机考题库--微积分

合集下载

微积分试题及答案【精选】

微积分试题及答案【精选】

一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求0x →A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x =-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+C 、2y x = D 、ln y x = (0)x >二、填空题(每题2分) 1、__________2、、2(1))l i m ()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x =+函数是有界函数 ( )2、有界函数是收敛数列的充分不必要条件 ( )3、limββαα=∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin xy x=求函数 的导数2、21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x xx x→-求 5、计算6、21lim (cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x=++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21y x x=+的图形(12分) 六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则 2、证明方程10,1xxe =在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、1sin1sin1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )xxx xx xy x ee x x x x x x x x x x x'='='⎡⎤=-+⎢⎥⎣⎦=-+((2、22()112(arctan )121arctan dy f x dxxx x dx x xxdx='=+-++= 3、 解:2222)2)222302323(23)(23(22)(26)(23x y xy y y x yy x y y x y x y yy y x y--'+'=-∴'=--'----'∴''=-4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x x x x x x x x x x x x x x →→→--∴==当时,原式=5、解:65232222261)61116116(1)166arctan 6arctanx t dx t tt t t t t tt t C C===+=++-=+=-+=-+=-+⎰⎰⎰⎰令原式(6、 解:201ln cos 01limln cos 20200012lim 1lim ln cos ln cos lim 1(sin )cos lim 2tan 1lim 22x xx x xx x x x x e ex xxx x x xx x e++→++++→→→→→-===-=-==-∴= 原式其中:原式 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x aaL x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==-='=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值2、 解:()()2300,01202201D x y x x y x y x y x =-∞⋃+∞='=-'==''=+''==-,间断点为令则令则渐进线:32lim lim 001lim x x x y y y x y y x y x x→∞→→∞=∞∴=∴=+==∞∴无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题 1、 证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x M M M x f A x f A x εεξε→∞→∞=∴∀>∃>>-<><<>∴-<= 当时,有取=,则当0时,有即。

微积分综合练习题及参考答案1

微积分综合练习题及参考答案1

综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k(5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sinlim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e xx +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ).A .5->xB .4-≠xC .5->x 且0≠xD .5->x 且4-≠x 答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B(7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x .解:4121lim )2)(2()1)(2(lim 423lim22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题(1)曲线1)(+=x x f 在)2,1(点的切斜率是 . 答案:21(2)曲线x x f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知x x x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若x x x f -=e )(,则='')0(f .答案:x x x x f --+-=''e e 2)(='')0(f 2-2.单项选择题(1)若x x f x cos e )(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e ()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C(2)设y x =lg2,则d y =( ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos ' C .x x x f d 2sin )2(cos 2' D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x +B .a x 6sin +C .x sin -D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21ex x y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 .答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微.B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .x e C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案第一题:求函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点和拐点。

解析:首先,我们需要找到函数的极值点。

极值点对应于函数的导数为零的点。

对函数 f(x) 求导得到 f'(x) = 3x^2 - 6x + 2。

令导数等于零,我们得到一个二次方程 3x^2 - 6x + 2 = 0。

使用求根公式,可以解得这个二次方程的解为x = 1 ± √(2/3)。

所以函数的极值点为x = 1 + √(2/3) 和 x = 1 - √(2/3)。

接下来,我们需要找到函数的拐点。

拐点对应于函数的二阶导数为零的点。

对函数 f(x) 求二阶导数得到 f''(x) = 6x - 6。

令二阶导数等于零,我们得到 x = 1,这是函数的一个拐点。

综上所述,函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点为x = 1 + √(2/3)和 x = 1 - √(2/3),拐点为 x = 1。

第二题:已知函数 f(x) = e^x,在点 x = 0 处的切线方程为 y = mx + b,求参数 m 和 b 的值。

解析:切线方程的斜率 m 等于函数在给定点的导数。

对函数 f(x) = e^x 求导得到 f'(x) = e^x。

根据题意,在 x = 0 处求切线,所以我们需要计算函数在 x = 0 处的导数。

将 x = 0 代入函数的导数表达式中,我们得到 f'(0) = e^0 = 1。

所以切线的斜率 m = 1。

切线方程的常数项 b 可以通过将给定点的坐标代入切线方程求解。

由题意知道切线过点 (0, f(0)),即 (0, e^0) = (0, 1)。

将点 (0, 1) 代入切线方程 y = mx + b,我们得到 1 = 0 + b,解得 b = 1。

综上所述,切线方程为 y = x + 1。

第三题:计算函数f(x) = ∫(0 to x) sin(t^2) dt。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案一、选择题1. 下列哪个是微积分的基本定理?A. 韦达定理B. 牛顿-莱布尼兹公式C. 洛必达法则D. 极限定义答案:B. 牛顿-莱布尼兹公式2. 对于函数$f(x) = 3x^2 - 2x + 5$,求其导数$f'(x)$。

A. $3x^2 - 2x$B. $6x - 2$C. $6x - 2x$D. $6x - 2$答案:D. $6x - 2$3. 已知函数$y = 2x^3 + 4x - 1$,求其在点$(1, 5)$处的切线斜率。

A. 6B. 8C. 10D. 12答案:B. 8二、填空题1. 函数$y = \sin x$在$x = \pi/2$处的导数是\_\_\_\_\_\_。

答案:$1$2. 函数$y = e^x$的导数是\_\_\_\_\_\_。

答案:$e^x$3. 函数$y = \ln x$的导数是\_\_\_\_\_\_。

答案:$\frac{1}{x}$三、简答题1. 请解释一下微积分中的基本概念:导数和积分的关系。

答:导数和积分是微积分的两个基本概念,导数表示函数在某一点上的变化率,而积分表示函数在某一区间上的累积效果。

导数和积分互为逆运算,导数可以用来求解函数的斜率和最值,积分可以用来求解函数的面积和定积分。

2. 为什么微积分在物理学和工程学中如此重要?答:微积分在物理学和工程学中具有重要作用,因为微积分提供了一种精确的方法来描述和分析连续变化的过程。

通过微积分,可以求解物体在运动过程中的速度、加速度、轨迹等物理量,以及工程中涉及到的曲线、曲面、体积等问题。

微积分为物理学和工程学提供了丰富的数学工具,可以更准确地描述和解决实际问题。

四、计算题1. 计算定积分$\int_{0}^{1} x^2 dx$。

答:$\frac{1}{3}$2. 求函数$f(x) = 3x^2 - 2x + 5$在区间$[1, 2]$上的定积分。

答:$\frac{19}{3}$以上就是微积分考试的试题及答案,希望对你的复习有所帮助。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。

2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。

3.若当时,α与β 是等价无穷小量,则 。

0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。

=→)(lim x f ax 5.的连续区间是 。

)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。

=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. 。

='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。

Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。

11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。

=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。

当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,与 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

微积分考试题库(附答案)

微积分考试题库(附答案)

微积分考试题库(附答案)85考试试卷(⼀)⼀、填空1.设c b a,,为单位向量,且满⾜0=++c b a ,则a c c b b a ?+?+?= 2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ?dt t x 2sin 0,则)(x f '=5.?>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b⼆、选择1.曲线==-0122z y x 绕x 轴旋转⼀周所得曲⾯⽅程为()。

(A )12222=+-z y x ;(B )122222=--z y x ;(C )12222=--z y x ;(D )122222=+-z y x2.2)11(lim xx x x -∞→-+=()。

(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'?dx x f x f x )]()([()(A )c x xf +)(;(B )c x f x +')(;(C )c x f x +'+)(;(D )c x f x ++)( 4.设)(x f 在],[b a 上连续,则在],[b a 上⾄少有⼀点ξ,使得()(A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=?)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ()(A )0 (B )1 (C )2 (D )3 三、计算题1.求与两条直线??+=+==211t z t y x 及112211-=+=+z y x 都平⾏且过点(3,-2,1)的平⾯⽅程。

微积分考试题目及答案

微积分考试题目及答案

微积分考试题目及答案一、选择题1. 下列哪个选项描述了微积分的基本思想?A. 求导运算B. 求积分运算C. 寻找极限D. 都是答案:D2. 求函数f(x) = 2x^3 + 3x^2的导数是多少?A. f'(x) = 4x^2 + 6xB. f'(x) = 6x^2 + 3xC. f'(x) = 6x^2 + 6xD. f'(x) = 4x^2 + 3x答案:A3. 计算积分∫(2x^2 + 3x)dxA. x^3 + 2x^2B. x^3 + 2x + CC. (2/3)x^3 + (3/2)x^2D. (2/3)x^3 + 3x^2答案:C二、填空题4. 函数f(x) = 3x^2 + 2x的导数为_________答案:f'(x) = 6x + 25. 计算积分∫(4x^3 + 5x)dx = __________答案:x^4 + (5/2)x^2 + C6. 函数y = x^2在点x=2处的切线斜率为_________答案:4三、解答题7. 求函数y = x^3 + 2x^2在x=1处的切线方程。

解:首先求函数在x=1处的导数,f'(x) = 3x^2 + 4x。

代入x=1得斜率为7。

又因为该点经过(1,3),故切线方程为y = 7x - 4。

8. 求曲线y = x^3上与x轴围成的面积。

解:首先确定曲线截距为(0,0),解方程得x=0。

利用定积分区间求解:∫[0,1] x^3dx = 1/4。

以上为微积分考试题目及答案,希望对您的学习有所帮助。

感谢阅读!。

微积分考试题库(附答案)

微积分考试题库(附答案)

85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。

(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。

(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。

微积分试题及答案pdf

微积分试题及答案pdf

微积分试题及答案pdf一、选择题(每题5分,共20分)1. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的导数是:A. \( 3x^2 - 12x + 11 \)B. \( 3x^2 - 12x + 6 \)C. \( x^2 - 12x + 11 \)D. \( x^2 - 6x + 11 \)答案:A2. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:B3. 函数 \( y = \ln(x) \) 的不定积分是:A. \( x\ln(x) + C \)B. \( \frac{x}{\ln(x)} + C \)C. \( x\ln(x) - x + C \)D. \( x + C \)答案:A4. 曲线 \( y = x^2 \) 与直线 \( y = 2x \) 在第一象限的交点坐标是:A. \( (1, 2) \)B. \( (2, 4) \)C. \( (-1, -2) \)D. \( (-2, -4) \)答案:A二、填空题(每题5分,共20分)1. 函数 \( f(x) = \sin(x) \) 的二阶导数是 \( \_\_\_\_\_ \)。

答案:\( -\sin(x) \)2. 曲线 \( y = e^x \) 在 \( x = 0 \) 处的切线斜率是\( \_\_\_\_\_ \)。

答案:13. 函数 \( y = \ln(x) \) 的不定积分是 \( \_\_\_\_\_ \)。

答案:\( x\ln(x) - x + C \)4. 定积分 \( \int_{0}^{1} e^x dx \) 的值是 \( \_\_\_\_\_ \)。

答案:\( e - 1 \)三、解答题(每题10分,共20分)1. 求函数 \( f(x) = x^3 - 3x^2 + 4 \) 在 \( x = 2 \) 处的导数值。

微积分试卷含答案

微积分试卷含答案

微积分考试试题一、填空题(每题3分,共10题)1,=++++∞→nn n n n n 1)8642(lim 。

2、函数)(x f 的定义域为实区间 (0 , 1) , 则)1(-x f 的定义域是 。

3,曲线3)(x e x f =中的凸曲线所对应的开区间是 。

4,),31ln(2)(x xx f +=设 为使其在0=x 处连续,需补充定义=)0(f 。

5,已知2)0(='f ,则 =-→xx f x f x )()5(lim 0 。

6,)(x f 任意阶可导,且)4()3()2()1(f f f f ===,则0)(=''x f 至少有 个实根。

7,设,sin x y = 则 =)2011(y 。

8,函数22+=-x e y x 的单调递增开区间是 。

9,=+⎰dx x x 21arctan 。

10,若x x f +='1)(ln ,且,0)0(=f 则=)(x f 。

二、选择题(每题3分,共5题)1,下列各式中,正确的是( )。

)()(,22x f dx x f dxd A =⎰ )()(,x f dx x f dx d B ='⎰ )()(,x df dx x f d C =⎰ dx x f d x df D ⎰⎰=)()(, 2,当0→x 时,下列四个无穷小量中,哪一个是比其它三个更高阶的无穷小量( )。

2.x A x B cos 1.- 11.2--x C x x D sin .-3,)(x f 定义域为),(+∞-∞,且,1)(lim =∞→x f x ⎪⎩⎪⎨⎧=≠=0,10),1()(x x x f x g 。

则0=x 是)(x g 的( )。

A. 可去间断点 B. 无穷间断点 C. 连续点 D. 不一定,要看)(x f 公式 4,连续函数)(x f y =在0x x =处取得极大值,则必有( )。

0)(.0≠'x f A 0)(.0=x f B 0)(0)(.00<''='x f x f C 且 0)(.0='x f D 或不存在 5,下列说法仅有一个正确,它是( )。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案一、选择题1. 设函数 f(x) = x^3 - 3x^2 + 2x + 1,那么 f'(1) 的值是多少?A. -1B. -4C. -3D. 0答案:C2. 给定曲线 y = 2e^x - x,求当 x = 0 时,曲线的切线方程为?A. y = 1 - xB. y = x - 1C. y = e - xD. y = x - e答案:A3. 对于函数 f(x) = 3x^2 + 2x + 1,在 [0,2] 区间上的定积分为?A. 12B. 10C. 14D. 16答案:C二、填空题1. 设函数 g(x) = 2x^3 - 6x + 5 的不定积分为 F(x),那么 F(2) 的值为________。

答案:272. 设函数 h(x) = x^4 - 2x^3 + 3x^2 + 5x - 2,那么 h'(x) 的导函数为_________。

答案:4x^3 - 6x^2 + 6x + 5三、解答题1. 计算函数f(x) = ∫[0,2] (3x^2 + 2x + 1) dx 的值。

解答步骤:首先对 f(x) 进行积分得到 F(x) = x^3 + x^2 + x + C。

然后将积分上下限代入 F(x),得到 F(2) = 2^3 + 2^2 + 2 + C = 14 + C。

由于题目没有给定积分常数 C,所以无法具体计算 F(2) 的值。

2. 求函数g(x) = ∫[-1,1] (2x^3 - 6x + 5) dx 的值。

解答步骤:首先对 g(x) 进行积分得到 G(x) = x^4 - 3x^2 + 5x + C。

然后将积分上下限代入 G(x),得到 G(1) - G(-1) = (1^4 - 3(1)^2 +5(1)) - ((-1)^4 - 3(-1)^2 + 5(-1))= (1 - 3 + 5) - (1 - 3 - 5) = 3 - (-7) = 10。

微积分考试题目及答案

微积分考试题目及答案

微积分考试题目及答案1. 求函数f(x) = x^2的导数。

解答:根据导数的定义,导数是函数在某一点处的变化率。

对于f(x) = x^2,我们可以使用求导法则来求导数。

根据幂函数的求导法则,当函数为x^n时,导数为nx^(n-1)。

应用该法则,我们有:f'(x) = 2x^(2-1)= 2x因此,函数f(x) = x^2的导数为2x。

2. 求函数f(x) = e^x的导数。

解答:根据指数函数的求导法则,当函数为e^x时,导数也为e^x。

因此,函数f(x) = e^x的导数为e^x。

3. 求函数f(x) = ln(x)的导数。

解答:根据对数函数的求导法则,当函数为ln(x)时,导数为1/x。

因此,函数f(x) = ln(x)的导数为1/x。

4. 求函数f(x) = sin(x)的导数。

解答:根据三角函数的求导法则,当函数为sin(x)时,导数为cos(x)。

因此,函数f(x) = sin(x)的导数为cos(x)。

5. 求函数f(x) = cos(x)的导数。

解答:根据三角函数的求导法则,当函数为cos(x)时,导数为-sin(x)。

因此,函数f(x) = cos(x)的导数为-sin(x)。

6. 求函数f(x) = 2x^3 - 5x^2 + 3x - 7的导数。

解答:应用求导法则,我们对每一项分别求导。

根据幂函数的求导法则,导数为nx^(n-1)。

所以:f'(x) = 2*3x^(3-1) - 5*2x^(2-1) + 3*1x^(1-1) + 0= 6x^2 - 10x + 3因此,函数f(x) = 2x^3 - 5x^2 + 3x - 7的导数为6x^2 - 10x + 3。

7. 求函数f(x) = x^2的不定积分。

解答:对于幂函数的不定积分,可以使用幂函数的积分法则来求解。

根据该法则,当函数为x^n时(n不等于-1),不定积分为(1/(n+1))x^(n+1) + C,其中C为常量。

微积分考试题库(附答案)

微积分考试题库(附答案)

85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。

(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。

(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。

会计微积分考试题目及答案

会计微积分考试题目及答案

会计微积分考试题目及答案一、选择题(每题2分,共20分)1. 微积分中最基本的概念是:A. 极限B. 导数B. 积分D. 微分2. 以下哪个不是导数的几何意义?A. 切线斜率B. 瞬时速度C. 面积D. 函数的增长速度3. 积分的基本概念是:A. 求和B. 求极限C. 求导D. 求和的极限4. 以下哪个是定积分的几何意义?A. 曲线下的面积B. 曲线上的点C. 曲线的斜率D. 曲线的切线5. 微分方程是描述:A. 函数的极限B. 函数的导数C. 函数的积分D. 函数的增长速度6. 以下哪个不是微分方程的应用领域?A. 物理学B. 工程学C. 经济学D. 会计学7. 函数 \( f(x) = 2x^2 + 3x - 5 \) 的导数是:A. \( 4x + 3 \)B. \( 2x + 3 \)C. \( 4x^2 + 6x \)D. \( 2x^2 + 3x \)8. 以下哪个是定积分的计算公式?A. \( \int f(x) \, dx \)B. \( \sum f(x_i) \Delta x \)C. \( \lim_{n \to \infty} \sum f(x_i) \Delta x \)D. \( \lim_{n \to \infty} \sum f(x_i) \Delta x \) 当\( \Delta x \) 趋近于09. 以下哪个是泰勒级数的应用?A. 计算函数的近似值B. 计算函数的导数C. 计算函数的积分D. 计算函数的极限10. 以下哪个不是微积分在会计中的应用?A. 成本分析B. 投资回报率计算C. 折旧计算D. 会计凭证的录入答案:1-5 ABBCA 6-10 DCDAD二、简答题(每题10分,共30分)1. 简述微积分在会计决策中的应用。

微积分在会计决策中的应用主要体现在成本分析、投资回报率计算等方面。

例如,通过微积分可以对成本函数进行分析,以确定成本的最小化点,从而帮助企业做出成本效益最大化的决策。

机考题库--微积分

机考题库--微积分

多元函数微分学机考题说明:1. 考试时间为60分钟,满分为100分。

2. 每份试卷共有15题,其中容易题6道,中等题6道,难题3道。

3. 每份试卷中,1—10题每题7分,11—15题每题6分。

4. 试题范围:多元函数微分学。

一、容易题1. 二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 在点)0,0(处(A) 连续,偏导数存在。

(B) 连续,偏导数不存在。

(C) 不连续,偏导数存在。

(D) 不连续,偏导数不存在。

, 答:C2. 设函数),(),,(y x v v y x u u ==由方程组⎩⎨⎧+=+=22vu y v u x 确定,则当v u ≠时,=∂∂x u(A)v u x -。

(B) v u v --。

(C) v u u --。

(D) vu y- 答:B3. 设),(00y x 是二元函数),(y x f 定义域内的一点,则下列命题中一定正确的是 (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 的偏导数都存在。

(B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。

(C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。

(D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。

答:D 4. .5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是(A) )32,31,31(-。

(B) )32,31,31(2-。

(C) )92,91,91(-。

(D) )92,91,91(2-。

答:A5.(,)(,)f x y f x y x y∂∂∂∂和在00(,)x y 连续对于函数),(y x f 在点),(00y x 可微是[ ](A )充分条件。

微积分基础试题及答案

微积分基础试题及答案

微积分基础试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2的导数是:A. 2xB. x^2C. 2x^2D. x答案:A2. 曲线y=e^x在x=0处的切线斜率是:A. 1B. eC. e^0D. 0答案:A3. 定积分∫(0 to 1) x dx的值是:A. 1/2B. 1/3C. 1D. 0答案:A4. 函数f(x)=sin(x)的不定积分是:A. cos(x)B. sin(x) + CC. -cos(x) + CD. cos(x) + C答案:D5. 极限lim(x→0) (1/x)的值是:A. 0B. ∞C. -∞D. 不存在答案:D6. 函数f(x)=x^3-3x^2+2的极值点是:A. x=1B. x=2C. x=1或x=2D. x=0答案:C7. 曲线y=ln(x)在x=e处的切线方程是:A. y=x-1B. y=x+1C. y=1-xD. y=1+x答案:A8. 函数f(x)=x^2+2x+1的最小值是:A. 0B. 1C. 2D. 3答案:B9. 曲线y=x^3-3x^2+2x的拐点是:A. x=0B. x=1C. x=2D. x=3答案:B10. 函数f(x)=x^2-4x+4的对称轴是:A. x=2B. x=-2C. x=0D. x=4答案:A二、填空题(每题2分,共20分)1. 函数f(x)=x^3的二阶导数是______。

答案:6x2. 定积分∫(0 to π/2) sin(x) dx的值是______。

答案:13. 函数f(x)=x^2+3x+2的零点是______。

答案:-1和-24. 曲线y=x^2在x=1处的切线斜率是______。

答案:25. 函数f(x)=e^x的不定积分是______。

答案:e^x + C6. 极限lim(x→∞) (1/x)的值是______。

答案:07. 函数f(x)=x^3-6x^2+11x-6的极值点是______。

电大微积分试题及答案

电大微积分试题及答案

电大微积分试题及答案一、选择题(每题4分,共40分)1. 函数f(x)=x^2-4x+c的图像与x轴的交点个数取决于c的值。

若交点个数为2,则c的值应满足的条件是:A. c>0B. c=0C. c<0D. c≤0答案:C2. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. -1D. 2答案:B3. 函数y=3x^2+2x+1的导数是:A. 6x+2B. 2x+3C. 3x^2+2D. 3x答案:A4. 曲线y=x^3-3x在点(1,-2)处的切线斜率是:A. 0B. -1C. 1D. 2答案:C5. 定积分∫(0,1) x dx的值是:A. 1/2B. 1/3C. 1D. 2答案:A6. 函数f(x)=x^3-6x^2+11x-6的极值点是:A. 1B. 2C. 3D. 4答案:B7. 函数y=e^x的不定积分是:A. e^xB. e^x + CC. ln xD. x^e答案:B8. 曲线y=x^2与直线y=4x-3的交点坐标是:A. (1,1), (3,9)B. (1,3), (3,3)C. (1,3), (3,9)D. (1,1), (3,3)答案:C9. 函数y=ln x的导数是:A. 1/xB. ln xC. xD. 1答案:A10. 定积分∫(0,π/2) sin x dx的值是:A. 1B. 2C. π/2D. 0答案:D二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x^2+2的导数是________。

答案:3x^2-6x2. 极限lim(x→∞) (x^2-1)/(x^2+1)的值是________。

答案:13. 曲线y=x^3-6x^2+11x-6的拐点是________。

答案:(2,-2)4. 函数y=e^x的二阶导数是________。

答案:e^x5. 定积分∫(0,1) (x^2-x) dx的值是________。

答案:1/3三、解答题(每题10分,共40分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。

物理微积分试题及答案

物理微积分试题及答案

物理微积分试题及答案一、选择题(每题3分,共30分)1. 微积分中,函数的导数表示的是:A. 函数在某一点的斜率B. 函数在某一点的面积C. 函数在某一点的体积D. 函数在某一点的切线方程答案:A2. 以下哪个选项是牛顿-莱布尼茨公式的表述?A. 微分和积分是互为逆运算B. 定积分的值等于原函数的差C. 微分是积分的逆运算D. 积分是微分的逆运算答案:B3. 在物理学中,下列哪个量不是标量?A. 速度B. 力C. 温度D. 压力答案:B4. 根据能量守恒定律,下列哪个说法是正确的?A. 能量可以在不同形式之间转换,但总量不变B. 能量可以在不同形式之间转换,总量会减少C. 能量可以在不同形式之间转换,总量会增加D. 能量不能在不同形式之间转换答案:A5. 以下哪个选项是正确的微分方程形式?A. \(\frac{dy}{dx} = y\)B. \(\frac{dy}{dx} = x\)C. \(\frac{dy}{dx} = y^2\)D. 以上都是答案:D6. 根据麦克斯韦方程组,电场和磁场之间的关系是:A. 电场产生磁场B. 磁场产生电场C. 电场和磁场相互独立D. 以上都不是答案:B7. 以下哪个是正确的物理定律?A. 牛顿第一定律B. 牛顿第二定律C. 牛顿第三定律D. 所有选项答案:D8. 在热力学中,下列哪个是正确的?A. 温度是热能的量度B. 热量是热能的量度C. 熵是系统无序度的量度D. 所有选项答案:D9. 根据量子力学,下列哪个是正确的?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的行为遵循经典力学定律D. 粒子的行为遵循相对论定律答案:B10. 在电磁学中,下列哪个是正确的?A. 电场线是实际存在的物理实体B. 磁场线是实际存在的物理实体C. 电场线和磁场线都是虚拟的,用于描述场的分布D. 电场线和磁场线都是实际存在的物理实体答案:C二、填空题(每题4分,共20分)1. 微积分中的导数定义为函数增量与自变量增量的比值在自变量增量趋向于零时的极限,即 \(\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元函数微分学机考题说明:1. 考试时间为60分钟,满分为100分。

2. 每份试卷共有15题,其中容易题6道,中等题6道,难题3道。

3. 每份试卷中,1—10题每题7分,11—15题每题6分。

4. 试题范围:多元函数微分学。

一、容易题1.二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 在点)0,0(处(A) 连续,偏导数存在。

(B) 连续,偏导数不存在。

(C) 不连续,偏导数存在。

(D) 不连续,偏导数不存在。

答:C2.设函数),(),,(y x v v y x u u ==由方程组⎩⎨⎧+=+=22vu y v u x 确定,则当v u ≠时,=∂∂x u(A)v u x -。

(B) v u v --。

(C) v u u --。

(D) vu y- 答:B3.设),(00y x 是二元函数),(y x f 定义域内的一点,则下列命题中一定正确的是 (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 的偏导数都存在。

(B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。

(C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。

(D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。

答:D4.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是(A) )32,31,31(-。

(B) )32,31,31(2-。

(C) )92,91,91(-。

(D) )92,91,91(2-。

答:A 5.(,)(,)f x y f x y x y∂∂∂∂和在00(,)x y 连续对于函数),(y x f 在点),(00y x 可微是[ ](A )充分条件。

(B)必要条件。

(C)充分必要条件。

(D)无关条件。

答:A6.下列结论中错误的是 (A) 0lim0(1)x y kxxyk x y→==≠-+。

(B) 0111lim lim0000=+=+→→→→xy y x xy y x y x 。

(C) 1lim 20-=+-=→yx xyxx y x 。

(D) y x xyy x +→→00lim不存在。

答:B7.设函数⎪⎩⎪⎨⎧=≠+==)0,0(),(,0)0,0(),(,),(22y x y x y x yx y x f z ,又t y t x ==,,则下列结论中正确的是(A) 0)0,0(=df 。

(B) 00==t dz 。

(C) 210==t dz 。

(D) dt dzt 210==。

答:D8.若二元函数),(y x f z =在点),(000y x P 处的两个偏导数x z ∂∂,yz∂∂存在,则[ ] (A )),(y x f 在0P 点可微。

(B )(,)f x y 在0P 点连续。

(C )),(y x f 在0p 点沿任何方向→u 的方向导数存在。

(D )一元函数0()(,)h x f x y =在0x 连续。

答:D9.已知)ln(22y x z +=,则=∂∂∂yx z2[ ](A)22222)()(2y x x y +-。

(B)22222)()(2y x y x +-。

(C) 222)(4y x xy +-。

(D) 222)(4y x xy +。

答:C10.若),(y x f 在点),(00y x 不可微, 则一定有[ ] (A )),(y x f 在点),(00y x 不连续。

(B )),(y x f 在点),(00y x 沿某些方向v的方向导数不存在。

(C )),(y x f 在点),(00y x 的两个偏导数至少有一个不连续。

(D )),(y x f 在点),(00y x 两个偏导数存在且连续。

答:C11.曲面:S 2xyz x y z +-+=在点(1,1,1)的切平面[ ](A ) 包含y 轴。

(B ) 平行于y 轴。

(C ) 垂直于y 轴。

(D ) A ,B ,C 都不对。

答:B 12.设函数),(y x f 有连续的偏导数,在点)2,1(-M 的两个偏导数分别为1)2,1(=∂-∂x f ,1)2,1(-=∂-∂y f ,则),(y x f 在点)2,1(-M 增加最快的方向是[ ] .A i 。

.B j 。

.C i j +。

.D i j -。

答: D13.函数)ln(1)arccos(2222y x y x z +++=的定义域是[ ](A){}10),(22<+<=y x y x D 。

(B){}1),(22<+=y x y x D 。

(C){}10),(22≤+<=y x y x D 。

(D){}1),(22≤+=y x y x D 。

答:A14.已知函数),(y x z z =由方程0),(=--z y z x F 确定,其中函数F 具有一阶连续偏导数,且021≠'+'F F ,则=∂∂+∂∂yz x z [ ] (A)1-。

(B)0。

(C)21。

(D)1。

答:D15.二元函数=),(y x f ()2222x y x y +-- [ ]A. 没有驻点。

B. 至多有一个极值点。

C 至少有两个极值点。

D 至少有三个极值点。

答:B16.椭球面 222236x y z ++=在点(1,1,1)的切平面方程是[ ] A 6x y z ++=。

B 231x y z ++=。

C 236x y z ++=。

D 233x y z ++=。

答:C 17.已知xyez cos =,则=dz [ ](A))()sin(cos xdy ydx xy e xy +。

(B) )()sin(cos xdy ydx xy e xy +-。

(C) )()sin(cos ydy xdx xy e xy +-。

(D) )(cos xdy ydx e xy +。

答:B18.设)(xyxyf z =,)(x f 可导,则[ ] (A) )(2xy f z x z y y x ='+'。

(B) )(2xyf z y z x y x ='+'。

(C) z z x z y y x 2='+'。

(D) z z y z x y x 2='+'。

答:D19.已知x z y z y x u =,则[ ] (A))ln (),ln (11x y z x z y y u z x y x z y x u y x z y x z +=∂∂+=∂∂--。

(B)x x z y y uz x y x z y x u y x z y x z ln ),ln (111+--=∂∂+=∂∂。

(C))ln (,ln 111x y z x z y y u z x z y x u y x z y x z +=∂∂=∂∂--+。

(D),ln 11z x z y xuy x z -+=∂∂x x z y y u y x z ln 11+-=∂∂。

答:A20.函数yx xy y x y x y x f +++=3223),(在)0,0(),(→y x 时[ ](A) 极限存在且等于零。

(B) 极限存在但不等于零。

(C) 极限不存在但是无穷大量。

(D) 极限不存在也不是无穷大量。

答:D二、中等题1.设有直线⎩⎨⎧=+--=+++031020123:z y x z y x L 及平面0224:=-+-z y x π,则直线L(A) 平行于π。

(B) 在上π。

(C) 垂直于π。

(D) 与π斜交。

答:C2.直线z y x =-=+222与⎩⎨⎧=++=++02012z y y x 之间的关系是 (A) 重合。

(B) 平行。

(C) 相交。

(D) 异面。

答:B3.曲面2132222=++z y x 的与平面064=++z y x 平行的切平面方程是(A) 22164±=++z y x 。

(B) 2164=++z y x 。

(C) 2164-=++z y x 。

(D) 2164±=++z y x答:D4.设函数),(y x f 在点)0,0(处的偏导数(0,0)4x f '=,1)0,0(='y f ,则下列命题中成立的是[ ](A )函数),(y x f 在点(0,0)可微且(0,0)4df dx dy =+。

(B )函数),(y x f 在点)0,0(的某邻域内必有定义。

(C )空间曲线⎩⎨⎧==0),(y y x f z 在点)0,0(处的一个切向量为 4i k +。

(D )极限),(lim )0,0(),(y x f y x →必存在。

答:C5.设 ,(,).xy x y f x y ⎧=⎨⎩和都是有理数;0,其它 则 [ ](A)f 在 (0,0) 可微且(0,0)0df =。

(B)f 在 (0,0) 的两个偏导数存在但不可微。

(C)f 在 (0,0) 可微,但(0,0)0df ≠。

(D) A,B,C 都不对。

答:A6.设(,)sinf x y =则(,)f x y 在)0,0(点[ ](A )连续,但偏导数不存在。

(B )可微。

(C )连续且偏导数存在。

(D )不连续但偏导数存在。

答:C7.已知),(y x f 具有二阶连续偏导数,),(xy x f z =,记xy v =,则下列结论中正确的是(A) v x fy x f x z ∂∂∂+∂∂=∂∂22222。

(B) v x fy x f x z ∂∂∂+∂∂=∂∂222222。

(C)22222222vfy v x f y x f x z ∂∂+∂∂∂+∂∂=∂∂。

(D) 222222222vf y v x f y x f x z ∂∂+∂∂∂+∂∂=∂∂。

答:D8.下列命题中正确的是(A) 若二元函数),(y x f z =连续,则作为任一变量x 或y 的一元函数必连续。

(B) 若二元函数),(y x f z =作为任一变量x 或y 的一元函数都连续,则),(y x f z =必连续。

(C) 若二元函数),(y x f z =可微,则其必存在连续的一阶偏导数。

(D) 若二元函数),(y x f z =不连续,则其必不可导。

答:A9.已知f 有连续的二阶偏导数,22,y ax yf y x x f +=∂∂+=∂∂, 则=a [ ] 1.-A 。

0.B 。

1.C 。

.2.D 。

答:C10.二元函数⎩⎨⎧≠-==其他且,00)1(,1),(x x x y y x f 在点)0,0(处[ ](A) 连续且偏导数存在。

相关文档
最新文档