期末复习(勾股定理)

合集下载

《勾股定理》期末复习题

《勾股定理》期末复习题

至 少需 要 (
A

17
m
B


18
=
m
C
c n l


2 5
c m
m
D CD
=

26

m
8

如 图2
已 知A B
3
B C
=
4

12
e m
DA
=
13
e m

且 A 曰上
B C

则 四边 形A
A

B CD
的面 积是 (
B

)
C


24
c m
2
36
c m
2
4 8
c m

D

7 2
c m


图l



图2
19

( 14 分 ) 如 图 1 2
c m



£ A

=
90



A F
=
3

c m

A B
=
4
c m

正 方 形 B CD E 的 面
积 是 16 9
20


£ B F E
=
90
时 求E F 的长

( 14 分 ) 楚 天 学 校 综 合 实 践 活 动 小 组 研 制 了


套 信号 发 射
设 另 两 边 长 为戈

Y
x >

初二数学--勾股定理复习

初二数学--勾股定理复习

初二数学 勾股定理复习一、知识点: 1、勾股定理:直角三角形两直角边的平方和等于斜边的平方。

数学式子:∠C=900⇒222a b c +=2、神秘的数组(勾股定理的逆定理):如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 数学式子:222a b c +=⇒∠C=900满足a 2+b 2=c 2三个数a 、b 、c 叫做勾股数。

要点回顾【知识点 1】 勾股定理内容: 〖基础回顾〗1、 在Rt △ABC 中, a ,b ,c 分别是三条边,∠C =90°,已知,a b 则c = ; 已知,a c 则b = 。

2、在Rt △ABC 中, a ,b ,c 分别是三条边,∠B =90°,已知a =6,b =10,则c= 。

3、在ABC Rt ∆中,,4,3cm b cm a == 则=c 。

4、在Rt △ABC 中,已知两边长分别是6和8,则其面积为 。

【知识点 2】 勾股数 回忆常见的勾股数 〖基础回顾〗1、下列各组数中,不能作为直角三角形三边长度的是( ) A .72425a b c === B . 1.52 2.5a b c === C .111345a b c === D .15817a b c === 2、、判断a 、b 、c 是否是勾股数。

(1)a=7,b=24,c=25 (2)a=5,b=13,c=12 (3)a=4,b=5,c=6 ⑷Aa【知识点 3】定理与逆定理的应用 〖基础回顾〗1、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是 。

2、已知a 、b 、c 为三个正整数,如果a +b +c =12,那么以a 、b 、c 为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是______.3、在△ABC 中, AB=15,AD=12,BD=9,AC=13,求△ABC 的周长和面积。

勾股定理期末复习

勾股定理期末复习

A B C D E勾股定理期末复习1.以下列线段a 、b 、c 的长为三边的三角形中,不能构成直角三角形的是( ) A .a =9,b =41,c =40 B .a=b =5,c =25 C .a ∶b ∶c =3∶4∶5 D .a =11,b =12,c =15 2.已知一直角三角板的木版三边的平方和为18002cm ,则斜边的长为( ).A 80cmB 30cmC 90cmD 120cm 3.点A 、点B 的坐标分别为(-4,0)、(0,3),则坐标原点O 到线段AB 的距离为( ) A 2 B 2.4 C 5 D 64.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( ) A .1 B .2 C .3 D .25.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( )A .1个B .2个C .3个D .4个6.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则所有正方形的面积的和是( )cm 2(A) 28 (B) 49 (C) 98 (D) 1477.如图是一块长1、宽、高分别是6cm 、4cm 和3cm 的长方体木块,一只蚂蚁要从顶点A 出发,沿长方体的表面爬到和A 相对的顶点B 处吃食物,那么它需要爬行的最短路线的长是( )A 、cm 61B 、cm 85C 、cm 97D 、cm 1098.如图,四边形ABCD 是四个角都是直角,四条边都相等的正方形,点E 在BC 上, 且CE =41BC ,点F 是CD 的中点,延长AF 与BC 的延长线交于点M .以下结论: ①AB =CM ;②AE =AB +CE ;③S △AEF =13ABCF S 四边形;④∠AFE =90°,其中正确的结论的个数有( )A 1个B 2个C 3个D 4个 9.下面正确的命题中,其逆命题不成立的是( ) A.同旁内角互补,两直线平行 B.全等三角形的对应边相等B. C.角平分线上的点到这个角的两边的距离相等 D.对顶角相等 10.已知△ABC 的各边长都是整数,且周长是8,则△ABC 的面积为 。

期末复习之四(勾股定理)

期末复习之四(勾股定理)
D 3 3 A' C
X
A
2
X
E
4
4-X
B
变2
已知:矩形ABCD中,AB=3,BC=4
A点正好落在CD上,如存在确定E点位置,
(3)是否在AD上存在一点E,把矩形沿BE翻折,
如不存在请说明理由
4 D 3-X 3 E X 4-
7
X
A'
7
4
C
3
A
B
变3
已知:矩形ABCD中,AB=3,BC=4
(4)翻折矩形ABCD,使点B与点D重合,
11.如图,在△ABC中,若∠A=75°,∠C=45°, A AB=2,求AC的长
C D 12.如图,已知一块四边形的草地ABCD,其中 ∠A=60°∠B=∠D=90°,AB=20m,CD=10m, A 求这块草地的面积。 D
B
B
C
E
13、如图,已知梯形ABCD中,AD∥BC, AD=1,AB=BC=4,CD=5,求梯形的面积。
A 1 D 4 B E 4 5 C B E C A D
14、已知:矩形ABCD中,AB=3,BC=4 (1)将∆ABD沿对角线BD翻折,得 ∆A‘BD,A'B交 CD于E 求:CE长 A' 3
x
E 4-x x C D
3
3
A
2 1
4
B
变1
已知:矩形ABCD中,AB=3,BC=4
(2)将矩形ABCD翻折,使AD与对角线BD重合 求:AE长
一、知识回顾:
A
B a C 直角三角形中两直角边的平方和等于斜边的平方 A 2、勾股定理逆定理: ∵ c2=a2+b2, c b ∴ ∠C= _____ 900 B a C 三角形中较小两边的平方和等于较 大的平方的三角形是直角三角形

初中数学期末复习勾股定理重点题型分类+解析

初中数学期末复习勾股定理重点题型分类+解析

初中数学期末复习勾股定理重点题型分类+解析初中数学期末复习勾股定理重点题型分类+解析!_梯子_正方形_的底部题型一:利用勾股定理进行线段计算如果单独考查勾股定理,通常是给我们送分的,非常简单,我们只有熟记勾股定理的公式、常见的勾股数,以及常见的特殊rt△的三边比例,即可以轻松解出题目。

【例1】一驾2.5米长的梯子靠在一座建筑物上,梯子的底部离建筑物0.7米,如果梯子的顶部滑下0.4米,梯子的底部向外滑出多远(其中梯子从ab位置滑到cd位置)?【分析】本题是常见的梯子滑动问题,是勾股定理结合实际问题产生的题型。

英对实际问题,我们需要实际问题抽象成简单的几何图形,再利用勾股定理解答。

题目要求梯子的底部滑出多远,就要求梯子原先顶部的高度ao,且三角形aob,三角形cod均为直角三角形.可以运用勾股定理求解.解:在直角三角形aob中,根据勾股定理ab 2=ao 2+ob 2,可以求得:oa= =2.4米,现梯子的顶部滑下0.4米,即oc=2.4-0.4=2米,且cd=ab=2.5米,所以在直角三角形cod中,即do= =1.5米,所以梯子的底部向外滑出的距离为1.5米-0.7米=0.8米.答:梯子的底部向外滑出的距离为0.8米.题型二:勾股定理的证明过程勾股定理的证明过程同样是勾股定理的一个常考点。

因此我们同样要熟知勾股定的常见证明过程。

这个需要同学们查看课本,回忆整个证明过程。

下面给出常见的考题类型。

【例2】《勾股圆方图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图(1)).设每个直角三角形中较短直角边为a,较长直角边为b,斜边为c。

(1)利用图(1)面积的不同表示方法验证勾股定理.(2)实际上还有很多代数恒等式也可用这种方法说明其正确性.试写出图(2)所表示的代数恒等式:();(3)如果图(1)大正方形的面积是13,小正方形的面积是1,求(a+b)2的值.【分析】(1)如图(1),根据四个全等的直角三角形的面积+阴影部分小正方形的面积=大正方形的面积,代入数值,即可证明;(2)5个矩形,长宽分别为x,y;两个边长分别为y的正方形和两个边长为x的正方形,可以看成一个长宽为x+2y,2x+y的矩形;(3)利用(1)的结论进行解答.解:(1)图(1)中的大正方形的面积可以表示为c 2,也可表示为(b-a)2+4× ab∴(b-a)2+4× ab=c 2化简得b 2-2ab+b 2+2ab=c 2∴当∠c=90°时,a 2+b 2=c 2;(2)(x+y)(x+2y)=x 2+3xy+2y 2(3)依题意得 a2+ b2= c2=13 ( b− a) 2=1 则2ab=12∴(a+b) 2=a 2+b 2+2ab=13+12=25,即(a+b) 2=25.中考数学答题要点归纳,考前看这一篇就够了!中考数学复习9种题型答题模板+易错题练习,含答案!初中数学7-9年级,21个逢考必出的知识点,初中三年都适用!初中数学7-9年级,必考应用题分类+数量关系大全!初中数学复习,整式运算的几何背景与应用,常考题型解析!。

第一章勾股定理期末复习 1

第一章勾股定理期末复习 1

1.小东拿着一根长竹竿进一个宽为3米的
城门,他先横拿着进不去,又竖起来拿, 结果竹竿比城门高1米,当他把竹竿斜着 时,两端刚好顶着城门的对角,问竹竿长 多少? 1m
x
(x+1)
3
三、勾股定理的应用
(二)先构造,再运用
1、如图,求△ABC的面积
A
5 B
D
5
6
C
2、如图有两颗树,一棵高8m,另一棵高2m, 两树相距8m,一只小鸟从一棵树的树梢飞到 另一棵树的树梢,至少飞了多少米?
A
8m
E
C
2m
B
8m
D
例6、假期中,王强和同学到某海岛上去玩 探宝游戏,按照探宝图,他们登陆后先往 东走8千米,又往北走2千米,遇到障碍后 又往西走3千米,在折向北走到6千米处往 东一拐,仅走1千米就找到宝藏,问登陆点 A 到宝藏埋藏点B的距离是多少千米?
4
A
O D
o
A D
20.如图, 长方体的长为15cm, 宽为10cm, 高为20cm, 点B离点C 5cm, 一只蚂蚁如 果要沿着长方体的表面从点A爬到点B, 需要爬行的最短距离是多少? 25cm
5
B
C
15
A
E 20 E
20
15
A
C5
B
5 C
B
A 10
B 5 C 10 E 20 A
5 20
B C
A
1.在直角三角形ABC中, o, AB=13, CA=5, ∠C=90 12 BC= ______.
2.三角形的三边长分别是17、 8、15,这个三角形是 直角 __________三角形.
5.如图,两个正方形的面积 分别为64,49,则AC= 17 .

期末复习(二)——勾股定理

期末复习(二)——勾股定理

期末复习(二)——勾股定理知识点1勾股定理及其相关计算1.在Rt△ABC中,BC=1,AC=2,∠B=90°,则AB的长是()A.5B.2 C.1 D.32.如图1,在Rt△ABC中,∠ACB=90°,AC=8 cm,AB=10 cm,以BC为边向外作正方形BCDE,则正方形BCDE的面积为__________cm2.图13.如图2,在四边形ABCD中,AB=BC=22,AD=2,∠B=∠D=90°,则CD=__________.图24.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的边.(1)若b=2,c=3,求a的值;(2)若a∶c=3∶5,b=16,求△ABC的面积.5.如图3,在△ABC中,AD⊥BC于点D,AB=13,BD=12,CD=3.(1)求AD的长;(2)求△ABC的周长.图3知识点2勾股定理的实际应用6.为了迎接新年的到来,同学们做了许多拉花布置教室.大林搬来一架高为2.6米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向墙角移动________米.(人的高度忽略不计)7.如图4,台风过后某中学的旗杆在B处断裂,旗杆顶部A落在离旗杆底部C点6米处,已知旗杆总长15米,则旗杆是在距底部__________米处断裂.图48.如图5,某人从点A处划船横渡一条河,由于水流的影响,实际上岸地点C偏离目标点B 25 m,已知在河中实际划行65 m,求该河流的宽度.图59.如图6,某电信公司计划在A,B两乡镇间的E处修建一座5G信号塔,且使C,D 两个村庄到E处的距离相等.已知AD⊥AB于点A,BC⊥AB于点B,AB=80 km,AD=50 km,BC=30 km,求5G信号塔E应该建在离A乡镇多远的地方.图6知识点3勾股定理的逆定理及其应用10.下列各组长度的线段中,能构成直角三角形的是()A.7,20,24 B.4,5,6 C.3,4,5D.3,4,511.如图7,在一次夏令营活动中,小明从营地点A出发,沿北偏西30°的方向走了5003米到达点B,然后再沿一定方向走了500米到达目的地点C,此时点A与点C之间的距离为1 000米,则点C在点B的()图7A.北偏东30°方向B.北偏东60°方向C.南偏西30°方向D.南偏西60°方向12.已知三角形的三边长分别为a,b,c,且满足(a+b)2-c2=2ab,则此三角形是______三角形.13.如图8,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,求DE的长.图814.某校数学兴趣小组参加社会实践活动,他们途中发现一块如图9所示的四边形草地ABCD,借助所带工具测得AB=4米,BC=12米,CD=13米,AD=3米,∠A=90°.请求出四边形草地ABCD的面积.图9知识点4勾股定理及其逆定理的综合应用15.如图10,在Rt△OBC中,OC=1,OB=2,∠COB=90°,以点B为圆心,BC的长为半径画弧,交数轴于点A,若点A所表示的数为a,则a的值是()图10A.-5-2 B.-5C.5-2 D.-5+216.如图11,在正方形网格中,每个小正方形的边长均为1,则在△ABC中,边长为无理数的边有()图11A.3条B.2条C.1条D.0条17.若△ABC的三边a,b,c满足a-1+|b-2|+(c-3)2=0,则△ABC是__________三角形.18.如图12,在△ABC中,∠C=90°,点D在AC上,点E在AB上,把△ABC沿直线DE折叠,使点A与点B重合.(1)若∠A=35°,求∠CBD的度数;(2)若AC=8,BC=6,求AD的长.图12常考训练基础题19.已知点A 的坐标为(2,-1),则点A 到原点的距离为( )A .3B .3C .5D .1 20.如图13,在Rt △ABC 中,∠ACB =90°,BC =9,AC =12,过点C 作CD ⊥AB 于点D ,则CD 的长为( )图13A .365B .1225C .94D .3421.在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 所对的边,若a +b =14,c =10,则△ABC 的面积是( )A .24B .36C .48D .6022.满足a 2+b 2=c 2的三个正整数a ,b ,c 称为勾股数,如3,4,5是一组勾股数.请写出一组勾股数(不是3,4,5的整数倍):______________.23.如图14,在四边形ABCD 中,AB =5,BC =3,CD =6,AD =25 .若AC ⊥BC ,求证:AD ∥BC .图14提升题24.由下列条件不能判定△ABC为直角三角形的是()A.∠A∶∠B∶∠C=3∶4∶5B.∠A-∠B=∠CC.a=1,b=2,c=5D.(b+c)(b-c)=a225.如图15,在4×5的正方形网格中,每个小正方形的边长都是1,A,B是格点,则网格中满足以A,B,C为顶点的三角形是等腰三角形的格点C有()图15A.2个B.3个C.4个D.5个26.如图16,在一次测绘活动中,某同学站在点A的位置观测停放于B,C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1 200米处,则船B与船C之间的距离为__________米.图1627.如图17(1),在矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作,将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A,H两点间的距离为__________.图1728.如图18,在平面直角坐标系中,网格中每个小正方形边长都为1,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC的形状,并说明理由.图1829.如图19,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上点A处距点O处240米.如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN 上从点O处出发沿ON方向以72千米/时的速度行驶时,点A处受噪音影响的时间为多少秒?图191.D 2.36 3.234.解:(1)在Rt △ABC 中,∠C =90°,b =2,c =3, ∴a =c 2-b 2 =5 .(2)∵a ∶c =3∶5,∴设a =3x ,则c =5x . ∵a 2+b 2=c 2,b =16,∴9x 2+162=25x 2.解得x =4(负值已舍去). ∴a =12.∴S △ABC =12 ab =12×12×16=96.5.解:(1)在Rt △ABD 中,∠ADB =90°,AB =13,BD =12, ∴AD =AB 2-BD 2 =5.(2)在Rt △ADC 中,∠ADC =90°,AD =5,CD =3 , ∴AC =AD 2+CD 2 =27 .∴△ABC 的周长为AB +BC +AC =AB +BD +CD +AC=13+12+3 +27 =25+3 +27 .6.0.5 7.6.38.解:根据题意,得AC =65 m ,BC =25 m. 在Rt △ABC 中,∠B =90°,由勾股定理,得AB =AC 2-BC 2 =652-252 =60(米). 答:该河流的宽度为60米.9.解:设AE =x km ,则BE =(80-x )km.∵AD ⊥AB ,BC ⊥AB ,∴△ADE 和△BCE 都是直角三角形. ∴DE 2=AD 2+AE 2,CE 2=BE 2+BC 2. ∵AD =50 km ,BC =30 km ,DE =CE ,∴AD 2+AE 2=BE 2+BC 2,即502+x 2=(80-x )2+302,解得x =30. 答:5G 信号塔E 应该建在离A 乡镇30 km 远的地方. 10.D 11.D 12.直角13.解:如图1,过点D 作DH ⊥AC 于点H .图1∵AD 是△ABC 的角平分线,DE ⊥AB , ∴DH =DE .∵AB =4,AC =3,BC =5, ∴AB 2+AC 2=BC 2.∴△ABC 为直角三角形. ∵S △ABC =S △ABD +S △ADC , ∴12 AB ·AC =12 DE ·AB +12 DH ·AC . ∴12 ×4×3=12 DE ×4+12 DH ×3=12×(4DE +3DH ). 又DE =DH ,∴DE =127.14.解:(1)如图2,连接BD .图2在Rt △ABD 中,∠A =90°,AB =4米,AD =3米,根据勾股定理,得BD =AB 2+AD 2 =42+32 =5(米). 在△BCD 中,BD =5米,BC =12米,CD =13米, ∴BD 2+BC 2=CD 2.∴△BCD 是直角三角形,∠CBD =90°. ∴S 四边形ABCD =S △ABD +S △BCD=12 AD ·AB +12 BD ·BC =12 ×3×4+12 ×5×12 =36(平方米).答:四边形草地ABCD 的面积是36平方米. 15.D 16.B 17.直角18.解:(1)由折叠的性质,得∠ABD =∠A =35°. ∵∠C =90°,∴∠ABC =180°-90°-35°=55°.∴∠CBD =∠ABC -∠ABD =55°-35°=20°. (2)由折叠的性质,得AD =BD . 设CD =x ,则AD =BD =8-x .在Rt △CDB 中,CD 2+BC 2=BD 2,即x 2+62=(8-x )2.解得x =74.∴AD =8-74 =254 .19.C 20.A 21.A 22.5,12,13(答案不唯一)23.证明:∵AC ⊥BC ,∴∠ACB =90°.在Rt △ABC 中,根据勾股定理,得AC 2=AB 2-BC 2=52-32=16. 在△ACD 中,AC 2+AD 2=16+(25 )2=36,CD 2=36, ∴AC 2+AD 2=CD 2.∴△ACD 为直角三角形,且∠CAD =90°. ∴AC ⊥CD . 又AC ⊥BC , ∴AD ∥BC .24.A 25.B 26.1 500 27.1028.解:(1)A (-1,5),B (-5,2),C (-3,1). (2)△ABC 是直角三角形.理由:∵AB 2=32+42=25,BC 2=12+22=5,AC 2=22+42=20, ∴AC 2+BC 2=20+5=25=AB 2. ∴△ABC 是直角三角形.29.解:如图3,过点A 作AC ⊥ON 于点C .图3在Rt △AOC 中,∠AOC =30°,OA =240米,∴AC=120米.设当火车到点B时对A处开始产生噪音影响,当火车到点D时对A处结束噪声影响,则AB=AD=200米.∴BC=CD.在Rt△ABC中,∠ACB=90°,AB=200米,AC=120米,∴BC=AB2-AC2=2002-1202=160(米).∴CD=BC=160米.∴BD=320米.∵72千米/小时=20米/秒,∴影响时间为320÷20=16(秒).答:点A处受噪音影响的时间为16秒.。

2022-2023学年苏科版八年级数学上册《第3章勾股定理》期末综合复习题(附答案)

2022-2023学年苏科版八年级数学上册《第3章勾股定理》期末综合复习题(附答案)

2022-2023学年苏科版八年级数学上册《第3章勾股定理》期末综合复习题(附答案)一.选择题1.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4B.7,24,25C.8,12,20D.5,13,15 2.在平面直角坐标系中,点P(3,4)到原点的距离是()A.3B.4C.5D.±53.一直角三角形的两边长分别为3和4.则第三边的长为()A.5B.C.D.5或4.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8),以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为()A.(10,0)B.(0,4)C.(4,0)D.(2,0)5.已知,如图,一轮船以20海里/时的速度从港口A出发向东北方向航行,另一轮船以15海里/时的速度同时从港口A出发向东南方向航行,则2小时后,两船相距()A.35海里B.40海里C.45海里D.50海里6.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则BE 的长是()A.3B.4C.5D.67.如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.28.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤139.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米10.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6二.填空题11.在“寻找滨河最美,拒绝不文明行为”系列活动中,细心的董明同学发现:学校六号楼前有一块长方形花圃(如图所示),有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,请你计算,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.12.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.13.如图,已知在Rt△ABC中,∠ACB=90°,AB=8,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.14.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.15.如图所示,圆柱的高AB=15cm,底面周长为40cm,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是.16.某小区楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为20元,楼梯宽为2m,则购买这种地毯至少需要元.17.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.三.解答题18.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=16km,CB=11km,现在要在铁路AB上建一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在离A站多少km处?19.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?20.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)21.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为500米,与公路上另一停靠站B的距离为1200米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.22.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.23.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上(墙与地面垂直),这时梯子下端B与墙角C距离为1.5米.(1)求梯子顶端A与地面的距离AC的长;(2)若梯子滑动后停在DE位置上,如图(2)所示,测得BD=0.5米,求梯子顶端A 下滑了多少米?24.如图,正方形网格中有△ABC.若每个小方格边长均为1,请你根据所学的知识解答下列问题:(1)判断△ABC的形状,并说明理由;(2)求△ABC中BC边上的高.25.我国大部分东部地区属于亚热带季风气候,夏季炎热多雨.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?参考答案一.选择题1.解:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选:B.2.解:∵点P(3,4),∴点P到原点的距离是=5.故选:C.3.解:(1)当两边均为直角边时,由勾股定理得,第三边为5,(2)当4为斜边时,由勾股定理得,第三边为,故选:D.4.解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,在Rt△AOB中,由勾股定理得:AB==10,∴AC=AB=10,∴OC=10﹣6=4,∴点C的坐标为(4,0),故选:C.5.解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了20×2=40海里,15×2=30海里,根据勾股定理得:=50(海里).故选:D.6.解:根据翻折的性质得,AE=CE,设BE=x,∵长方形ABCD的长为8,∴AE=CE=8﹣x,在Rt△ABE中,根据勾股定理,AE2=AB2+BE2,即(8﹣x)2=42+x2,解得x=3,所以,BE的长为3.故选:A.7.解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.8.解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选:A.9.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选:B.10.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.二.填空题11.解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.12.解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.13.解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=8π.故答案为:8π.14.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.15.解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=15,AD为底面半圆弧长,AD=40=20,所以AC===25,故答案为:25cm.16.解:已知直角三角形的一条直角边是3m,斜边是5m,根据勾股定理得到:水平的直角边是4m,地毯水平的部分的和是水平边的长,竖直的部分的和是竖直边的长,则购买这种地毯的长是3m+4m=7m,则面积是14m2,价格是14×20=280(元).17.解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.三.解答题18.解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得x2+162=112+(25﹣x)2,解得x=9.8,∴E站应建在离A站9.8 km处.19.解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.20.解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.21.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=1200米,AC=500米,所以,根据勾股定理有AB==1300(米).因为S△ABC=AB•CD=BC•AC所以CD===(米).由于400米<米,故没有危险,因此AB段公路不需要暂时封锁.22.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.23.解:(1)在Rt△ABC中,∠C=90°根据勾股定理,得:AC===2(米)∴梯子顶端A与地面的距离AC为2米;(2)依题意,得:CD=BC+BD=1.5+0.5=2(米)在Rt△CDE中,∠C=90°,根据勾股定理,得:∴AE=AC﹣CE=2﹣1.5=0.5(米)∴梯子顶端A下滑了0.5米.24.解:(1)∵由勾股定理得:AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC是直角三角形;(2)∵AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB=,AC=2,BC=5,设△ABC的边BC上的高为h,则AB×AC=×h,∴×2=5h,h=2,即△ABC中BC边上的高是2.25.解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,G,使AD=AG=200千米,∴△ADG是等腰三角形,∵AC⊥BF,∴AC是DG的垂直平分线,∴CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120(千米),则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).。

第十八章 勾股定理总复习

第十八章  勾股定理总复习

第十八章勾股定理总复习:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DACA B D人教版八年级下册勾股定理全章类题总结类型一:等面积法求高【例题】如图,△ABC 中,∠ACB=900,AC=7,BC=24,C D ⊥AB 于D 。

专题复习:勾股定理(教案)

专题复习:勾股定理(教案)
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和证明方法这两个重点。对于难点部分,如定理的证明过程,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过制作直角三角形模型,演示勾股定理的基本原理。
1.数学抽象:通过勾股定理的学习,使学生能够从实际问题中抽象出数学模型,理解数学概念的本质,提高数学思维能力。
2.逻辑推理:培养学生运用不同的证明方法,理解和掌握勾股定理的推理过程,提高逻辑思维能力和解题技巧。
3.数学建模:学会将勾股定理应用于解决实际问题,建立数学模型,培养学生解决实际问题的能力。
五、教学反思
在今天《勾股定理》的复习课上,我发现学生们对于定理的概念和应用有了较好的掌握,但在证明过程中还存在一些困难。我尝试用生活中的实例引入勾股定理,让学生感受到数学与生活的紧密联系,这一点效果不错,大家都很感兴趣。但在教学过程中,我也注意到了几个问题。
首先,对于定理的证明方法,尤其是代数法的证明,部分学生感到难以理解。在今后的教学中,我需要更加耐心地引导他们,通过多举例、多解释,帮助他们突破这个难点。
-掌握至直角三角形的边长比例关系,如30°-60°-90°和45°-45°-90°直角三角形。
-例:通过实际例题,如计算墙壁上悬挂画框的合适位置,强调勾股定理在实际问题中的应用。
2.教学难点
-理解勾股定理的证明过程:学生需要理解并掌握从具体实例中抽象出定理的过程,以及不同证明方法背后的逻辑。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

期末复习(二) 勾股定理

期末复习(二) 勾股定理
(1)线段 的长.
解:根据题意,得 , .又 , .又 , .
(2) 的度数.
[答案] , , , , 为直角三角形, .由(1)得 为等腰直角三角形, , .
重难点3 勾股定理在实际生活中的应用
【例3】如图,高速公路的一侧有 , 两个村庄,它们到高速公路所在直线 的距离分别为
(1)你认为这个零件符合要求吗?为什么?
解:这个零件符合要求. , , . .又 , , . .
(2)求这个零件的面积.
[答案] 由(1)知 , ,∴这个零件的面积为 .
19.(12分)给出定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.
A
A. 直角三角形 B. 锐角三角形C. 钝角三角形 D. 以上答案都不对
第5题图
5.如图,“赵爽弦图”是吴国的赵爽创制的.以直角三角形的斜边为边长得到一个正方形,该正方形由4个全等的直角三角形再加上中间的小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中
C
A. B. C. D.
第7题图
7.图1是由边长为1的六个小正方形组成的图形,它可以围成图2所示的正方体,则图1中正方形的顶点 , 在图2围成的正方体中的距离是( )
C
A. B. C. D.
8.如图,在 中, 于点 , , , ,则 的为( )
B
A. B. C. D.
3.图1是放置在水平面上的可折叠式护眼灯,其中底座的高 ,连杆 ,灯罩 .如图2,转动 , ,使得 成平角,且灯罩端点 离桌面 的高度 为 ,求 的距离.
解:过点 作 于点 . , ,∴四边形 为矩形. , . , ,
∴在 中, . 的距离为 .

勾股定理复习与提升

勾股定理复习与提升

01
利用相似三角形的性质、四边形面积公式、向量等不同方法证
明勾股定理。
勾股定理的变形
02
在解决实际问题时,可以根据需要将勾股定理进行变形,如$(c-
a)^2 + b^2 = c^2$等。
勾股定理的应用范围
03
勾股定理不仅适用于直角三角形,还可以推广到任意三角形和
多边形中。
勾股定理的易错点与注意事项
勾股定理在物理学中的应用
力学分析
光学分析
在力学分析中,勾股定理可以用来确定物 体的运动轨迹、速度和加速度等参数,以 确保物体的运动状态和ቤተ መጻሕፍቲ ባይዱ为的正确性。
在光学分析中,勾股定理可以用来确定光 的传播路径、折射率和反射率等参数,以 确保光的传播特性和行为的正确性。
电磁学
在电磁学中,勾股定理可以用来确定电磁 波的传播方向、幅度和相位等参数,以确 保电磁波的传播特性和行为的正确性。
02 勾股定理的拓展
勾股定理的逆定理
勾股定理的逆定理是指,如果一个三角形的三边满足勾股定理的关系,那么这个三 角形是直角三角形。具体来说,如果$a^2 + b^2 = c^2$,其中$a$和$b$是直角 三角形的两条直角边,$c$是斜边,那么这个三角形是直角三角形。
证明方法:假设三角形ABC是直角三角形,且角C是直角。那么根据勾股定理,我们 有$a^2 + b^2 = c^2$。如果$a^2 + b^2 neq c^2$,则说明角C不是直角,与 假设矛盾。
勾股定理在几何图形中的应用
在几何图形中,勾股定理的应用非常广泛。例如,在直角三角形中,可以利用勾股定理来求解直角三角形的角度或边长;在 等腰三角形中,可以利用勾股定理来证明底边的垂直平分线就是高线;在矩形中,可以利用勾股定理来证明矩形的对角线相 等。

勾股定理专题复习

勾股定理专题复习

专题复习一 勾股定理本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。

如果用字母a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。

2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数。

常见勾股数如下:3、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162=289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272=专题归类:专题一、勾股定理与面积1、、在Rt ▲ABC 中,∠C=︒90,a=5,c=3.,则Rt ▲ABC 的面积S= 。

2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 。

3、直线l 上有三个正方形a 、b 、c ,若a 和c 的面积分别为5和11,则b 的面积为4、在直线l 上依次摆放着七个正方形(如图所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4, 则S 1+S 2+S 3+S 4等于 。

5、三条边分别是5,12,13的三角形的面积是 。

6、如果一个三角形的三边长分别为a,b,c 且满足:a 2+b 2+c 2+50=6a+8b+10c,则这个三角形的面积为 。

7、如图1,︒=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长?7、如下图,在∆ABC 中,︒=∠90ABC ,AB=8cm ,BC=15cm ,P 是到∆ABC 三边距离相等的点,求点P 到∆ABC 三边的距离。

8、有一块土地形状如图3所示,︒=∠=∠90D B ,AB=20米,BC=15米,CD=7米,请计算这块土地的面积。

(添加辅助线构造直角三角形)9、如右图:在四边形ABCD 中,AB=2,CD=1,∠A=60°,求四边形ABCD 的面积。

勾股定理期末复习讲义

勾股定理期末复习讲义

勾股定理期末复习讲义提要:本节内容的重点是勾股定理及其应用.勾股定理是解几何中有关线段计算问题的重要依据,也是以后学习解直角三角形的主要依据之一,在生产生活实际中用途很大,它不仅在数学中,而且在其他自然科学中也被广泛地应用.本节内容的难点是勾股定理的证明.勾股定理的证明方法有多种,课本是通过构造图形,利用面积相等来证明的这里还涉及到了解决几何问题的方法之一:面积法。

割补(……陌生的名词么,但是我们用过)的思想也要值得我们去注意.【知识结构】1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 2.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.3.勾股数能够成为直角三角形三条边长的三个正整数,称为勾股数.你记得几组勾股数?显然,若(a,b,c)为一组基本勾股数,则(ka,kb,kc)也为勾股数,其中k为正整数.4.利用尺规画出长度是无理数的线段.了,知道画吧5.勾股定理及其逆定理的应用.蚂蚁怎样走最近【注意】1.勾股定理的证明,是利用图形的割补变化,通过有关面积的数量关系进行证明的方法.2.在应用勾股定理时,要注意在直角三角形的前提条件,分清直角三角形的直角边和斜边.3. 在应用勾股定理逆定理时,先要确定最长边,再计算两条较短边的平方和是否等于最长边的平方,最后确定三角形是不是直角三角形.4. 本章关联的知识点:实数的运算,三角形,四边形,图形变换,解方程等【基础训练A】1.三角形三边之比分别为①1:2:3,②3:4:5;③1.5:2:2.5,④4:5:6,其中可以构成直角三角形的有()A.1个 B.2个 C.3个 D.4个2.若线段a、b、c能构成直角三角形,则它们的比为()A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:73.下面四组数中是勾股数的有()(1)1.5,2.5,2 (2,2(3)12,16,20 (4)0.5,1.2,1.3A.1组B.2组C.3组D.4组4. △ABC中,∠C=90°,c=10,a:b=3:4,则a=______,b=_______.5. 在△ABC中∠C=90°,AB=10,AC=6,则另一边BC=________,面积为______,• AB边上的高为________;6.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.B C A D B C A D7. 如图,已知CD=3m ,AD=4m , ∠ADC=90°, AB=13m ,BC=12m ,(1)求AC 边的长。

勾股定理复习

勾股定理复习

好相齐,则河水的深度为( A)
1、在△ABC中,AC=6,BC=8,则AB的长为( ) (A)10 (B)2 (C)4 (D)无法确定
2、已知直角三角形的两边长分别为3、4,则第三边
长为

3、以线段a=0.6,b=1,C=0.8为边组成的三角形是不 是直角三角形?
比一比,看谁快!
1、在Rt△ABC中,∠C=900
①若a=6,b=8, 则c=_1_0_;
33
B
D
C
6
1、如图,在△ABC中,AB=AC=17, BC=16,求△ABC的面积。
(2)求腰AC上的高。
A
17 15 17
88
B
D
C
16
2 、 如 图 6 , 在 △ ABC 中 , AD⊥BC , AB=15,AD=12,AC=13,求△ABC的 周长和面积。
A
15
13
12
B 9 D5 C
考点4
勾BC,为了
安全需要,需使梯子底端离建筑物距离AB
为6米,问至少需要多长的梯子?
解:根据勾股定理得:
AC2= 62 + 82
=36+64
=100 即:AC=10(-10不合,舍去) 答:梯子至少长10米。
C
8m
A
6m
B
1、 印度有一数学家婆什迦罗曾提出过“荷花问题”
x米 (X+1)米
C 5米
B
例题:一个长5m的梯子AB,斜靠在墙上,这时
梯子顶端离地面4m,如果梯子的顶端下滑2m,
那么梯子的底端也外移2m吗?
解:在Rt△AOB中,由勾股定理, A
得:OB AB2 A02

勾股定理总复习

勾股定理总复习

勾股定理1.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

2.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,即三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(C为斜边最长,c>a,c>b )注释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系。

(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形。

(3)理解勾股定理的一些变式: c2=a2+b2,a2=c2-b2, b2=c2-a23.图形解释:4.勾股数:满足a2+b2=c2的三个正整数成为勾股数.例如:(3,4,5),(6,8,10),(5,12,13),(7,24,25)注释:勾股数的每一项的整数倍的组合也是勾股数,例如(3,4,5)的二倍(6,8,10)同样也为勾股数。

知识点一:已知两边求第三边1.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边①若a=5,b=12,则c=________;②若c=41,a=40,则b=________;③若∠A=45°,a=1.则b=________,c=________ ,a:b:c= .2. 在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.3. 已知直角三角形的两边长为3、2,则另一条边长是________________.4.如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD= 。

5. 如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?总结:在应用勾股定理进行计算时,一定要分清哪条是直角边哪条是斜边。

【同步训练一】1. 在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b;(2)已知a=40,b=9,求c;(3)若∠A=30°,a=1,则c=________,b=_________;(4)若∠A=45°,a=1,则c=________,b=_________2.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.3.已知直角三角形的两边长为6、8,则另一条边长是________________.4.如图,在Rt△ABC中,∠C=90°,若BC=3,AC=4,则AB= 。

勾股定理的证明及应用期末复习

勾股定理的证明及应用期末复习
AC、、2a5=6,b=B8、,c1=410 C、D、7 a=3,bD=4、,c7=或525
基础练习
勾股定理
1.若△ABC的三边a、b、c,满足(a-b) (a2+b2-c2)=0,则△ABC是( ) A.等腰三角形; B.直角三角形; C.等腰三角形或直角三角形; D.等腰直角三角形。
解三角形:设未知数求长度
0的立方根是0. 性质:
一个正数有一个正的立方根, 一个负数有一个负的立方根. 0的立方根是0.
勾股定理
实数与数轴上的点一一对应,实数可以比 较大小.实数有相反数,倒数,绝对值.有理 数的运算法则和运算律在实数范围内仍 然适用.
勾股定理
在数轴上作出 5 对应的点。
52
-2
-1
0
1
25
1.填空题:
有理数和无理数统称为实数. 正整数
有 限
实数
有理数
正有理数 零
负有理数
正分数
负整数
负分数
小 数 或 无 限 循

正无理数
无理数 负无理数
无限不 循环小
小 数
把下列各数分别填入相应的括号内:勾股定理
3 2,
1 4
,
有52 ,理π数, 和7 , 无3 8理, 数3统, 称230为, 实5数, 94
6. 与数轴上所有的点一一对应的 数是(D )。 (A)整数 (B)有理数 (C)无理数 (D)实数
勾股定理
平方差公式在实数运算中的应用
(a b)(a b) a2 b2 .
(1) ( 5 6)( 5 6)
(2) ( 15 4)(4 15)
(3) (2 3)(2 3)源自HB 10 D C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八(下)数学期末复习试题 第19章 勾股定理
班级 姓名 成绩
一、精心选一选(每小题5分,共40分)
1、在△ABC 中,∠C=90°,c=1,则a 2
+b 2
+c 2
的值是( ) A .2 B .4 C .6 D .8
2、一架4.1m 长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.9m .那么梯子的顶端与地面的距离是( )
A .3.2m
B .4.0m
C .4.1m
D .5.0m
3、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( ) A .6厘米 B .8厘米 C .
8013厘米 D .60
13
厘米 4、如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,
那么AC 的长为( ).
A .12
B .7
C .5
D .13
5、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .等腰三角形
6、下列各组数中以a ,b ,c 为边的三角形不是直角三角形的是( ) A .a=2,b=3,c=4 B .a=7,b=24,c=25
C .a=6,b=8,c=10
D .a=3,b=4,c=5
7、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )
A .8cm
B .10cm
C .12cm
D .14cm
8、 已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )
A .3cm 2
B .4cm 2
C .6cm 2
D .12cm 2
二、耐心填一填(每小题5分,共20分)
9、在△ABC 中,∠C =90°,若 a =5,b =12,则 c = .
10、等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 . 11、一棵大树在离地9米处断裂,树顶部落在离树底部12米处,大树折断之前的高为_________.
E
A
B C
D
第4
题图
第8题图
12、小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为 m .
三、细心解一解(每小题10分,共20分) 13、如图,∠FAC=∠ABC=90°, BC 长为3,AB 长为4,AF 长为12,求正方形的面积.
14、已知,如图,折叠长方形(四个角都是直角,对边相等)的一边AD 使点D 落在BC 边的点F 处,已知AB = 8cm ,BC = 10 cm ,求EC 的长.
四、专心做一做(每小题10分,共20分)
15、如图,等腰△ABC 中,底边BC =20,D 为AB 上一点,CD =16,BD =12.
求:(1) △ABC 的周长; (2) △ABC 的面积.
16、数学老师在一次“探究性学习”课中,给出如下数表:
(1)请你分别认真观察线段a 、b 、c 的长与n 之间的关系,用含n (n 为自然数,且n>1)的代数式表示: a= ,b= ,c= . (2)猜想:以线段a 、b 、c 为边的三角形是否是直角三角形?并说明你的结论.
D
E
C
A F E
D。

相关文档
最新文档