导函数图像与原函数图像关系(我)

合集下载

2016届原创§37 原函数与导函数的关联

2016届原创§37 原函数与导函数的关联
1.先猜后证 2.二导法
先猜后证二导法 变换主元放缩法
3.放缩法
4.变换主元法
导数的应用--导数不等式
抽象函数不等式
抽象函数具体化 数形结合性质法 辅助函数是关键 增大减小是根本
导数的应用--导数不等式
数列不等式
1.导数法:
近几年高考题的主要特征是:
(1).①用导数法解证给出的“半成品”辅助函数 ②对此“半成品”辅助函数作一简单的变形 ③结合对数及数列知识从而解得目标不等式
(1)设函数f(x)是R上以5为周期的可导偶函数,
则 f /(2015)=_____0____
(2)(2009年北京)设f(x)是偶函数,若曲线y=f(x)在点(1, f (1)) 处的切线的斜率为1,则该曲线在点 (1, f (1)) 处的切线的 斜率为_________ 法1:令 f (x) x2 ,则 f / (x) x ,即 k f / (1) 1
(2).“半成品”辅助函数
大多数是 1 1 ln x x 1 的衍变 x
2.定积分法:
导数的应用--导数不等式
极值点偏移
1.含义:已知 f( x1 ) = f( x2 ) ( x1<x2 ) 求 x1, x2 的和差商积的上下确界
2.方法: 法1:对称法构造辅助函数:
F( x ) = f( x0 + x ) -f( x0 -x ) 法2:换元法构造辅助函数:
①不含参型 单参型 ②含参型 双参型
多参型
3.按知识分类: 数列不等式……
二、辅助函数的构造:
三、常见的技巧:
常见题型解证最 含参不等四成立 引申双参及多参 数列不等积放缩
含参不等式——四成立:
形法 (1)
数法

最新导函数图像与原函数图像关系(我)

最新导函数图像与原函数图像关系(我)

导函数图像类型题类型一:已知原函数图像,判断导函数图像。

1. (福建卷11)如果函数)(x f y =的图象如右图,那么导函数()y f x '=的图象可能是 ( )2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函数y=f (x )的图象可能为( )3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是( )4. 若函数2()f x x bx c =++的图象的顶点在第四象限,则其导函数'()f x 的图象是( )类型二:已知导函数图像,判断原函数图像。

5. (2007年广东佛山)设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如右图所示,则)(x f y =的图象最有可能的是( )6. (2010年3月广东省深圳市高三年级第一次调研考试文科)已知函数f x ()的导函数2f x ax bx c '=++()的图象如右图,则f x ()的图象可能是( )7. 函数)(x f 的定义域为开区间3(,3)2-,导函数)(x f '在3(,3)2-内的图象如图所示,则函数)(x f 的单调增区间是_____________类型三:利用导数的几何意义判断图像。

8. (2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数()y f x =在区O 1 2 xyxyyO1 2 yO1 2 xO 12xC D O1 2 xy)(x f y '=xoy间[,]a b上的图象可能是( )A . B. C. D.9.若函数)('xfy=在区间),(21xx内是单调递减函数,则函数)(xfy=在区间),(21xx内的图像可以是()A B C D10.(选做)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是()类型四:根据实际问题判断图像。

导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结

导数的基础知识一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x yf x x∆→∆=∆(下面内容必记)二、导数的运算:(1)基本初等函数的导数公式及常用导数运算公式: ①'0()C C =为常数;②1()'nn x nx-=;11()'()'n n n x nx x---==-;1()'m mn n m x x n -==③(sin )'cos x x =; ④(cos )'sin x x =- ⑤()'xxe e = ⑥()'ln (0,1)xxa a a a a =>≠且; ⑦1(ln )'x x =; ⑧1(log )'(0,1)ln a x a a x a=>≠且 法则1:[()()]''()'()f x g x f x g x ±=±;(口诀:和与差的导数等于导数的和与差).法则2:[()()]''()()()'()f x g x f x g x f x g x ⋅=⋅+⋅(口诀:前导后不导相乘,后导前不导相乘,中间是正号) 法则3:2()'()()()'()[]'(()0)()[()]f x f xg x f x g x g x g x g x ⋅-⋅=≠ (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号) (2)复合函数(())y f g x =的导数求法:①换元,令()u g x =,则()y f u =②分别求导再相乘[][]'()'()'y g x f u =⋅③回代()u g x = 题型一、导数定义的理解 题型二:导数运算 1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 三.导数的物理意义1.求瞬时速度:物体在时刻0t 时的瞬时速度0V 就是物体运动规律()S f t =在0t t = 时的导数()0f t ', 即有()00V f t '=。

原函数与导函数的区别

原函数与导函数的区别

原函数与导函数的区别在数学中,函数是一种表达式,通过一种规则,将某一个输入值转换成另一个输出值。

函数也可以用来描述某一个物理过程或运动情况,它可以表示某一个物理变量或自变量与时间的关系。

在函数的概念中,提到了原函数及其导函数。

在这里,本文将就原函数与导函数之间的区别做出讨论,以此来帮助读者加深对原函数与导函数的认识。

首先,让我们来看看原函数是什么。

原函数是一种表达式,通过一种可以表达某一个物理变量或自变量之间关系的规则,将某一个输入值转换成另一个输出值。

原函数可以表示物理变量或自变量与时间的关系,也可以描述某一个物理过程或运动情况。

常见的原函数有多项式函数、指数函数、对数函数、正弦函数等。

导函数是求导后获得的函数,即得到原函数的导数,也叫一阶导函数。

在求一阶导函数时,可以使用微分的概念,以及积分的概念来计算其导函数的表达式。

导函数能够描述物理变量或自变量随着时间的变化情况,以及随着物理变量的变化的函数的变化情况。

了解了原函数与导函数的定义后,让我们来看看它们之间的不同之处。

首先,原函数表示某一个物理变量或自变量与时间之间关系,而导函数则是描述物理变量或自变量随着时间的变化情况,以及随着物理变量的变化的函数的变化情况。

其次,求出原函数的导函数,可以使用的是微分的概念,以及积分的概念,因此,导函数的计算就要比原函数复杂得多,尤其是一些复杂的函数,比如三角函数。

最后,原函数表达某一个输入值就可以直接得出其输出值,而导函数表达的就是其函数的变化情况,不能够直接给出其输出值。

总结起来,原函数与导函数之间的区别在于:原函数用来表示某一个物理变量或自变量与时间之间的关系,而导函数则是描述物理变量或自变量随着时间的变化情况,以及随着物理变量的变化的函数的变化情况;其次,求出原函数的导函数,可以使用的是微分的概念,以及积分的概念,因此,导函数的计算就要比原函数复杂得多,尤其是一些复杂的函数,比如三角函数;最后,原函数表达某一个输入值就可以直接得出其输出值,而导函数表达的就是其函数的变化情况,不能够直接给出其输出值。

一元函数导数

一元函数导数

一元函数导数一元函数导数的作用在于描述函数在某一点的变化率。

通过求导可以得到函数的切线斜率,从而帮助我们理解函数在不同点的趋势和性质。

在本文中,我们将从不同角度探讨一元函数导数的相关内容。

一、导数的定义和基本概念导数的定义是函数在某一点的极限值,表示函数在该点的瞬时变化率。

导数可以通过函数的极限运算来求得,一般用符号f'(x)或dy/dx表示。

导数的存在性保证了函数在该点的光滑程度,也决定了函数的单调性和凸凹性。

二、导数的几何意义导数可以理解为函数曲线在某一点的切线斜率。

切线斜率为正表示曲线在该点上升,为负表示曲线下降。

当导数为零时,表示函数在该点达到极值,可以帮助我们找到函数的极值点和拐点。

三、导数的运算法则1.常数乘法法则:导数与常数的乘积等于常数乘以导数。

2.和差法则:导数与函数的和(差)的导数等于函数的导数的和(差)。

3.积的求导法则:导数与函数的积的导数等于函数的导数乘以另一个函数,再加上另一个函数的导数乘以该函数。

4.商的求导法则:导数与函数的商的导数等于分子函数的导数乘以分母函数,减去分子函数乘以分母函数的导数,再除以分母函数的平方。

5.复合函数的求导法则:导数与复合函数的导数等于外函数的导数乘以内函数的导数。

四、导数的应用1.切线问题:通过求导可以得到函数曲线在某一点的切线方程,进而求出曲线在该点的切线。

2.极值问题:通过求导可以找到函数的极值点,从而确定函数的最大值和最小值。

3.凸凹性和拐点:通过求导可以判断函数的凸凹性和拐点的位置,进而分析函数的变化趋势。

4.速度和加速度问题:导数可以描述物体的速度和加速度,帮助我们理解物体的运动规律。

5.最优化问题:通过求导可以求解最优化问题,例如求解函数的最大值、最小值或最优解。

五、导数与原函数的关系导数与原函数之间存在一个重要的关系,即导数是原函数的斜率函数。

如果函数的导数存在,则函数在某一点的导数等于该点的切线斜率。

反过来,如果函数在某一区间内连续且可导,则函数在该区间内的导数是唯一的。

原函数与导函数的关系

原函数与导函数的关系

课题:探究原函数与导函数的关系首师大附中 数学组 王建华设计思路这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。

由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。

备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。

教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。

最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。

对优秀生或热爱数学的学生来说会有更多的收获。

整个教学流程1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。

2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。

证明的思路也要逆向思考。

发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。

3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a =对称,研究前面的四个命题还是否成立。

研究方法可以类比迁移前面的方法。

能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。

4.已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。

教学目标在这个探究过程中1.加强学生对导函数与原函数相生相伴的关系的理解;2.增强学生对函数对称性的理解和抽象概括表达能力;3体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。

4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。

教学重点以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。

原函数与导函数的关系

原函数与导函数的关系

课题:探究原函数与导函数的关系首师大附中 数学组 王建华设计思路这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。

由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。

备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。

教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。

最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。

对优秀生或热爱数学的学生来说会有更多的收获。

整个教学流程1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。

2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。

证明的思路也要逆向思考。

发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。

3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a =对称,研究前面的四个命题还是否成立。

研究方法可以类比迁移前面的方法。

能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。

4.已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。

教学目标在这个探究过程中1.加强学生对导函数与原函数相生相伴的关系的理解;2.增强学生对函数对称性的理解和抽象概括表达能力;3体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。

4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。

教学重点以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。

导函数与原函数的性质讨论

导函数与原函数的性质讨论

目录中文摘要 (I)英文摘要 .......................................................... I I1 绪论 (1)2 导函数的性质 (1)2.1 定义 (1)2.2 性质 (2)2.2.1 导函数的介值性 (2)2.2.2 导函数无第一类间断点 (6)2.2.3 导函数的极限 (10)3 原函数的两个性质 (12)3.1 性质一 (12)3.2 性质二 (13)4 导函数与原函数的关系 (14)5 函数性质在导函数与其原函数之间的交互关系 (15)5.1 单调性 (15)5.2 有界性 (16)5.3 奇偶性 (16)5.4 周期性 (17)5.5 极限 (18)5.6 间断点 (18)5.7 可微性 (19)5.8 极值 (19)5.9 凸性 (19)5.10 可积性 (19)6 函数可积与原函数存在的关系 (19)6.1 两个引理 (20)6.2 可积函数的原函数的存在性 (21)6.2.1 第一类可积函数 (21)6.2.2 第二类可积函数 (22)6.2.3 第三类可积函数 (22)6.2.4 可积函数的变上限积分与原函数的关系 (23)6.3 存在原函数的函数的可积性 (24)6.4 Dirichlet函数 (25)结束语 (25)致谢 (26)参考文献 (27)导函数与原函数的性质讨论摘要本文首先描述了导函数和原函数的定义。

在明确了何为导函数后,重点介绍了导函数的两个特殊的性质:导函数的介值性和导函数的间断点不可为第一类间断点,并给出了相应的证明和相关的应用举例,也根据这两大性质得到了一些相关的推论(表述了函数的相关特征与其原函数是否存在之间的关系),并通过例题展示了这些推论在解题中的重要作用。

同样,与导函数相对应的,原函数(即可导函数)由其定义的确定性使得这类函数也具有一些性质,将在文中予以论证。

接着,继续讨论了一些函数性质(包括:函数的周期性,奇偶性,单调性,可积性,可微性等)在导函数和其原函数二者之间是否具有交互传递的性质,并对各结论给出相应的例子或证明。

函数与图像的关系

函数与图像的关系
函数在数学和物理中有广泛 的应用,是描述客观世界的
重要工具。
图像的定义
图像是由像素组成的矩阵
像素值表示该点的颜色和亮度
添加标题
添加标题
像素表示图像中的每一个点
添加标题
添加标题
图像可以是二维或三维的
函数与图像的关联
函数是数学中的概念,表示两个 变量之间的依赖关系;图像则是 函数的表现形式,能够直观地展 示函数的值和变量的关系。
优化物理设计: 通过函数优化物 理设计,提高物 理系统的性能和 效率。
函数在金融建模中的应用
描述金融数据的变化趋势 预测金融市场的未来走势 评估金融风险和不确定性 优化金融投资组合
05
函数与图像的拓展 知识
分段函数与图像
分段函数的定义: 由多个不同的函 数在不同的区间 上定义的函数。
分段函数的图像: 由多个不同函数 的图像拼接而成, 每一段的图像都 遵循该段对应的 函数表达式。
描点法:通过选取一定数量的点,用平滑的曲线将它们连接起来,形成函数的图像。
函数图像的绘制工具
添加 标题
函数计算器:用于计算函数值并绘制简单 的函数图像
添加 标题
数学绘图软件:如GeoGebra、Desmos 等,可以绘制各种函数图像,并具有丰富 的图形和交互功能
添加 标题
编程语言库:如Python的matplotlib、 numpy等库,可以轻松绘制各种函数图 像,并具有高度定制化的特点
反函数与图像
反函数的定义
反函数与原函数的图 像关系
反函数的性质
反函数的应用场景
感谢观看
汇报人:XX
函数在数据分析中的应用
描述性统计:函数用于计算数据的平均数、中位数、众数等统计指标,帮助分析数据的集中 趋势和离散程度。

导函数的性质和应用

导函数的性质和应用

导函数的性质和应用随着数学理论的发展,导数的概念也越来越重要。

其中,导数的一个重要概念就是导函数。

导函数的求解过程有其严谨的数学推导,但是从应用的角度来看,我们更关心的是导函数的性质和用途。

本文将从这两方面着手,探讨导函数的相关内容。

一、导函数的性质1. 导函数的定义在微积分学中,如果函数y=f(x)在其定义域内具有导数,则称f(x)在这一点处可导。

函数f(x)对于自变量x的导函数记为y'=f'(x),它表示函数f(x)在点x处的切线斜率。

导函数的求解过程可以使用各种各样的计算方法,例如应用导数的定义、牛顿-莱布尼茨公式、求导法则等。

2. 导函数的定义域和值域导函数和原函数一样,也具有其定义域和值域的特定取值范围。

导函数的定义域与原函数的定义域相同,因为导函数是原函数的导数,它的定义域必须是原函数所在的定义域。

导函数的值域则根据具体的函数形式而不同,有时甚至和原函数的值域存在差异。

3. 导函数与原函数的关系导函数和原函数是密切相关的,它们之间的关系体现在:(1) 原函数的导函数是导函数的反函数,即f'(x) = g(x) 的反函数是f(x) = ∫ g(x) dx + C,其中C为任意常数。

(2) 如果一个函数在其定义域内具有可导性,那么其导函数在此定义域内也存在,并且导函数的导函数就是原函数。

(3) 如果一个函数在一个点处的导数存在,那么该点就是这个函数的连续点。

反之,如果一个函数在某点不连续,那么在这个点处它的导数也不存在。

二、导函数的应用1. 优化问题导函数在优化问题的解决过程中发挥着非常重要的作用。

例如,我们希望在某个范围内求得一个函数的最大值或最小值,那么在这个范围内导数等于0的点就是可能的极值点。

因此,我们可以通过求解导数的根来求得函数的极值点。

如果导数的根是孤立的,那么这些点就是函数的极值点。

2. 函数的曲线图像通过导函数,我们可以获取函数的一些重要特征,例如极值点和趋势。

导数与原函数独立

导数与原函数独立

导数与原函数独立在微积分学中,导数和原函数是两个非常重要的概念。

导数可以用来衡量函数在某一点的斜率,原函数可以用来求解函数在给定区间内的面积。

而在讨论这两个概念时,一个有趣的问题是它们之间是否是独立的。

简单来说,导数与原函数是独立的。

这意味着,一个函数可以存在导数但没有原函数,反之亦然。

在接下来的文章中,我们将详细阐述这个问题,并提供一些例子来说明。

首先我们来看一个常见的例子:函数 $f(x)=|x|$。

显然这个函数在 $x=0$ 的导数不存在。

因为在 $x=0$ 附近,函数的图像是一个 V 形,左右两边的斜率不同,所以导数不存在。

如果我们尝试求解 $f(x)$ 的原函数,会发现其并不存在。

这是因为 $f(x)$ 不是连续可微的,即它不满足牛顿-莱布尼茨公式的条件。

我们可以得出结论:这个函数存在导数但没有原函数。

接下来再看一个例子:函数 $f(x)=x^2$。

这个函数的导数是 $f'(x)=2x$,即导数存在且为 $2x$。

而对于原函数,我们可以非常容易地得到 $F(x)=\frac{1}{3}x^3+C$,其中 $C$ 为任意常数。

我们可以得出结论:这个函数存在原函数也存在导数。

再看一个例子:函数 $f(x)=\frac{\sin x}{x}$。

这个函数没有原函数,但是它在$x=0$ 处的导数是 $f'(0)=\frac{1}{0}$,即它的导数不存在。

这说明了导数和原函数的独立性,即这个函数不存在原函数但存在导数。

导数与原函数是独立的。

一个函数可以存在导数但没有原函数,反之亦然。

在求解导数和原函数时,我们需要根据具体的函数性质来决定是否存在原函数或导数,不能简单地认为它们之间必然存在对应关系。

对于导数存在但原函数不存在的函数,我们需要通过其他方式来计算函数在给定区间内的面积。

常见的方法是通过积分,其中不定积分和定积分是最基本的两种类型。

不定积分是原函数的一个概念,它可以用来求解某个函数 $f(x)$ 的所有原函数。

2023届福建省龙岩市一级校高三上学期期末联考数学试题(解析版)

2023届福建省龙岩市一级校高三上学期期末联考数学试题(解析版)

2023届福建省龙岩市一级校高三上学期期末联考数学试题一、单选题1.如图,已知U 是全集,,,A B C 是U 的三个子集,则阴影部分表示的集合是( )A .()ABC B .()A B C C .()ABCD .()ABC【答案】C【分析】结合韦恩图分析阴影区域和集合,,A B C 的关系即可.【详解】依题意,阴影部分区域是A 的补集与集合,B C 三者的公共部分,即()A B C .故选:C2.已知复数()()1i 1i λ=++-z 是纯虚数,则实数λ=( ) A .-1 B .1C .-2D .2【答案】A【分析】对复数进行化简,根据纯虚数的定义列出方程求解即可. 【详解】()()()1i 1i 11z i λλλ=++-=++-,根据题意得1010λλ+=⎧⎨-≠⎩,解得1λ=-. 故选:A.3.“点(),a b 在圆221x y +=外”是“直线20ax by ++=与圆221x y +=相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【分析】求出给定的两个命题的充要条件,再分析即可判断得解. 【详解】命题p :点(),a b 在圆221x y +=外等价于221a b +>,命题q :直线20ax by ++=与圆221x y +=相交等价于2222214a b a b <⇔+>+,从而有,p q q p ⇒,所以p 是q 的必要不充分条件.故选:B4.如图是我国古代米斗,它是称量粮食的量器,是古代官仓、粮栈、米行等必备的用具.它是随着粮食生产而发展出来的用具,早在先秦时期就有,到秦代统一了度量衡,汉代又进一步制度化,十升为斗、十斗为石的标准最终确定下来.若将某个米斗近似看作一个四棱台.上、下两个底面都是正方形,侧棱均相等,上底面边长为25cm ,下底面边长为15cm ,侧棱长为10cm ,则该米斗的容积约为( )A .26003cmB .29003cmC .31003cmD .35003cm【答案】B【分析】画出图形,作出辅助线,求出棱台的高,利用棱台体积公式进行计算.【详解】画出此四棱台,如下:则15AB BC CD DA ====cm ,25EF FG GH HE ====cm ,10AE BF CG DH ====cm ,过点B 作BP ⊥底面EFGH 于点P ,点P 落在对角线HF 上,过点P 作PQ ⊥EF 于点Q ,连接BQ , 因为EF ⊂平面EFGH ,所以BP ⊥EF , 因为BPPQ P =,,BP PQ ⊂平面BPQ ,所以EF ⊥平面BPQ , 因为BQ ⊂平面BPQ , 所以EF ⊥BQ , 其中()152QF EF AB =-=cm ,同理可得5PQ =cm , 由勾股定理得:221002553BQ BF FQ =--=, 故22752552BP BQ PQ --,正方形EFGH 的面积为2125625S ==2cm ,正方形ABCD 的面积为2215225S ==2cm ,则该米斗的容积(()1212116125262522537552288733V S S S S BP =+⋅=⨯++⨯=≈3cm故选:B5.已知12ln 23a b -==,,6πsin 7c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .b a c >>C .a c b >>D .b c a >>【答案】A【分析】利用中间值和作差比较法来比较大小.【详解】1ln 2e ,2a =>=6πππ1sinsin sin 7762c ==<=,121323b -==>; 33ln 212ln 2333a b --==因为33222e >>,所以3ln 210->,所以a b >.综上可得a b c >>. 故选:A.6.抛物线E 的焦点为F ,对称轴为l ,过F 且与l 的夹角为3π的直线交E 于A ,B 两点,AB 的中点为M ,线段AB 的中垂线MD 交l 于点D .若MFD △的面积等于23AB 等于( ) A .52B .4C .5D .8【答案】D【分析】依题意不妨设抛物线为()220y px p =>,不妨设直线AB 的倾斜角为3π,直线:32p AB y x ⎫=-⎪⎭,设()11,A x y ,()22,B x y ,联立直线与抛物线方程,消元、列出韦达定理,即可求出M 的坐标,从而求出直线MD 的方程,则D 的坐标可求,再根据三角形面积求出p ,最后根据焦半径公式计算可得.【详解】解:依题意不妨设抛物线为()220y px p =>,则,02p F ⎛⎫ ⎪⎝⎭,根据对称性不妨设直线AB 的倾斜角为3π,则直线:32p AB y x ⎫=-⎪⎭,设()11,A x y ,()22,B x y ,则2322p y x y px⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去y 整理得2233504p x px -+=, 所以1253p x x +=,则()121223333p y y x x p +=+-=, 所以53,63p p M ⎛⎫⎪ ⎪⎝⎭,则直线MD 的方程为335336ppyx ,令0y =,解得116p x =,即11,06p D ⎛⎫⎪⎝⎭,所以1112623233MFDp p Sp⎛⎫=⨯- ⎪⎝⎭=⨯,解得3p =或3p =-(舍去), 所以26y x =,则125x x +=, 所以128AB x x p =++=. 故选:D7.定义在区间[]0,a 上的函数()f x 的图象如图所示,记为()()00A f ,,()()B a f a ,,()()C x f x ,为顶点的三角形的面积为()s x ,则函数()s x 的导数()s x 的图象大致是A .B .C .D .【答案】D【解析】当C 从A 运动到B 的过程中,面积先增加再减小,然后再增加再减小,由此求出结果. 【详解】连接AB ,BC ,CA ,以AB 为底,C 到AB 的距离为高h .让C 从A 运动到B ,明显h 是一个平滑的变化,这样()S x 是平滑的变化.因为函数()12S x AB h =⨯,其中h 上为点C 到直线AB 的距离AB 为定值,当点C 在(]10,x 时,h 越来越大,s 也越来越大,即原函数递增,故导函数为正,当点C 在[)12,x x 时,h 越来越小,s 也越来越小,即原函数递减,故导函数为负,变化率的绝对值由小变大,当点C 在[)23,x x 时h 越来越大,s 也越来越大,即原函数递增,故导函数为正:变化率由大变小,当点C 在[)3,x a 时,h 越来越小,s 也越来越小,即原函数递减,故导函数为负.故选D . 【点睛】本题考查原函数图像与导函数图像之间的关系,属于一般题.8.有3个男生和3个女生参加某公司招聘,按随机顺序逐个进行面试,那么任何时候等待面试的女生人数都不少于男生人数的概率是( ) A .12B .14C .124D .1144【答案】B【分析】随机逐个面试共有66A 种可能的顺序,而任何时候等待面试的女生人数都不少于男生人数的顺序可以分为5类,求出相应的顺序,即可求得概率.【详解】解:随机逐个面试共有66A 种可能的顺序,而任何时候等待面试的女生人数都不少于男生人数的顺序可以分为5类:①男男男女女女,此时有3333A A 36⨯=种;②男男女男女女,此时有212332A A A 36=⨯⨯种; ③男男女女男女,此时有2233A A 36⨯=种; ④男女男男女女,此时有11223322A A A A 36=种; ⑤男女男女男女,此时有3333A ?A 36=种;故共有365180⨯=种,所以概率为661801A 4=故选:B .二、多选题9.已知正方体1111ABCD A B C D -中,M 为1DD 的中点,则下列直线中与直线BM 是异面直线的有( )A .1AAB .1BBC .1CCD .1DD【答案】AC【分析】观察图形可得到1BB BM B =,1DD BM M =,1AA 与1CC 与直线BM 是异面直线.【详解】显然1BB BM B =,1DD BM M =,BD 错误;1AA 与1CC 与直线BM 既不平行,也不相交,是异面直线,AC 正确.故选:AC10.某校为调查学生身高情况,按比例分配的分层随机抽样抽取一个容量为50的样本,已知其中男生23人,平均数为170.6,方差为12.59;女生27人,平均数160.6,方差为38.62. 下列说法正确的是( )A .这个样本的平均数为165.2B .这个样本的方差为51.4862C .该校女生身高分布比男生集中D .该校男生的身高都比女生高【答案】AB【分析】先求解样本的平均数和方差,结合选项可得答案. 【详解】先求样本的平均数: 23170.627160.6165.2,2327⨯+⨯=+再求样本的方差:222327[12.59(170.6165.2)][38.62(160.6165.2)]51.48625050⨯+-+⨯+-=. 所以A,B 均正确;因为38.6212.59>,所以该校男生身高分布比女生集中,所以C 不正确; 样本数据无法得出男生的身高都比女生高,所以D 不正确. 故选:AB.11.关于函数()cos sin f x x x =+有下述四个结论,其中正确的是( ) A .()f x 是偶函数B .()f x 是周期函数,周期为πC .()f x 在区间π,π2⎛⎫⎪⎝⎭单调递增D .()f x 的最小值是1-【答案】AD【分析】根据偶函数的定义判断A ,根据周期性的定义判断B ,由π,π2x ⎛⎫∈ ⎪⎝⎭化简函数解析式,再根据正弦函数的性质判断C ,判断函数的周期,再分[]0,πx ∈,()π,2πx ∈两种情况求出函数的值域,即可判断D.【详解】解:因为()cos sin f x x x =+,所以()()()()cos sin cos sin f x x x x x f x -=-+-=+=,故()cos sin f x x x =+为偶函数,故A 正确; 对于B :()()()()πcos πsin πcos sin f x x x x x f x +=+++=-+≠,故π不是函数的周期,故B 错误;对于C :当π,π2x ⎛⎫∈ ⎪⎝⎭时sin 0x >,则()πcos sin cos sin 4f x x x x x x ⎛⎫=+=+=+ ⎪⎝⎭,则,π3π5π444x ∈+⎛⎫ ⎪⎝⎭,因为sin y x =在3π5π44,⎛⎫⎪⎝⎭不单调,故C 错误;对于D :因为()()()()2πcos 2πsin 2πcos sin f x x x x x f x +=+++=+=, 所以2π是函数的一个周期,当[]0,πx ∈时sin 0x ≥,则()πcos sin cos sin 4f x x x x x x ⎛⎫=+=+=+ ⎪⎝⎭,则ππ5π,444x ⎡⎤+∈⎢⎥⎣⎦,所以πsin 4x ⎛⎫ ⎪⎡⎤+∈⎢⎥⎣⎝⎦⎭,则()f x ∈-⎡⎣,当()π,2πx ∈时sin 0x <,则()πcos sin cos sin 4f x x x x x x ⎛⎫=+=-=+ ⎪⎝⎭,则π5π9π,444x ∈⎛⎫+⎪⎝⎭,所以πcos 4x ⎛⎫∈ ⎪ ⎪⎝⎛⎫+ ⎪⎝⎭⎭,则()(1f x ∈-,综上可得()f x ∈-⎡⎣,故D 正确;故选:AD12.设数集{},,,S a b c d =满足下列两个条件:(1),,x y S xy S ∀∈∈;(2),,x y z S ∀∈,若x y ≠则xz yz ≠.则下论断正确的是( ) A .a b c d ,,,中必有一个为0 B .a ,b ,c ,d 中必有一个为1 C .若x S ∈且1xy =,则y S ∈ D .{},,x y z S ∃⊆,使得22,x y y z ==【答案】BCD【分析】根据(1)(2)得到0S ∉,1S ∈,A 错误,B 正确;再分1a =,1a ≠,两种情况,经过推理得到C 正确;在C 选项的分析基础上,得到若1a ≠,此时求出{}1,1,i,i S =--,{}i,1,1S ∃-⊆,使得22,x y y z ==,若1a =,推理出,,b c d 中至少有2个相同,这与集合中元素的互异性矛盾,得到D 正确.【详解】由(1)得:数集S 中必有1或0, 由(2)得:0S ∉,故1S ∈,A 错误,B 正确; 由(1)知:abcd S ∈,故abcd 等于a b c d ,,,中的一个, 不妨设abcd a =,因为0S ∉,所以0a ≠,故1bcd =, 下面证明C 正确,因为x S ∈,若x b =,则y cd =,由(1)知:y cd S =∈,满足要求, 同理若x c =,则y bd S =∈,满足要求,若x d =,则y bc S =∈,满足要求, 若x a =,因为1S ∈,若1a =,则1y S =∈,满足要求,若1a ≠,则,,b c d 中某个等于1,不妨设1b =,由1bcd =得1cd =, 由(1)知:ac S ∈,又因为1a ≠,1c ≠,所以ac a ≠,ac c ≠,故ac d =, 同理可得ad c =,所以相乘得ab ad dc ⋅=,解得:21a =, 因为1a ≠,所以1a =-,故取1y S =-∈,满足要求, 综上:若x S ∈且1xy =,则y S ∈,C 正确; 下面证明D 正确;由(1)知:abcd S ∈,故abcd 等于a b c d ,,,中的一个, 不妨设abcd a =,因为0S ∉,所以0a ≠,故1bcd =,若1a ≠,则1abcd ≠,因为,,b c d 中某个等于1,不妨设1b =,由1bcd =得1cd =, 根据C 选项的分析可知:ac d =,ad c =,1a =-,则d c -=,故21cd d =-=,故i d =,i c =-,若i d =-,i c =, 此时{}1,1,i,i S =--,{}i,1,1S ∃-⊆,使得22,x y y z ==,D 正确; 若1a =,则1abcd =,1bcd a ==,由(1)知:cd S ∈, 若1cd a ==,则b bcd a ==,不可能, 若cd c =,则1d a ==,不可能, 若cd d =,则1c a ==,不可能,所以cd b =,故2b bcd a ==,同理可得:22,c a d a ==, 因为a 的平方根有且只有2个,所以,,b c d 中至少有2个相同,这与集合中元素的互异性矛盾, 故不存在1a =即1abcd =的情况,故{},,x y z S ∃⊆,使得22,x y y z ==,D 正确. 故选:BCD【点睛】关键点点睛:集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数的性质,包括单调性,值域等进行结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决.三、填空题13.已知3a =,5b =且,45a b =,则a 在b 上的投影向量为__________.【分析】由投影向量的计算公式即可求解. 【详解】因为3a =,5b =且,45a b =, 则a 在b 上的投影向量为232cos 4532510b b a b b=⨯⨯=,. 14.定义在R 上的函数()f x 满足:()()f x f x -=,若曲线()y f x =在1x=-处的切线方程为30x y -+=,则该曲线在1x =处的切线方程为___________.【答案】30x y +-=【分析】依题意可得()12f -=且()11f '-=,又()f x 为偶函数,即可求出()1f ,再对()()f x f x -=两边求导,即可求出()1f ',从而求出切线方程.【详解】解:因为曲线()y f x =在1x=-处的切线方程为30x y -+=,所以()12f -=,且()11f '-=, 又()()f x f x -=,所以()f x 为偶函数,则()()112f f =-=,对()()f x f x -=两边求导可得()()f x f x ''--=,所以()()111f f ''=--=-,所以该曲线在1x =处的切线方程为()211y x -=--,即30x y +-=. 故答案为:30x y +-=15.三棱锥-P ABC 中,平面PAC ⊥平面,23,4,30ABC PA PC AB AC BAC ====∠=.若三棱锥-P ABC 的四个顶点都在同一球面上,则该球的表面积为_________.【答案】18π【详解】试题分析: 由题意,得,∵,∴,∴的外接圆直径,设球心为,的中点为,球的半径为,则∴,则有该三棱锥的外接球的半径,∴该三棱锥的外接球的表面积为.【解析】球的体积和表面积.【方法点睛】本题主要考查的是三棱锥的外接球表面积,直线与平面的位置关系,属于中档题,对于本题而言,根据题中条件画出立体几何图形,求出,假设出球心,利用勾股关系,可得外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积,因此确定三棱锥的外接球的半径是解决此类题目的关键.16.已知双曲线C :22221x y a b -=(0a >,0b >)的左、右焦点分别为1F ,2F ,O 为坐标原点.P 是双曲线在第一象限上的点,直线PO ,2PF 分别交双曲线C 左、右支于M ,N .若122PF PF =,且260MF N ︒∠=,则双曲线C 的离心率为________.【答案】【分析】由122PF PF =和122PF PF a -=计算可得14PF a =,22PF a =,易得12FO F O =,PO MO =,可得出四边形12PF MF 为平行四边形,又得1260F PF ︒∠=,在三角形12PF F 中利用余弦定理计算得出3c a =,最后可得出离心率. 【详解】由题122PF PF =,①由双曲线的定义可得,122PF PF a -=,②由①②可得14PF a =,22PF a =,又12FO F O =,PO MO =, 所以四边形12PF MF 为平行四边形,又260MF N ︒∠=,可得1260F PF ︒∠=,在三角形12PF F 中,由余弦定理可得2224164242cos60c a a a a ︒⋅⋅⋅=+-, 即2224208c a a =-,223c a =,可得3c a =,所以3==ce a. 故答案为:3.【点睛】本题考查双曲线离心率的计算,考查逻辑思维能力和运算求解能力,属于常考题.四、解答题17.已知正项数列{an }的前n 项和为Sn ,且a 1=1,21n a +=Sn +1+Sn .(1)求{an }的通项公式;(2)设212n an n b a -=⋅,求数列{bn }的前n 项和Tn .【答案】(1)()n a n n N +=∈ ; (2)1(23)26n n T n +=-⋅+.【分析】(1)由11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,结合递推式21n a +=Sn +1+Sn 即可求解.(2)由n b =(2n -1)·2n ,利用错位相减法求和即可. 【详解】解:(1)由21n a +=Sn +1+Sn ① 所以当n ≥2时,2n a =Sn +Sn -1,②①-②得21n a +-2n a =an +1+an ,即(an +1+an )(an +1-an )=an +1+an ,因为an >0,所以an +1-an =1,所以数列{an }从第二项起,是公差为1的等差数列. 由①知22a =S 2+S 1,因为a 1=1,所以a 2=2, 所以当n ≥2时,an =2+(n -2)×1,即an =n .③ 又因为a 1=1也满足③式,所以an =n (n ∈N *).(2)由(1)得212n an n b a -=⋅=(2n -1)·2n , 则Tn =2+3·22+5·23+…+(2n -1)·2n ,④ 2Tn =22+3·23+…+(2n -3)·2n +(2n -1)·2n +1,⑤ ④-⑤得-T n =2+2×22+…+2×2n -(2n -1)·2n +1, 所以-Tn =2+()3121212n ----(2n -1)·2n +1,故Tn =(2n -3)·2n +1+6.【点睛】本题主要考查了数列前n 项和n S 与n a 的关系,错位相减法求和,以及由递推关系求通项,属于难题.18.ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c sin cos B b A b -=. (1)求A 的大小;(2)若ABC 的周长等于3,求ABC 的面积的最大值. 【答案】(1)π3【分析】(1)由正弦定理和三角函数恒等变换公式对原式变形化简可得π1sin 62A ⎛⎫-= ⎪⎝⎭,再结合角A的范围,可求出角A 的值,(2)由余弦定理结合基本不等式可得1bc ≤,然后利用三角形的面积公式可求出ABC 面积的最大值.【详解】(1sin cos B b A b -=,sin sin cos sin A B B A B -=,又sin 0B ≠cos 1A A -=,11cos 22A A -=,即π1sin 62A ⎛⎫-= ⎪⎝⎭.因为()0,πA ∈,ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,所以ππ66A -=,即π3A =.(2)解:在ABC 中,由余弦定理得2222cos a b c bc A =+-,即222a b c bc =+-①, 又3a b c ++=,所以3a b c =--,代入①得222(3)b c b c bc --=+-, 整理得6639b c bc +=+,又因为2b c bc +≥,当且仅当b c =时取等号, 因为3b c +<,所以32bc <, 所以430bc bc -+≥,解得1bc ≤或3bc ≥(舍去),故1bc ≤,故ABC 的面积133sin 244S bc A bc ==≤,当且仅当1b c ==时取等号, 所以ABC 面积的最大值为34. 19.在直角梯形ABCD 中,AD //BC ,2222,90BC AD AB ABC ︒===∠=,如图把ABD △沿BD 翻折,使得平面ABD ⊥平面BCD .(1)若点M 为线段BC 中点,求点M 到平面ACD 的距离;(2)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60?若存在,求出BNBC的值;若不存在,说明理由. 【答案】2 (2)14【分析】(1)以D 为原点,建立空间直角坐标系,利用点到面的向量距离公式求解;(2)由(1)中已经求出的平面ACD 的法向量,设出N 的坐标,写出AN ,利用线面角的向量公式列式计算即可.【详解】(1)由已知条件可得2,2,BD CD ==CD BD ⊥. 由平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,CD ⊂平面BCD ,根据面面垂直的性质定理,故CD ⊥平面ABD .过点D 在平面ABD 作Dz DB ⊥,则Dz DC ⊥.以点D 为原点,BD 所在的直线为x 轴,DC 所在的直线为y 轴,建立空间直角坐标系如图所示:由已知可得(1,0,1),(2,0,0),(0,2,0),(0,0,0),A B C D (1,1,0)M .则(0,2,0)CD =-,(1,0,1)AD =--,(1,1,0)MC =-.设平面ACD 的法向量为(,,)n x y z =,则,CD n AD n ⊥⊥,0,0,y x z =⎧⎨+=⎩,令1x =,得平面ACD 的一个法向量为(1,0,1)n =-,于是点M 到平面ACD 的距离22n MC d MC⋅==.(2)假设在线段BC 上存在点N ,使得AN 与平面ACD 所成角为60. 设,01BN BC λλ=<<,则(22,2,0)N λλ-,(12,2,1)AN λλ=--, 又平面ACD 的法向量(1,0,1)n =-且直线AN 与平面ACD 所成角为60︒,∴221213sin 60221(12)4AN nAN n λλλ⋅-+===⋅+-+28210λλ+-=, ∴1142λλ==-或(舍去).综上,在线段BC 上存在点N ,使AN 与平面ACD 所成角为60︒,此时14=BN BC . 20.甲、乙两支足球队将进行某赛事的决赛.其赛程规则为:每一场比赛均须决出胜负,若在规定时间内踢成平局,则双方以踢点球的方式决出胜负.按主、客场制先进行两场比赛,若某一队在前两场比赛中均取得胜利,则该队获得冠军;否则,需在中立场进行第三场比赛,其获胜方为冠军.假定甲队在主场获胜的概率为12,在客场获胜的概率为13,在第三场比赛中获胜的概率为25,且每场比赛的胜负相互独立.(1)已知甲队获得冠军,求决赛需进行三场比赛的概率;(2)比赛主办方若在决赛的前两场中共投资m (千万元),则能盈利2m(千万元).如果需进行第三场比赛,且比赛主办方在第三场比赛中投资n (千万元)n .若比赛主办方准备投资一千万元,以决赛总盈利的数学期望为决策依据,则其在前两场的投资额应为多少万元?【答案】(1)15(2)34千万元.【分析】(1)甲获胜,且比赛进行了三场,说明前两场一队赢一场,第三场中立场甲赢; (2)根据总盈利和进行的场次有关,求出总盈利2m,即比赛只需进行两场的概率,再求出总盈利为2m+. 【详解】(1)由于前两场对于比赛双方都是一个主场一个客场, 所以不妨设甲队为第一场为主场,第二场为客场, 设甲获得冠军时,比赛需进行的场次为X ,则111121(3)11232355P X ⎡⎤⎛⎫⎛⎫==⨯-+-⨯⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(2)由题可得1m n +=,所以[]1,0,1m n n =-∈ 比赛结束需进行的场次即为Y ,则2,3Y =,设决赛总盈利为Z ,则,22m mZ = 11111()(2)11223232m P Z P Y ⎛⎫⎛⎫====⨯+-⨯-= ⎪ ⎪⎝⎭⎝⎭, 11111((3)11223232m P Z P Y ⎛⎫⎛⎫====⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭, 所以决赛总盈利为Z 的分步列如下,所以11111()2222222m m E Z m n ⎛=⨯+⨯=+-+ ⎝,所以211()22E Z =-,12=,即14n =时,二次函数211()22E Z =-有最大值为58,所以以决赛总盈利的数学期望为决策依据, 则其在前两场的投资额应为13144m =-=千万元.21.已知2EF =,动点C 满足:4FC =且,,E F C 三点共面.线段EC 的垂直平分线为l ,点M 在l 上且FM FC ⊥,P 为线段CF 延长线上的点,且PCM PEM ∠=∠,记P 的轨迹为曲线Γ. (1)求证PE PF FC +=,并建立适当的坐标系,求Γ的方程; (2)判断直线l 与Γ公共点的个数,并说明理由. 【答案】(1)()221043x y y +=≠(2)1个公共点【分析】(1)由待证表达式可以猜想轨迹是椭圆,故可以EF 的中点为原点建立坐标系,结合题干条件,构造全等三角形证明待证表达式,从而易得椭圆的方程;(2)分直线EC 的斜率是否存在作为切入点,此即等价于考虑0x 是否等于1±,写出l 方程后,联立直线l 和椭圆方程,计算判别式进行求解.【详解】(1)以EF 所在的直线为x 轴,EF 的垂直平分线为y 轴,建立平面直角坐标系xOy 如图,在线段FC 上取点Q ,使得PF FQ =,因为MF PQ ⊥,所以MP MQ =,因为M 在EC 的垂直平分线上,所以ME MC =,又因为PEM PCM ∠=∠,所以△MPE 和MQC △全等,所以PE QC =,所以4PE PF FQ QC FC +=+==;又FC EF >,即P 的轨迹是以,E F 为焦点的椭圆,设Γ的方程为()222210x y a b a b+=>> ,则24a FC ==,得2a =,2213b a =-=,又因为当C 在直线EF 上时,点M 不存在,所以τ的方程为()221043x yy +=≠(2)设()00,C x y ,则EC 的中点为001,22x y -⎛⎫⎪⎝⎭,00y ≠. 1°当01x =-时,此时EC ()220014x y -+解得023y =±l 的方程为3y =此时l 与τ恰有一个公共点,和椭圆相切与上顶点(或下顶点)(如图);2°当01x ≠-时,如图,则EC 的斜率为001y x +,l 的方程为00001122y x x y x y +-⎛⎫-=-- ⎪⎝⎭,整理得:2200000112x x y y x y y +-+=-+,因为()2200116x y -+=,所以l 的方程可化为000017x x y x y y ++=-+,代入22143x y +=得:()()2200217143x x x x y -+++⎡⎤⎣⎦+=, 整理得:()()()()2222200000041381747120x y x x x x x y ⎡⎤++-++++-=⎣⎦(*) 由()2200116x y -+=得()2200161y x =--代入“*”并整理得:()()()()222000078171610x x x x x x +-++++=,由()2200116x y -+=可知,07x ≠-,此时[]22200008(1)(7)416(7)(1)0x x x x ∆=-++-⨯⨯++=,l 与τ恰有一个公共点.综上,l 与τ恰有一个公共点.22.已知()e cos x af x x -=+.(1)若3π2a =,求f (x )在π3π,22⎡⎤⎢⎥⎣⎦的最大值; (2)若1a ≤,证明:()f x 在(0,)+∞上单调递增. 【答案】(1)1. (2)证明见解析.【分析】(1)求出函数的导数3π2()e sin x f x x -'=-,由此令3π2()e sin x g x x -=-,根据其导数判断()f x '的单调性,进而判断其值的正负,可得()f x 的单调性,进而求得最值;(2)由于要证明()e sin 0x f x x α-'=->在(0,)+∞是恒成立,故根据其结构特征,先证明e 1x x ≥+成立,再证明sin ,0x x x ≥≥成立,利用这两个结论即可证明()e sin 0x f x x α-'=->,从而证明结论.【详解】(1)若3π2a =,则3π2()e cos x f x x -=+,故3π2()e sin x f x x -'=-, 令3π2()e sin x g x x -=-,则3π2()e cos 0x g x x -'=->在π3π,22⎡⎤⎢⎥⎣⎦上恒成立,故()f x '在 π3π,22⎡⎤⎢⎥⎣⎦上递增,又ππ()e 102f -'=-< ,3π()1102f '=+>,故存在π3π(,)22k ∈,使得()0f k '=,则π[,)2x k ∈时,()0f x '<,3π(,]2x k ∈时,()0f x '>,故()f x 在π[,)2k 递减,在3π(,]2k 递增,故max π3π()=max{()()}22f x f f ,,又ππ()e 2f -= ,π3π()1e 2f -=> ,故()f x 在π3π,22⎡⎤⎢⎥⎣⎦的最大值为3π()12f =.(2)先证明e 1x x ≥+成立,再证明sin ,0x x x ≥≥成立.令()()e 1xh x x =-+,则()e 1x h x '=- ,当0x >时,()0h x '> ,当0x <时,()0h x '< , 所以()h x 在(0,)+∞上单调递增,在(,0)-∞上单调递减, 所以()()min 00h x h ==,所以()0h x ≥ ,即e 1x x ≥+恒成立.令()sin ,(0)x x m x x =-≥,则()1cos 0m x x '=-≥,仅在0x =时取等号, 所以()m x 在[0,)+∞上单调递增,所以()()00m x m ≥= ,即sin ,0x x x ≥≥成立,所以()()()()e sin 1sin sin 1x f x x x a x x x a α-'=-≥-+-=-+-,由于sin 0,0x x x -≥≥,当0x >时,sin 0x x ->,而1a ≤,则10a -≥ ,故0fx,所以()f x 在(0,)+∞上单调递增.【点睛】关键点点睛:利用导数证明()f x 在(0,)+∞上单调递增,即要证明其导数在(0,)+∞上大于或等于0恒成立,求出导数()e sin x f x x α-'=-后,关键在于根据其结构特征,构造函数证明e 1x x ≥+成立,再证明sin ,0x x x ≥≥成立,从而利用这两个结论,证明()e sin 0x f x x α-'=->成立.。

导数过关题

导数过关题

5、利用单调性、极值、最值情况,求参数取值范围 、利用单调性、极值、最值情况, (12, 16, 21) 6、导数的实际应用 ( 20) 、 )
问题反馈
1、审题不严谨,细节注意不够; 审题不严谨,细节注意不够; 2、考虑不全面,答题不规范; 考虑不全面,答题不规范; 3、对概念、公式掌握不牢固,遗忘较严重, 对概念、公式掌握不牢固,遗忘较严重, 存在知识盲点。 存在知识盲点。
f ( x) = 2 x3 − 3(a + 1) x 2 + 6ax + 8 21、 21、 设函数
(a ∈ R) ,
( 1)若 f ( x) 在 ) ( 2)若 ) 在
处取得极值, 处取得极值, 求常数
的值; 的值;
上为增函数, 的取值范围。 上为增函数, 求 的取值范围 。
16、 上单调递增, 16、 已知函数 f(x)=alnx+x 在区间 = + 在区间[2,3]上单调递增, 上单调递增 则 a 的取值范围是________ 的取值范围是
导数过关题试卷讲评
答案: 答案: 一、CDBDB CCDCD AC 二、 13. (-2, 0) ; , 14. -1 ; 15. 2 ; 16. [-2,+∞) ,
本卷考点分析
1、导数的几何意义 (题目:4, 10, 15, 19) 、 题目: 题目 2、求函数的单调区间 (题目: 1, 9, 13, 22) 、 题目: 题目 3、求函数的极值、最值 (5, 7, 14, 17, 18) 、求函数的极值、 4、原函数图像与导函数图像的关系 、 ( 8)
17、 设 17、 x=1 与 x=2 是 的值; ( 1)试确定常数 a 和 b 的值 ; ) ( 2)求函数 ) 的极大值。 的极大值。

函数与原函数的关系

函数与原函数的关系

函数与原函数的关系
一个函数与它的原函数之间存在一种特殊的关系。

如果一个函数 f(x) 在某个区间内连续,且在该区间内存在一个函数 F(x),使得 F'(x) = f(x),那么 F(x) 称为 f(x) 的原函数,同时也可以表示为F(x) = ∫f(x)dx。

原函数与函数之间具有以下性质:
1. 不同常数的原函数是原函数的一般形式,因为原函数的导数具有多项式的可加性质,即 (f+g)' = f'+g'。

2. 函数 f(x) 和它的原函数 F(x) 的图像关于直线 y=x 对称。

3. 函数 f(x) 在某个区间内连续,则它在该区间内存在无穷多个原函数,它们互相区别只是一个常数。

4. 如果函数 f(x) 在某个区间内连续,且有一个原函数 F(x),那么它在该区间内的任何一个不同的原函数都能写成 F(x) + C 的形式,其中 C 是任意常数。

导数连续和原函数有界的关系

导数连续和原函数有界的关系

导数连续和原函数有界的关系在微积分中,导数是一个非常重要的概念,代表的是函数变化的速率,而原函数则是导函数的反函数。

在这两个概念中,导数连续和原函数有界是一个重要的关系,下面我们来探讨一下它们之间的联系。

首先,导数连续是指函数的导数在一定区间内是连续的。

那么什么是原函数有界呢?简单来说,原函数有界是指函数的定义域内存在一个上下界,使得函数在这个区间内的取值都在这个上下界之间。

这个上下界可以是任意的,只要满足条件即可。

接下来我们来分析一下导数连续和原函数有界之间的联系。

首先,我们假设一个函数f(x)在一个区间[a,b]内的导函数f'(x)是连续的,那么我们可以得出如下结论:1、如果f'(x)在区间[a,b]内不断增加或不断减少,那么函数f(x)在这个区间内是单调的,且其原函数f(x)是有界的。

这是因为导数不断增加或不断减少意味着函数的斜率在不断改变,因此函数也会相应地变化。

这种变化是单调的,因此函数是单调的。

另外,原函数的界限是由导数的界限决定的,如果导数是有界的,那么原函数也是有界的。

2、如果f'(x)在区间[a,b]内存在一个最大值或最小值,那么函数f(x)在该区间内是凸或凹的,且原函数f(x)是有界的。

这是因为最大值或最小值代表函数的斜率达到极值,如果导数是连续的,那么原函数的变化也必须是凸或凹的。

这种变化是有界的,因此原函数也是有界的。

综上所述,导数连续和原函数有界之间有着密切的联系。

导数连续代表着函数的变化是连续的,而原函数的有界性则与这种变化的特性密切相关。

因此,在微积分的学习中,我们需要将两者结合起来,才能更好地理解和应用微积分的相关知识。

借助导函数与原函数图像的关系巧解题

借助导函数与原函数图像的关系巧解题

借助导函数与原函数图像的关系巧解题
范琦亮
【期刊名称】《高中数理化》
【年(卷),期】2016(000)003
【总页数】2页(P18-19)
【作者】范琦亮
【作者单位】辽宁省普兰店市大连海湾高级中学
【正文语种】中文
【相关文献】
1.巧求原函数与其反函数图像的公共点坐标 [J], 沈孟校
2.一个定理的证明及探究——原函数与导函数在对称性和周期性方面的关系 [J], 朱传美
3.另辟蹊径,巧解函数——已知导函数和原函数不等关系时的一种巧妙解法 [J], 韩晓娟
4.巧求原函数与其反函数图像的公共点坐标 [J], 沈孟校
5.一个定理的证明及探究——原函数与导函数在对称性和周期性方面的关系 [J], 朱传美
因版权原因,仅展示原文概要,查看原文内容请购买。

导函数与原函数对称性的联系

导函数与原函数对称性的联系

导函数与原函数对称性的联系反函数与原函数的关系:反函数的定义域与值域分别是原来函数的值域与定义域;函数的反函数,本身也是一个函数;偶函数必无反函数;奇函数如果有反函数,其反函数也是奇函数。

什么是原函数未知函数f(x)就是一个定义在某区间的函数,如果存有可微函数f(x),使在该区间内的任一点都存有df(x)=f(x)dx,则在该区间内就表示函数f(x)为函数f(x)的原函数。

例如:sinx是cosx的原函数。

什么就是反函数一般来说,设函数y=f(x)(x∈a)的值域是c,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈c)叫做函数y=f(x)(x∈a)的反函数,记作y=f^-1(x)。

反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域。

最具有代表性的'反函数就是对数函数与指数函数。

通常地,如果x与y关于某种对应关系f(x)相对应当,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f^-1(x)。

存有反函数(预设为单值函数)的条件就是原函数必须就是一一对应的(不一定就是整个数域内的)。

特别注意:上标"?1"所指的就是函数幂,但不是指数幂。

①函数的反函数,本身也是一个函数,由反函数的定义,原来函数也是其反函数的反函数,故函数的原来函数与反函数互称为反函数。

②反函数的定义域与值域分别就是原来函数的值域与定义域。

③只有确定函数的映射是一一映射的函数才存在反函数,由此得出下面4点:⑤单调函数必存有反函数。

⑥奇函数如果有反函数,其反函数也是奇函数。

⑦原函数与其反函数在他们各自的定义域上单调性相同。

函数y=f(x)的图象和它的反函数y=f-1(x)的图象关于直线y=x对称,关于这一关系的理解要注意以下三点:1、函数y=f(x)与y=f-1(x)的图象关于直线y=x等距,这个结论就是在坐标系中横坐标轴为x轴,纵坐标轴为y轴,而且横坐标轴与纵坐标轴的单位长度一致的前提下得出结论的;2、(a,b)在y=f(x)的图象上<=>(b,a)在y=f-1(x)的图象上;3、若y=f(x)存有反函数y=f-1(x),则函数y=f(x)的图象关于直线y=x等距的充份必要条件为f(x)=f-1(x),即为原、反函数的解析式相同。

原函数和导函数的关系

原函数和导函数的关系

课题:探究原函数与导函数的关系首师大附中 数学组 王建华设计思路这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的根底上展开教学的。

由于这局部容课本上没有,但数学部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。

备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上顶峰体会一览众山小的乐趣和成就感。

教师实际上是在引导学生进展一次理论的探险,大胆地猜,小心地证,慎重地修改条件,步步逼近真理。

最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。

对优秀生或热爱数学的学生来说会有更多的收获。

整个教学流程1. 从经历观察发现,猜测得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比拟容易上手。

2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。

证明的思路也要逆向思考。

发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。

3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a =对称,研究前面的四个命题还是否成立。

研究方法可以类比迁移前面的方法。

能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。

4.已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。

教学目标在这个探究过程中1.加强学生对导函数与原函数相生相伴的关系的理解;2.增强学生对函数对称性的理解和抽象概括表达能力;3体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。

4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。

教学重点以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜测、区分真伪的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导函数图像类型题
类型一:已知原函数图像,判断导函数图像。

1. (福建卷11)如果函数)(x f y =的图象如右图,那么导
函数()y f x '=的图象可能是 ( )
2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函数y=f '(x )的图象可能为( )
3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是
( )
4. 若函数2
()f x x bx c =++的图象的顶点在第四象限,则其导函数'()f x 的图象是( )
类型二:已知导函数图像,判断原函数图像。

5.(2007年广东佛山)设)
(x
f'是函数)
(x
f的导函数,)
(x
f
y'
=的图
象如右图所示,则)
(x
f
y=的图象最有可能的是()
6.(2010年3月广东省深圳市高三年级第一次调研考试文科)已
知函数f x
()的导函数2
f x ax bx c
'=++
()的图象如右图,则
f x()的图象可能是( )
7.函数)
(x
f的定义域为开区间
3
(,3)
2
-,导函数)
(x
f'在
3
(,3)
2
-内的图象如图所示,则函数)
(x
f的单调增区间是_____________
类型三:利用导数的几何意义判断图像。

O 1 2 x
y
x
y
y
O 1 2
y
O 1 2 x
O 1
2
x
D
O 1 2 x
y
)
(x
f
y'
=
x
o
y
8.(
2009湖南卷文)
若函数()
y f x
=的导函数
...在区间[,]
a b上是增函数,则函数()
y f x
=在区间[,]
a b上的图象可能是( )
A .B.C.D.
9.若函数)
('x
f
y=在区间)
,
(
2
1
x
x内是单调递减函数,则函数)
(x
f
y=在区间)
,
(
2
1
x
x内的图像可以是()
A B C D
10.(选做)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是
()
类型四:根据实际问题判断图像。

9.(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器
中匀速注水,容器中水面的高度h随时间t变化的可能图象是()
o x
o x
y
b
a o x
y
o x
y
b
y
10.如图,直线l 和圆c ,当l 从0l 开始在平面上绕点o 按逆时针方向匀速转动(转动角度不超过︒
90)时,它扫过的园内阴影部分的面积S 是时间t 的函数,这个函数的图像大致是( )
11.如图, 水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中, 请分别找出与各容器对应的水的高度h 与时间t 的函数关系图象.
10. 已知函数
)(x f y =的导函数)(x f y '=的图像如下,
则( )
函数)(x f 有1个极大值点,1个极小值点 函数)(x f 有2个极大值点,2个极小值点
O t
h
h t O h t O O t h O t h h t O h t O O t h
y
函数)
(x
f有3个极大值点,1个极小值点
函数)
(x
f有1个极大值点,3个极小值点
11. (2008珠海质检理)函数)
(x
f的定义域为)
,
(b
a,其导函数)
,
(
)
(b
a
x
f在
'内的图象如图所示,则函数)
(x
f在区间)
,
(b
a内极小值点的个数是()
(A).1 (B).2 (C).3 (D).4
12.已知函数32
()
f x ax bx cx
=++在点
x处取得极大值5,
其导函数'()
y f x
=的图象经过点(1,0),(2,0),如图所
示.求:
(Ⅰ)
x的值;
(Ⅱ),,
a b c的值.
13.函数()
y f x
=在定义域
3
(,3)
2
-内可导,其图象如
图,记()
y f x
=的导函数为/()
y f x
=,则不等
式/()0
f x≤的解集为_____________
14.如图为函数32
()
f x ax bx cx d
=+++的图象,
'()
f x为函数()
f x的导函数,则不等式'()0
x f x
⋅<的解集为_____ _
15.【湛江市·文】函数2
2
1
ln
)
(x
x
x
f-
=的图象大致是
A .
B .
C .
D .
16. 【珠海·文】如图是二次函数a bx x x f +-=2
)(的部分图
象,则函数)(ln )(x f x x g '+=的零点所在的区间是 ( )
A.)21,41(
B.)1,21(
C.)2,1(
D.)3,2(
17. 定义在R 上的函数)(x f 满足(4)1f =.)(x f '为)(x f 的
导函数,已知函数)(x f y '=的图象如右图所示.若两正数b
a ,满足1)2(<+
b a f ,则2
2
b a ++的取值范围是 ( )
A .11(,)32
B .()1(,)3,2-∞+∞U
C .1
(,3)2
D .(,3)-∞-
x
x
x
x
y y y
y
O
O
O
O
x
y
O。

相关文档
最新文档