主变稳态比率差动保护原理及其校验方法

合集下载

如何校验主变比率差动保护的动作特性

如何校验主变比率差动保护的动作特性

如何校验主变比率差动保护的动作特性前言变压器的比率差动保护是变压器的主保护。

它可以防御变压器绕组的相间短路、匝间短路、引出线的相间短路等,因此继电保护工正确校验变压器的比率差动保护是非常必要的。

但在现场对主变差动保护的校验调试中,因对微机保护装置的补偿原理存在偏差,而造成比率曲线成为校验调试的难点。

针对此问题,本文从差动保护的原理和微机保护装置通行的的两种差动电流补偿方法入手,以Y0/Y0/Δ-11变压器和国电南自PST-1200型装置为例,详细介绍了校验步骤,提出了一套验证比率差动曲线及拐点的验证方法。

1、主变纵联差动保护的接线及原理对Y0/Y0/Δ-11型三绕组变压器实现纵差保护是按各侧电流大小和相位而构成的一种保护。

虽然变压器各侧电流大小不等,但微机保护对变压器各侧电流采样后,通过软件算法进行补偿,使得当变压器正常和外部故障时,流入差动继电器的电流为变压器各侧电流之差,其值接近为零,继电器不动作。

当变压器内部故障时,流入继电器继电器的电流为变压器各侧电流之和,其值为短路电流,继电器动作。

1.1不平衡电流产生的原因变压器的运行情况可分为稳态情况和暂态情况。

稳态运行就是变压器带正常负荷运行,此时,由于变压器各侧电流互感器型号不同、实际的电流互感器变比和计算变比不同、带负荷调整变压器的分接头等在差动回路中不可避免存在不平衡电流。

暂态情况就是变压器空载投入或外部故障切除后恢复供电等,此时,励磁涌流仅在变压器一侧存在以及短路电流的非周期分量使电流互感器铁芯饱和、误差增大从而引起不平衡电流。

由于不平衡电流流经差动回路,会造成继电器误动作。

1.2防止不平衡电流产生的对策1.为防止变压器各侧电流互感器型号不同产生不平衡电流而引起差动保护误动作,可采用增大启动电流值以躲开主变保护范围外部短路时的最大不平衡电流;2.为防止变压器励磁涌流所产生的不平衡电流引起差动保护误动作,主变差动保护可采用间断角制动原理、二次谐波制动原理、波形对称原理躲过变压器励磁涌流的影响;3.为防止因变压器接线组别、电流互感器变比不同引起的不平衡电流,可采用软件进行相位补偿及电流数值补偿使其趋于平衡。

变压器保护校验方法

变压器保护校验方法

RCS-978系列变压器保护测试、RCS-978型超高压线路成套保护RCS-978 配置:主保护:稳态比率差动,工频变化量比率差动,零序比率差动,谐波制动,后备保护:复合电压闭锁(启动)方向过流零序方向过流保护间隙零序过流过压保护零序过压稳态比率差动一、保护原理基尔霍夫电流定律,流入=流出(1)差动元件的动作特性在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图:在上图中,I .为差动元件起始动作电流幅值,也称为最小动作电流;op.minI 为最小制动电流,又称为拐点电流;res.minK=tan a为制动特性斜率,也称为比率制动系数。

微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。

动作特性为:拐点前(含拐点):' >一忆V JmJ拐点后: I op - I op mn + K (I es — JmJ / J .mJ式中 I op ——差动电流的幅值I res ——制动电流的幅值也有某些变压器差动保护采用三折线的制动曲线。

(2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。

以双绕组变压器为例,在微机保护中,变压器制动电流的取得方法比较灵活。

国内微机保护有以下几种取得方 式:I = I —I /2I = (I + I )/2resIres二、测试要点:标么值的概念另:注意,978可以自动辅助计算当前的差流,但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前X 相制动电流下的动作电流边界!! !三、试验举例:保护定值:动作门槛:0.3差动速断电流:4I 侧(Y 接线)二次侧额定电流:3.935;II 侧(Y 接线)二次侧额定电流:3.765;III 侧(D 接线)二次侧额定电流:3.955由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定 电流的倒数。

变压器比率差动保护原理及校验方法

变压器比率差动保护原理及校验方法

变压器比率差动保护原理及校验方法1引言继电保护(Protective Relay,Power System Protection是研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。

因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等,使之免遭损害,所以也称继电保护。

基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。

继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。

许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。

因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。

实现继电保护功能的设备称为继电保护装置。

本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。

其中短路电流的计算和电气设备的选择是本设计的重点。

通过分析,找到符合电网要求的继电保护方案。

电力系统和继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。

但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。

因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。

要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。

继电保护是随着电力系统的发展而发展起来的。

20世纪初随着电力系统的发展,继电器开始广泛应用于电力系统的保护,这时期是继电保护技术发展的开端。

具有比率制动特性的变压器差动保护原理及整定

具有比率制动特性的变压器差动保护原理及整定

1 比率制动差动保护特性随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。

所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。

使制动电流在不平衡电流较大的外部故障时有制动作用。

而在内部故障时,制动作用最小。

图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。

根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的ibp最小。

曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流ibpma x来整定的。

曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。

曲线4为具有制动特性的差动继电器的差动保护特性。

在无制动时,曲线3与曲线2相交于b点,这时保护的不动作区为ob′,即保护区内短路时的短路电流必须大于ob′所代表的电流值时,保护才能动作。

在有制动时,曲线3与曲线4相交于a点,短路电流只要大于oa′所代表的电流值,保护即能动作。

oa′<OB′,这说明在同样的保护区内短路状态下,有制动特性的差动保护比无制动特性的差动保护灵敏度要高。

在实际的变压器差动保护装置中,其比率制动特性如下图2所示:图2中平行于横坐标的ab段称为无制动段,它是由启动电流和最小制动电流构成的,动作值不随制动电流变化而变化。

我们希望制动电流小于变压器额定电流时无制动作用,通常选取制动电流等于被保护变压器高压侧的额定电流的二次值。

即: izd=ie/nlh图2中斜线的斜率为基波制动斜率,当区外故障时短路电流中含有大量生产非周期分量,制动izdo增大,当动作电流idzo大于启动电流时,制动电流和动作电流的交点d必落在制动区内。

当区内故障时,差电流即动作电流为全部短路电流,制动电流则为流过非电源侧的短路电流,数值较小,平行于纵、横轴的二直线交点必落在动作区内,差动保护可靠动作。

主变稳态比率差动保护原理及其校验方法

主变稳态比率差动保护原理及其校验方法

对于 南 瑞 的 R C S 一 9 7 8主 变 保护 装 置 , 其 稳态 比率 差 动 保 护 能够 区分 是 变 压 器 内部 故 障 还 是 外部 不 平 衡 故 障 。R C S 一 9 7 8 通 过 分 相 制 动 的方 式 闭锁 励 磁 涌 流 , 因 此 能够 将 故 障 电流 和 励 磁 涌流 区分 开来 , 其保 护动 作时 间大大 加 快 。
S_ L_ C 0 N VA LLEY

主 变稳态 比率差 动保 护原理及其校 验 方法
盛 伟 1 2 1 0 1 3 ) ( 辽 宁 省电 力有 限公 司检 修 分公司 , 辽 宁 锦州
摘 要 继 电保 护为 一次设 备 的安 全设 立 了一 道屏 障 , 大 量事 实表 明做 好继 电保 护 工作对 电力 系统 的安全 稳 定运行 具 有 重要 作 用 。 由于 变压 器在 电 网 中处 于非 常重要 的地位 , 一旦 它发 生故 障 将给 电网的运 行 带来很 大的影 响 , 因此 主变 保 护 在 继 电保 护 中属 于重 中之 重 。 本 文针 对 南瑞 继保 的 R C S - 9 7 8 主 变保 护装 置 , 详 细分析 了主变稳 态 比率 差动保 护 原理 , 介绍 了R C S 一 9 7 8的动作 特 性 以及 其软 件 实现 相位 补偿 的算 法 , 给 出 了校 验 主保 护整 定值 的 方法 。 以明确 主 变保 护 定检
发生 误动 作 。
△侧 : { t ‘ = ( i - t 。 ) /
l I ' o = ( I - I b ) /侧c T二次 电流 ,i 。 、 、i 是 △侧 C T 二次 电流 ,i ・ 、t ・ 。 是Y 侧 校 正后 的各相 电流 , 。 、t 、 是 △侧 校正 后 的各相 电流 , t 。 是Y 侧 二 次零 序 电流 。

35kV主变差动保护比率制动特性通用检验方法

35kV主变差动保护比率制动特性通用检验方法

误动作 ,应遵循带有比率制动特性 的差动保护原理 ,并 由带有 比率制动特性的差动保护和差动 速 断保 护 两部 分 共 同组 成 3 5 k V综合 自动化 变电所 主 变的 继 电保护 装 置 。通过 对 油 田 电 网正在 运
行的3 5 k V微 机型主 变差动保 护装置 比率制 动特性原理进 行分析 ,形成 一套较 为通 用的检验 方法 。
通 过 对 油 田电 网正 在 运行 的 3 5 k V微机 型 主 变 差 动 对高 、低压两侧三相 电流进行 比率特性检验。⑧ 向
保护装置比率制动特性原理进行分析 ,形成一套较 继 电保护 装置 高 、低 压两 侧 电流 回路 ,同时输 出幅 值相同且不小于差动 门槛值的任意电流值 ,检查保 为通 用 的检验 方 法 。 则停止试验 ,并检查接线及电流幅值 、极性是否正 主变差动保护的总体设计要求是躲过区外故障 确 。⑨固定任意一侧电流值 ,均匀增大对侧电流幅 时差动 回路的不平衡 电流以及变压器空载投入时励 值 ,直至差动保护装置动作 ,记录两侧电流值 A N 磁涌流对差动保护的影响 ,同时还要保证内部短路 和 L 改变上述 固定电流值的大小 ,再次均匀增 故障时差动保护动作 的灵敏性和快速性 。流人差动 大对侧电流幅值 ,直至差动保护装置再动作 ,记录 保护 回路 的不平衡电流与变压器外部故障时的穿越 两侧电流值 N z 和L z ;重复上述试验 ,记录 次 电流 有关 ,穿 越 电流越 大 ,不 平衡 电流也 越 大 。 。 。⑩ 确定上述 试验记 录 的任 意两组数 AN 和 L 油 田电网3 5 k V 微机型主变差动保护普遍设计 据 ,作为 比率制动系数 的验证依据 ,按照不同 两段 折线式 比率制 动特性 。当计算得 到的差 电流 型号主变差动保护装置对应说 明书提供 的方法计算 和制动电流 所对应 的工作点位于两折线的上 出 K 的数值 。 方时 ,差动元件动作。 对 于 双 绕 组 变 压 器 , 保 护 动 作 电 流

主变差动保护的基本原理

主变差动保护的基本原理

主变差动保护的基本原理主变差动保护是一种用于保护电力系统主变压器的重要保护装置。

它通过检测主变两侧电流的差值,判断主变压器是否发生故障,并根据判断结果进行相应的保护动作。

主变差动保护具有灵敏、可靠、快速等特点,是保护主变压器安全运行的主要手段之一。

主变差动保护的基本原理如下:1.差动电流原理:主变差动保护是基于差动电流原理工作的。

在正常情况下,主变两侧的电流应当是相等的,即差动电流为零。

而当主变发生故障时,例如短路、接地等,主变两侧的电流就会发生不平衡,即出现差动电流。

2.电流传感器:主变差动保护装置通过电流传感器获取主变两侧的电流信息,这些电流传感器通常是电流互感器。

主变差动保护通常使用两个电流传感器,分别连接到主变两侧的线路上。

3.电流比较:主变差动保护对两侧电流进行比较,以判断是否发生故障。

通常,差动保护器会对两侧电流进行相位和幅值的比较。

如果主变两侧电流相等,没有差动电流,差动保护器则认为主变正常;而如果主变两侧电流不相等,存在差动电流,差动保护器则判断主变发生故障。

4.差动保护动作:当差动保护器判断主变发生故障时,它会触发保护动作,以隔离故障点并保护主变。

差动保护器的保护动作通常通过输出一个或多个触发信号来实现,触发信号可以用来操作断路器、闸刀等设备。

5.可靠性增强技术:为了提高主变差动保护的可靠性,常常采用一些增强技术。

例如,差动保护器可以通过设置延时、滞后等功能来抑制瞬时故障误动作。

此外,还可以使用同步电流补偿、零序电流补偿等技术来提高保护的精度和可靠性。

总结起来,主变差动保护通过检测主变两侧电流的差异,来判断主变是否发生故障,并触发相应的保护动作。

它具有灵敏、可靠的特点,是保护主变压器运行安全的重要手段之一。

同时,通过采用增强技术,可以进一步提高保护的可靠性和精度。

主变差动保护比率制动系数的校验方法

主变差动保护比率制动系数的校验方法
主变差动保护比率制动系数的校验方法
深圳供电局
继电保护测试技术
三侧加量校验比率制动系数
1、题目要求 比率差动保护(高、中、低压侧试验,K=0.5)制动曲线测试,分别试验制动值为 0.5Ie、2.5Ie、4.5Ie三个点 主变参数: 220kV主变为三卷变,接线方式为Y12/Y12/△11,Se=240MVA,高压侧: Ue=230 kV,CT变比600/1;中压侧Ue=115 kV ,CT变比1200/1;低压侧: Ue=11.5 kV,CT变比6000/1。
折算为有名值: I1 2.3751 2.3750
I2 3.3131 3.3130 I3 5.737 2 11.47180
深圳供电局
6、实验步骤(状态序列)
状态1

I A 0.4750

IB 0.2630

IC 0.909180
按键控制

差动电流略小于

动作门槛
状态4

I A 1.5750
深圳供电局
继电保护测试技术
计算差动动作电流临界值:Icd (4.5 0.5) 0.5 0.5 0.2 Icdqd 2.5Ie
a)计算0.95倍动作值: I1 0.95 2.5Ie 2.375Ie0
I2
2 4.5 2
2.375
3.313Ie0
I3
2
4.5 2
2.375
3 5.737Ie180
深圳供电局
继电保护测试技术
计算差动动作电流临界值:Icd (2.5 0.5) 0.5 0.5 0.2 Icdqd 1.5Ie
b)计算0.95倍动作值: I1 1.051.5Ie 1.425Ie0
2 2.5 1.425

变压器比率差动保护原理及校验方法分析

变压器比率差动保护原理及校验方法分析

1引言随着生产生活进一步发展,社会各界对电能需求量进一步增加,电力企业为满足当前用电需求,不断优化电网,各种各样高压输电线路、变压设备等逐渐投入到电网建设之中。

变压器属于电网重要仪器之一,保证变压器质量可以有效提升电网整体可靠性。

而研究变压器比率差动保护原理及校验,对于提升变压器自身可靠性有很大意义。

2变压器比率差动保护原理差动保护属于变压器保护形式的一种,是指比较变压器不同侧相位与电流不同,进而构成一种保护。

尽管变压器各侧电路互不相通,电流不等,但可以根据变压器短路(外部)时流出与流入变压器的功率与正常情况下变压器工作时流出与流入变压器的功率进行比对,利用各侧电流安匝之和近似为零等,进而建立相应的差动保护平衡方程[1]。

一旦变压器内部发生故障后,可以通过建立相应差动保护平衡方程对相应差动电流流过的差动回路进行控制,促使差动继电器发挥作用,进而对变压器进行保护。

2.1不平衡电流产生的原因一旦变压器外部电路出现短路等故障后,差流回路(差动保护)会产生较大非平衡电流。

一般导致不平衡电流出现的原因包括以下几个:各侧电流(变压器)的互感器变比和型号不一致;高低压侧(变压器)绕组接线的形式不相同;暂态非平衡电流产生原因与变压故障、空载电流有很大关系,变压器外部故障消除后,或者有空载电流进入电源后,电压恢复励磁涌流导致暂态非平衡电流出现;变压器带负荷调分接头引起变比变化。

2.2不平衡电流处理措施常规变压器非平衡电流处理方式包括如下几种:确保各侧电流互感器必须一致。

相关技术人员选择相同电流互感器,安装在变压器各侧要尽可能选择变比、型号相同的仪器,确保各侧对变压器影响相同,避免非平衡电流产生。

技术人员也可以适当增加保护动作电流,以有效避免外部短路造成非平衡电流产生,动作电流具体数额要在对差动保护的整定计算中,进一步考虑[2];相关技术人员可以利用相位补偿法有效解决因高低压侧绕组方式不同导致的非平衡电路;相关技术人员可以采用波形对称原理、二次谐波制动原理、励磁涌流波形和内部短路电流差别等方式来躲避励磁涌流,避免非平衡电流产生;可以利用对变压器差动保护的整定计算的进一步优化,消除由于带负荷调分接头导致的非平衡电流问题。

变压器比率差动保护原理及校验方法分析

变压器比率差动保护原理及校验方法分析

变压器比率差动保护原理及校验方法分析摘要:电力系统的发展突飞猛进,大型发电机变压器投入运行,发变组差动保护在发变组保护中的地位越来越重要,运行中的发电机变压器发生故障,做为主保护的发变组比率差动保护应在第一时间动作,将故障的发电机或者变压器从系统中切除,保证电力系统的稳定运行。

近年在电网系统中,国电南自,国电南瑞,许继发变组保护在现场中得到了大量的应用,不同的厂家,针对保护的原理会有所不同,算法也各不相同,这对继电保护人员在保护校验中提出了更高的要求,本文针对变压器比率差动保护,以主变比率差动保护校验方法为例,研究国电南自,国电南瑞,许继主变比率差动保护的不同,校验方法的不同。

关键词:国电南自;国电南瑞;许继;变压器比率差动保护;检验1 保护配置某发电厂300MW机组,采用发电机-变压器-线路组形式接入220KV地区电网,主变采用Y/Δ-11点钟接线,主变比率差动保护TA取自发电机机端侧TA变比15000/5,高厂变高压侧TA变比1500/5,主变高压侧TA变比1200/5,变压器各侧电流互感器二次接线均采用星型接线,二次电流直接接入装置,变压器各侧TA二次电流相位由软件自调整,装置采用Y/Δ变化调整差流平衡。

(图一)2国电南瑞主变比率差动保护校验方法现场班组一般配置ONLLY A460系列继电保护校验仪,以(图一)为例,主变比率差动保护检验需要分别检验:发电机机端侧和主变高压侧比率差动,高厂变高压侧和主变高压侧比率差动,发电机机端侧和高厂变高压侧比率差动。

下面都以发电机机端侧和主变高压侧比率差动为例,研究单相法主变比率差动校验方法。

(1)从南瑞RCS-985发电机综合保护装置中读取主变差动定值:差动启动定值和差动速断定值是标幺值(2)南瑞RCS-985发电机综合保护装置,主变比率差动保护计算公式I d>Kbl×Ir+Icdqd(Ir<nIe)Kbl=Kbl1+Kblr×(Ir/Ie)Id>Kbl2×(Ir-nIe)+b+Icdqd (Ir≥nIe)Kblr=(Kbl2-Kbl1)/(2×n)b=(Kbl1+Kblr×n) ×nIe(公式一)Id----差动电流;Ir----制动电流;Kbl1----比率差动起始斜率Kbl2----比率差动最大斜率n----最大斜率时的制动电流倍数取6差动电流取各侧相量和的绝对值制动电流取各侧数值绝对值相加除以2(3)从计算定值中读取各侧额定电流:I主变高压侧=3.43A I发电机侧=4.33A(4)软件校正差动各侧电流相位差与平衡系数,校正方法:对于Y侧电路:ⅰ’A=(ⅰA-ⅰB)/√3ⅰ’B=(ⅰB-ⅰC)/√3ⅰ’C=(ⅰC-ⅰA)/√3ⅰA、ⅰB、ⅰC——为Y侧TA二次电流ⅰ’A、ⅰ’B、ⅰ’C­——为Y侧校正后各相电流(公式二)(5)保护动作特性:图二比率差动保护动作特性(6)打开校验仪,按照下表在保护装置上输入数值,设置步长:(表一)在校验仪上设置好数值之后,从保护装置上观测两侧电流平衡,差流位零,制动电流为两侧电流绝对值之和除以2,缓慢的调节步长(增加或减少都可),制动电流不变,差流逐渐增大,直至发电机保护动作,记录校验仪所加动作值,从微机保护装置上读取动作电流和制动电流。

比率差动保护原理

比率差动保护原理

比率差动保护原理比率差动保护是电力系统中常用的一种保护方式,它主要用于保护变压器和输电线路。

比率差动保护原理基于比较电流变压器的一次和二次电流之间的比率,以检测电流在变压器或输电线路中的不平衡情况,从而实现对系统的保护。

本文将介绍比率差动保护的原理及其应用。

比率差动保护的原理是基于基尔霍夫电流定律和变压器的工作原理。

在正常情况下,变压器的一次和二次电流是按照变比关系进行传递的,即二次电流等于一次电流乘以变压器的变比。

当变压器或输电线路发生故障时,导致一次和二次电流不平衡,这时比率差动保护就会起到作用。

比率差动保护装置会对一次和二次电流进行比较,如果检测到不平衡,则会输出保护动作信号,从而切断故障部分,保护系统的安全稳定运行。

比率差动保护通常由比率差动继电器、电流互感器、控制装置等组成。

比率差动继电器是比率差动保护的核心部件,它通过比较一次和二次电流的差值,来判断系统是否存在故障。

电流互感器则用于将一次和二次电流进行采集,并送至比率差动继电器进行比较。

控制装置则负责接收比率差动继电器的输出信号,并对系统进行保护动作。

比率差动保护在电力系统中具有重要的应用价值。

首先,它能够对变压器和输电线路进行全面的保护,及时发现故障并切断故障部分,保护系统的安全稳定运行。

其次,比率差动保护具有高灵敏度和快速动作的特点,可以有效地减小故障对系统的影响,提高系统的可靠性。

再次,比率差动保护还能够实现远程通信和自动化控制,提高电力系统的运行效率和管理水平。

总的来说,比率差动保护原理简单、可靠,具有广泛的应用前景。

随着电力系统的不断发展,比率差动保护将会在电力系统中发挥越来越重要的作用,为电力系统的安全稳定运行提供有力保障。

差动保护原理及校验

差动保护原理及校验

差动保护原理及校验差动保护是电力系统中常用的一种保护方式,用于检测电力系统中的故障,并及时切除故障点,以保护设备和人员安全。

差动保护通过比较电流的差值来判断是否存在故障,其原理是根据电流的连续性原理,即在故障发生时,系统中的电流总和应为零,如果存在故障,那么电流差值将不为零,从而触发差动保护。

差动保护的基本原理是利用变压器的原理。

在电力系统中,变压器是一种常用的电力设备,其本质是通过电磁感应的原理转换电能。

在变压器中,存在着输入侧和输出侧的电流关系,即输入侧的电流与输出侧的电流成正比关系。

差动保护通过检测变压器输入侧和输出侧的电流差值,从而判断是否存在故障点。

差动保护的校验主要包括以下几个方面:1.设置的差动电流阈值的校验:差动保护中需要设置一个电流阈值,当输入侧和输出侧的电流差值大于该阈值时,才会触发差动保护。

校验差动电流阈值的合理性是差动保护校验的重要内容之一2.差动保护的整定方法的校验:差动保护的整定方法是确定差动保护参数的过程,其目的是保证差动保护灵敏、准确地判别故障。

校验整定方法的正确性是差动保护校验的关键之一3.差动保护的稳定性校验:差动保护在运行过程中需要保持稳定状态,即在没有故障情况下,差动保护应该不会误动。

稳定性校验是保证差动保护正常工作的重要环节之一4.差动保护的动作速度校验:差动保护需要在故障发生时及时切除故障点,以保护设备和人员安全。

动作速度的校验是保证差动保护具有及时性的关键之一通过对以上几个方面的校验,可以保证差动保护的准确性和可靠性,提高电力系统的安全性和稳定性。

总结起来,差动保护是一种根据电流的差值来判断是否存在故障的电力保护方式。

其原理是利用变压器输入侧和输出侧电流的差值来判断是否存在故障点。

差动保护的校验主要包括差动电流阈值的校验、整定方法的校验、稳定性的校验和动作速度的校验。

通过对差动保护的校验可以保证其准确性和可靠性,提高电力系统的安全性和稳定性。

浅析变压器比率差动保护的校验方法

浅析变压器比率差动保护的校验方法
He a 7 5 0) n n4 3 0 ;
Ab t a t nt sso r n fr rS b t o ’ i e e t l r tci n. t sdf c l t ai ae t ec r e o t — ie e t r ~ sr c :I t f a s me u s ̄i n S f r n i oe t e T o d ap o i wa i iu t ov l t u v f ai df r n i p o d h r o l a tcin b c u et ec mp n ain p n i a f o u e r tcin d vc a w y s n e s o y tc nc a s.I iw o e e t e a s o e s t r cp l mp tr oe t e i ew sa a smi d r t d b h iin o h o i oc p o l u o e n ve f t h p o l m , h r cp eo ie e t l rt c o n h o k n so i e e t lc re t o e s t n meh d o o u e rtc rbe t ep i il f f r n i o e t n a d t e t id f f r ni u r n mp n ai t o n c mp trp o e - n d ap i w d a c o
关键词 : 变压 器 ; 比率 差 动 保 护 ;ห้องสมุดไป่ตู้验 方 法 校 d i 0 99 .s. 0 - 5 42 1. . 2 o 1. 6 6i n1 6 85 . 00 0 : 3 s 0 0 80
Ana y i o t si g m e ho o t a s o m e ’ r to i e e ta p o e to l ss f e tn t d n r b f r r S a i -d f r n i l r t c i n

主变差动保护校验方法

主变差动保护校验方法

主变差动保护校验方法在电力系统里,主变差动保护就像一个忠诚的看门狗,时刻关注着变压器的健康状况,防止它出问题。

就好比我们在家里养了一只小狗,虽然看起来它天天就爱吃喝拉撒,但关键时刻它会警觉地吠叫,提醒我们小心不法之徒。

变压器也是一样,万一有故障,立马就得有人来解决,不能让小问题发展成大麻烦。

1. 主变差动保护的基本原理1.1 什么是主变差动保护?简单来说,主变差动保护是一种用来检测变压器内部故障的保护方式。

它通过比较变压器输入和输出的电流来判断是否有异常。

如果发现输入电流和输出电流之间有明显的差异,那就说明变压器内部可能出了问题,就像小狗发现了家里有陌生人的气味一样,立刻报警。

1.2 为什么需要差动保护?在电力系统中,变压器可是重头戏。

一旦它出现故障,可能会导致大规模停电,甚至引发连锁反应。

就像在一个大家庭里,谁要是生病了,大家都得担心,整个家庭的气氛都不一样了。

因此,差动保护就成了保护变压器的重要手段,它可以在故障发生时迅速切断电源,防止事故扩大。

2. 校验方法的重要性2.1 校验方法的意义好比我们买了一台新手机,大家都会仔细检查一下,确保没有问题再开始使用。

主变差动保护的校验方法就是为了确保保护装置的准确性,防止误动作或者漏动作。

就像过年时,家家户户都会大扫除,确保每个角落都干干净净,才能过个放心年。

2.2 常见的校验方法校验的方法有很多,比如说使用电流互感器来进行校验,看看它们的灵敏度是否正常。

这就像医生给病人做体检,确保各项指标都在正常范围内。

还有就是对比电流信号的相位,看看它们是否一致,是否有任何异常现象。

这就好比我们一起吃饭,看看每个人的盘子是不是差不多,保证大家都吃得饱饱的。

3. 实际操作中的注意事项3.1 注意安全在校验的过程中,安全是第一位的。

就像我们做任何事情都要注意安全,特别是涉及到电力的工作,更要小心翼翼。

确保所有的设备都处于正常状态,穿戴好个人防护装备,才能放心地进行操作。

比率差动保护原理

比率差动保护原理

比率差动保护原理
比率差动保护原理是电力系统中常用的一种保护方式,它主要用于检测电流差值超过一定比率的故障情况。

该保护原理基于电流差动继电器,通过比较电流差值与设定值的比率来判断电力系统的运行状态,从而及时采取合适的保护措施。

具体来说,比率差动保护原理利用电流互感器将系统中的电流信号转化为对应的电压信号,然后输入到差动继电器中进行处理。

差动继电器内部有比率差动比较器,它将输入的电压信号进行比较,得到电流差值的比率。

一般来说,比率差动保护原理采用了一个预设的比率阈值,当电流差值的比率超过这个阈值时,差动继电器会产生动作信号,触发相应的保护动作。

这样可以快速准确地检测到系统中的故障情况,并切断故障电路,防止故障扩大。

比率差动保护原理的优点是对地故障的检测能力强,对线路接线和电流互感器误差影响较小。

同时,由于采用了比率差动比较器的检测方法,可以有效地提高保护的灵敏度和可靠性。

总的来说,比率差动保护原理是一种基于电流差动继电器的保护方式,通过比较电流差值与设定值的比率来判断电力系统的运行状态,实现及时准确地故障检测和保护动作。

这种原理具有灵敏可靠的特点,能够有效地保护电力系统的安全运行。

比率差动保护原理

比率差动保护原理

比率差动保护原理
比率差动保护是一种常用的电力保护装置,用于检测和保护电力系统中的故障。

它通过比较电流变化的比率来确定是否存在故障,并在故障发生时迅速断开故障电路,以防止进一步损坏设备或造成人员伤亡。

比率差动保护的原理是基于比率差动继电器的工作原理。

在正常情况下,电力系统中的电流在各个环节中保持平衡。

但是,当发生故障时,故障电流会导致电流的变化,可能会破坏系统的平衡状态。

比率差动继电器通过将输入电流与输出电流进行比较来检测故障。

比如,当输入电流大于输出电流时,说明存在故障电流流入系统。

继电器会监测这种差异,并触发保护动作,切断电流。

为了确保准确性和可靠性,比率差动继电器通常使用了多个电流传感器,以监测不同部分的电流变化。

这样可以提高保护装置的灵敏度和误动作的能力。

此外,还会对比率差动保护进行灵敏度调整,以适应不同的电力系统和故障情况。

总的来说,比率差动保护是一种有效的电力保护装置,它能够及时检测和保护电力系统中的故障,确保电力系统的安全和稳定运行。

主变差动的原理,整定,校验及定值表

主变差动的原理,整定,校验及定值表

1.1.1. 主变比率制动式差动保护比率制动式差动保护能反映主变内部相间短路故障、高压侧单相接地短路及匝间层间短路故障,既要考虑励磁涌流和过励磁运行工况,同时也要考虑TA断线、TA饱和、TA暂态特性不一致的情况。

由于变压器联结组不同和各侧TA变比的不同,变压器各侧电流幅值相位也不同,差动保护首先要消除这些影响。

本保护装置利用数字的方法对变比和相位进行补偿,以下说明均基于已消除变压器各侧电流幅值相位差异的基础之上。

1.1.1.1. 比率差动动作方程(6-3-1)为差动电流,为差动最小动作电流整定值,为制动电流,为最小制动电流整定值,S为动作特性折线中间段比率制动系数。

,,S需用户整定。

对于两侧差动:(6-3-2)(6-3-3),分别为变压器高、低压侧电流互感器二次侧的电流。

各侧电流的方向都以指向变压器为正方向。

1.1.1.2. 比率差动动作特性比率差动动作特性同图6-3-1所示:图6-3-1 主变(厂变、励磁变)比率差动动作特性注:只有主变比率差动保护动作特性才有速动区,厂变和励磁变均没有速动区。

1.1.1.3. 主比率差动启动条件当三相最大差动电流大于0.8倍最小动作电流时,比率制动式差动启动元件动作。

图6-3-2 主变增量差动保护动作特性图1.1.2. 主变差动保护逻辑图主变差动保护逻辑如图6-3-3所示:图6-3-3 主变(厂变、励磁变)差动保护逻辑图1.1.3. 差流速断保护由于比率差动保护需要识别主变(高厂变、励磁变)的励磁涌流和过励磁运行状态,当变压器(厂变、励磁变)内部发生严重故障时,不能够快速切除故障,对电力系统的稳定带来严重危害,所以配置差流速保护,用来快速切除主变(厂变、励磁变)的严重的内部故障。

当任一相差流电流大于差动速断整定值时差流速断保护瞬时动作,跳开各侧断路器。

速断启动条件:采用三相最大差流大于0.8倍速断定值,差流速断启动元件动作。

1.1.4. 差流越限保护当任一相差动电流满足差流越限动作条件时差流越限保护延时动作,报差流越限信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主变稳态比率差动保护原理及其校验方法
作者:盛伟
来源:《硅谷》2014年第23期
摘要继电保护为一次设备的安全设立了一道屏障,大量事实表明做好继电保护工作对电力系统的安全稳定运行具有重要作用。

由于变压器在电网中处于非常重要的地位,一旦它发生故障将给电网的运行带来很大的影响,因此主变保护在继电保护中属于重中之重。

本文针对南瑞继保的RCS-978主变保护装置,详细分析了主变稳态比率差动保护原理,介绍了RCS-978的动作特性以及其软件实现相位补偿的算法,给出了校验主保护整定值的方法。

以明确主变保护定检作业步骤,提高工作效率。

关键词继电保护;比率差动;RCS-978;相位补偿;平衡系数
中图分类号:TM772 文献标识码:A 文章编号:1671-7597(2014)23-0105-01
对于运行中的变压器,若保护装置出现问题,将直接导致变压器需退出运行,将对供电可靠性产生不利因素,因此继保工作人员通过定检以确保主变保护装置能够正常、准确运行就显得尤为重要了。

对于220 kV及以上电压等级的变电站,南瑞继保的RCS-978主变保护装置由于其出色的性能得到广泛的应用。

差动保护作为变压器的主保护起着至关重要的作用,本文以RCS-978为例对主变稳态比率差动保护的原理进行了分析,给出了校验差动保护整定值时计算中的各项注意点,为电力系统的继保人员提供参考。

1 RCS-978差动保护原理
主变差动保护是通过比较变压侧各侧电流值的大小和方向,在出现区域外故障时断开变压器的断路器隔离故障点实现差动保护。

变压器各侧之间不是直接的电气联系而是电磁联系,在变压器正常运行时,励磁电流较小,但若发生外部故障后电压恢复时,变压器出现励磁涌流。

在励磁涌流中具有很多的直流分量以及高次谐波,而在发生区外故障时短路电流较大,电流互感器往往出现饱和现象,一次侧的涌流转变到二次侧时会发生畸变。

如果不采取措施避免这种情况,主变保护装置将可能发生误动作。

对于南瑞的RCS-978主变保护装置,其稳态比率差动保护能够区分是变压器内部故障还是外部不平衡故障。

RCS-978通过分相制动的方式闭锁励磁涌流,因此能够将故障电流和励磁涌流区分开来,其保护动作时间大大加快。

2 RCS-978的动作特性
RCS-978的稳态比率差动保护具有三段折线的动作特性。

比率差动保护能够做到在外部短路电流增大时制动电流和动作电流同时增大,能有效防止变压器区外故障时差动保护误动作。

高值比率差动保护可以判断TA断线故障,其通过动作特性防止电流互感器的饱和,在发生区内故障时电流互感器即使饱和也能正确动作。

RCS-978G5比率差动保护动作方程见下式。

(1)
其中,是保护装置的比率差动起动定值,为变压器二次额定电流。

3 相位补偿方法
对于RCS-978保护的主变,其电流互感器在变压器两侧采取星型接线方式,其极性端指向母线侧。

根据变压器原理,对于Y/△-11接线方式的变压器,两侧二次电流之间会出现30°的相位差。

由于变压器的变比和联接组的不同,各侧电流大小及相位也不同,RCS-978利用软件对变比与相位进行补偿。

RCS-978的软件采用三角形侧向星形侧校正的方式,其算法可见下式。

Y侧:
(2)
△侧:(3)
其中,、、是Y侧CT二次电流,、、是△侧CT二次电流,、、是Y侧校正后的各相电流,、、是△侧校正后的各相电流,是Y侧二次零序电流。

4 稳态比率差动保护校验方法
1)继保仪加入六路电流。

当校验变压器高压侧和中压侧的比率差动保护时,则利用继保仪向保护装置两侧加入相位相差180度的电流,当电流大小为额定值时,装置差流为零。

当校验变压器高压侧与低压侧或者是中压侧与低压侧时,继保仪向保护装置两侧所加电流相位差应当为150度,在试验各侧加入电流大小为额定值时,装置差流为零。

2)继保仪加入三路电流。

若继保仪只能加入3路电流,意味着保护装置两侧只能加入一相或者两相电流。

根据式5可知,向保护装置一侧加入单相电流将对两相产生影响。

对于高压侧和中压侧的比率差动保护试验,高压侧和中压侧接线方式为两侧电流从A相极性端流入,流出后经过B相非极性端,从B相极性端流出,这样的接线方式能够使保护装置检测到的零序电流为零,当两侧所加电流相位相差180°,大小为额定电流值时,装置差流为零。

若对于试验两侧分别为星形和三角形时,其接线方式为,星形侧电流从A相极性端流入,流出后进入B相非极性端,再从B相极性端流出;三角形侧电流从A相极性端流入,从A相非极性端流出。

此时,星形侧和三角形侧相位相差180°,星形侧电流大小为额定值,三角形侧电流大小为时,装置差流为零。

比率差动试验时,根据保护装置的比率差动起动定值,根据上述方法计算出两侧应加实际电流,根据所需要校验的比率差动保护动作的曲线斜率,根据式(1),给出一组平衡电流值(额定电流值的整数倍)后,观察保护装置差流为零,然后改变中一侧电流值,当保护动作后,记录动作电流值,将实际电流值转换为标幺值后进行计算,即可得出保护装置比率差动保护动作是否满足式(1)的动作特性。

5 结论
本文针南瑞继保的RCS-978主变保护装置,对比率差动保护原理进行了深入的分析,对保护装置的动作特性、相位补偿方法以及平衡系数计算方法做了详细的介绍,最后给出了继保仪加入六路或者三路电流的试验方法,能够加深继保人员对主变保护的理解,进而提高调试时的工作效率。

参考文献
[1]张鲁.NSR890型微机变压器保护装置比率差动的调试[J].电工电气,2010(10).。

相关文档
最新文档