每题2分,共16分)1.如图,若OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC的度数为( ) A.60°B.50°C.45°D.30°2.如图,小强利用全等三角形的知识测量池塘两端M,N的距离.若△PQO≌△NMO,则只需测出其长度的线段是( )A.PO B.PQ C.MO D.MQ3.已知△A1B1C1与△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2.对于上述两个判断,下列说法正确的是( )A.①正确,②错误B.①错误,②正确C.①②都错误D.①②都正确4.如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件的个数是( )A.4 B.3 C.2 D.16.如图,△ABD与△ACE均为正三角形.若AB<AC,则BE与CD之间的大小关系是( ) A.BE=CD B.BE>CD C.BE<CD D.大小关系不确定7.如图,在△ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE相交于点O,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOF≌△COD;⑤△ACE≌△BCE.上述结论一定正确的是( )A.①②③B.②③④C.①③⑤D.①③④8.如图,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD相于点O,AE与CD相交于点G,AC与BD相交于点F,连接OC,FG,有下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数是( ) A.1 B.2 C.3 D.4二、填空题(每题2分,共20分)9.如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是_______.10.如图,OA=OB,OC=OD,若∠O=60°,∠C=25°,则∠BED=_______.11.如图,已知点C是∠AOB平分线上的点,点P,P'分别在OA,OB上,如果要得到OP=OP',需要添加以下条件中的某一个即可:①∠OCP=∠OCP';②∠OPC=∠OP'C;③PC=P'C;④PP'⊥OC.请你写出所有可能的结果的序号:_______.12.如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE =CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是_______.(填序号)13.如图,在、四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为点E.若四边形ABCD的面积为16,则BE=_______.14.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D,E,AD,CE交于点H.若EH=EB=3,AE=4,则CH=_______.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,垂足为点D.在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5cm,则AE=_______cm.16.如图,小明为了测量河的宽度,他站在河边的点c处,头顶为点D,面向河对岸,压低帽檐使目光正好落在河对岸的岸边点A,然后他姿势不变,在原地方转了180°,正好看见了他所在的岸上的一块石头B,他测出BC=30m,你能猜出河有多宽吗?说说理由,答:_______m.17.如图,高速公路上有A,B两点相距25km,C,D为两村庄,已知DA=10km,CB =15km,DA⊥AB,CB⊥AB,垂足分别为点A,B.现要在A,B两点间建一个服务站E,使得C,D两村庄到E站的距离相等,则AE的长是_______km.18.若三角形的两边长分别为5和7,则第三边上的中线长x的取值范围是_______.三、解答题(共64分)19.(本题12分)如图,把大小为4×4的正方形方格分割成两个全等图形,如图1.请在下图中,沿着线画出四种不同的分法,把4×4的正方形方格分割成两个全等图形.20.(本题8分)已知AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为什么?21.(本题8分)如图,已知CD⊥AB,BE⊥AC,垂足分别为点D,E,且BD=CE,BE 交CD于点O.求证:AO平分∠BAC.22.(本题8分)如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与点A重合),在点E移动的过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.23.(本题8分)如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接ACCF.求证:CA是∠DCF的平分线.24.(本题10分)两个大小不同的等腰直角三角形三角板按图1所示的位置放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.25.(本题12分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP 的边FP也在直线l,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图三的位置时,EP交AC于点Q,连接AP,BQ,猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线x向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,请给出证明;若不成立,请说明理由.参考答案一、选择题1.A2.B3.D4.B5.B6.A7.D8.D二、填空题9.三角形具有稳定性10.70°11.①②④12.①⑦③13.4 14.1 15.3 16.30 17.1518.1<x<6三、解答题19.四种不同的分法如图所示20.∠B=∠D.21.略22.相等.23.略24.(1)图2中△ACD≌△ABF (2)略25.(1)AB=AP,AB⊥AP (2)BQ=AP,BQ⊥AP. (3)成立.。
第一章 全等三角形数学八年级上册-单元测试卷-苏科版(含答案)
第一章全等三角形数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC≌△DEF,若BC=6cm,BF=8cm,则下列判断错误的是()A.AB=DEB.BE=CFC.AC∥DFD.EC=22、如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EFB.BC=DFC.AB=DED.∠B=∠E3、如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.4D.54、在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1B.2C.3D.45、在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,则添加下列条件后不能判定两个三角形全等的是()A.AC=A'C'B.BC=B'C'C.∠B=∠B'D.∠C=∠C'6、下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1)(2)(4)B.(2)(3)(4)C.(1)(2)(3) D.(1)(2)(3)(4)7、已知:如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为()A.25°B.30°C.15°D.30°或15°8、如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.59、如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°10、如图,小强画了一个与已知ABC全等的DEF,他画图的步骤是:(1)画DE=AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASAB.SASC.SSSD.AAS11、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,以下几个结论:①∠AEB=∠BEF;②△BEF是等腰三角形;③△DEG与△BEF相似;④四边形ABCD的面积为56.则以上正确的有()A.①③B.②③④C.①②D.①②④12、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AEB.∠AEB=∠ADCC.BE=CDD.AB=AC13、如图,AD∥BC,AB∥DC,则全等三角形共有()A.1对B.2对C.3对D.4对14、下列各条件中,能作出唯一的△ABC的是( )A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=40°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=515、如图,已知B、E、C、F在同一条直线上,BE=CF,AB∥DE,则下列条件中,不能判断△ABC≌△DEF的是( )A. B. C. D.二、填空题(共10题,共计30分)16、如图,已知AB∥CF,E为DF的中点,若AB=13cm,CF=9cm,则BD=________cm.17、如图:有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q 两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到离A的距离等于________时,ΔABC和ΔPQA全等.18、如图,已知△ABC≌△ADE,若AB=8,AC=3,则BE的值为________.19、如图所示,已知点A、D、B、F在一条直线上,∠A=∠F,AC=FE,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是________ .(只需填一个即可)20、如图,≌,点A和点B,点C和点D是对应点.如果,,那么________.21、如图,AE∥DF,AB=DC,不再添加辅助线和字母,要使△EAC≌△FDB,需添加的一个条件是________(只写一个条件即可)22、如图,正方形ABCD的边CD在正方形ECGF的边CE上,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH,FH,EG与FH交于点M,对于下面四个结论:①GH⊥BE;②BG=EG;③△MFG为等腰三角形;④DE:AB=1+:1,其中正确结论的序号为________.23、如图△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=15°,则∠DGB=________.24、如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是________25、如图,▱ABCD的顶点A、B在x轴上,顶点D在y轴上,顶点C在第一象限,反比例函数(x>0)的分支过点C,若▱ABCD的面积为3,则k=________.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,求线段EF的长.28、已知:如图,点E,F在线段BD上,AD=BC,DF=BE,AF=CE.求证:AF∥EC.29、如图,中,,分别是北边上的高线.求证:.30、如图,点、在线段上,,,,试说明.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、D5、B6、C8、B9、D10、A11、D12、B13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
2019年秋苏版初二数学上第12章全等三角形检测题含解析.doc.doc
2019年秋苏版初二数学上第12章全等三角形检测题含解析〔时间:120分钟总分值:120分〕【一】选择题〔每题3分,共30分〕1、如图,△ABD≌△CDB,下面四个结论中,不正确的选项是〔C〕A、△ABD和△CDB的面积相等B、△ABD和△CDB的周长相等C、∠A+∠ABD=∠C+∠CBDD、AD∥BC,且AD=BC,第1题图〕,第2题图〕,第3题图〕,第4题图〕2、如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,那么只需测出其长度的线段是〔B〕A、POB、PQC、MOD、MQ3、如图,BE⊥AC于点D,且AD=CD,BD=ED,那么∠ABC=54°,那么∠E=〔B〕A、25°B、27°C、30°D、45°4、如图,AB∥DE,AC∥DF,AC=DF,以下条件中不能判断△ABC≌△DEF的是〔C〕A、AB=DEB、∠B=∠EC、EF=BCD、EF∥BC5、如图,在CD上求一点P,使它到OA,OB的距离相等,那么P点是〔D〕A、线段CD的中点B、OA与OB的中垂线的交点C、OA与CD的中垂线的交点D、CD与∠AOB的平分线的交点,第5题图〕,第6题图〕,第7题图〕,第8题图〕6、如图,AB=DC,AD=BC,E,F是DB上两点且BF=DE,假设∠AEB=100°,∠ADB =30°,那么∠BCF=〔D〕A、150°B、40°C、80°D、70°7、如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,那么〔D〕A、∠1=∠EFDB、BE=ECC、BF=DF=CDD、FD∥BC8、如图,在△ABC中,AB=AC,AD是角平分线,BE=CF,那么以下说法正确的个数是〔D〕〔1〕AD平分∠EDF;〔2〕△EBD≌△FCD;〔3〕BD=CD;〔4〕AD⊥BC、A、1个B、2个C、3个D、4个9、如图,在△ABC中,AB=AC,点E,F是中线AD上的两点,那么图中可证明为全等三角形的有〔D〕A、3对B、4对C、5对D、6对10、如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是〔D〕A、相等B、不相等C、互余或相等D、互补或相等【二】填空题〔每题3分,共18分〕11、假设△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,那么∠A=__32__度、12、如图,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件__∠C=∠E〔不唯一〕__,使△ABC≌△DBE、〔只需添加一个即可〕,第12题图〕,第13题图〕,第15题图〕,第16题图〕13、如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,那么∠3=__55°__、14、在△ABC中,AB=8,AC=6,那么BC边上的中线AD的取值范围是__1<AD<7__、15、如图,B,C,D在同一直线上,∠B=∠D=90°,AB=CD,BC=DE,那么△ACE的形状为__等腰直角三角形__、16、如图,△ABC中,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC于D,OH⊥BC于H,假设∠BAC=60°,OH=5cm,那么∠BAD=__30°__,点O到AB的距离为__5__cm、【三】解答题〔共72分〕17、〔6分〕〔2016·武汉〕如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥D E、解:易证△ABC≌△DEF〔SSS〕,那么∠B=∠DEF,∴AB∥DE18、〔8分〕如图,AB∥CD、〔1〕用直尺和圆规作∠C的平分线CP,CP交AB于点E;〔保留作图痕迹,不写作法〕〔2〕在〔1〕中作出的线段CE上取一点F,连接AF,要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件、〔只要给出一种情况即可;图中不再增加字母和线段;不要求证明〕解:〔1〕作图略〔2〕AF⊥CE或∠CAF=∠EAF等19、〔8分〕:BE⊥CD,BE=DE,BC=DA、求证:AD⊥B C、解:易证Rt△CEB≌Rt△AED〔HL〕,∴∠CBE=∠ADE,又∵∠ADE+∠EAD=90°,∠EAD =∠FAB,∴∠FAB+∠ABF=90°,∴∠AFB=90°,∴AD⊥BC20、〔8分〕如图,AB=DC,AD=BC,DE=BF、求证:BE=DF、解:连接BD、∵AD=BC,AB=CD,BD=BD,∴△ABD≌△CDB〔SSS〕,∴∠ADB=∠DBC,∴180°-∠ADB=180°-∠DBC,∴∠BDE=∠DBF,易证△BDE≌△DBF〔SAS〕,∴BE=DF21、〔8分〕如图,E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足为C,D,连接CD交OE于F、求证:〔1〕OC=OD;〔2〕DF=CF、解:〔1〕易证△OCE≌△ODE〔AAS〕,∴OC=OD〔2〕易证△COF≌△DOF〔SAS〕,∴DF=CF22、〔8分〕如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF、〔1〕求证:△BCD≌△FCE;〔2〕假设EF∥CD,求∠BDC的度数、解:〔1〕易证△BCD≌△FCE〔SAS〕〔2〕∵EF∥CD,∴∠E=∠DCE=90°,∴∠BDC=∠E=90°23、〔8分〕如图,CA=CB,AD=BD,M,N分别是CB,CA的中点、〔1〕求证:△ADC≌△CDB;〔2〕求证:DN=DM、解:〔1〕易证△ADC≌△CDB〔SSS〕〔2〕由〔1〕得∠NCD=∠MCD,又M,N为CB,CA的中点,∴NC=MC,易证△NCD≌△MCD 〔SAS〕,∴DN=DM24、〔9分〕如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一直线上,连接BD交AC于点F、〔1〕求证:△BAD≌△CAE;〔2〕猜想BD,CE有何特殊位置关系,并说明理由、解:〔1〕∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CA E、在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE〔SAS〕〔2〕BD⊥C E、理由如下:由〔1〕可知△BAD≌△CAE,∴∠ABD=∠AC E、∵∠BAC=90°,∴∠ABD+∠AFB =90°、又∵∠AFB=∠DFC,∴∠ACE+∠DFC=90°,∴∠BDC=90°,即BD⊥CE25、〔9分〕如图,在△ABC中,D是BC的中点,过D点的直线GF,交AC于F,交AC 的平行线BG于G点,DE⊥DF,交AB于点E,连接EG,EF、〔1〕求证:BG=CF;〔2〕请你判断BE+CF与EF的大小关系,并说明理由、解:〔1〕∵D是BC的中点,∴BD=DC,又AC∥BG,∴∠DBG=∠DCF,∠BGD=∠CFD,∴△BGD≌△CFD,∴BG=CF〔2〕BE+CF>EF,理由如下:由〔1〕得△BGD≌△CFD,∴GD =DF,又ED⊥GF,∴∠EDG=∠EDF,ED=ED,∴△EDG≌△EDF,∴EG=EF,在△EBG中BE +BG>EG,∴BE+CF>EF。
江苏八年级数学上册第十二章《全等三角形》测试(含答案)
一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .12.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 3.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 4.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°5.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =6.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50°7.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等8.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙 9.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等10.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等 11.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:412.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL13.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .1214.如图,AD 平分∠BAC ,AB=AC ,连接BD ,CD 并延长,分别交AC ,AB 于点F ,E ,则图中全等三角形共有( ) A .2对B .3对C .4对D .5对 15.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL 二、填空题16.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.17.如图,ABC的三边AB、BC、CA长分别是10、15、20,三条角平分线交于O S S S等于__________.点,则::ABO BCO CAO∠'=___度.18.如图所示,ABC≅△AB C'',20∠'=︒,BABCAC19.如图,AB与CD相交于点O,OC=OD.若要得到△AOC≌△BOD,则应添加的条件是__________.(写出一种情况即可)20.已知点A、E、F、C在同一条直线l上,点B、D在直线l的异侧,若AB=CD,AE=CF,BF=DE,则AB与CD的位置关系是_______.21.在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=_____时,△ABC和△APQ全等.22.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.23.如图,AD 为∠CAF 的角平分线,BD=CD ,∠DBC=∠DCB ,∠DCA=∠ABD ,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,则下列结论:①△CDE ≌△BDF ;②CE=AB+AE ;③∠DAF=∠CBD .其中正确的结论有_____.(填序号)24.如图,9cm AB =,3cm AC =,点P 在线段AB 上以1cm/s 的速度由点B 向点A 运动,同时点Q 在射线BD 上以x cm/s 的速度由点B 沿射线BD 的方向运动,它们运动的时间为t (s )(1)如图①,若AC AB ⊥,BD AB ⊥,当ACP BPQ △≌△,x =________;CPQ ∠=________.(2)如图②,CAB DBA ∠=∠,当ACP △与BPQ 全等,x =________; 25.如图,已知△ABC 的面积为18,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是_____.26.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.三、解答题27.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .28.如图,已知点D ,E 分别在等边三角形ABC 的边BC ,CA 上,且BD CE =,连接AD ,BE 相交于点F ,AH BE ⊥于点H ,求FAH ∠的度数.29.如图,点D ,E 分别在AB 和AC 上,DE//BC ,点F 是AD 上一点,FE 的延长线交BC 延长线BH 于点G .(1)若∠DBE =40°,∠EBC =35°,求∠BDE 的度数;(2)求证:∠EGH >∠ADE ;(3)若点E是AC和FG的中点,△AFE与△CEG全等吗?请说明理由.30.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AB=DE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷马鸣风萧萧初二数学单元练习 2015.12命题人:孙6 审核人:彭7 考试时间:100分钟 卷面总分:120分 一.选择题(每题3分,共24分) 1 2 3 4 5 6 7 81.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2.为调查班级中对新班主任老师的印象,下列更具代表性的样本是( ) A.前十名学生的印象 B.后十名学生的印象 C.全体男学生的印象 D.单号学号学生的印象3.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据频数分别为2、8、15、5,则第四组数据的频数和频率分别为( )A. 20,0.4 B. 20,0.5 C. 25,0.5 D.25,0.4 4.下列事件中,属于不可能事件的是( ) A .明天某地区早晨有雾B .抛掷一枚质地均匀的骰子,向上一面的点数是6C .声音可以在真空中传播D .明天见到的第一辆公交车的牌照的末位数字将是偶数 5.下列各组数中,是勾股数的为( )A .1,1,2B .7,24,25C .1.5,2,2.5D .6,12,136.下表给出的是关于一次函数y =kx +b 的自变量x 及其对应的函数值y 的若干信息:A B C D则根据表格中的相关数据可以计算得到m 的值是( ) A .0 B .1 C .2 D .37.如图,下面不能判断是平行四边形的是( )A .∠B =∠D ,∠B AD =∠B CD ; B .AB ∥CD ,AD =BCC .∠B +∠DAB =180°,∠B +∠BCD =180° D . AB ∥CD ,AB =CD8.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是( )二、填空题(每题3分,共30分) 9.16的算术平方根是__________.10.有理数54.7010⨯的有效数字有__________位.11.在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是_______.12.已知一次函数,(2)2y m x =++的值随着x 的增大而增大,则m 的取值范围是__________. 13.将函数y =3x -5的图像向上平移3个单位后,所得函数图像的解析式 __________.14.如图,在□ABCD 中,CE AB ⊥,E 为垂足,若∠A =122°,则BCE ∠=__________.15.在一个不透明的摇奖箱内装有20个形状、大小等完全相同的小球,其中只有5个球标有中奖标志,那随机抽取一个小球中奖的概率是__________.16.如图,已知函数y =3x +b 和y =ax -3的图像交于点P (-2,-5),则根据图像可得方程组⎩⎨⎧=--=-33y ax by x 的解是__________.ABCD17.如图,在□ABCD 中,用直尺和圆规作BAD ∠的平分线AG 交BC 于点E ,若12BF =,10AB =,则AE 的长为__________.18.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2015次,点P 依次落在点1P ,2P ,3P ,…,2014P ,2015P 的位置,记(),i i i P x y ,i =1,2,3,…,2014,2015,则2015P的横坐标为__________.三.解答题(共66分) 19.计算(本题8分) (1)20150131(1)()83π---+- (2)求()3464x +=-中的x20.(本题6分)如图,一木杆在离地某处断裂,木杆顶部落在离木杆底部8米处,已知木杆原长16米,求木杆断裂处离地面多少米?21.(本题6分)若()221120x y z -+++-=,求2015x2017y ++()20191z -.22.(本题8分)2015年7月31日,在马来西亚吉隆坡举行的国际奥委会 第128次全会上,国际奥委会主席巴赫宣布:中国北京获得2022年第24 届冬季奥林匹克运动会主办权.学校想知道学生对相关信息的了解程度, 8米地面采取随机抽样的方式进行问卷调查,问卷调查的结果分为A 、B 、C 、D 四类.其 中,A 类表示“非常了解”,B 类表示“比较了解”,C 类表示“基本了解”,D 类表示“不太了解”,划分类别后的数据整理如下表:类别 ABCD频数 3040 24 b频率a0.40.240.06请你根据所提供的信息解答下列问题: (1)表中的a = ,b = ;(2)根据表中数据,求扇形统计图中类别为B 的学生数所对应的扇形圆心角的度数;(3)我校有学生3600名,根据调查结果估计该校学生中类别为C 的人数约为多少?23.(本题8分)如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2). (1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.24.(本题8分)如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE .已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF . A D CB24%(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.25.(本题10分)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.26.(本题12分)如图,直线3:34l y x=+交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A的坐标,点B的坐标,BC= . (2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.盐城景山中学2015年秋学期初二数学月考试卷答案12.151-8题:C D A C B C B C9、2 10、3 11、(3,-2) 12、2m >- 13、32y x =-14、32︒15、1416、{25x y =-=- 17、16 18、201419、(1)-1 (2)8x =-20、()222816x x +=-,得6x =,离地面6米 21、1x =时,原式=1-;1x =-时,原式=3- 22、(1)0.3a =,6b = (2)144︒(3)864人 23、(1)直线AB 的解析式为y=2x ﹣2. (2)点C 的坐标是(2,2)24、证明: (1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC ,又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF ∴AF=BC , 在Rt △AFE 和Rt △BCA 中,,∴△AFE ≌△BCA (HL ),∴AC=EF ;(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD ,∴∠DAB=∠DAC+∠BAC=90°∴EF ∥AD ,∵AC=EF ,AC=AD ,∴EF=AD ,∴四边形ADFE 是平行四边形 25、(1)小明骑车速度:,在甲地游玩的时间是1﹣0.5=0.5(h ). (2)妈妈驾车速度:20×3=60(km/h ) 设直线BC 解析式为y=20x+b 1, 把点B (1,10)代入得b 1=﹣10 ∴y=20x ﹣10设直线DE 解析式为y=60x+b 2,把点D (,0) 代入得b 2=﹣80∴y=60x ﹣80…(5分)∴解得∴交点F (1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km .(3)方法一:设从家到乙地的路程为m (km )则点E (x 1,m ),点C (x 2,m )分别代入y=60x ﹣80,y=20x ﹣10得:,∵∴∴m=30.方法二:设从妈妈追上小明的地点到乙地的路程为n (km ), 由题意得:∴n=5∴从家到乙地的路程为5+25=30(km ).26、(1)点A 坐标是(-4,0) ,点B 的坐标 (0,3) ,BC= 5 .(3分) (2)点P 在(1,0)时...(3分)(3)①当PQ=PB 时,可得△APQ ≌△CBP,由(2)知此时点P (1,0).(2分)②当BQ=BP 时,∠BQP=∠BPQ.由于∠BQP 是△APQ 的外角,则∠BQP>∠BAP ,又∠BPQ=∠BAO ,∴这种情况不可能. (2分)③当BQ=PQ 时,有∠QBP=∠QPB,∵∠BPQ=∠BAO ∴∠QBP=∠BAO ,即PB PA =.设(),0P x 则AP=4+x ,BP=223x +∴ 4+x=223x +,解得x=87-,此时点P 的坐标为:(87-,0)(2分) ∴综上所述,点P 的坐标为:(1,0)或(87-,0)马鸣风萧萧马鸣风萧萧。